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Singularity Detection and Processing
with Wavelets

Stephane Mallat and Wen Liang Hwang

Abstract—Most of a signal information is often carried by
irregular structures and transient phenomena. The mathematical
characterization of singularities with Lipschitz exponents is ex-
plained. Theorems are reviewed that estimate local Lipschitz
exponents of functions from the evolution across scales of their
wavelet transform. It is then proven that the local maxima of
the wavelet transform modulus detect the locations of irregular
structures and provide numerical procedures to compute their
Lipschitz exponents. The wavelet transform of singularities with
fast oscillations have a particular behavior that is studied sepa-
rately. The local frequency of such oscillations are measured
from the wavelet transform modulus maxima. It has been shown
numerically that one- and two-dimensional signals can be recon-
structed, with a good approximation, from the local maxima of
their wavelet transform modulus. As an application, an algo-
rithm is developed that removes white noises from signals by
analyzing the evolution of the wavelet transform maxima across
scales. In two-dimensions, the wavelet transform maxima indi-
cate the location of edges in images. The denoising algorithm is
extended for image enhancement.

Index Terms—Edges, fractals,
singularities, wavelets.

Lipschitz exponents, noise,

I. INTRODUCTION

SINGULARITIES and irregular structures often carry the
most important information in signals. In images, the
discontinuities of the intensity provide the locations of the
object contours, which are particularly meaningful for recog-
nition purposes. For many other types of signals, from
electrocardiograms to radar signals, the interesting informa-
tion is given by transient phenomena such as peaks. In
physics, it is also important to study irregular structures to
infer properties about the underlined physical phenomena [1],
[31, [19]. Until recently, the Fourier transform was the main
mathematical tool for analyzing singularities. The Fourier
transform is global and provides a description of the overall
regularity of signals, but it is not well adapted for finding the
location and the spatial distribution of singularities. This was
a major motivation for studying the wavelet transform in
mathematics [22] and in applied domains {13]. By decompos-
ing signals into elementary building blocks that are well
localized both in space and frequency, the wavelet transform
can characterize the local regularity of signals. The wavelet

Manuscript received October 25, 1991. This work was supported by the
NSF Grant IRI-890331, AFOSR Grant 90-0040, and ONR Grant NOOO14-
91-J-1967. This work was presented in part at NATO, ASI Workshop on
Stochastic Processes, Italy, July 1991.

The authors are with Courant Institute, New York University, 251 Mercer
Street, New York, NY 10012.

IEEE Log Number 9105364,

transform and its main properties are briefly introduced in
Section II. In mathematics, the local regularity of a function
is often measured with Lipschitz exponents. Section III is a
tutorial review on Lipschitz exponents and their characteriza-
tion with the Fourier transform and the wavelet transform.
We explain the basic theorems that relate local Lipschitz
exponents to the evolution across scales of the wavelet trans-
form values. In practice, these theorems do not provide
simple and direct strategies for detecting and characterizing
singularities in signals. The following sections show that the
local maxima of the wavelet transform modulus provide
enough information for analyzing these singularities.

The detection of singularities with multiscale transforms
has been studied not only in mathematics but also in signal
processing. In Section IV, we explain the relation between
the multiscale edge detection algorithms used in computer
vision and the approach of Grossmann [12], based on the
phase of the wavelet transform. The detection of the local
maxima of the wavelet transform modulus is strongly moti-
vated by these techniques. Section V is a mathematical
analysis of the modulus maxima properties. We prove that
modulus maxima detect all singularities and that local Lips-
chitz exponents can often be measured from their evolution
across scales. We derive practical algorithms to analyze
isolated or nonisolated singularities in signals. Numerical
examples illustrate the mathematical results. The wavelet
transform has a particular behavior when singularities have
fast oscillations; this case is studied separately. The local
frequency of the oscillations can be measured from the points
where the modulus of the wavelet transform is locally maxi-
mum both along the scale and the spatial variable. This
approach is closely related to the work of Escudie and
Torresani [10] for measuring the modulation law of asymp-
totic signals [9].

An important issue is to understand how much information
is carried by the local maxima of a wavelet transform modu-
lus. Is it possible to reconstruct the original signal or a close
approximation from these modulus maxima? Meyer proved
[23] that the local maxima of a wavelet transform modulus do
not characterize uniquely a function. However, a numerical
algorithm developed by Zhong and one of us [18], is able to
reconstruct a close approximation of the original signal. We
can, thus, process the singularities of a signal by modifying
the local maxima of its wavelet transform modulus, and then
reconstruct the corresponding function. The reconstruction
algorithm is briefly introduced and we describe an application
to the removal of noises from signals. In denoising problems,
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we often have some prior information on the differences
between the signal singularities and the noise singularities.
The algorithm differentiates the signal components from the
noise, by selecting the wavelet transform modulus maxima
that correspond to the signal singularities. After removing the
modulus maxima of the noise fluctuations, we reconstruct a
““‘denoised’” signal.

The detection of the wavelet transform maxima has been
extended in two dimensions for image processing applications
[18]. We explain how to detect edges in images from the
local maxima of the wavelet transform modulus. Images can
also be reconstructed from these modulus maxima with no
visual distortions. It allows us to extend the denoising algo-
rithm for image enhancement. We discriminate the noise
from the original image information, by analyzing the behav-
ior of the wavelet transform maxima across scales. We also
take advantage of the spatial coherence of the image singular
structures, to suppress the noise components.

Notation: LP(R) denotes the Hilbert space of measur-
able, functions such that

/+w|f(x)1"dx< +oo.

The classical norm of f(x) e L*(R) is given by

171 = [0 1 e

— o

We denote the convolution of two functions f(x)e€L*(R)
and g(x)eL?(R) by

f*g(x) = /+wf(u)g(x— u) du.

— 0o

The Fourier transform of a function f(x) is written f(w)
and defined by

flo) = /+wf(x)e""°"dx.

For any function f(x), f,(x) denotes the dilation of f(x) by
the scale factor s
1 x
x)=—-f{—].
£i(x) sf( s )

L?(R?) is the Hilbert space of measurable, square-integrable
two-dimensional functions. The classical norm of f(x, y) €
L*(R?) is given by

4+ 4o
1712 = [ [ 1fCxy) 12 axay.

The Fourier transform of f(x, y)eL*(R?) is written
S(w,, »,) and is defined by

N +o +oo .
floy, w,) = / / f(x, y)e Hexxte) dxdy.
For any function f(x, y)eL*(R?), f.{x, y) denotes the
dilation of f(x, y) by the scale factor s
1 X y
flxw) = 5750 7).

)
s S

II. ConTiNUOUS WAVELET TRANSFORM

This first section reviews the main properties of the wavelet
transform. The formalism of the continuous wavelet trans-
form was first introduced by Morlet and Grossmann [13]. Let
Y(x) be a complex valued function. The function ¥(x) is
said to be a wavelet if and only if its Fourier transform ¥ (w)
satisfies

0 w) 12
dw=/ I—dezc¢<+0°.

w _ | w]
(1)

/+°° [(@)|?

This condition implies that

+ oo
/ Y(u) du =0.
Let ¢ (x) = (1/s)¥(x/s) be the dilation of y(x) by the
scale factor s. The wavelet transform of a function f(x)e
L*(R) is defined by

Wf(s, x) = f*¥y(x). (2)

The Fourier transform of Wf(s, x) with respect to the x
variable is simply given by '

Wf(s, w) = flw)d(sw). (3)

The wavelet transform can easily be extended to tempered
distributions that is useful for the scope of this paper. For a
quick presentation of the theory of distributions, the reader
might want to consult the book of Folland [11]. If f(x) is a
tempered distribution of order » and if the wavelet y(x)is n
times continuously differentiable, then the wavelet transform
of f(x) defined by (2) is well defined. For example, a Dirac
8(x) is a tempered distribution of order 0 and Wé(s, x) =
¥ (x), if Y(x) is continuous.

One can prove [13] that the wavelet transform is invertible
and f(x) is recovered with

() = C‘w [ st . @)

where $s(x) denotes the complex conjugate of Y (x). The
wavelet transform Wf(s, x) is a function of the scale s and
the spatial position x. The plane defined by the couple of
variables (s, x) is called the scale-space plane [27]. Any
function F(s, x) is not a priori the wavelet transform of
some function f(x). One can prove that F(s, x) is a wavelet
transform, if and only if it satisfies the reproducing kernel
equation
ds

+ oo + oo
F(so,x0)=/ / F(s, x)K (s, 5, xo,x)dx?,
0 —

(5)
with
K(sy, 5, Xg, X)

1 +oo
/ Yol — x) s (xo — u) du.

G
(®)

— oo
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The reproducing kernel K (so, s, X, X) expresses the intrin-
sic redundancy between the value of the wavelet transform at
(s, x) and its value at (s,, X,).

III. CHARACTERIZATION OF LOCAL REGULARITY WITH
THE WAVELET TRANSFORM

As mentioned in the introduction, a remarkable property of
the wavelet transform is its ability to characterize the local
regularity of functions. In mathematics, this local regularity
is often measured with Lipschitz exponents.

Definition 1:

e Let n be a positive integer and n<a=n+1. A
function f(x) is said to be Lipschitz «, at X, if and
only if there exists two constants 4 and 4, > 0, and a
polynomial of order n, P,(x), such that for & < h,

| f(xo+h) ~P(R)[ < Alhl=.  (7)

e The function f(x) is uniformly Lipschitz o over the

interval la, b[, if and only if there exists a constant 4

and for any x,€la, b there exists a polynomial of

order n, P,(h), such that equation (7) is satisfied if

X, + hela, bl.

We call Lipschitz regularity of f(x) and x,, the supe-

rior bound of all values « such that f(x) is Lipschitz «

at Xx,.

e We say that a function is singular at x,, if it is not
Lipschitz 1 and x,.

A function f(x) that is continuously differentiable at a
point is Lipschitz 1 at this point. If the derivative of f(x) is
bounded but discontinuous at Xg, Sf(x) is still Lipschitz 1
and x,, and following Definition 1, we consider that f(x)is
not singular at x,. One can easily prove that if f(x) is
Lipschitz o, for oo > n, then f(x) is n times differentiable
at x, and the polynomial P,(A4) is the first #n + 1 terms of
the Taylor series of f(x) at Xo. For n =0, we have
P,(h) = f(x,). The Lipschitz regularity o, gives an indica-
tion of the differentiability of f(x) but it is more precise. If
the Lipschitz regularity o, of f(x) satisfies 7 < ag<n+
1, then we know that f(x) is » times differentiable at X, but
its nth derivative is singular at x, and o, characterizes this
singularity.

One can prove that if f(x) is Lipschitz « then its primi-
tive g(x) is Lipschitz o + 1. However, it is not true that if a
function is Lipschitz o at a point x,, then its derivative is
Lipschitz « — 1 at the same point. This is due to oscillatory
phenomena that are further studied in Section V-C. On the
opposite, one can prove that if « is not an integer and
a > 1, a function is wniformly Lipschitz o on an interval
la, bl, if and only if its derivative is uniformly Lipschitz
o — 1 on the same interval. By extending this property for
@ > 1, we can define negative uniform Lipschitz exponents
for tempered distributions. Integer Lipschitz exponents have
a different behavior that is not studied in this article. It is
necessary to define properly the notion of negative Lipschitz
exponents for tempered distributions, because they are often
encountered in numerical computations.
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Definition 2: Let f(x) be a tempered distribution of finite
order. Let « be a noninteger real number and [a, b] an
interval of R. The distribution f(x) is said to be uniformly
Lipschitz « on ]a, b[, if and only if its primitive is uniformly
Lipschitz o + 1 on ]a, b[.

