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Zero-Crossings of a Wavelet Transform

Stephane Mallat

Abstract —Sharp variation points are among the most mean-
ingful features for characterizing transient signals. For a partic-
ular class of wavelets, the zero-crossings of a wavelet transform
provide the locations of the signal sharp variation points at
different scales. The completeness and stability of a signal
representation based on zero-crossings of a wavelet transform at
the scales 2/, for integer j are studied. An alternative projection
algorithm is described. It reconstructs a signal from a zero-
crossing representation which is stabilized. The reconstruction
algorithm has a fast convergence and each iteration requires
O(N log?(N)) computations for a signal of N samples. The
zero-crossings of a wavelet transform define a representation
which is well adapted for solving pattern recognition problems.
As an example, the implementation and results of a coarse-to-
fine stereo-matching algorithm are described.

Index Terms —Multiscale, pattern matching, signal represen-
tation, wavelet transform, zero-crossings.

1. INTRODUCTION

N IMPORTANT problem in signal processing is to

define a representation that is well adapted for
extracting the information content of signals. The sharp
variations of a signal amplitude are generally among the
most meaningful features. For example, the discontinu-
ities of an image intensity provide the contours of the
different objects. When the signal includes important
structures that belong to different scales, it is often help-
ful to reorganize the signal information into a set of
“detail components” of varying size [17]. Marr and
Hildreth [14] have shown that one can obtain the position
of multiscale sharp variations points from the zero-cross-
ings of the signal convolved with the Laplacian of a
Gaussian. This edge detection procedure has been used
in many pattern recognition applications [4]. An impor-
tant practical and theoretical issue is to understand
whether the multiscale edges carry all the information of
the original signal. Indeed, for pattern recognition appli-
cations, ‘'we do not want to remove some important
components of the signal, when representing it with mul-
tiscale zero-crossings. Completeness by itself is not suffi-
cient as for most applications the representation must
also be stable. This means that a small perturbation of the
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representation should correspond to a small modification
of the original signal. While reviewing some previous
work, we shall see that the positions of multiscale zero-
crossings may provide a complete representation under
certain restrictive assumptions but such a representation
is not stable. We show that one can stabilize a zero-cross-
ing representation by adding a complement of informa-
tion that measures the ‘“size” of the structure between
two consecutive zero-crossings. This new signal represen-
tation is based on the wavelet transform reformalization
of multiscale decompositions. We introduce the most
important results of the wavelet theory in order to study
the properties of multiscale zero-crossings. The central
result of this article is an algorithm that reconstructs
one-dimensional signals from a stabilized zero-crossing
representation. This algorithm iterates on a nonexpansive
projector on a convex set and an orthogonal projector on
a Hilbert space, hence the convergence is guaranteed.
The numerical results show that the reconstruction is
independent from the choice of the initial point at the
beginning of the iteration but this has not been proven
mathematically. The convergence is fast and each itera-
tion requires O(N log?(N)) computations, for a signal of
N samples.

In order to illustrate the application of this new zero-
crossing representation to pattern recognition, we de-
scribe the results of a stereo-matching algorithm. The
stereo matching problem consists of finding a point by
point correspondence between two one-dimensional sig-
nals that are shifted from one another and have some
local distortions. In image processing, we must solve such
a correspondence problem when trying to recover a depth
information from a pair of stereo images. We introduce a
simple distance based on our multiscale zero-crossing
representation and derive a coarse to fine matching algo-
rithm to compute the stereo correspondence. Matching
results on two epipolar lines of real images are given.

A. Notation

Z denotes the set of integers. L? denotes the Hilbert
space of measurable, square-integrable one-dimensional
functions. For f(x) € L? and g(x)e L?, the inner prod-
uct of f(x) with g(x) is

Ca(0). () = [ g(x)f(x) dx.

0018-9448 /91 /0700-1019$01.00 ©1991 iEEE

=



1020

The norm of f(x)e€ L? is given by

1= 1o d.

We also denote by [?(L?) the Hilbert space of all se-
quences of functions (g,(x)); <, such that for all j € Z,
g{x)€ L? and

+

¥ g () < +.

j=—e

This infinite sum is the norm of the sequence (g(x)ez
in I2(L2).

We denote the convolution of two functions f(x) e L?
and g(x)e L? by

Feg(x) = F)g(x =) du.

The Fourier transform of f(x) € L? is written f(w) and is
defined by

Fw)=f"fxyerar.

II. PROPERTIES OF THE WAVELET TRANSFORM

The wavelet transform is a linear operation that decom-
poses a signal into components that appear at different
scales. This transform is based on the convolution of the
signal with a dilated filter. Such a decomposition has been
studied in signal processing [19] and computer vision [20]
but has recently been reformalized in mathematics. For a
thorough presentation, the reader is referred to general
reviews [2], [12] and an advanced functional analysis book
of Meyer [16]. A wavelet is a function (x) & L? such that

fj:dr(x)dx: 0.

Let us denote by ¢,(x) the dilation of (x) by a factor s:

ws(x)=%z/f(§’). (1)

The wavelet transform of a function f(x) at the scale s
and position x is given by the convolution product
Wf(x) =F*d(x). (2)
Morlet and Grossmann [5] have shown that the wavelet
transform satisfies an energy conservation equation and
that f(x) can be reconstructed from its wavelet trans-
form. When the scale s decreases, the support of Y (x)
decreases so the wavelet transform W, f(x) is sensitive to
finer details. The scale s characterizes the size and regu-
larity of the signal features extracted by the wavelet
transform. '

The wavelet transform depends on two parameters s
and x that vary continuously over the set of real numbers.
For practical applications these parameters must be dis-
cretized. For a particular class of wavelets, the scale
parameter can be sampled along the dyadic sequence
(2f)jez, without modifying the overall properties of the
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transform. The principles of such a dyadic scale decompo-
sition was studied in mathematics by Littlewood and
Paley in the 1930’s. The wavelet transform at the scale 2/
is given by

Warf (x) = f = (). 3)
At each scale 2/, the function W,,f(x) is continuous since

it is equal to the convolution of two functions in L2. The
Fourier transform of W,;f(x) is

Whi(0) = f(@)§(2/0). (4)

By imposing that

+

T W (2w)l=1, (5)

j=—w

we insure that the whole frequency axis is covered by a
dilation of ¢(w) by the scales factors (27 );  z- Any wavelet
satisfying equation (5) is called a dyadic wavelet. We also
call dyadic wavelet transform the sequence of functions

(szf(x));’ez~ (6)

We denote by W the dyadic wavelet operator defined by
Wf = (szf(x))je z:

From (4) and (5) and by applying the Parseval theorem,

we obtain an energy conservations equation
+ e

£ = X Wy f(x)lP. (7)
j=—
Let §,/(x) = ,/(— x). The function f(x) can be recon-
structed from its dyadic wavelet transform:

4o
f(x)="¥ Wuf*idn(x). (8)
R
This equation is proved by computing its Fourier trans-
form and inserting (4) and (5).