For example, the second order primitive of a Dirac is a
function which is piece-wise linear in the neighborhood x =
0. This function is uniformly Lipschitz 1 in the neighborhood
of 0, and thus uniformly Lipschitz o for a« < 1. As a
consequence of Definition 2, we can derive that a Dirac is
uniformly Lipschitz «, for o < —1, in the neighborhood of
0. Since Definition 2 is not valid for integer Lipschitz expo-
nents, it does not allow us to conclude that a Dirac is
uniformly Lipschitz —1 in a neighborhood of 0. We can
however derive that in a neighborhood of 0, the uniform
Lipschitz regularity of a Dirac, which is the sup of the
Lipschitz exponents, is equal to — 1. Definition 2 is global
because uniform Lipschitz exponents are defined over inter-
vals but not at points. It is possible to make a local extension
of Lipschitz exponents to negative values through the mi-
crolocalization theory of Bony [6], [17], but these sophisti-
cated results go beyond the scope of this article. For isolated
singularities, one can define pointwise Lipschitz exponents
through Definition 2. We shall say that a distribution f(x)
has an isolated singularity Lipschitz & at x,, if and only if
JS(x) is uniformly Lipschitz o over an interval le, b[, with
Xo€la, b[, and f(x) is uniformly Lipschitz 1 over any
subinterval of ]a, b[ that does not include X,. For example, a
Dirac centered at O has an isolated singularity at x = 0,
whose Lipschitz regularity is — 1.

A classical tool for measuring the Lipschitz regularity of a
function f(x) is to look at the asymptotic decay of its
Fourier transform f(w). One can prove that a bounded
function f(x) is uniformly Lipschitz « over R if it satisfies

/+°°|f(w)|(1+]w|°‘)dw< + 00, (8)

This condition is sufficient but not necessary. It gives a global
regularity condition over the whole real line but from this
condition, one can not determine whether the function is
locally more regular at a particular point x,. This is because
the Fourier transform unlocalizes the information along the
spatial variable x. The Fourier transform is therefore not
well adapted to measure the local Lipschitz regularity of
functions.

If the wavelet has a compact support, the value of
Wf(s, x;) depends upon the values of f(x) in a neighbor-
hood of x,, of size proportional to the scale 5. At fine scales,
it provides a localized information on f(x). Theorems 1 and
2 relate the asymptotic decay of the wavelet transform at
small scales, to the local Lipschitz regularity. We suppose
that the wavelet y(x) is continuously differentiable, with real
values and a compact support, although the last two condi-
tions are not necessary. The first theorem is a well-known
result and a proof can be found in [15].

Theorem 1: Let f(x)eL*(R) and [a, b} an interval of
R. Let 0 < a < 1. For any € > 0, f(x) is uniformly Lips-
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chitz o over ]Ja + ¢, b — ¢[, if and only if for any ¢ > 0
there exists a constant A_ such that for xe€la + ¢, b — €[
and s > 0,

[ Wf(s, x)| < A,s*

)

If f(x)eL?*(R), for any scale s, > 0, by applying the
Cauchy-Schwartz inequality, we can easily prove that the
function | Wf(s, x)| is bounded over the domain s > s,.
Hence, (9) is really a condition on the asymptotic decay of
| Wf(s, x)| when the scale s goes to zero. The sufficient
condition (8) based on the Fourier transform implies that
| f(w)| has a decay ‘‘faster’” than 1/w®, for large frequen-
cies w. Equation (9) is similar if one considers the scale s as
locally ‘‘equivalent’ to 1/w. However, in opposition to the
Fourier transform condition, (9) is a necessary and sufficient
condition and is localized on intervals, not over the whole
real line.

In order to extend Theorem 1 to Lipschitz exponents o
larger than 1, we must impose that the wavelet /(x) has
enough vanishing moments. A wavelet y(x) is said to have
n vanishing moments, if and only if for all positive integer
k < n, it satisfies

/Mx"x,b(x) dx = 0. (10)

If the wavelet ¥/ (x) has n vanishing moments, then Theorem
1 remains valid for any noninteger value « such that 0 < o
< n. Let us see how this extension works, in order to
understand the impactAof vanishing moments. Since /( x) has
a compact support, ¥ (w) is n times continuously differen-
tiable and one can derive from equations (10) that J/(w) has a
zero of order n in w = 0. For any integer p < n, J/(w) can,
thus, be factorized into

V(o) = (i0) ¥ (o).
In the spatial domain we have

§x = 20

X

(11)

(12)

and the function '(x) satisfies the wavelet admissibility
condition (1). The pth derivative of any function f(x) is
well defined in the sense of distributions. Hence.

W5, 5) = 05) = s (74580
Rar=2d [ =

The wavelet transform f(x) with respect to the wavelet
Y(x) is, thus, equal to the wavelet transform of its pth
derivative, computed with the wavelet ¥'(x), and multiplied
by sP. Let p be an integer such that 0 < o — p < 1. The
function f(x) is uniformly Lipschitz « on an interval ]a, b[,
if and only if (d”f)/(dx”*) is uniformly Lipschitz & — p on
the same interval. Since 0 < @ — p < 1, Theorem 1 applies
to the wavelet transform of (d”f)/(dx?) defined with re-
spect to the wavelet /', Theorem 1 proves that (d”f)/(dx?)
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is uniformly Lipschitz o — p over intervals l1a + €, b — e,

if and only if we can find constants A, > 0 such that for

xela+e b—el,

arf
*¥s(x)

dx?

Equation (13) proves that this is true, if and only if

| Wf(s, x)| < A.s*. (14)
Equation (14) extends Theorem 1 for o < n. If Y/(x) has n
vanishing moments but not n + 1, then the decay of
| Wf(s, x)| does not tell us anything about Lipschitz expo-
nents for o > n. For example, the function f(x) = sin(x)
is uniformly Lipschitz + o on any interval, but if ¢(x) has
exactly 7 vanishing moments, one can easily prove that the
asymptotic decay of | Wf(s, x)| is equivalent to s” on any
interval. This decay does not allow us to derive anything on
the regularity of the nmth + 1 derivative of sin(x). For
a < 0and a¢Z, (9) of Theorem 1 remains valid to charac-
terize uniform Lipschitz exponents. In this case, we do not
need to impose more than one vanishing moment on the
wavelet Y (x). The proof can easily be derived from the
statement of Definition 2.

For integer Lipschitz exponents «, (9) is necessary but not
sufficient to prove that a function f(x) is uniformly Lipschitz
« over intervals Ja + €, b — ¢[. If o = 1 and the wavelet
has at least two vanishing moments, the class of functions
that satisfy (9), for any x € R, is called the Zygmund class.
This class of functions is larger than the set of functions that
are uniformly Lipschitz 1. For example, x log (x) belongs to
the Zygmund class although it is not Lipschitz 1 at x = 0.
The reader is referred to Meyer’s book [22] for more detailed
explanations on the Zygmund class.

Theorem 1 gives a characterization of the Lipschitz regu-
larity over intervals but not at a point. The second theorem
proved by Jaffard [16] shows that one can also estimate the
Lipschitz regularity of f(x), precisely at a point x,. The
theorem gives a necessary condition and a sufficient condi-
tion, but not a necessary and sufficient condition. We suppose
that ¥(x) has n vanishing moments, is n times continuously
differentiable, and has a compact support.

<A, 7"

Theorem 2: Let n be a positive integer and o < n. Let
f(x)eL*(R). If f(x)is Lipschitz a at x,, then there exists
a constant A such that for all point x in a neighborhood of
X, and any scale §

|WF(s.x)] S A(s® + [x—x]%).  (15)
Conversely, let o < n be a noninteger value. The function

f(x) is Lipschitz « at x,, if the following two conditions
hold.

e There exists some € > 0 and a constant A such that for
all points x in a neighborhood of x, and any scale s

| Wf(s, x)| = As*. (16)
o There exists a constant B such that for all points x in a
neighborhood of x, and any scale s

| x — x|
| Wf(s, x)| < B|s*+

(17)

|log | x = xo| | |



MALLAT AND HWANG: SINGULARITY DETECTION AND PROCESSING WITH WAVELETS 621

As a consequence of Theorem 1, we know that (16)
imposes that f(x) is uniformly Lipschitz € in some neigh-
borhood of x,. The value e can be arbitrarily small. To
interpret equations (15) and (17), let us define in the scale-
space the cone of points (s, x) that satisfy

| x — x5 <.

For (s, x) inside this cone, (15) and (17) impose that when s
goes to zero, | Wf(s, x)| = O(s%). Below this cone, the
value of | Wf(s, x)| is controlled by the distance of x with
respect to X, but the necessary and sufficient conditions
have different upper bounds. Equation (17) means that
for (s, x) below the cone, | Wf(s, x)| = O((] x -
Xo|*)/([log | x — x4 |)) The behavior of the wavelet trans-
form inside a cone pointing to X, and below this cone are
two components that must often be treated separately.

Theorems 1 and 2 prove that the wavelet transform is
particularly well adapted to estimate the local regularity of
functions. For example, Holschneider and Tchamitchian [15]
used a similar result to analyze the differentiability of the
Riemann-Weierstrass function. As mentioned in the intro-
duction, we often want to detect and characterize the irregu-
lar parts of signals. Many interesting physical processes yield
irregular structures [3]. A well-known example is high
Reynold numbers turbulence, for which there is still no
comprehensive theory to understand the nature and reparti-
tion of irregular structures [5]. For numerical experiments, it
is, however, difficult to apply directly Theorems 1 and 2, in
order to detect singularities and to characterize their Lips-
chitz exponents. Indeed, these theorems impose to measure
the decay of | Wf(s, x)| in a whole two-dimensional neigh-
borhood of x, in the scale-space (s, x), which requires a lot
of computations. The next section reviews briefly the differ-
ent techniques that have been used to numerically detect
singularities with a wavelet transform. We, then, explain
how singular points are related to the local maxima of the
wavelet transform modulus.

IV. DETECTION AND MEASUREMENT OF SINGULARITIES

In his pioneer work on wavelets, Grossmann [12] gives an
approach to detect singularities, with a wavelet which is a
Hardy function. A Hardy function g(x) is a complex func-
tion whose Fourier transform satisfies

g(w) =0, (18)

Let f(x)eL*(R) and Wf(s, x) be the complex wavelet
transform built with a Hardy wavelet. For a fixed scale s, (3)
implies that the Fourier transform Wf(s, w) is also zero at
negative frequencies, so it is also a Hardy function. Let us
observe that a Hardy wavelet does not satisfy (1) for negative
frequencies. The reconstruction formula (4) is valid, if and
only if f(x) is also a Hardy function. Let #(s, x) and
o(s, x) be, respectively, the argument and modulus of the
complex number Wf(s, x). The argument ¢(s, x) is called
the phase of the wavelet transform. Grossmann [12] indicates
that in the neighborhood of an isolated singularity located at
Xg, the lines in the scale-space (s, x) where the phase

for w < 0.

¢(s, x) remains constant, converge to the abscissa Xy, when
the scale s goes to 0. One can use this observation to detect
singularities, but the phase (s, x) is not sufficient to mea-
sure their Lipschitz regularity. Moreover, the value of
#(s, x) is unstable when the modulus p(s, x) is close to
zero. It is thus necessary to combine the modulus and the
phase information to characterize the different singularities,
but no effective method has been derived yet.

In computer vision, it is extremely important to detect the
edges that appear in images and many researchers [7], [20],
[21], [26], [27] have developed techniques based on multi-
scale transforms. These multiscale transforms are equivalent
to a wavelet transform but were studied before the develop-
ment of the wavelet formalism. Let us call a smoothing
function, any real function 6(x) such that 8(x) = oa/a +
x?)) and whose integral is nonzero. A smoothing function
can be viewed as the impulse response of a low-pass filter.
An important example often used in computer vision is the
Gaussian function. Let ,(x) = (1/5)0(x/s). Let f(x)be a
real function in L*(R). Edges at the scale s are defined as
local sharp variation points of f(x) smoothed by 6,(x). Let
us explain how to detect these edges with a wavelet trans-
form. Let ¢'(x) and y2(x) be the two wavelets defined by

de(x) 2, d%(x)
T ax and §7(x) = dx?

¥'(x) (19)

The wavelet transforms defined with respect to each of these
wavelets are given by

Wif(s, x) = f*¢i(x) and W3f(s, x) =f*xy2(x);
(20)

W'if(s, x) =f= (s%)(x) = sdi;c(f*ﬁs)(x) (21)

and
a0, &
Wf(s,x) =fx (52 e )(x) = szw(f*()s)(x).

(22)

The wavelet transforms W 'f(s, x) and W2 f(s, x) are pro-
portional respectively to the first and second derivative of
J(x) smoothed by 04 x). For a fixed scale s, the local
extrema of W'f(s, x) along the x variable, correspond to
the zero-crossings of W2f(s, x) and to the inflection points
of f*0x) (see Fig. 1).

If the wavelet y2(x) is continuously differentiable, the
wavelet transform WZ2f(s, x) is a differentiable surface
in the scale-space plane. Hence, the zero-crossings  of
W2f(s, x) define a set of smooth curves that often look like
finger prints [27]. Let us prove that one can define a particu-
lar Hardy wavelet such that the phase of the wavelet trans-
form remains constant or changes sign, along these finger
prints. Let y*(x) be the Hilbert transform of Y2(x) and
YH(x) = ¥2(x) + iY3(x). The wavelet ¥*(x) is a Hardy
wavelet. Let W*f(s, x) = f*y*(x). The real part of
W*f(s, x) is equal to W2f(s, x). Hence, the phase ¢(s, x)
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f@&x)
6,0
e NA
Wi (s.x) /\/

Fig. 1. Extrema of Wf(s, x) and the zero-crossings of W2f(s, x) are
the inflection points of f *6.(x). Points of abscissa x, and x, are sharp
variations of f *fs(x) and are local maxima of | W!f(s, x)|. The local
minimum of | W!f(s, x)| at x, is also an inflection point but it is a slow
variation point.

is equal to /2 or — = /2, if and only if, W2f(s, x) = 0.
Since W*f(s, x) is a continuous function, the phase ¢(s, x)
can not jump from 7 /2 to —x /2 along a connected line in
the scale space, unless the modulus is equal to 0. If the
modulus of W*f(s, x) is equal to 0, the phase is not defined
and it can change sign at these points. Similarly to lines of
constant phase, the zero-crossings ‘‘finger prints’’ indicate
the locations of sharp variation points and singularities but do
not characterize their Lipschitz regularity. We need more
information about the decay of | W2f(s, x)|, in the neigh-
borhood of these zero-crossings lines.

Detecting the zero-crossings of W2f(s, x) or the local
extrema of W'f(s, x) are similar procedures, but the local
extrema approach has several important advantages. An in-
flection point of f *6/(x) can either be a maximum or a
minimum of the absolute value of its first derivative. Like at
the abscissa x, and x, of Fig. 1, the local maxima of the
absolute value of the first derivative are sharp variation points
of f*6(x), whereas the minima correspond to slow vari-
ations (abscissa x,). These two types of inflection points
can be distinguished by looking whether an extremum of
| W!f(s, x)| is a maximum or a minimum, but they cannot
be differentiated from the zero-crossings of W 2f(s, x). For
edge or singularity detection, we are only interested in the
local maxima of | W'f(s, x)|. When detecting the local
maxima of | W'f(s, x)|, we can also keep the value of the
wavelet transform at the corresponding location. With the
results of Theorems 1 and 2, we prove in the next section that
the values of these modulus maxima often characterize the
Lipschitz exponents of the signal irregularities.

V. WAVELET TRANSFORM MoDULUS MAXIMA

If the wavelet /(x) is the first derivative of a smoothing
function, it has only one vanishing moment. In general, we
do not want to impose only one vanishing moment because,
as explained in Section III, in that case we can not estimate
Lipschitz exponents larger than 1. In the following sections,
we study the mathematical properties of the wavelet modulus
maxima and explain how to measure Lipschitz exponents.
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We suppose that the wavelet y/(x) and the function f(x) we
analyze, are both real.

A. General Properties

Let us precisely define what we mean by local maxima of
the wavelet transform modulus.

Definition 3: Let Wf(s, x) be the wavelet transform of a
function f(x).

e We call local extremum any point (S, X,) such that
(0Wf(sqy, X))/(3x) has a zero-crossing at x = x,, when
X varies.

e We call modulus maximum, any point (s,, X,) such that
| Wf(sy, x)| < | Wf(sy, x5)| when x belongs to ei-
ther a right or the left neighborhood of x,, and
| Wf(sq, X)| = | Wf(s,y, X,)| when x belongs to the
other side of the neighborhood of x,.

e We call maxima line, any connected curve in the scale
space (s, x) along which all points are modulus max-
ima.

A modulus maximum (sy, x,) of the wavelet transform is
a strict local maximum of the modulus either on the right or
the left side of the x,. The first theorem proves that if the
wavelet transform has no modulus maximum at fine scales in
a given interval, then the function is uniformly Lipschitz «,
for a < n, in this interval.

Theorem 3: Let n be a strictly positive integer. Let ¥(x)
be a wavelet with compact support, » vanishing moments
and n times continuously differentiable. Let f(x) €
L'([a, b)).

o If there exists a scale s, > 0 such that for all scales
s < s, and x€la, b[, | Wf(s, x)| has no local max-
ima, then for any € > 0 and « < n, f(x) is uniformly
Lipschitz « in Ja + €, b — €.

e If Y(x) is the nth derivative of a smoothing function,
then f(x) is uniformly Lipschitz # on any such interval
la + ¢, b — €.

The proof of this theorem is in Appendix A. Theorem 3
proves that a function is not singular in any neighborhood
where its wavelet transform has no modulus maxima at fine
scales. In the following, we suppose that y(x) is the nth
derivative of a smoothing function. Let us define the closure
of the wavelet transform maxima as the set of points on the
real line that are arbitrarily close to some modulus maxima in
the scale-space (s, x). This means that for any points X, in
this closure and for any ¢ > 0, there exists a wavelet trans-
form modulus maxima at a point (s;, x,) that satisfy | x, —
Xo| < eand s; <e.

Corollary 1: The closure of the set of points xeR,
where f(x) is not Lipschitz », is included in the closure of
the wavelet transform maxima of f(x).

This corollary is a straight-forward implication of Theo-
rem 3. It proves that all singularities of f(x) can be located
by following the maxima lines when the scale goes to zero. It
is, however, not true that the closure of the points where
f(x) is not Lipschitz n is equal to the closure of the wavelet
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transform maxima. Equation (32) proves for example that if
¥(x) is antisymmetrical then for Sf(x) = sin(x), all the
points pw (peZ) belong to the closure of the wavelet
modulus maxima, although sin (x) is infinitely continuously
differentiable at these points. It is even possible to create
functions that are infinitely continuously differentiable and
whose wavelet transforms have an infinite number of maxima
lines that converge inside a finite interval [a, b]. Let us now
study how to use the value of the wavelet transform maxima
in order to estimate the Lipschitz regularity of f(x) at the
points that belong to the closure of the wavelet transform
maxima.

B. Nonoscillating Singularities

In this section, we study the characterization of singulari-
ties when locally the function has no oscillations. The next
section explains the potential impact of oscillations. We
suppose that the wavelet y(x) has a compact support, is 7
times continuously differentiable and is the nth derivative of
a smoothing function. The following theorem characterizes a
particular class of isolated singularities, from the behavior of
the wavelet transform modulus maxima.

Theorem 4: Let f(x) be a tempered distribution whose
wavelet transform is well defined over ]a, b[, and let Xo
€]a, b[. We suppose that there exists a scale S0 >0, and a
constant C, such that for xe€]a, b[ and 5 < s,, all the
modulus maxima of Wf(s, x) belong to a cone defined by

| x — x,| = Cs. (23)

Then, at all points x, €]a, b[, X; # Xo, f(x) is uniformly
Lipschitz n in a neighborhood of x;. Let «<n be a
noninteger. The function f(x) is Lipschitz o at x,, if and
only if there exists a constant A such that at each modulus
maxima (s, x) in the cone defined by (23)
| Wf(s, x)| < As©. (24)

The proof of this theorem is in Appendix B. Equation (24)

is equivalent to

log | Wf(s, x)| <log (A) + alog (s). (25)
If the wavelet transform maxima satisfy the cone distribution
imposed by Theorem 4, (25) proves that the Lipschitz regu-
larity at x,, is the maximum slope of straight lines that
remain above log | Wf(s, x)|, on a logarithmic scale. The
fact that all modulus maxima remain in a cone that points to
X, also implies that f(x) is Lipschitz n at all points x
€la, b[, x # x,. Fig. 3 shows the wavelet transform of a
function with isolated singularities that verify the cone local-
ization hypothesis. To compute this wavelet transform we
used a wavelet with only one vanishing moment. The graphs
of Y(x) and its primitive 6(x) are shown in Fig. 2. The
Fourier transform of y/(x) is
. 4
sin (w /4
#) , (26)

\Z(w) =iw( )

0.8 1.4

0.0

-0.8 4 0.0
-2 -1 0 1 2 2 -1 0 1 2

Fig. 2. (a) Graph of a wavelet ¥(x) with compact support and one
vanishing moment. It is a quadratic spline. (b) Graph of the primitive 6(x)
with compact support. It is a cubic spline.

This wavelet belongs to a class for which the wavelet trans-
form can be computed with a fast algorithm [29].

In numerical computations, the input function is not known
at all abscissa values x but is characterized by a uniform
sampling which approximates f(x) at a resolution that de-
pends upon the sampling interval [18]. These samples are
generally the result of a low-pass filtering of f(x) followed
by a uniform sampling. If we suppose for normalization
purpose that the resolution is 1, we can only compute the
wavelet transform at scales larger than 1. When a function is
approximated at a finite resolution, strictly speaking, it is not
meaningful to speak about singularities, discontinuities and
Lipschitz exponents. This is illustrated by the fact that we can
not compute the asymptotic decay of the wavelet transform
amplitude at scales smaller than 1. In practice, we still want
to use the mathematical tools that describe singularities, even
though we are limited by the resolution of measurements.
Suppose that the approximation of f(x) at the resolution 1 is
given by a set of samples (), with f, = 0 for n < ny,
and f, = 1 for n = n,, like at the abscissa 0.88 of Fig. 3(a).
We would like to say that at the resolution 1, f(x) behaves
as if it has a discontinuity at n = ny, although it is possible
that f(x) is continuous at #, but has a sharp transition at that
point which is not visible at the resolution 1. The characteri-
zation of singularities from the decay of the wavelet trans-
form enables us to give a precise meaning to this discontinu-
ity at the resolution 1. Since we can not measure the asymp-
totic decay of the wavelet transform when the scale goes to 0,
we measure the decay of the wavelet transform up to the
finest scale available. The Lipschitz regularity is computed
by finding the coefficient o such that As* approximates at
best the decay of | Wf(s, x)|, over a given range of scales
larger than 1 (see Fig. 3(b)). With this approach, we can use
Lipschitz exponents to characterize the irregularities of dis-
crete signals. In Fig. 3(b), the discontinuity appears clearly
from the fact that | Wf(s, x)| remains approximately con-
stant over a large range of scales, in the neighborhood of the
abscissa 0.88. Negative Lipschitz exponents correspond to
sharp irregularities where the wavelet transform modulus
increases at fine scales. A sequence (f,),., with fn =0 for
n # ny, and f, = 1, can be viewed as the approximation of
a Dirac at the resolution 1. At the abscissa 0.44, the signal of
Fig. 3(a) has such a discrete Dirac. The wavelet transform
maxima increase proportionally to s~ ', over a large range of
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Fig. 3. (a) In the left neighborhood of the abscissa 0.16, the signal locally behaves like 1 + | x — 0.16 | 02 whereas in the right
neighborhood it behaves like 1 + | x — 0.16| 06 At the abscissa 0.44 the signal has a discrete Dirac (Lipschitz regularity equal to
~1). At 0.7, the Lipschitz regularity is 1.5 and at the abscissa 0.88 the signal is discontinuous. (b) Wavelet transform between the
scales 1 and 28 computed with the wavelet shown in Fig. 2(a). The finner scales are at the top, and the scale varies linearly along
the vertical. Black, grey and white points indicate that the wavelet transform has respectively negative, zero, and positive values.
(c) Each black point indicates the position of a modulus maximum in the wavelet transform shown in (b). The singularity of the
derivative can not be detected at the abscissa 0.7 because the wavelet has only one vanishing moment. (d) Modulus maxima of the
wavelet transform of the signal (a), computed with a wavelet with two vanishing moments. Number of maxima lines increases.
Singularity of the derivative at 0.7 can now be detected from the decay of the wavelet modulus maxima. (¢) Decay of
log, | Wf(s, x)| as a function of log, (s) along the two maxima lines that converge to the point of abscissa 0.16, computed with
the wavelet of Fig. 2(a). Two different slopes show that f(x) has a different singular behavior in the left and right neighborhoods of