Let V' be the space of the dyadic wavelet transforms
(W,if(x)); < 2, for all functions f(x)e L% Let us denote
by I2(L?) the Hilbert space of all sequences of functions
(g{x)); ¢ z, such that

+ oo

T lg; ()l < +oe.

j=—c

g(x)eL® and

Equation (7) proves that V is a subspace of I2(L?). We
denote by W' the operator from I2(L?) to L? defined by

‘o .
W_l(gf(x))jez= Z 8 * ¥ x). 9)
j=—c
The reconstruction formula (8) shows that the restriction
of W~! to the wavelet space ¥ is the inverse of the dyadic
wavelet transform operator W.
Any sequence of functions (g,(x));c, € [*(L?) is not
a priori the dyadic wavelet transform of some function
f(x)€ L*. Indeed, if there exists a function f(x)e L2
such that (g,(x)); . , = Wf, then clearly we should have

WIW ' (8)(2),e2) = (8(x)) ;e (10)
If we replace the operators W and W~! by their expres-
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Fig. 1. When f(x) is translated by 7, its wavelet transform W,;f(x) is
also translated. However, samples of W,;f(x) and W,,f (x) (given by
the crosses) are not translated from one-another if the translation 7 is
not proportional to the sampling interval r2/.

Waife(x)

sion given in (3) and (9), we obtain:

+ o
VieZ, Z g,*K,'j(x):gj(x),

with )
Kl,j(x)=(l;2’*¢’2"(x)' 11

The sequence (g;(x)); ¢z is a dyadic wavelet transform if
and only if (11) holds. These equations are called repro-
ducing kernel equations. They express the correlation
between the functions W,;f(x) of a dyadic wavelet trans-
form. The operator

P,=WoW!

(12)
is a projector from I%(L?) on the V space. Indeed, one
can easily prove that any sequence of functions

(gj(x))jezelz(Lz)

satisfies Py (g;(x));cz €V, and we saw that any element
of V is invariant under the action of this operator. One
can also prove that the projector P, is orthogonal in
12(L?) because it is derived from a reproducing kernel
equation. This projector is important for the purpose of
this paper.

For digital processing applications, the spatial parame-
ter x of the functions W,;f(x) must also be discretized.
The classical approach consists in sampling each function
W,if(x) with a sampling interval r27.If r is small enough,
Daubechies [3] has proved that f(x) can be recovered
from the set of samples (W/f(n /r27)),, j e z2- The funda-
mental drawback of this sampling procedure is that it is
perturbated by any translation. Let f(x)€ L? and f,(x)
= f(x — 1) be a translation of f(x) by 7. Since the
wavelet transform is defined with a convolution product,
we can derive that

Waif(x) =Waf(x = 7). (13)

However, the sampling of W,;f(x) does not correspond
to a translation of the sampling of W,;f(x) unless 7=
kr2/, k € Z (see Fig. 1).

The uniform sampling of a wavelet transform is difficult
to use for pattern recognition since it does not define
signal descriptors that translate when the signal is trans-
lated. Indeed, the wavelet coefficients of a particular
pattern are modified when the position of this pattern is
changed. On the contrary, it is clear that the position of
the zero-crossings of a dyadic wavelet transform are trans-
lated when the signal f(x) is translated.

1
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Let us now study in more detail the properties of the
wavelet transform zero-crossings. We call smoothing func-
tion the impulse response of a low-pass filter. The convo-
lution of a function f(x) with a smoothing function atten-
uates part of its high frequencies without modifying the
lowest frequencies and hence smooths f(x). Let us show
that if the wavelet is the second derivative of a smoothing
function, the zero-crossings of a wavelet transform indi-
cate the location of the signal sharper variation points.
Let 6(x) be a smoothing function, and

d%6(x)
b(x) = (14)
We denote 8,(x)=(1/5)8(x /s) the dilaton of 8(x) by a
factor s. Since

W f(x) = f*i(x), (15)

we derive that

2

= i P 16)
W) = £+ = e 19

Hence, W, f(x) is proportional to the second derivative of
f(x) smoothed by 6,(x). The zero-crossings of W,f(x)
correspond to the inflection points of f * 6,(x). When the
smoothing function 8(x) is a Gaussian, detecting the
zero-crossings of a wavelet transform is equivalent to a
Marr-Hildreth edge detector [14].

III. ReviEw oF COMPLETENESS AND STABILITY
RESULTS FROM ZERO-CROSSINGS

A fundamental issue is to understand whether the
zero-crossings define a complete and stable representa-
tion of the original signal. We briefly review some previ-
ous results on this problem. The most classical result
concerning the characterization of a signal from its zero-
crossings is due to Logan [9]. We describe in some detail
Logan’s theorem because it provides a good understand-
ing of the mathematical issues. Let f(x)€ L? and let us
suppose that its Fourier transform has a support included
in one octave intervals. Logan theorem [9] proves that if
f(x) does not share any zero-crossings with its Hilbert
transform, then it is uniquely characterized by its zero-
crossings. Let us give an intuitive justification of this
result. We know that there exists o, such that the Fourier
transform of f(x) has a support included in the intervals
[-2wy, — wolU[wg,2wy]. The Nyquist theorem proves
that such a signal is characterized by a uniform sampling
at the rate w,/m. One can also prove that this signal
changes sign approximatively as frequently as the function
sin(wyx). The number of zero-crossings is therefore of
the same order than the number of values needed to
characterize the signal with a uniform sampling. Of course,
the zero-crossing problem is different since zero-crossings
are not uniformly distributed, but one can see that quali-
tatively the same amount of information is available. To
prove this theorem, Logan makes an analytic extension of
the signal and uses standard properties of zeros of ana-
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lytic functions. The zero-crossing characterization as ex-
plained by Logan is not stable: “the problem of actually
recovering (the signal) from its sign changes appears to be
very difficult and impractical.”

Let us now explain how Logan’s theorem can be inte-
grated in the wavelet model. Let (x) be the function
equal to the impulse response of a perfect bandpass filter
of one octave. Its Fourier transform is given by

A _J1, fwr<l|ol<2m,
v(w) {0, otherwise.

(17)

The function (x) clearly satisfies (5) and is therefore a
dyadic wavelet. Let f(x)e L the Fourier transform of
W,if(x) is given by W, f(w)= f(w)(2/w). The support
of W,f(w) is thus included in the one octave intervals
[=27*1, =277 ]U[2 777,27+ 7). From Logan’s theo-
rem we derive that each function W,;f(x) is characterized
by its zero-crossings. Since we can reconstruct f(x) from
(W,if(x)); < 4, the original function f(x) is also charact-
erized by the zero-crossings of all the functions
(W, f(x)); c z- This characterization is however not stable
as previously explained.

Although Logan’s theorem is an important result, we
want now to emphasize the reason why it cannot be used
for the type of wavelets we are interested in. We need a
wavelet equal to the second derivative of some smoothing
function so that zero-crossings indicate the position of the
signal shaper variation points. If (x)=(d? 6(x))/ dx?,
then its Fourier transform can be written l//(w) =
— ?6(w). Since 6(x) is the impulse response of a low-pass
filter, it satisfies 8(0) # 0 so i#(w) has a zero of order two
at w = 0. Similarly, one can show that a wavelet is the
nth-order derivative of some smoothing function only if
its Fourier transform ll'(w) has a zero of order n at w = 0.
The Logan wavelet ¢(x) given in (17) cannot be written
as a finite-order derivative of some smoothing function
since its Fourier transform has an infinite-order zero in
o = 0. Hence, the zero-crossings of the wavelet transform
W,if(x) can not be interpreted as any particularly inter-
esting features of f(x). In fact, there are too much
zero-crossings since W,,;f(x) changes sign in almost all
intervals of length 2/, for any function f(x). Logan as well
as other researchers who extended this result, use the
band-limited properties of the signal for computing its
analytic extension. All these proofs do not provide any
stability result since they are based on nonstable charac-
terization of analytical functions [1], [18], [23]. The reader
is referred to a review by Hummel and Moniot for more
details [7].