0.16, and we can measure the two exponents 0.2 and 0.6.

scales in the corresponding neighborhood. In the rest of this
paper, we suppose that all numerical experiments are per-
formed on functions approximated at the resolution 1, and we
consider that the decay of the wavelet transform at scales
larger than 1 characterize the Lipschitz regularity of the
function up to the resolution 1. Fast algorithms to compute
the wavelet transform are described in [14], [18]. We shall
not worry anymore about the issue related to asymptotic
measurements and finite resolution.

The modulus maxima of the wavelet transform of Fig 3(b)
are shown in Fig. 3(c). The black lines indicate the position
of the modulus maxima in the scale-space. Fig. 3(e) gives the
value of log, | Wf(s, x)| as a function of log, (s) along the
two maxima lines that converge to the point of abscissa 0.16.
At fine scales, the slope of theses two maxima line is different
and are approximately equal to 0.2 and 0.6. This shows that
f(x) behaves like a function Lipschitz 0.2 in its left neigh-

borhood and a function Lipschitz 0.6 in its right neighbor-
hood. The Lipschitz regularity of f(x) at 0.16 is 0.2 which
is the smallest slope of the two maxima lines.

At this point one might wonder how to choose the number
of vanishing moments to analyze a particular class of signals.
If we want to estimate Lipschitz exponents up to a maximum
value n, we know that we need a wavelet with at least »
vanishing moments. In Fig. 3(c), there is one maxima line
converging to the abscissa 0.7, along which the decay of
log | Wf(s, x)| is proportional to log(s). The signal was
built from a function whose derivative is singular, but this
can not be detected from the slope of log | Wf(s, x)| be-
cause the wavelet has only one vanishing moment. Fig. 3(d)
shows the maxima lines obtained from a wavelet that has two
vanishing moments. The decay of the wavelet transform
along the two maxima lines that converge to the abscissa 0.7
indicates that f(x) is Lipschitz 1.5 at this location. Using
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wavelets with more vanishing moments has the advantage of
being able to measure the Lipschitz regularity up to a higher
order, but it also increases the number of maxima line as it
can be observed by comparing Fig. 3(c) and 3(d). Let us
prove this last observation. A wavelet y(x) with n + 1
vanishings moment is the derivative of a wavelet ¥'(x) with
n vanishing moments. Similarly to (21), we obtain

9 :
=s—W'f(s, x). (27)

Wf(S,X)=Sdii‘(f*¢;)(x) 3x

The wavelet transform of f(x), defined with respect to
¥ (x), is proportional derivative of the wavelet transform of
f(x), defined with respect to y'(x). Hence, the number of
local maxima of | Wf(s, x)| is always larger than the
number of local maxima of | W'f(s, x)|. The number of
maxima at a given scale often increases linearly with the
number of moments of the wavelet. In order to minimize the
amount of computations, we want to have the minimum
number of maxima necessary to detect the interesting irregu-
lar behavior of the signal. This means that we must choose a
wavelet with as few vanishing moments as possible, but with
enough moments to detect the Lipschitz exponents of highest
order that we are interested in. Another related property that
influences the number of modulus maxima is the number of
oscillations of the wavelet Y (x). For most types of singulari-
ties, the number of maxima lines converging to the singular-
ity depends upon the number of local extrema of the wavelet
itself. A Dirac 8(x) gives a simple verification of this
property, since Wé(s, x) = (1/s)¢(x/s). A wavelet with n
vanishing moments has at least #» + 1 local extrema. For
numerical computations, it is better to choose a wavelet with
exactly n + 1 local extrema. In image processing, we often
want to detect discontinuities and peaks that have Lipschitz
exponents smaller than 1. It is, therefore, sufficient to use a
wavelet with only one vanishing moment. In signals obtained
from turbulent fluids, interesting structures have a Lipschitz
exponent between O and 2 [4]. We, thus, need a wavelet with
two vanishing moments to analyze turbulent structures.

Let us suppose that the wavelet ¥(x) has a symmetrical
support equal to [- K, K]. We call cone of influence of x,
in the scale-space plane, the set of points (s, x) that satisfy

| x —xy| = Ks.

It is the set of point (s, x) for which Wf(s, x) is influenced
by the value of f(x) at x,. In order to characterize the
regularity of f(x) at a point x,, one might think that it is
sufficient to measure the decay of the wavelet transform
within the cone of influence of x,. Theorem 2 proves that
this is wrong in general and that one must also measure the
decay of the wavelet transform below this cone of influence.
This is due to oscillations that can create a singularity at x,.
The next theorem proves that if we suppose that f( x) has no
such oscillations, then the regularity of f(x) at a point X, is
characterized by the behavior of its wavelet transform along
any line that belongs to a cone strictly smaller than the cone
of influence. Section V-C explains why this property is
wrong when f(x) oscillates too much. In the following, we
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suppose that ¢( x) is a real wavelet which is n times continu-
ously differentiable, has a support equal to [~ K, K], and is
equal to the nth derivative of a function 6(x). We also
impose that 0( x) is strictly positive on the interval ] — K, K[.

Theorem 5: Let x,€ R and let f(x) e L*(R). We sup-
pose that there exists a neighborhood ]a, b[ of x, and a scale
So > 0, such that the wavelet transform W/f(s, x) has a
constant sign for s < s, and x €]a, b[. Let us also suppose
that there exists a constant B and e > 0 such that for all
points x €]a, b[ and any scale s

| Wf(s, x)| < Bs“.

(28)

Let x = X(s) be a curve in the scale space (s, x) such that
| xo — X(s)| = Cs, with C < K. If there exist a constant
A such that for any scale s <s,, the wavelet transform
satisfies

| Wf(s, X(s))] <As”, with0O=<y=<n, (29)

then f(x) is Lipschitz « at x,, for any o < 7.

The proof of this theorem is in Appendix C. One can
easily prove that the sign constraint over the wavelet trans-
form of f(x) is equivalent to impose that the nth derivative
of f(x) is a distribution which has a constant sign in a
neighborhood of x,. Theorem 5 proves that the regularity of
f(x) is controlled by the behavior of its wavelet transform in
the cone of influence, if its nth derivative does not have an
oscillatory behavior that accelerate in the neighborhood of
Xo. A similar theorem can be obtained if we suppose that the
nth derivative of f(x) has a constant sign over a left and
right neighborhood of x,, but changes sign at x,. This
means that in the neighborhood of x,, Wf(s, x) has only
one zero-crossing at any fixed scale s, which is small enough.
When s goes to zero, the zero-crossing curve converges to
the abscissa x,. In this case, we need to control the decay of
the wavelet transform along two lines that remain, respec-
tively, in the left and the right part of the cone of influence
of x,.

From Theorem 5, one can compute the Lipschitz regularity
of certain types of nonisolated singularities, from the behav-
ior of the wavelet transform modulus maxima. We find
whether the wavelet transform has a constant sign in a
neighborhood of x,, by testing the sign at the locations
where its modulus is locally maximum. It also sufficient to
verify equation (28) along the lines of maxima that converge
in the same neighborhood of x,. The Lipschitz regularity of
Sf(x) at x, is then obtained from the decay of the wavelet
transform modulus, along any line of maxima that converges
towards X, inside the cone of influence. Let us emphasize
again that if at each scale, the wavelet transform has only one
zero-crossing in a neighborhood of x,, Theorem 5 can be
extended by measuring the decay of the wavelet transform
along two maxima lines that are respectively in the left and
the right parts of the cone of influence of x,. This is the case
for the singularity located at the abscissa 0.16, in Fig. 3(a).

A ““devil staircase’’ is an interesting example to illustrate
the application of Theorem S to the detection of nonisolated
singularities. The derivative of a devil staircases is a Cantor



626 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992

measure. For the devil staircase shown in Fig. 5(a), the
Cantor measure is built recursively as follows. For p = 0,
the support of the measure p, is the interval [0, 1], and it has
a uniform density equal to 1 on [0, 1]. The measure By is
defined by subdividing each domain where u p—1 has a uni-
form density equal to a constant ¢ > 0, into three domains
whose respective sizes are 1/5, 2/5, and 2/5. The density of
the measure p, is equal to O in the central part, to ¢/3 in the
first part and to 2¢ /3 in last part (see Fig. 4). One can verify
that /Olup(dx) = 1. The limit measure u,, obtained with this
iterative process is a Cantor measure. The devil staircase is
defined by:

= [ ).

Fig. 5(a) shows the graph of a devil staircase, and Fig. 5(b)
its wavelet transform computed with the wavelet of Fig. 2(a).
For a devil staircase, we can prove that the maxima lines
converge exactly to the points where the function f(x) is

singular. There is no maxima line that converges to a point
where the function is not singular.

Proof: By definition, the set of points where the max-
ima lines converge is the closure of the wavelet transform
maxima and Corollary 1 proves that it includes the closure of
the points where f(x) is singular. For a devil staircase, the
support of the points where f(x) is singular is equal to the
support of the Cantor measure which is a closed set. It is thus
equal to its closure. For any point x, outside this closed set,
we can find a neighborhood ]x, — €, x, + €[ that does not
intersect the support of u.(x). On this open interval, f(x) is
constant, so for s small enough and xelx, — €/2, x, +
€/2[, Wf(s, x) is equal to zero. The point x,, therefore, can
not belong to the closure of the wavelet transform maxima.
This proves that the closure of the wavelet transform maxima
is included in the singular support of f(x). Since the oppo-
site is also true, it implies that both sets are equal.

For the particular devil staircase that we defined, the
Lipschitz regularity of each singular point depends upon the
location of the point. One can prove [4] that at all locations,
the Lipschitz regularity « satisfies

log (2/3) _ _log (1/3)
log (2/5) = % T log (1/3) -

Hence, (28) of Theorem 5 is verified for e < (log(2/3))/
(log(2/5)). Since a devil staircase is monotonously increasing
and our wavelet is the derivative of a positive function, the
wavelet transform remains positive. Theorem 5 proves that
the local Lipschitz regularity of f(x) at any singular point
can be estimated from the decay of the wavelet transform
along the maxima line that converges to that point. Fig. 5(c)
shows the position of the maxima lines in the scale-space.
The renormalization properties of the Cantor set appear as
renormalization properties of the graph of maxima lines.
Arneodo, Bacry, and Muzy [2], [24] have shown that one can
precisely compute the singularity spectrum f(o) of multi-
fractal signals, from the evolution across scales of the wavelet

0 1
p =20
o ; 1/5 2/5
p = 2— R S
p = 3-- - —_ - —_—

Fig. 4. Recursive operation for building a multifractal Cantor measure.
Cantor measure is obtained at the limit of this iterative procedure.
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Fig. 5. (a) Devil staircase. (b) Wavelet transform of the devil staircase
computed with the wavelet of Fig. 2(a). Black and white points indicate
respectively that the wavelet transform is zero or strictly positive. (c)
Modulus maxima of the wavelet transform shown in (b).

transform modulus maxima. These results are particularly
interesting for studying irregular physical phenomena such as
turbulence [2], [24].

C. Singularities with Fast Oscillations

If the function f(x) is oscillating quickly in the neighbor-
hood of x,, then one can not characterize the Lipschitz
regularity of f(x) from the behavior of its wavelet transform
in the cone of influence of x,. We say that a function f(x)
has fast oscillations at x,, if and only if there exists o > 0
such that f(x) is not Lipschitz « at x,, although its primitive
is Lipschitz « + 1 at x,. This situation occurs when f(x) is
a function which oscillates very quickly, and whose singular-
ity behavior at x, is dominated by these oscillations. The
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primitive of f(x) is computed through an integral that aver-
ages f(x), so the oscillations are attenuated and the Lipschitz
exponent at x, increases by more than 1. Singularities with
such an oscillatory behavior have been thoroughly studied in
mathematics [30]. A classical example is the function f(x)
= sin(1/x), in the neighborhood of x = 0. This function is
not continuous at O but is bounded in the neighborhood of 0,
so that its Lipschitz regularity is equal to 0 at x = 0. Let
g(x) be a primitive of sin (1/x). One can easily prove that
| g(x) — g(0)| = O(x?) in the neighborhood of x = 0, so
g(x) is Lipschitz 2 at this point.

Let f(x) be a function with fast oscillations at x,, and let
g(x) be its primitive. Let '(x) be the derivative of ¥(x).
Since g(x) is Lipschitz o + 1, the necessary condition (15)
of Theorem 2 implies that in a neighborhood of x,, the
wavelet transform defined with respect to y!(x) satisfies

| Wig(s, x)| = A(s*' + | x — x| **").  (30)

Similarly to (21) we can prove that
Wig(s, x) = g*¥;(x) = s(f *¥,)(x) = sWSf(s, x).

We, thus, derive that

| Wf(s,x)| <A s“+§|x—x0|“+’ (31)
This equation proves that although f(x) is not Lipschitz «,
in the cone of influence of x,, we have |Wf(s, x)| =
O(s*). The fact that f(x) is not Lipschitz o can not be
detected from the decay of | Wf(s, x)| inside the cone of
influence of X, but by looking at its decay below the cone of
influence, as a function of |x — x,|. For example, for
(s, x) below the cone of influence of x,, f(x) might not
satisfy the necessary condition | Wf(s, x)| = O(] x —
Xo| ®). When a function has fast oscillations, its worst singu-
lar behavior at a point x, is observed below the cone of
influence of x, in the scale-space plane.

Let us study in more detail the case of f(x) = sin(1/x).
Since the primitive is Lipschitz 2, we can take « = 1.
Equation (31) implies that in the cone of influence of 0, the
wavelet transform satisfies | Wf(s, x)| = O(s). Fig. 6(b)
shows the wavelet transform of sin(1/x). It has a high
amplitude along a curve in the scale space (s, x) which
reaches (0, 0) below the cone of influence of 0. It is along
this path in the scale-space that the singular part of f(x)
reaches 0. Let us interpret this curve and show that it is a
parabola. Through this analysis we derive a procedure to
estimate locally the size of the oscillations of f(x).

The function f(x) = sin(1/x) can be written f(x) =
sin (w, Xx), where w, = 1/x? can be viewed as an *‘instanta-
neous’’ frequency. Let us compute the wavelet transform of a
sinusoidal wave of constant frequency w,. If we suppose that
the wavelet y(x) is antisymmetrical, as it is the case in our
numerical computations, from (3) we derive that the wavelet
transform of A(x) = sin (w,x) satisfies

| Wh(s, x)| = |cos (wox) | |‘i’(5"’o)|- (32)
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Fig. 6. (a) Graph of sin (1/x). (b) Wavelet transform of sin (1/x). Ampli-
tude is maximum along a parabola that converges to (0, 0) in the scale-space.
(c) Modulus maxima of the wavelet transform. (d) Maxima line are dis-
played from the scale where is located the largest general maxima. Extremity
of each maxima line indicates the position of a general maxima point and it
belongs to a parabola in the scale-space (s, x).

For a symmetrical wavelet, the cosine is replaced by a sine in
the right-hand side of this equation. For a fixed abscissa x,
the decay of | Wh(s, x)| as a function of s, is proportional
to the decay of | Jx(swo) |. If | ¢Y(w)| reaches its maximum
at w = w,,, then for x fixed, | Wh(s, x)| is maximum at
Sy = w,, /wo. The scale where | Wh(s, x)| is maximum is
inversely proportional to the frequency of the sinusoidal
wave. The value of Wh(s, x) depends upon the values of
h(x) in a neighborhood of size proportional to the scale s, so
the frequency measurement is local. Since f(x) = sin(1/x)
has an instantaneous frequency w, = 1/x?, for a fixed
abscissa x, | Wf(s, x)| is globally maximum for
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=~ ®,, /w, = w,,x>. This is why we see in Fig. 6(b) that
the wavelet transform has a maximum amplitude along a
parabola that converges to the abscissa 0 in the scale-space.
This “‘instantaneous’” frequency measurement is based on an
idea that has been developed previously by Escudie and
Torresani [10] for measuring the modulation law of asymp-
totic signals. The results of Escudie and Torresani have also
been refined by Delprat ef al. [9] who explain how to
precisely extract the amplitude and frequency modulation
laws, by using Hardy wavelets.

Let us now study the behavior of the wavelet transform
maxima. The inflection points of f(x) are located at x =
I/nw, for neZ, and f(x) is continuously differentiable.
Since the wavelet y(x) has only one vanishing moment, all
the maxima lines converge toward the points x = 1/nw, and
the wavelet transform along these maxima line satisfies

[ Wf(s, x)| = A,s. (33)
The derivative of f(x) at 1/n7 is equal to (—1)"*'n?, so
one can derive that A, = O(n?). It is interesting to observe
that along all maxima lines in the neighborhood of 0, the
wavelet transform decays proportionally to the scale s, al-
though f(x) is discontinuous at 0. This singularity at 0 can
however be detected because the constants 4, grow to + oo
when we get closer to 0. Fig. 6(c) displays the modulus
maxima of the wavelet transform of sin (1 /x). In the neigh-
borhood of 0, at fine scales, the maxima line have a different
geometry in the scale space (s, x), due to the aliasing when
sampling sin (1/x) for numerical computations. Let us intro-
duce the general maxima points and explain how they are
related to the size of the oscillations of f(x).

Definition 4: We call general maximum of Wf(s, x),
any point (sy, x,) where | Wf(s, x)| has a strict local
maximum within a two-dimensional neighborhood in the
scale-space plane (s, x).

A general maximum is also a modulus maximum of the
wavelet transform, as defined by Definition 3, and thus
belongs to a modulus maxima line. General maxima are
points where | Wf(s, x)| reaches local maxima when the
variables (s, x) vary along a maxima line. Equation (32)
proves that the maxima line of the wavelet transform of
sin (wy x) are vertical lines in the scale-space plane (s, x)
given by x = nw, for neZ. If for w > 0, |$(w)] has one
global maxima at w,, and no other local maxima, then (32)
implies that there is only one general maximum along each
maxima line, and that it appears at the scale s, = w,, [wy. A
wavelet ¥(x) equal to the nth derivative of a Gaussian has
such a property. If for w > 0, lx[:(w)| has several local
maxima, there are several general maxima along each max-
ima line, but the one where | Wf(s, Xx)| has the highest
value is at the scale s, = w,, /w,. One can thus recover the
frequency w, from the location of this general maximum.
Fig. 6(d) displays the subpart of each maxima line that is
below the general maximum of largest amplitude. In the
scale-space, these general maxima belong to a parabola whose
equation is approximately given by s = ( w)(w,) = Ax>.
This equation is only an approximation because the

“‘frequency’’ w, is not constant. A finer analysis of this type
of properties can be found in the work of Delprat ef al. [9].
If f(x) is locally equal to the sum of several sinusoidal
waves whose frequency are well apart, so that they can be
discriminated by ;Z(Sw) when s varies (see (32)), then we
can measure the frequency of each of these sinusoidal waves
from the scales of the general maxima that they produce. The
efficiency of this method depends on how concentrated is the
support of y(w). Here, we are limited by the uncertainty
principle that imposes that ¥(x) can not have its energy well
concentrated both in spatial and frequency domains. To
distinguish spectral lines that are too close, it is necessary
to use more sophisticated methods as described by Delprat
et al. [9].

Let us now give a spatial domain interpretation of this
frequency measurement. We show that if the wavelet y(x)
has only one vanishing moment, the general maxima points
provide a measurement of the local oscillations, even if the
function is not locally similar to a sinusoidal wave. If y(x) is
the derivative of a smoothing function 6(x), (21) proves that

d
Wf(s, x) = Sa(f*es)(x)’

hence

Wf (s, (34)

x) = /Mdf(u)e(x_ u) du.

_e du s

If locally f(x) has a simple oscillation like in Fig. 7,
df(x)/dx has a constant sign between the two top points x,
and x, of the oscillation. The point (s, X,) is a general
maximum if the support of §(x, — x/s,) covers as much as
possible the positive part of df(x)/dx, without paying the
cost of covering a domain where df(x)/dx is too negative.
Hence, the distance between the two top points of the oscilla-
tion is of the order of the size of the support of 6(x),
multiplied by the scale s,:

(35)

This spatial domain interpretation shows that even if the
function is not locally similar to a sinusoidal wave, the size
of the oscillation is approximatively proportional to the scale
So of the general maximum point that is created. If the
wavelet Y/(x) has more than one vanishing moment, this
spatial interpretation is not valid.

With (31), we saw that if a function f(x) has fast oscilla-
tions in the neighborhood of x,, then the regularity at x,
depends on the behavior of Wf(s, x) below the cone of
influence of x,. To estimate this behavior, one approach is to
measure the decay of | Wf(s,, x;)| at the general maxima
points (s;, Xx;) that are below the cone of influence of Xos
when x; converges to x,. Indeed, these general maxima
points characterize the size of the oscillations of f(x) and
give an upper bound for the value of the wavelet transform
along each maxima line. Theorem 2 proves that f(x) is
Lipschitz o at x,, only if | Wf(s, x)| = O(] x — x,| %)
below the cone of influence. Hence, f(x) can be Lipschitz o
at a point x,, only if the general maxima point (s;, x;) below

X, — x, = Ks,.
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Fig. 7. We suppose that the wavelet is the first derivative of a smoothing
function 0(x). The point (sy, x,) is a general maximum of Wf(s, x), if
9:0(x — X,) covers as much as possible the domain where f(x) has a
derivative of constant sign.

the cone of influence of x|, satisfy

| Wf(si, x;) | = O(] x; — xo]%). (36)
This necessary condition gives an upper bound on the Lips-
chitz exponents at x,. For f(x) = sin(1/x), equation (36)
is satisfied only for o« = 0. We thus detect the discontinuity
at x = 0, from the values of the general maxima points. In
most situations, the general maxima points must be used in
conjunction with the modulus maxima lines in order to
estimate the decay of | Wf(s, x)| inside and below the cone
of influence of x,.