Many studies have also described the properties of
zero-crossings of functions convolved with the Laplacian
of a Gaussian. This convolution is equivalent to the
wavelet transform built with a wavelet (x) equal to the
Laplacian of a Gaussian. Such a wavelet transform can be
interpreted as the result of a heat diffusion process [8].
Indeed, the Gaussian is the Green function of the heat
diffusion equation. Let ¢ = 52 be the diffusion time, one
can show that the wavelet transform W, f(x) built with the
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Laplacian of a Gaussian satisfies the heat differential
equation

W f(x) W, f(x)
at B ax? ’

(18)

The wavelet transform W, f(x) is therefore equal to a heat
distribution after a diffusion time ¢ = s? with an initial
heat distribution at r = 0 equal to A f(x) (the Lapalcian is
taken in the sense of distributions). By using the maxi-
mum principle, several authors have proved interesting
properties of the propagation of zero-crossings across
scales [6], [8], [22]. Hummel and Moniot as well as Yuille
and Poggio have also proven that the position of the
zero-crossings of W, f(x) give a complete characterization
of any function f(x) equal to a polynomial of arbitrary
high order [6]. If f(x)is a polynomial then the function
F(s,x)=W, f(x) is a polynomial in (s, x) € R* X R, so the
problem is reduced to the characterization of a polyno-
mial from the locus of its real roots. The proof is based on
an analytic continuation result so the stability of the
reconstruction is unlikely [7]. The polynomial assumption
can not be extended by a density argument because of
this instability. Numerical results [7] show that one can
build signals which are quite different although the zero-
crossings of their wavelet transform are very close. It is
difficult to make a formal proof of the instability of a
zero-crossing representation because the notion of insta-
bility is not well defined. A representation is said to be
unstable if a small perturbation of the representation may
correspond to an arbitrary large perturbation of the origi-
nal function. In order to measure the modification of the
representation, we must define a metric on zero-crossings.
The problem is that there is no satisfactory metric based
only on the position of multiscale zero-crossings.

In order to stabilize the reconstruction of a function
from its zero-crossings, Hummel records the gradient of
the wavelet transform along each zero-crossing. Hummel
and Moniot [6] have implemented an algorithm for recon-
structing the signal from the zero-crossings and gradient
values. The algorithm is essentially based on the differen-
tial equation (18) that gives the evolutionary properties of
W, f(x) when the scale s and the abscissa x vary. The
zero-crossing information of W, f(x) is computed for s
varying along a uniform discrete sequence with a scale
interval As: (j-As);c,. The convergence of the recon-
struction algorithm is not proven but the numerical exper-
iments show that it converges slowly. This reconstruction
procedure is computationally intensive. The differential
equation approach is only valid for a wavelet equal to the
Laplacian of a Gaussian and it is required to record the
zero-crossing information on a dense sequence of scales.
In the following sections, we show that the reproducing
kernel equation of a wavelet transform provides a general
procedure to reconstruct a function from a stabilized
zero-crossing representation, for any type of wavelet. This
approach enables us to record the zero-crossing informa-
tion only along the sparse sequence of scales (27 )jez> and
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the corresponding reconstruction algorithm has a fast
convergence.

IV. StABILIZED ZERO-CROSSING REPRESENTATION

Instead of considering the zero-crossings of a wavelet
transform on a continuum of scales §, we restrict our-
selves to dyadic scales (2f)jez. In order to stabilize the
zero-crossing representation, we also record the value of
the wavelet transform integral between two zero-cross-
ings. We compute an integral measure instead of a gradi-
ent value because it will then enables us to define a
simple L? norm on the zero-crossing representation. This
is particularly important for pattern recognition applica-
tions, as explained in Sections VIII and IX.

Let f(x)e L? and (W,if(x)); < , be its dyadic wavelet
transform. For any pair of consecutive zero-crossings of
W,if(x) whose abscissae are respectively (z,_,,z,), we
record the value of the integral

en= [ Wyf(x)dr. (19)
Equation (16) proves that
o d?
szf(x)=22’m(f*92f)(x)~ (20)

Since z,_, and z, are two zero-crossings of W,if(x),
these abscissa correspond to two consecutive extrema of
(d / dx)(f * 6,,)(x). Equations (19) and (20) yield

(d d
en=22’(a(f*02i)(l,, —E(f*ozf)(zn—l))'

The integral e, is proportional to the difference between
two consecutive extrema of the derivative of ()
smoothed at the scale 2/. This value gives an estimate of
the size of the structure which is between the two “edges”
located at z,,_; and z,. If W,,;f(x) has a ZEro-crossing z,
of minimum abscissa, then we consider that — is also a
zero-crossing and we record the integral of W,;f(x) be-
tween — and z,. The equivalent is done if there exists a
zero-crossing of maximum abscissa. In order to make sure
that these integrals are finite, we suppose that f(x) is
absolutely integrable.

For any function W,if(x), the position of the zero-
crossings (z,)), . , and the integral values (e,), < z> can be
represented by a piece-wise constant function Z,if(x)
defined by

en
Zyf(x) = 7 -,

~ forxe(z,_,,z,]. (21)
n—1

In Appendix IV, we explain how to define the zero-cross-
ings of any function in L2. The function Z,if(x) has the
same zero-crossing and integral values as W,if(x) (see
Fig. 2). If there exists a zero-crossing z, of minimum
abscissa, then between — oo and 2y, Z,if(x) is zero on an
interval J—e, z) — /] and is equal to a constant ¢ on
1z =1, zo), where the values of the constants of / and ¢

e | -

1023

2~
2 nel

Waif(x) A A Z
” e S

—

Zzif(x) E—“' _l
- e-ul eﬂo‘l

3 n-1 eh PN net

Fig. 2. Function Z,;f(x) has the same zero-crossings and integral
values as W,,f(x) and is constant between two consecutive zero-cross-
ings.

satisfy the constraints

[zafyde=["wopa, (@)

V4 Z,
Szt ()P ar < [P wf(x)lPae. (23)
If there exists a zero-crossing of maximum abscissa,
Z,if(x) is defined similarly between this ZEro-crossing
and +«. Equation (23) enables us to prove in Appendix
V that | Z,;f|l < IW,;f|l and that (Zyif(x)); ez € 12(LP).
The sequence of piece-wise constant functions Zf =
(Z,if(x));c 7 is called a zero-crossing representation of
f(x). Fig. 5(c) shows the zero-crossing representation of
the signal in Fig. 5(a). As expected, the ZEro-crossings
indicate the position of the sharper variation points of
f(x) smoothed at different scales.