VI. COMPLETENESS OF THE WAVELET MoDULUS MAXIMA

We proved that the singularities of a function can be
detected from the wavelet transform modulus maxima. One
might wonder how much information is carried by the posi-
tions and the values of the wavelet transform modulus max-
ima. The reconstruction of a function from the local maxima
of its wavelet transform modulus has been studied numeri-
cally by Zhong and one of us [18]. Modulus maxima are
detected only along a dyadic sequence of scales (2) jez 10
obtain efficient numerical implementations. At each scale 27,
we record the position of the local maxima of | Wf(2/, x)|,
and the value of Wf(2/, x) at the corresponding location.
The reconstruction algorithm recovers an approximation of
the original signal, with a signal to error ratio of the order of
40 db. The approximation error is mostly concentrated at
high frequencies. More recently, Meyer [23] proved that the
wavelet transform modulus maxima do not provide a com-
plete signal representation. He constructed different functions
whose wavelet transform have the same local extrema at all
scales. These functions mostly differ at high frequencies, and
their relative L?(R) distance is of the same order than the
precision of the numerical reconstruction algorithm. This
seems to indicate that the wavelet transform modulus maxima
provide a ‘‘complete’’ characterization of functions, modulo
a small high-frequency error that remains to be identified
mathematically. This section reviews briefly the properties of
a dyadic wavelet transform as well as the reconstruction

algorithm based on modulus maxima. Section VII describes
an application to the suppression of white noise with a local
estimation of Lipschitz exponents.

We call dyadic wavelet transform the sequence of func-
tions of the variable x

(Wf(zj’ x))jeZ'

Equation (3) implies that the Fourier transform of Wf @27, x)
is given by

(37)

WF(2/, w) = ¥(270) f(w).

The function f(x) can be reconstructed from its wavelet
transform, and the reconstruction is stable [8], [18], if and
only if there exists two constants A4 >0 and B > 0 such
that

(38)

+ o

> [¥@%)|*=B.

je =

A= (39)

One can then prove that there exists a (nonunique) recon-
structing wavelet x(x) whose Fourier transform satisfies

_ﬁf J(270)3(2%0) = 1.

The function f(x) is recovered from its dyadic wavelet
transform with

S W) ().

j=—e

f(x) =

Similarly to the continuous wavelet transform, the dyadic
wavelet transform is overcomplete. This means that any
sequence (g;(X));c is not a priori the dyadic wavelet trans-
form of some function f(x)eL?(R). One can prove [18]
that such a sequence is the dyadic wavelet transform of some
function in L*(R), if and only if it satisfies the reproducing
kernel equations
+ o

> gl*Kl.j(x) = gj(x)’

/= —

vjeZ (40)
with
K, i(x) = xpr*dpi(x).

If the wavelet satisfies (39), Theorems 1 and 2 remain
valid if we restrict the scale to the sequence (2) ez [16].
Hence, the Lipschitz regularity of a function is characterized
by the decay across dyadic scales of the wavelet transform
modulus. The results and theorems of Section V are also
valid if we restrict the scale parameter s to the values
@29 ez Fig. 8(b) is the dyadic wavelet transform of the
signal in Fig. 8(a), computed with the wavelet shown in Fig.
2(a). The finest scale is limited by the resolution of the
original discrete signal. We also stop the decomposition at a
finite largest scale 27. One can prove [18] that the informa-
tion at scales larger than 2”7, (Wf(2/, x));. ;, can be aggre-
gated in a single low-frequency function Sf(2”7, x). The
function Sf(2”7, x) is obtained by convolving f(x) with an
appropriate smoothing function 0(x), dilated by 27 [18]. In
Fig. 8(b), the largest scale 27 is 2°. Fig. 8(c) displays the
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Fig. 8. (a) Original signal. (b) Wavelet transform computed up to the scale
26 Bottom graph gives the remaining low-frequencies, at scales larger than
25, (c) At each scale, each Dirac indicates the position of a modulus
maximum and the value of the wavelet transform at the corresponding
location. (d) Signal reconstructed from the wavelet transform modulus
maxima shown in (c) plus the low-frequency signal Sf(26, x).

modulus maxima of the wavelet transform. Each Dirac indi-
cates the position of a modulus maxima and the value of
Wf(2/, x) at the corresponding location. Since the wavelet is
the first derivative of a smoothing function, the wavelet
transform maxima are located where the signal has sharp
transitions. They provide an adaptive description of the signal
information. The more irregularities in the signal, the more
wavelet maxima. We also keep the remaining low frequency
information Sf(2°, x), with the maxima information.

Let us explain the algorithm introduced by Zhong and one
of us [18], that reconstructs the approximation of a function
from the modulus maxima of its wavelet transform. Let
S(x)eL*(R)y and (Wf(2/, X));ez be its dyadic wavelet
transform. We want to find the set of functions h(x) such
that at each scale 2/, the modulus maxima of Wh(27, x) are
the same as the modulus maxima of Wf(2”, x). We suppose
that the wavelet y/( x) is differentiable in the sense of Sobolev.
Since Wf(2/, x) is obtained through a convolution with
¥,(x), it is also differentiable in the sense of Sobolev and it

has at most a countable number of modulus maxima. Let
(Xj Wnez be the abscissa where |W/f(2/, x)| is locally
maximum. The maxima constraints on Wh(2/, x) can be
decomposed in two conditions.

a) At each scale 27, the local maxima of | Wh(2/, x)| are
located at the abscissa (x; ,),cz- _

b) At each scale 2/ and any abscissa x; ,, Wh(2/, X n)
= WfQ, x; ).

The condition a) is difficult to use as such because it is non
convex. We replace this condition by the minimization of the
following Sobolev norm

+
G2, 0) et = 3 (1 p?
j==o |
. >
1 dWh(2/, x
2% —(—)‘ . ()
dx

Let us explain why this minimization has a similar effect. At
each scale 2/, we try to decrease the L?(R) norm
[ Wh(2/, x)|, so that Wh(2”, x) is as small as possible. In
conjunction with condition b), this constraint has a tendency
to create local maxima at the positions x; ,. By minimizing
| dWh(2/, x)/dx|, we also impose that Wf(2/, x) has as
few oscillations as possible, and, thus, as few spurious local
maxima as possible, outside the abscissa x . n- The weight on
the derivative component is proportional to the scale because
the smoothness of Wf(2/, x) increases with the scale 2. For
a large class of wavelets defined in [18], one can prove that
for any h(x)e L*(R), |(Wh(2/, X)), | is finite.

Let us now interpret the condition b). Let K be the space
of all sequences of functions (g /(X)) jez such that

'(gj(x))jEZ| < F .

The norm | - | defines a Hilbert structure over K. The space
V of all dyadic wavelet transforms of functions in L?(R) is
included in K, since (41) has a finite value. Let us define the
set I' of all sequences of functions (g (X)) ;ez€ K, such that
for any index j and all maxima positions x o

gj(xj.n) = Wf(2f, xj,n)'

The set T' is an affine space which is closed in K. The dyadic
wavelet transforms that satisfy the condition b) are the se-
quences of the functions that belong to

A=TnNV.
The reconstruction problem thus consists in minimizing the
norm | - | over the closed affine space A. This minimization

has a unique solution that we compute with alternative projec-
tions. Let Pr. be the projection on the convex set I', which is
orthogonal with respect to the norm | - |. This operator is
characterized in [18]. Let P, be the projection on the Hilbert
space V', which is orthogonal with respect to | * |. One can
prove [18] that this operator is defined by the reproducing
kernel equations (40). Let P = P, oP;. be alternative projec-
tions on both spaces. Let P be the composition 7 times of
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the operator P. Since I' is an affine space and V a Hilbert
space, a classical result on alternative projections [28] proves
that for any sequence of functions (g(xX));.z€ K,
lim,,_, , ., P™(g,(x));c, converges strongly to orthogonal
projection of (g;(x));cz onto A. Hence, if gi(x) = 0 for
all jeZ, the alternative projection converges to the element
of A whose norm | - | is minimum. The algorithm is
illustrated by Fig. 9. When the signal has sharp isolated
singularities such as step edges, the solution of the minimiza-
tion problem can generate a wavelet transform with spurious
oscillations, similar to Gibbs phenomena. To avoid these
oscillations, we impose some further convex constraints on
the sign of the reconstructed wavelet transform and on the
sign of its derivative, between two consecutive modulus
points. Numerical experiments [18] show that the conver-
gence is not affected by these other constraints.

The theoretical and numerical stability of this reconstruc-
tion algorithm is further studied in [18], and an efficient
discrete implementation is described. If the discrete signal
has a total of N samples, the computation complexity to
implement the projections on ¥ and T' is O(N log (V)). In
general, the algorithm does not reconstruct to the original
wavelet transform, but it converges to a close element in A
(see Fig. 9). We reconstruct the corresponding signal by
applying the inverse wavelet transform operator. In all nu-
merical experiments, we found that the signal-to-noise ratio
(SNR) of this reconstruction is larger than 30 db after 20
iterations on the operator P [18]. Fig. 8(d) is an example of
signal reconstructed with 20 iterations. The differences with
the original function are not visible on the graph. If we
increase the number of iterations, the reconstruction error
decreases but reaches a limit which is of the order of 40 db,
because we do not converge to the original wavelet trans-
form. There is no mathematical proof that for any signal, this
algorithm does reconstruct a wavelet transform that is a good
approximation of the original wavelet transform. However,
extensive numerical experiments show that the precision of
the reconstructions is sufficient for a large class of signal
processing applications. The next section describes an appli-
cation to denoising.

VII. SiGNAL DENOISING BASED ON WAVELET MAXIMA
IN ONE DIMENSION

The properties of a signal can be modified by processing
its wavelet transform maxima and by reconstructing the
corresponding function. We describe an application to de-
noising based on a local analysis of the signal and the noise
singularities. Let us first describe the properties of the wavelet
transform of a white noise. Let n(x) be a real, wide sense
stationary white noise of variance o2, and Wn(s, x) be its
wavelet transform. We denote by E(X) the expected value
of a random variable X. We suppose that the wavelet y(x)
is real. Grossmann ef al. [12] have shown that the decay of
E(| Wn(s, x)|?) is proportional to 1/s. Indeed,

| Wn(s, x)|* = /ﬁ:j/;jn(u)n(v)
“Yu(x — u)g(x — v) dudy.

Fig. 9. An approximation of the wavelet transform cf f(x) is recon-
structed by alternating orthogonal projections on an affine space T’ and on
the space V of all dyadic wavelet transforms. Projections begin from the
zero-element and converges to its orthogonal projection on ' V.

Since n(x) is a white noise, E(n(u)n(v)) = o28(u — ),
hence

E(|Wn(s, x)|?) = /_;mfilmozé(u - »)

“Y(x — u)d(x — ») dudy.
We, thus, derive that

_ ¥l

E(| Wn(s, x)|?) = =

(42)

At a given scale s, the wavelet transform Wn(s, x) is a
random process in x. If we suppose that the white noise
n(x) is a Gaussian white noise, then Wn(s, x) is also a
Gaussian process. From this property, we prove in Appendix
D that at a scale s, the average density of wavelet transform
modulus maxima is

(Bl

I 1o
o= E(zw“)n ) 43)

¥l

where v (x) and y®(x) are, respectively, the first and
second derivatives of ¥(x). The average density of modulus
maxima is thus inversely proportional to the scale s. The
realization of a white noise is a distribution which is almost
everywhere singular. One can prove that such a realization is
a distribution which is uniformly Lipschitz — 3 — ¢, for any
€ > 0. Fig. 10(a) was obtained by adding a Gaussian white
noise to the signal in Fig. 8(a), and the SNR is 5.4 db. Fig.
10(b) shows its dyadic wavelet transform computed over four
scales. The bottom graph is the remaining low-frequencies
Sf(2%, x), at scales larger than 24,

Let us suppose that the original signal has singularities,
whose Lipschitz regularity are positive. This is the case of
the signal in Fig. 8(a). In the left part, the worst singularities
are discontinuities which are Lipschitz 0. The right part in
the realization of a Brownian process, which is uniformly
Lipschitz 3 — ¢, for any e > 0. Since the noise creates
singularities whose Lipschitz regularity is negative, we can
discriminate the modulus maxima created by the white noise
from the one produced by the signal, by looking at the
evolution of their amplitude across scales. If the modulus
maxima have an amplitude which increase strongly when the
scale decreases, it indicates that the corresponding singulari-
ties have negative Lipschitz exponents. These maxima are
mostly dominated by the white noise and are thus removed.
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Fig. 10. (a) Signal of Fig. 8(a) to which we added a Gaussian white noise.
SNR is 5.4 db. (b) Wavelet transform computed up to the scale 2%, (c)
Modulus maxima of the wavelet transform.

| B

At the locations where the signal has singularities with posi-
tive Lipschitz exponents, the noises adds singularities with
negative Lipschitz exponents. Mathematically, the sum is a
signal whose singularities have negative Lipschitz exponents.
However, if the signal has localized singularities of larger
amplitude than the noise, at large scales the modulus maxima
created by the signal can be discriminated from the one
produced by the noise fluctuations, and their amplitude in-
crease only slightly when the scale decreases (see Fig. 10(c)).
At the finest scale 2', when the SNR is too small, the signal
is dominated by the noise and it is extremely difficult to
recover any information from wavelet transform modulus
maxima (see Fig. 10(c)).

In order to evaluate the behavior of the wavelet maxima
across scales, we need to make a correspondence between the
maxima that appear at different scales 2/. We say that a
maxima at a scale 2/ propagates to another maxima at the
coarser scale 2/*! if both maxima belong to the same
maxima line in the scale space (s, x). Equation (43) proves
that for a white noise, on average, the number of maxima
decreases by a factor 2 when the scale increases by 2. Half of
the maxima do not propagate from the scale 2/ to the scale
27*!. In order to find which maxima propagate to the next
scale, one should compute the wavelet transform on a dense
sequence of scales. However, with a simple ad hoc algo-
rithm, one can still try to find which maxima propagate to the
next scale, by looking at their value and position with respect

to other maxima at the next scale. We suppose that a modulus
maximum propagates from a scale 2/ to a coarser scale 271,
if it has a large amplitude and its position is close to a
maximum at the scale 2/*' having the same sign. Such an
ad hoc algorithm is not exact but saves computations since
we do not need to compute the wavelet transform at any other
scale.

The denoising algorithm removes all maxima whose ampli-
tude increase on average when the scale decreases, or which
do not propagate to larger scales. These are the modulus
maxima that are mostly influenced by the noise fluctuations.
Since the noise dominates the signal at the finest scale 2', this
computation can only be done up to the scale 22. If we
remove all modulus maxima at the scale 2!, we restore a
blurred signal. Instead, we create a maximum at the scale 2'
at any abscissa where there exists a maximum at the scale 2°.
To compute the amplitude of this new maximum, we estimate
the Lipschitz regularity of the corresponding singularity by
computing the best Lipschitz exponent « that matches the
decay of the modulus maxima at scales larger than 22, at the
corresponding location. We then impose that the ratio of the
maxima amplitude at the scales 2% and 2! is equal to 2%, in
order to keep the same amplitude decay up to the finest scale.
Wherever the signal has no modulus maximum at the scale
2%, we do not create a modulus maximum at the scale 2' and
thus restore a smooth signal. At the maxima locations, we
restore a singularity which is Lipschitz «. This nonlinear
interpolation algorithm recovers an approximation of the
original signal singularities. Fig. 11(a) shows the wavelet
transform modulus maxima that are selected by the denoising
algorithm. Most of the modulus maxima of the Brownian
motion part are not selected because they are completely
dominated by the noise. The position and amplitude of the
modulus maxima that have been selected are mostly influ-
enced by the original signal sharp variations, but are also
affected by the white noise at the corresponding locations. At
scales larger than 2*, the signal dominates the noise. Hence,
we compute the wavelet transform up to the scale 24, and
keep intact the noise within the low-frequency signal
Sf(2%, x).

After the maxima selection, we reconstruct a ‘‘denoised’’
signal with the alternative projection algorithm described in
Section 6. The function shown in Fig. 11(b) is obtained with
20 alternative projections. The SNR of the noisy signal was
5.4 db, and after denoising the SNR is 11.6 db. We restore a
signal with sharp singularities but many original details have
disappeared because they were dominated by the noise. The
restored signal singularities are also distorted because of the
influence of the white noise on the positions and values of the
modulus maxima that are selected. Table I gives the evolu-
tion of the SNR of the denoised signal, when the amount of
white noise added to the signal of Fig. 8(a) is modified. The
gain is of the order of 7 db at low SNR. When the SNR
increases, the gain decreases because this technique is not
able to recover the Brownian texture in the right part of the
signal. Indeed, at the scale 2! and 22, we select the modulus
maxima that propagate at least up to the scale 23, and this is
not the case for all modulus maxima created by this texture.
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Fig. 11. (a) Modulus maxima kept by the denoising algorithm. (b) Signal
reconstructed from the modulus maxima shown in (a). SNR is 11.6 db.
Quality of the denoising can be appreciated by comparing this graph with the
graphs in (c) and (d). (c) Original signal. (d) Noisy signal.

TABLE 1
Noisy SNR Denoised SNR Gain
9.0 13.9 4.9
6.0 12.1 : 6.1
3.0 10.2 7.2
0.0 6.9 6.9
-3.0 4.6 7.6

The first column gives the SNR after adding a Gaussian white noise to the
signal in Fig. 8(a). The second column is the SNR of the signal after the
noise removal. The third column gives difference between the two previous
values.

This simple algorithm shows the feasibility to discriminate a
signal from its noise, with an analysis of the modulus max-
ima behavior across scales. Better strategies for selecting the
maxima can certainly be developed depending upon the appli-
cations. The denoising procedure does not require that the
noise is white but only that its singularities have Lipschitz
exponents that can be differentiated from the signal singulari-
ties.
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VIII. WAVELET TRANSFORM OF IMAGES

The edges of the different structures that appear in an
image are often the most important features for pattern
recognition. This is well illustrated by our visual ability to
recognize an object from a drawing that only outlines edges.
Edge points are often located where the image intensity has
sharp transitions. Hence, in computer vision, a large class of
edge detectors look for points where the gradient of the
image intensity has a modulus which is locally maximum.
Canny’s [17] edge detector is a multiscale version of this
approach. This extension of the wavelet maxima representa-
tion in two-dimensions, is mostly inspired by Canny’s multi-
scale edge detector. Since we want to characterize sharp
transitions of the signal itself, we choose wavelets with only
one vanishing moment.

We call two-dimensional smoothing function, any function
whose double integral is nonzero. We define two wavelets
that are, respectively, the partial derivatives along x and y
of a two-dimensional smoothing function §(x, y):

30(x, y)
dx

_ a8 (x, y)

vi(x,y) = 5y

and ¢*(x, y)

(44)

Let y!(x, ») = (1/9)*¢'(x/s, y/s) and ¢X(x, y) =
(1/5)*y*(x /s, y/s). For any function f(x, y)eL*(R?),
the wavelet transform defined with respect to ¥'(x, ») and
¥2(x, y) has two components:

W'f(s, x,y) =f*¢;(x,y) and
W3f(s,x,y) =f*¥i(x.p).

Similarly to (21), one can easily prove that

(Wlf(s’ X,y)) %(f*os)(x’y)

W2f(s, x,¥) L
X \ay(f 8,)(x, »)

-0 (xy).  (49)
Hence, the two components of the wavelet transform are
proportional to the coordinates of the gradient vector of
f(x, y) smoothed by 8,x, y). Canny [7] defines the edge
points of f(x, y) at the scale s, as the points where the
modulus of the gradient vector of f *8(x, y) is maximum
in the direction where the gradient vector points too. The
orientation of the gradient vector indicates the direction
where partial derivative of f(x, y) has an absolute value
which is maximum. It is the direction where f(x, y) has the
sharpest variation. Edge points are inflection points of the
surface f * 6 (x, y). We use the same approach to define the
wavelet transform modulus maxima. Before studying in more
details these modulus maxima, let us briefly review the
properties of a two-dimensional wavelet transform.
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In two dimensions, the scale space is a three dimensional
space (s, x, »), and it is crucial to keep as few scales as
possible in order to limit the computations as well as the
memory requirements. We, thus, define a two-dimensional
dyadic wavelet transform, where the scale s varies only
along the dyadic sequence (2/) jez- We call two-dimensional
dyadic wavelet transform of f(x, y), the set of functions

(Wlf(zj’ X, y)’sz(2J9 X, y))jeZ' (46)

Let ¢ (wy, w,) and \I/ (w,, w,) be the Fourier transform
of Yi(x, ) and v3A(x, ). The Fourier transform of
W'f(2/, x, ) and W2f(2/, x, y) is respectively given by

W2/, o, ,) = for 0,0 (270,,270,), (47)
and
sz(Zj, w,, wy) =f(wx, wy)¢2(2ij,2jwy).

A dyadic wavelet transform is a complete and stable repre-
sentation of f(x, y), if and only if the two- dimensional
Fourier plane is covered by the dyadic dilations of !(w o W)
and 1[/ (w,, w,). This means that there exists two smctly
positive constants 4 and B such that

(48)

V(wx, u)y) eR?,

+oo
A= Y ([\I:I(ijX,ijy)|2+|¢2(2ij,2jwy)|2)
j=—o

< B.

In two-dimensions, a dyadic wavelet transform is also
overcomplete. Any sequence of two dimensional functions
(g}(x, ), gf(x, Y))jez is not a priori the dyadic wavelet
transform of some two-dimensional function f(x, y). In
order to be a dyadic wavelet transform, such a sequence must
satisfy reproducing kernel equations similar to (40) [18].

In two dimensions, Lipschitz exponents are defined with a
simple extension of Definition 1. Let 1 = « = 0. A function
Sf(x, y) is said to be Lipschitz « in the neighborhood of
(X9,¥0), if and only if there exists 4, > 0 and k, > 0 as
well as a A > 0 such that for any 7 < hy and k < k,

| (%o + k. yo + k) = f(x0,75)| < A(H? + k2)*2.
(49)

If there exists a constant A such that (49) is satisfied for any
pair of points (x,, ¥,) and (x, + A, y, + k) within an open
set of R?, the function S(x, y) is uniformly Lipschitz o
over this open set. Theorems 1 and 2, that characterize
Lipschitz exponents from the asymptotic decay across scales
of the wavelet transform, remain valid in two dimensions.
The local Lipschitz regularity of a function f(x, y) is
estimated from the evolution across scales of both
|W'fQ2/, x, y)| and | W22/, x, ¥)|. The value of each
of these components is bounded by

Mf(27, x, y)
= VIW' (27, x, y)|?