V. RECONSTRUCTION FROM A ZERO-CROSSING
REPRESENTATION

Let us now study the reconstruction of a function from
its zero-crossing representation. We reformalize the com-
pleteness problem within the wavelet framework and then
derive an algorithm to perform the reconstruction. Let
f(x)e L? and (W,if(x)); < ; be its dyadic wavelet trans-
form. Since f(x) can be recovered from its dyadic wavelet
transform, we first try to reconstruct (Wi f(x)); <, given
the zero-crossings and integral values of each function
W,if(x), j € Z. Clearly, for any scale 2/, there exists an
infinite number of functions g,(x) that have the same
zero-crossings and integral values as W,if(x). The piece-
wise constant function Z,if(x) is an example. However,
any such sequence of functions ( 8;(x)); < 7 is not necessar-
ily the dyadic wavelet transform of some function in L2
Indeed, we saw in Section II that a dyadic wavelet trans-
form must satisfy the reproducing kernel conditions (11).
We thus have two types of information for reconstructing
the functions (W,;f(x)); ,. We know the zero-crossings
and integral values of each function W,if(x) and we want
to reconstruct a sequence of functions that satisfies the
inner redundancy given by the reproducing kernel (11).
Let us recall that I(L?) is the space of all sequence of
functions (g;(x)),., such that L*Zllg(x0)lI* < +o. The
space of all dyadic wavelet transforms (W,; f()c)))-,=Z is
denoted V and is a subspace of I2(L?). In order to
express the conditions given by the zero-crossings of the
wavelet transform of f(x), we define the set T of all
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initial point

S

S
14 solution

Fig. 3. To reconstruction of the wavelet transform of f(x) from the
Zero-crossing representation, we iterate on a nonexpansive projector on
I' and an orthogonal projector on ¥, from an initial point (gj(x))jel.
Convex I' expresses the constraints on the zero-crossing positions and
the integral values. Hilbert space V is the space of all the dyadic wavelet
transforms. Alternative projection. is guaranteed to converge to the
intersection of ' and V.

sequences (g,(x)), . , in I*(L?) such that for all scales 2/,
g;(x) and W,;f(x) have the same position of zero-cross-
ings and the same integral value between all consecutive
zero-crossings (z,,_;, z,,)

["_ Waf(x)de= [

n

" gi(x)dx.
-1

We explain in Appendix IV how to define the zero-cross-
ing of a function in L? so that T is a closed convex set.
The zero-crossing representation is complete if and only
if there exists no dyadic wavelet transform different from
(W,;f(x)); <, that has the same zero-crossings and inte-
gral values. In other words, the intersection of T' with V
must be reduced to one element

FﬂV=HW@ﬂxUEZ}

In order to verify numerically this assertion, we describe
an algorithm that reconstructs the intersections of T’
with V. :

A classical technique for recovering the intersection of
a convex set with a linear space is to iterate on alternative
projections on the convex and the linear space. Youla and
Webb [21] wrote a review of the mathematical properties
of these algorithms. For any (g{x)),., in this Hilbert
space, we can define a projection Pr on I' that trans-
forms (g(x));., into the sequence of functions
(h(x));c , €T that is the closest to (g,(x)); . ,. Since T is
convex, the projection P is nonexpansive. The character-
ization of P is given in Appendix IV. Let P, be the
orthogonal projection on the space ¥, we saw in Section
IT that this operator can be written P, =WoW™!. Let
P = Pre Py be the composition of P and P,. Clearly
any element at the intersection of T and ¥ is a fixed point
‘of P. To compute such a fixed point, we iterate on the
operator P as illustrated in Fig. 3. Let P™ be the
composition n times of the operator P. Since P is a
nonexpansive projection on a closed convex and Py is an
orthogonal projection, one can prove [21] that for any
initial sequence of functions (g;(x)); <z, when n tends to
+o, P™(g(x));,., converges weakly to an element in
' N V. This ensures that the iterative algorithm converges,
but in order to prove that it reconstructs the dyadic

(24)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 4, JULY 1991

wavelet transform of f(x), for all initial sequences
(g,(x)); < z, we must prove that the intersection of I' and
V is reduced to one element. We as yet have no mathe-
matical proof of this uniqueness; however, the numerical
experiments described in Section VII show that the algo-
rithm does reconstruct the wavelet transform of f(x) for
any initial sequence.

VI. DiscreTE Dyapic WAVELET TRANSFORM

A proper implementation of the zero-crossing repre-
sentation and of the reconstruction algorithm raises sev-
eral important questions. The input signal is generally
measured with a finite resolution that imposes a finer
scale when computing the wavelet transform. In practice,
the scale parameter must also vary on a finite range. This
section explains how to interpret mathematically a dyadic
wavelet transform on a finite range of scales. In all
previous sections, our model was based on functions of a .
continuous parameter x. We discretize the abscissa x and
describe efficient algorithms for computing a discrete
wavelet transform and its inverse. The results of the
reconstruction algorithm from the zero-crossing represen-
tation is described in the next section.

In practice, we cannot compute the wavelet transform
at all scales 2/ for j varying from —o to +®. We are
limited by a finite larger scale and a nonzero finer scale.
Let us suppose for normalization purposes that the finer
scale is equal to 1 and that 27 is the largest scale. Let
f(x) € L?. We first show that between the scales 1 and 2,
the wavelet transform (W,; f(x)), _; ., can be interpreted
as the details available when smoothing f(x) at the scale
1 but which have disappeared when smoothing f(x) at
the larger scale 2’. Let us introduce a function ¢(x)
whose Fourier transform is given by

B(@) = T i (20).

ji=1

(25)

Since the wavelet (x) satisfies Ef:m_mll,[;(2jw)|2 =1, one
can derive that lim,_,|¢(w)|=1. The energy of the
Fourier transform ¢(w) is concentrated in the low fre-
quencies so ¢(x) is a smoothing function. Let us define
the smoothing operator S,; by

$2if(x) =fxdy(x),
with

bu=59(5) (29)

The larger the scale 2/, the more details of f(x) are
removed by the smoothing operator S,,. Let us prove that
the dyadic wavelet transform (W,;f(x)),_; ., between
the scales 1 and 27 provide the details available in S, ()
but not in §,,f(x). The Fourier transform of S,f(x),
S,:f(x) and W,,f(x) are respectively given by

$if(@)=d(w)f(0), Syf(w)=d(2%)f(w),
(27)
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and
Waif(0) =d(270) f(w). (28)
Equation (25) yields
J
1$(@) = ¥ 10(20)? +16(2%w)®. (29

j=1

Using Parseval’s theorem, we ‘derive from (27)=(29) the
following energy conservation equation

J
IS FCOIP = X AW, f()I> +1S,£ ()12 (30)
j=1
This equation proves that the higher frequencies of § Jx)
that have disappeared in S,sf(x) can be recovered from
the dyadic wavelet transform (W, f(x)), j<s between
the scales 1 and 2. The functions S, f(x),
(W,if(x)), < ;. ,) are called the finite-scale wavelet trans-
form of S, f(x). In practice, the signal we process is given
by a discrete sequence of values. The following lemma
proves that any discrete signal of finite energy can be
interpreted as the uniform sampling of some function
smoothed at the scale 1.

Lemma I: Let D=(d,),., be a discrete signal of
finite energy, £7=__|d,|* < + . Let us suppose that for
strictly positive constants C, and C, and all real w, the
Fourier transform ¢(w) satisfies

+oo
Cix ¥ ld(o+2nm)* < C,.
n=-w
There exists a (nonunique) function f(x)€ L? such that
for any integer n

S f(n)=d,. (31)

The proof of this lemma is in Appendix I. The discrete
signal D can thus be rewritten D =(8,f(n)),c,. For a
particular class of wavelets (x) described in Appendix
I, the samples (S, f(n)), z enables us to compute a
uniform sampling of the finite scale wavelet transform of

S1f(X)
{(S21(n))e s (Waif (1)) )iy <)

Let us denote

Wiif=(Wyf(n)),., and S5if = (8yf(n)), .-
; (33)

The sequence of discrete signals (SSf. W) ) s
called a discrete dyadic wavelet transform of the signal
D =(S,f(n)), ,. If the signal D has N nonzero-samples,
each discrete signal W,;f has N nonzero samples so
discrete dyadic wavelet transform has at most N log(N)
nonzero samples. We denote by W the discrete wavelet
transform operator that associates to a signal D the
discrete wavelet transform previously defined. Appendix
III describes a fast algorithm for implementing this opera-
tor. The complexity of this algorithm is O(N log(N)). It is
based on a cascade of convolutions with two discrete
filters H and G. Appendix III also describes the imple-

(32)

T
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Fig. 4. Graph of the dyadic wavelet (x) used in the numerical
experiments shown in this article. Wavelet is characterized numerically
in Appendix II.

mentation of the discrete inverse wavelet transform W~ 14
that reconstructs the signal D from its discrete dyadic
wavelet transform. The reconstruction algorithm has also
a complexity of O(N log(N)). Fig. 4 is the graph of the
wavelet that is used for all the numerical results shown in
this article. The construction of this wavelet is described
in Appendix II.

The zero-crossings of the functions W,,f(x) are esti-
mated from the sign changes of the samples of W f. The
position of each zero-crossing is estimated with a linear
interpolation between the two samples of different sign.
The value of the integral e, between two consecutive
zero-crossings is estimated with the integral on the piece-
wise linear function that interpolates the samples of WEF.
If D has N nonzero samples, since there are at most
N log(N) samples in the discrete wavelet representation,
the number of operations to obtain the position of the
zero-crossings as well as the integral values, is
O(N log(N)). From a discrete dyadic wavelet transform,
we can only compute the zero-crossing positions and the
integral values along the scales 2/ such that 1 <2/ <27, In
order to keep the signal information at the scales larger
than 27, we need to keep the coarse signal S§f in the
zero-crossing representation. When J is large enough,
this coarse signal is almost constant and equal to the
average value of f(x). We call discrete zero-crossing repre-
sentation the set of signals

{(ZZIf(X))IsjsJaSgif}y

The signal in Fig. 5(a) is an image scan-line of 256
samples and Fig. 5(b) is its discrete wavelet transform
computed with the wavelet shown in Fig. 4. The curves in
both figures are linear interpolations between the samples
of each discrete signal. The curve at the top of Fig. 5(b) is
the coarse signal S%f. Since the wavelet used is the
second derivative of a smoothing function, the zero-cross-
ings of the wavelet transform indicate the points of sharper
variation at each scale. Fig. 5(c) shows the discrete zero-
crossing representation obtained from the position of the

(34
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Fig. 5. (a) Image scan-line of 256 samples. (b) Dyadic wavelet trans-
form of signal in Fig. 5(a) decomposed on 5 scales. Zero-crossings
indicate the position of the sharp variation points. (c) Zero-crossing
representation of signal in Fig. 5(a).

zero-crossings and the integral values estimated from
each signal Wgf.

VII. NUMERICAL RECONSTRUCTION FROM THE
WAVELET TRANSFORM MAXIMA

The algorithm that reconstructs the original signal from
its local maxima representation, is based on two projec-
tion operators. The first one is the projection P, on the
space of all dyadic wavelet transforms. To any sequence
of functions, it associates the dyadic wavelet transform of
some function f(x)< L? We saw in (12) that this opera-
tor can be decomposed into

Py=WoW!,

where W and W™! are respectively the wavelet and in-

-
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Fig. 6. (a) Reconstruction of the dyadic wavelet transform of the
zero-crossing representation given in Fig. 5(c). This reconstruction was
obtained with 15 iterations on the operator P9. (b) Reconstruction of
the signal by applying the inverse wavelet operator W~! on the recon-
structed wavelet transform of Fig. 6(a). Quality of the reconstruction can
be appreciated by comparing this graph with Fig. 5(a).

verse wavelet transform. Within a discrete framework,
this operator is redefined by

Pl=wiow 14 (35)
where W¢ and W14 are respectively the discrete wavelet
transform and the inverse discrete wavelet transform.
Since both W¢ and W~'“ are implemented with fast
algorithms of complexity O(N log(N)), the numerical
complexity for implementing PZ is also O(N log(N)).
The other projection operator involved in the reconstruc-
tion is the nonlinear projection on the set I'. Appendix IV
describes the discrete implementation of this operator
that we denote Pf. The implementation of P¢ has a
complexity of O(N log?(N)). Let P¢= P&- P& The re-
construction algorithm iterates on the operator P¢ to
reconstruct the intersection of ¥ and I'. We begin with an
arbitrary initial sequence of discrete signals and iterate on
the operator P4 until it converges to a fixed point. We
apply the inverse wavelet transform operator W~ ¢ in
order to compute the signal corresponding to the recon-
structed dyadic wavelet transform.

Fig. 6(a) shows the reconstruction of the dyadic wavelet
transform from the local zero-crossing representation
given in Fig. 5(c), with 15 iterations on the projector P4.
Fig. 6(b) is the reconstruction of the original signal by
applying the inverse wavelet transform operator on Fig.
6(a). The same quality of reconstruction was obtained for
all the signals that we tested, including Diracs, step edges,
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sinusoidal waves, Brownian processes, image scan-lines,
etc. We observed that the reconstruction was independent
from the initial sequence that we chose, which seems to
indicate that the intersection of I" and V is reduced to the
wavelet transform of f(x). This would mean that the
zero-crossing representation is complete. The numerical
stability of the iterative algorithm also indicates that the
reconstruction is stable. We have tested the reconstruc-
tion from a zero-crossing representation with another
wavelet that is much less regular. The same numerical
results are obtained with this other wavelet. We therefore
conjecture that for a large class of dyadic wavelets, the
zero-crossings plus the integral values of (W,,f(x)); .,
provide a complete and stable representation of f(x).
The class of wavelet for which this is true remains to be
defined. We want to stress that this is only a conjecture
based on numerical results, but no proof is given in the
paper.

The performance of the reconstruction algorithm is
particularly spectacular when f(x) is a step edge. Indeed,
we then only record the position of one zero-crossing at
each scale and the value of the wavelet transform integral
before and after this zero-crossing. This means that only
three data values per scales are needed to reconstruct
f(x). In general, the amount of data in a zero-crossing
representation depends upon the irregularity of the sig-
nal. For smooth signals with sparse singularities, this type
of coding can be very compact.

VIII. DiSTANCE ON A ZERO-CROSSING
REPRESENTATION

Pattern recognition is an important domain of applica-
tion for such a zero-crossing representation. As explained
in the introduction, the sharp variation points of a signal
are often the most important features to identify patterns.
This is the case in images where the discontinuities of the
image intensity provide the contours of the important
structures. The zero-crossings of a wavelet transform pro-
vide the location of the signal sharp variations. In order to
compare two different zero-crossing representations for a
pattern matching algorithm, it is necessary to define a
distance. It is difficult to define such a distance just from
the position of the zero-crossings but when the zero-cross-
ing representation is stabilized with integral values, we
can derive a natural mean-square distance.

The energy conservation (7) proves that the L? distance
between two functions f and g can be expressed from
their dyadic wavelet transform,

+ o
If(x)—g()IP="¥ IWyf - Wyel?.

j=—w

(36)

A simple estimate of this distance can be obtained from
the zero-crossing representation (Z,, F(x);
+x

d(Zf.28)" = L 1Z,f(x) = Zyg(x)IF. (37)

j=—

ez

We prove in Appendix V that this distance is finite and

B
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satisfies

d(zf,2g)" <\ fI° +lgll”. (38)
The distance d makes a global comparison of two
zero-crossing representations over the entire spatial do-
main. A pattern is often a local feature embedded in the
signal. For pattern matching purposes, we need to define
a local distance which compares locally two zero-crossing
representations. In order to derive such a distance from
d, we study the decomposition at all scales of a local
feature such as a Dirac delta function §,(x) centered
at u.

Wys8,(x) = 8,(x) % y(x) = Ups(x ). (39)

Let 20 be the size of an interval where the energy of
¢(x) is mostly concentrated,

[ wnracs [l a

Equations (39) and (40) show that the energy of W,;5,(x)
is mainly concentrated on the interval [u —2/0,u + 20 ].
This interval defines the domain of influences of the point
u, at the scale 2/. In order to compare two zero-crossing
representations Zf and Zg in the neighborhood of a point
u, we define the local distance 4,

(40)

~+ oo
d(2f.28)’ = ¥ di(Zyf. Z,8),

j=—

(41)
with

di(Z,:f, szg)2 :/

u—2lo

u+2'0

1Z,if(x) = Zyg(x)*dx. (42)

di(Z,if,Z,ig) is a measure of the local distortion be-
tween f(x) and g(x) around the point u, at the scale 2.
The integral of (42) is computed with few operations since
the functions Z,;f(x) and Z,,g(x) are piece-wise con-
stant. For a discrete zero-crossing representation, the
local distance d,, is redefined with a finite sum as

J
d(2f,2g)' = ¥ di(Z,f, Z,8).
j=1

(43)

IX. APPLICATION TO STEREO-MATCHING

In order to illustrate the application of the zero-cross-
ing representation to pattern matching, we study the
implementation of a stereo-matching algorithm. Through
this example, we intend to explain how to manipulate this
representation for matching signals rather than develop-
ing a complete stereo system.

It is well known that one can recover the three dimen-
sional coordinates of the surface that appear in a scene
from a pair of stereo images. The main difficulty in this
computation is to make a correspondence between the
points that appear in the left image and the points in the
right image. Let P be a point of the world that is
projected on both images. Let P, and P, be respectively
the projections of P on the left and the right images (see
Fig. 7). One can compute the distance from P to the pair
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jimage
dlsparity
T=d,. d,

-

Fig. 7. Example of horizontal epipolar geometry of a pair of stereo
images. Point P of the scene appears respectively in P, and P, in the
left and right images, on the corresponding pair of epipolar lines.
Disparity r is the difference of positioning of P, and P, in each of the

r
image. Disparity is inversely proportional to the distance between P and
the pair of cameras.

of stereo cameras from the difference of positioning 7
between P, and P. (see Fig. 7). This difference of posi-
tioning is called disparity. The goal of a stereo-matching
algorithm is to find for each point P, of the left image,
the matching point P, of the right image such that P, and
P, are the projections of the same point P on the scene.
The principle of such an algorithm is to look for a point
P, in the right image such that locally around P, the
image is the most similar to the neighborhood around P,
in the left image. Although this matching problem is
a priori a two-dimensional search, it can be reduced to a
one-dimensional search by using the epipolar geometry of
the cameras. An epipolar plane is a plane that contains
the point P and the optical centers of the left and right
cameras. The intersections of such a plane with the left
and the right images define a pair of epipolar lines. The
stereo match of any point that is on a left epipolar line
can be found on the corresponding right epipolar line.
The problem is thus reduced to a one-dimensional match-
ing problem along each pair of epipolar lines. Much
research has been devoted to finding efficient algorithms
for matching these epipolar lines [4], [15]. In particular
Grimson has developed a coarse to fine matching algo-
rithm based on multiscale zero-crossings. The principle of
a coarse to fine strategy is to use first the information at
large scales to perform the matching. Then the result of
the matching are refined by progressively using the infor-
mation at finer scales. A main difficulty of the Grimson
algorithm is that we can not define a stable distance
based on the zero-crossings only. In this section, we show
that one can easily adapt the Grimson algorithm within a
stablized zero-crossing representation and that the dis-
tance described in Section VIII enables us to implement a
simple and efficient matching procedure.

Let us now explain in more detail how to match two
epipolar lines from their Zero-crossing representation.
The epipolar line is a discrete one-dimensional signal. Let

{(zz,z(x))lg,.s,,sg,z} and {(zzfr(x))ls,.s,,sg,r}

s
sir
(a)
Zgil:f__l I | —
Zpl ™ — —l___l'_| . _—
 — J | L—l -
Zpl _ o omp As— e Il =
=P E-RARy o - i
Zul el o Amn Il Oa
hd usryg L"R'A'3"} o o m g u
zz‘l-ﬁwm_d]ﬂ_.
L
Zpr 1\__; = —
L
Z;sr‘l_f* ¥ Hu:—-l‘_'l-huﬂ -‘ Ay £
Zpr SpArAR P —Ra R il Ay P
F A T U E R W | e
(b)

Fig. 8. (a) Pair of stereo epipolar scan lines from a real pair of stereo
images. Distortion between these two signals is due to the difference of
viewing perspective, to the camera noise and to the errors in the
computation of the epipolar geometry. (b) Zero-crossing representations
of the two epipolar lines. Top Zero-crossing representation corresponds
to the left signal and the bottom one to the right signal. We want to
match these representations with a coarse to fine strategy.

be respectively the discrete Zero-crossing representation
of the left and right epipolar lines. Fig. 8(a) gives an
example of pair of epipolar lines and Fig. 8(b) shows the
corresponding zero-crossing representations. These epi-
polar lines were obtained from real images and as it can
be observed, they are not only translated from one an-
other but also distorted due to the perspectivity effect
and the noise. We need to make a correspondence be-
tween the zero-crossings of both representations, at all
the scales 2/,

A coarse to fine strategy consists of matching first the
coarser details of the two epipolar lines and then using
the finer details to get more precise matches. Within the
ZET0-Crossing representation, we are first going to make
the correspondence between the zero-crossings of Z,,r(x)
and Z,;/(x) at the largest scale 2/ and then progressively
decrease 2/ while using the information provided by the
matches at the coarser scales in order to compute the
matches at the finner scales. Given a zero-crossing z, of
Z,I(x) we want to find a zero-crossing z, of Z,ir(x)
such that if 7=z, — 7, then Z,,/(x) and Z,ir(x — 1) are
as similar as possible in the neighborhood of X=2z,
Hence, the disparity = is the value that minimizes the
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Fig. 9. Coarse to fine matching of the left and right zero-crossing
representations. At each scale, we show at the top the zero-crossings
that are matched and at the bottom the location of these matches on the
left and right signals. When the scale decreases, there are more zero-
crossings and hence more matches. However, not all zero-crossings can
be matched at fine scales due to the high frequency distortions between
the two epipolar lines.

local distance d](Z,;l(x), Z,;r(x — 7)) defined in Section
VIII. The minimum value d,;, of the local distance gives
also a confidence measure on the match. The smaller d_;,
the more similar the two functions Z,;/(x) and Z,;r(x —
7) around x = z, and hence the higher our confidence in
the match. Each match between a zero-crossing of Z,;/(x)
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and a zero-crossing of Z,;r(x) gives a local estimate of
the disparity 7. At the next finner scale 2/~ !, we use this
local estimate of the disparity in order to constrain the
search when trying to find the correspondence between
the zero-crossings of Z,;-1/(x) and the zero-crossings of
Z,;-1r(x). When beginning at the coarser scale 2’ we do
not have any prior estimation of the disparity to con-
straint the search. This is, however, not a problem since
the number of zero-crossings of Z,,/(x) and Z,:r(x) is
small when J is big enough (see Fig. 8(b)).

The coarse to fine strategy reduces considerably the
complexity of the search for a match since we use the
matching information at the previous scale to constrain
the search at the next scale. This strategy supposes that
we have a high confidence in the matches at the coarser
scales since any error at a coarse scale might propagate at
finer scales. The matching errors are due to the fact that
the left and right signals are not only translated from
one-another, but also distorted because of the noise and
the perspectivity effect. Most of the distortion appears at
the finer scales as shown in Fig. 8(b). We therefore have a
better matching confidence at the coarse scales than at
the finer scales.

In order to avoid side effects, at each scale, we did not
try to match the zero-crossings at the boarders. As we can
see from the successive matchings shown in Fig. 9, we are
getting a dense matching on both signals. There are, some
domains where we do not match the zero-crossings be-
cause there is too much distortion between Z,,I/(x) and
Z,ir(x). We have included in our algorithm a confidence
threshold C in order to eliminate the matches where the
minimal distance d,;, is larger than 1/C. Fig. 9 shows
that in some domains, we find matches at a coarse scale
but not at finer scales because there is too much high
frequency noise.

The simple stereo matching algorithm can of course be
enhance by using some further property of the disparity
function such as a smoothness constraint [14] or a mono-
tonicity constraint [4]. However, our goal here is more to
illustrate the simplicity of the implementation of a match-
ing algorithm with this zero-crossing representation, rather
than develop a full stereo matching system.

X. CONCLUSION

We study the completeness, stability, and application to
pattern recognition of a multiscale representation based
on zero-crossings. The main result of the paper is an
iterative algorithm that reconstructs the original signal
from its zero-crossing representation. We proved the con-
vergence of the algorithm but did not prove that the
reconstruction is independent from the initial start of the
iteration. The numerical experiments seem to indicate
that the reconstruction is independent from the choice of
the initial point which means that the zero-crossing repre-
sentation is complete and stable. The proof of this result
remains an open mathematical problem. In order to illus-
trate the application of this representation to pattern
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matching, we described the implementation of a coarse to
fine stereo-matching algorithm. The simplicity and the
efficiency of this matching algorithm shows that this rep-
resentation is indeed well adapted for pattern recognition
problems.

In a zero-crossing representation, the number of values
to be coded depends upon the irregularity of the signal.
For signals that are mostly smooth with sparse singulari-
ties such as discontinuities, this type of coding can be very
compact. In collaboration with Sifen Zhong, we have
recently extended this representation in two dimensions
[13], and shown that one reconstruct images from multi-
scale edges with a similar alternative projection algorithm.
This image representation provides a compact reorganiza-
tion of the information for a large class of images.

APPENDIX 1
ProoF OF LEMMA 1

For any finite energy discrete signal D =(d,), . 5, we
want to find f(x)€ L? such that

$if(n)=d,.

Let f(x)€ L?, by definition we have S,f(n)=f* ¢(n).
This convolution product can be rewritten as an inner
product in L?: S, f(n)={f(x),¢(n— x)). Let U be the
vector space generated by the family of functions (¢(n —
x)), < z If this family is a basis of U then for any discrete
sequence (d,), < , of finite energy, there exists f(x) € L?
satisfying (44). One can show [10] than the family (¢(x —
n)), <z is a Hilbert basis if and only if for strictly positive
constants C; and C,, and all real w, the Fourier trans-
form ¢(w) satisfies

Vnez, (44)

+ 00

Ci< Y ld(w+2nm)*<C,.

n=—w

The values (d,), ., characterize the orthogonal projec-
tion of f(x)€ L? on U. This orthogonal projection can be
interpreted as an approximation at the resolution 1 of the
function f(x) [11].

APPENDIX 2
A PARTICULAR CLASS OF ONE-DIMENSIONAL
Dyapic WAVELETS

This appendix defines the class of wavelets used for
implementation of discrete algorithms. From (S, f(n))
we want to be able to compute

{(lef(n))nEZ’((WZ’f(n))nGZ)l sjs/}’

with discrete convolutions. If J =1, this implies that we
can compute (S, f(n)), . , by convolving (S, f(n)), c , with
a discrete filter H. In other words, the Fourier series of
(8,f(n)), <z is equal to the Fourier series of (S, f(n)),c ,
multiplied by a 27 periodic function H(w). The Fourier

neZz
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TABLE 1
FirsT FIvE COEFFICIENTS OF THE IMPULSE RESPONSE OF FILTERS
H anp G CORRESPONDING TO THE WAVELET IN FiG. 4

n h n 8n

0 0.4347 0.7118
1 0.2864 —0.2309
2 0.0450 —0.1120
3 -0.0393 —-0.0226
4 —0.0132 0.0062
5 0.0032 0.0039

series of these two signals are respectively

+ + o

Y frd(n)e ™ and Y. fxdy(n)e . (45)
n=—ox n=—owm
By applying the Poisson formula, we can rewrite these
two series as

f f(w +2n7r)<f>(w +2n7)
and
+ o0

Z f(a) +2m-r)q?>(2w +2n1).

n=-—x

(46)

The left series is equal to the right series multiplied by
H(w) for all f(e) if and only if

3(20) = H(w)d(w). (47)
Since |$(0)| =1, we must have |H(0)| = L. If we cascade
(47), we obtain a necessary condition on ¢(w),

d(w) = T H(2 7). (48)

Conversely, if the 27 periodic function H(w) satisfies
[H())? +1H(w +m)* <1, (49)

then one can show [10] that the function ¢(x) whose
Fourier transform is defined by (49) is a function in L2.
The function H(w) can be interpreted as the transfer
function of a discrete low-pass filter.

Let us now characterize the corresponding wavelet
¥(x). As a consequence of equation (29), we have

[ (20)1* =1d(w)1* — 1d(2w) %, (50)
Substituting (47) in (50) yields
¥(20) =G(w)d(w), (51)
with
(G(w)*+ |H(w)I>=1. (52)

The function G(w) is chosen 27 periodic and can be
interpreted as the transfer function of a high-pass filter.
For the zero-crossing model, we want to build a wavelet
¥ (x) equal to a second-order derivative of a smoothing
function 6(x). This implies that (w) must have a zero of
order 2 in w=0. Since |p(0)| =1, (51) yields that G(w)
must have a zero of order 2 in w = 0. Table I gives the
first coefficients of the impulse response of filters H =
(h,), ez and G=(g,), ., that satisfy these properties.
The impulse response of these filters is exponentially
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decreasing and here we only give the first five coeffi-
cients. Both filters are symmetrical with respect to 0. The
numerical experiments given in this paper are computed
with these filters. For high precision computations, one
needs to include more coefficients. The corresponding
wavelet ¢(x) is shown in Fig. 4. This wavelet has one
small ripple on each side that can produce a few spurious
zero-crossings. This ripple cannot be totally removed for
the class of dyadic wavelet that we described in this
appendix.

APPENDIX 3
FAasT WAVELET ALGORITHMS FOR
ONE-DIMENSIONAL SIGNALS

This appendix describes an algorithm for computing a
discrete wavelet transform and the inverse algorithm that
reconstructs the original signal from its wavelet transform.
We suppose that the wavelet ¢(x) is characterized by the
two discrete filters H and G described in Appendix II.
We denote H, and G, the discrete filters obtained by
putting 27 —1 zeros between each coefficients of the
filters H and G. The transfer function of these filters is
respectively H(2”w) and G(2”w). We also denote by H,
and G, the filters whose transfer functions are respec-
tively H(2’0) and G(2Pw) (complex conjugates of
HQ%w) and G(2%w)). We denote by A4 = B the convolu-
tion of two discrete signals 4 and B.

The following algorithm computes the discrete wavelet
transform of the discrete signal S¢f. At each scale 2/, it
decomposes S%f into S¢.f and W f.

j=05
WHILE (j < J),
Wi f = 85if =G,
Sg,|1f= Sg,f* Hj,
j=i+1
END OF WHILE.

The proof of this algorithm is based on the properties
of the wavelet ¢(x) described in Appendix II. If the
original signal (S, f(n)), <, has N nonzero samples, then
each signal S¢f and W f has N nonzero samples. Since
there are at most log(N) scales, the complexity of the
algorithm is O(N log(N)). The constant depends upon
the number of nonzero coefficients in the filters H
and G.

The inverse wavelet transform algorithm reconstructs
S¢f from the discrete dyadic wavelet transform. At each
scale 27, it reconstructs S%i-if from Sgf and Wgf. The
complexity of this reconstruction algorithm is also
O(N log(N)).

i=J,
wHILE (j > 0),
Sgf=Wgf«G,_ | +S&f+H,_,,
j=i-1
END OF FOR.

T
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APPENDIX 4
ProJecTioN OPERATOR ON I’

In this appendix, we describe more precisely the projec-
tion operators P defined in Section V. In order to define
properly the set T', we first define the notion of zero-
crossings for functions in L?. We shall say that a function
g(x) is strictly positive on an interval [a, b] if

V(x,y)e[a,b]z, fyg(u)duzo

and

3(x,y)€la,b]’ (53)
The negative sign is defined by reversing the inequalities.
A function g(x) € L? is said to have a zero-crossing in x,
if there exists e >0 such that g(x) is strictly positive
(respectively negative) on the interval [x,—e€,x,] and
strictly negative (respectively positive) on the interval
[x4, xo + €]. Let us observe that if f(x) is strictly positive
on [a,b], equal to zero on [b,c] and strictly negative on
[c,d] then any point on the interval [b,c] is a zero-cross-
ing. In this case, we shall say that there exists only 1
zero-crossing, but this zero-crossing is unlocalized in the
interval [b,c]. If a function g,(x) has one zero-crossing
unlocalized in an interval [b,c] and g,(x) has one zero-
crossing in x4 €[b,c], we say that the position of the
zero-crossing of g,(x) and g,(x) is the same. This defini-
tion is necessary in order to insure that the set T is
closed.

Let us suppose that we record all the zero-crossings
and integral values of the wavelet transform (W,; f(x))]. ez
The corresponding set I' regroups all sequences of func-
tions (g;(x));c; € [*(L*) such that g(x) has the same
zero-crossings and integral values than W,,;f(x) for all
J € Z. Given our definition of zero-crossing, one can prove
without major difficulty that the set I is a closed convex
in 12(L?).

Let us now define the operator P that transforms any
sequence (g,(x));c,€!*(L?) into the closest sequence
(hj(x));c 2 €T, with respect to the norm of I(L?). Let
€;(x)=h(x)— g,(x). Each function A,(x) is chosen such
that

[yg(u) du > 0.

lle,(x)ll = f_+°c|ej(x)|2 dx is minimum. (54)

Let z,_, and z, be respectively the abscissae of two
consecutive zero-crossings of W,;f(x) and e, be the cor-
responding integral value. Let us suppose that e, > 0, the
following conditions must be satisfied

f hy(x) dx =[ (g,(x)+€(x))dr =e,,

h(x)=g(x)+e(x)=0, forxe(z,_,,z,].
(55)

The global minimization of |le,(x)|| is equivalent to the
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e . 2 .
minimization of [ |e,(x)|”dx for each pair of consecu-
tive zero-crossings (z,,_,, z,,), with the two constraints

J7 ey de=e,~ [ g)(x) dx,

Zn-1 Zn—1

(56)
€(x)=—gi(x), forxelz,_,z,].

This minimization problem is solved by using the La-

grange multipliers. One can prove that there exists a
lagrange multiplier A such that
A, if —g;(x) <A,
e(x)= . 57
i(%) —gi(x), if—g(x)=a. (7)
The value of A is specified by the fact that
Zn Zn
[ e(x)dr=e,~ [ g(x)ax. (58)
Zn-1 Zn—1

Within a discrete model, I' is defined as the set of all
discrete signals (gj‘i')jE z such that each signal gﬁ =
(g;(m)),, < ; has the same zero-crossing position and inte-
gral values than the discrete signal (W,,f(m)),, . ,. The
set I' is a closed convex. One can easily derive from our
continuous model! that the discretization of the non-
expansive projector on I consists in computing a discrete
signal €/ = (¢,(m)),, < , such that for any pair of consecu-
tive zero-crossings (z,_,, z,,) and integer m€|z,_,, z,],

A, if —g,(m) <A,
e(m)= . 59
i(m) —g(m), if —g(m)za, (59)
and A must be such that
m<z, m<z,
Y g(m)=e,— X gi(m)=c, (60
m=z, mzz,_

The most difficult to compute is the value of A. Let K be
the number of integers in the interval [z, _,, z,[. We first
sort the values of —g;(m) for me(z,_ ) z,[ so that
—gmy)=—-glm;,_)= -+ =~ g{m)). One can prove
that A is computed by the following algorithm.

c

|

wHILE (A < — g{(m,))
Ao kA+ g (my)
k—1 ’
k=k—1,
END OF WHILE.

I
AR

A
k

The total complexity for computing A is O(K log(K))
because of the first sorting step. To compute €,(m) once
we know A is done with (59) in O(K) computations. If the
original discrete signal D = (S, f(m)),, ., has N nonzero
samples, each signal g;’ has also N samples so the com-
putation of e;’ requires O(N log(N)) operations. Since
there are at most log{N) scales 2/, the total number of
computations to implement to discrete projector P{ is
O(N log?(N)).
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APPENDIX 5
DisTANCE BETWEEN ZERO-CROSSING REPRESENTATIONS

In this appendix, we prove that || Z,;f]l <|[W,,fll and
derive that

d(zf,2g)" <IIfII* +llgl.

One can easily prove that among all functions that have
an integral equal to a given value e on an interval [a, b],
the function which is constant on this interval has the
minimum L%*(a, b]) norm. Between two consecutive
zero-crossings z,_, and z,

Zn zn
|7 Zuf(x) = [ Wuf(x). (61)
Zn-1 Zn-1
Since Z,;f(x) is constant on the interval [z,_1 2,
Z, 2z,
[ 1Zaf P < [T Waf )l (62)
Zn-1 Zn-1

If there is a first zero-crossing z,, we define Z,;f(x) so
that

| 12f (P < [ Wf ()P,

The equivalent is true if there is a last zero-crossing
between this last zero-crossing and +o. We therefore
derive that

122717 = [ 1Zaf ()P < [ IWaif ()P = W f 1P

(63)
Hence, we obtain
L Zuf(olP < L IWuf(x)I*=1fI7. (64)
j=— j=—o

This proves that (Z,,f(x)); . ;€ I*(L?). Since d(Zf, Zg)*=
T2 N Zyifx) = Z,g (DI, (64) yields

d(zf,zg)’ <IfI* + llgl®.
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