+ | W2f(27, x, )%, (50)

The function Mf(2/, x, y) is called the modulus of the
wavelet transform at the scale 2/. For wavelets defined by
(44), equation (45) proves that Mf(2/, x, Y) is proportional
to the modulus of the gradient vector V(f *6,,)(x, y).
Theorem 1 is extended as follows. We suppose that the
wavelets ¥'(x, ¥) and y*(x, ») are continuously differen-
tiable and have a compact support.

Theorem 6. Let f(x, y)eL*(R* and 0 < « < 1. For
any € > 0, f(x, y) is uniformly Lipschitz o over la + €, b
—€[xX]c + €, d— ¢, if and only if for any e > O there
exists a constant A, such that for (x, y)ela+e, b —
e[X]c + €, d — €[ and any scale 24

| Mf(27, x, )| < 4,(29)". (51)
The proof of this theorem is a simple extension of the
proof of Theorem 1. Equation (51) yields

log, (| Mf(27, x, »)|) < aj + log, (A,).

Theorem 6 proves that uniform Lipschitz exponents can be
measured from the slope of the decay of log, (| Mf(2,
x, ¥)|), when the scale 2/ tends to 0. Like in one dimension,
integer Lipschitz exponents have a particular behavior. For
o =0and o = 1, (51) is a necessary condition which is not
sufficient. The two-dimensional extension of Theorem 2 is
similar and is left to the reader.

To recover the two components W'f(2/ x, y) and
W22/, x, y) from the modulus Mf(2/, x, y), we also
need to compute the angle

W2f(27, x, y)
wif(2/, x, y)

) . (52)

Af(2/, x, y) = argtan (

Equation (45) proves  that Af(2 J, x, y) is the angle between
the gradient vector V(f #60,,)(x, y) and the horizontal. It
indicates locally the direction where the signal has the sharpest
variation. This orientation component is the main difference
between one and two-dimensional wavelet transforms. Fast
algorithms are described in [18] to compute the two-dimen-
sional dyadic wavelet transform of an image. The first two
rows of Fig. 12 shows the dyadic wavelet transform of the
image of house. We can recognize the effect of the partial
derivative along x and y in each component of the wavelet
transform. The modulus and angle images are shown in the
third and fourth rows of Fig. 12. The angles indicate the
local orientation of edges.

IX. MobuLus MaxiMA OF AN IMAGE WAVELET TRANSFORM

Like in a Canny edge detection, we detect the points where
the modulus of V(f *6,,)(x, y) is locally maximum in the
direction where the gradient vector points too. At each scale
2/, the modulus maxima of the wavelet transform are
thus defined as points (x, y) where the modulus image
MfQ2/, x, y) is locally maximum, along the gradient direc-
tion given by Af(27, x, y). These modulus maxima are
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Fig. 12. Original image is at the begining of the 3rd row (9). Low-frequencies below the scale 2 are carried by the image Sf(2%,
X, ») that is shown in (14). First row (1-4) gives the images (W'f@R/, x, YD1 < j=4, and the scale increases from left to right.
Second row (5-8) displays (W2f(27, x, y)), j<a- Black, grey, and white pixels indicate, respectively, negative, zero and
positive sample values. Third row (10-13) displays the modulus images (Mf (27, x, »)), < j=4- Black pixels indicate zero values
and white ones correspond to the highest values. Fourth row (15-18) gives the angle images (Af(27, x, y)), < j<a4- Angle values
range from O (black) to 2« (white). Fifth row (19-22) displays in black the position of the points that are local maxima of Mf(27,
X, ), in the direction given by the angle images Af(2/, x, y). Sixth row (23-26) shows the modulus maxima, where the modulus
value Mf(2/, x, y) is larger than a given threshold

635
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inflection points of f * 0,/(x, ¥). We record the position of
each modulus maximum and the values of Mf@2/, x, y) and
AfQ7, x, y) at the corresponding location. The fifth row of
Fig. 12 shows the position of the modulus maxima at differ-
ent scales. At fines scales, there are many modulus maxima
created by the image noise and the light textures. The last
row gives the positions of the modulus maxima, where the
values of Mf(27, x, y) is larger than a given threshold. The
modulus maxima created by the light noise and textures have
disappeared and only the important edges remain.

Let us study the inverse problem that consists in recon-
structing images from the local maxima of their wavelet
transform modulus. Meyer proved [23] that these modulus
maxima do not characterize uniquely images. However, it is
possible to reconstruct a close approximation of an image,
with an extension of the one-dimensional reconstruction al-
gorithm, as described in [18]. Let f(x, y)eL2(R?) and
(Wiif(x, »), W27, x, y)) ez be its dyadic wavelet
transform. For each scale 2/, we detect the local maxima of
MFQY, x, ») along the direction given by the angle image
AfQ27, x, »). We record the positions of modulus maxima
(X} 4> Vj,u)uer» as well as the values Mf(2/, Xj o Vi
and AfQ27, x; , Y; ) at the maxima locations. In two
dimensions, the number of modulus maxima is not countable
anymore. From Mf(2/, x; ., y; ) and Af(2/, Xiw Vi
we can compute W 'f(27 X; us ¥, ) and
W22/, X; u»Y; ) and vice-versa. The inverse problem
consists in finding the set of functions h(x, y) that satisfy the
following two constraints.

a) At each scale 2/, the modulus maxima obtained from
W'h(2/, x, y) and W2h(2/, x, y), are located at the
abscissa ((x; w Vi u)uer-

b) At each scale 2/ and for each modulus maxima location
(Xj 0 Vi W]‘h(2f, Xjw Vi) = W@, Xj us

Vi) and W2hQJ, x, .y ) = W@/, X e Vi)

Like in one dimension, we replace the maxima condition a)

by the minimization of a Sobolev norm, which is defined by

[((W'h(27, x, y), WZ2h(27, x, 7)) ez

= 2

[W'n(2/, x, )17+ | wEn(2/, x, ¥)|I?
Jj=-—o

s |

In conjunction with the constraint b), the minimization of this
norm creates a wavelet transform whose horizontal and verti-
cal components reach local maximum values in the neighbor-
hood of the points (x ju» Yj.w)» and which have as few
spurious oscillations as possible. We use a partial derivative
along x for W'h(2/, x, y), because it oscillates mostly
along the x direction, since it is computed by smoothing the
signal and making a partial derivative along x (see Fig. 12).

OW'h(2/, x, y) |I° [ aW2h(27, x, )
ax + ay

The transpose result is valid for W2h(Q2/, x, y). By impos-
ing a simple condition on the Fourier transform of the two
wavelets ¥'(x, y) and ¥>(x, ), one can prove [18] that
for any function h(x, y)e L*(R%), |(W'h2’, x, y),
W2h2’, x, y)) jez | is finite. We can compute the wavelet
transform that satisfies the condition b) and minimizes the
norm | - | with an alternative projection algorithm.

Let K the space of all sequences of function (gj‘-(x, »),
g7(X, ),z such that

1(g}(x, »), &} (%, 7)) ez | < +00.

The spaces V' of all dyadic wavelet transforms of functions in
L*(R?) is included in K. We define the set T of all
sequences of functions (g}(x, ), gf(x, Y))jez € K such that

and for any index j and all maxima positions ( x Gous Viw)

W27, x; . Y;..) and

J
W27, %500 ¥.4)-

The set T is an affine space which is closed with respect to
the norm | - |. The wavelet transforms that satisfy the
condition b) are the sequences of functions that belong to

A=VQT.

To reconstruct the element of I'"} ¥ that minimizes the norm
| - |, we alternate orthogonal projections on T' and V. The
projectors Pr. on T and P, on V are defined in [18]. For a
discrete image of N? pixels, the implementations of P, and
Py require O(N? log, (N)) operations. If we begin the
iteration from the zero element of K, the alternative projec-
tions converge strongly to the element of A whose norm
| + | is minimum (see Fig. 9). We then reconstruct an image
by applying the inverse wavelet transform operator.

This algorithm does not reconstruct the original wavelet
transform but an approximation. Numerical experiments indi-
cate that we always recover a close approximation of the
original wavelet transform. After less than ten iterations the
algorithm reconstructs an image which has no visual differ-
ences with the original one. Fig. 13 shows the reconstruction
of the house image from the wavelet transform modulus
maxima. The signal-to-noise ratio of this reconstruction is 31
db. Most of the errors are concentrated at high frequencies
and are too small to be visible. Like in one dimension, it
seems that the modulus maxima representation is “‘complete”’
modulo small errors that can be neglected since they are
below our visual sensitivity. There is however no mathemati-

gj!(xj,u’ yj,u) =

g/?(xj,u’ yj.u) =

- cal proof that these errors remain small for any reconstructed

image. The stability of the reconstruction algorithm enables
us to process the modulus maxima before the reconstruction.
The bottom left image of Fig. 13 is reconstructed from the
threshold modulus maxima shown in the last row of Fig. 12.
Since we suppressed the modulus maxima corresponding to
noises and textures, these have disappeared in the recon-
structed image, but the image remains sharp and the other
strong singularities are not degraded. The next section de-
scribes a more sophisticated technique to remove noises from
images.
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Fig. 13. Top left: original image. Top right: image reconstructed from the
wavelet transform modulus maxima shown in the fifth row of Fig. 12, with
10 iterations. SNR is 31 db. Bottom left: image reconstructed with 10
iterations, from the thresholded wavelet transform modulus maxima shown
in the last row of Fig. 12.

X. IMAGE DENOISING BASED ON WAVELET MAXIMA

Like in one dimension, we separate the image information
from the noise by trying to discriminate the image singulari-
ties from the noise singularities. The Lipschitz exponents of

the image singularities are measured from the evolution of-

the wavelet transform maxima across scales. When the image
does not include irregular textures, the worth singularities are
discontinuities. All singularities have positive Lipschitz expo-
nents, so the wavelet transform modulus maxima do not
increase when the scale decreases. On the contrary, the
realization of a white noise random field is a distribution
which is almost everywhere singular, with negative Lipschitz
exponents. Let n(x, y) be a wide-sense stationary, white
noise random field of variance o2. Let Mn(27, x, y) be the
modulus of the wavelet transform of n(x, y). With a similar
proof than for (42), one can show that

2 12 292
E(| M2, %, ) ) = 29 uzj+ 1) )
On average, the square of the wavelet transform modulus
increases by a factor 2 when the scale decreases by a factor
2. The modulus maxima created by the noise have a different
behavior than the modulus maxima that are mainly affected
by a signal singularity.
The noise can also be discriminated by using some
a priori knowledge on the spatial coherence of the image
components. For a large class of images, the border of
important structures are regular curves in the image plane
(¥, ¥). Along these curves, the image intensity is singular in
one direction but varies smoothly in the perpendicular direc-
tion. For example, the contours of the house elements, in

Fig. 12, are mostly smooth curves. We reorganize the max-
ima representation into chains of modulus maxima, to re-
cover these edge curves. At any point of a smooth edge
curve, the direction of the gradient vector of f(x,y) is
perpendicular to the tangent of the curve in the image plane
(x, ¥). To chain a modulus maximum with its neighbors, we
use this orientation information at each scale 2/, as well as
the fact that the modulus of the gradient vector varies
smoothly along such a curve [29]. A white noise rather
creates randomly distributed edge points in the image plane.
It does not produce smooth singular curves. We can, there-
fore, also discriminate the modulus maxima created by the
image structures, by analyzing the geometrical properties of
the edge curves that they produce in the image plane.

At the top left of Fig. 14 is the original house image and at
the right is an image where we added a Gaussian white noise,
with an SNR of 2.9 db. The first column of Fig. 15 gives the
modulus maxima of this noisy image, between the scales 2!
and 2*. At the finest scale, the noise dominates the signal and
the geometrical coherence of the house edges can not be
discriminated anymore. The white noise has essentially de-
stroyed all the image information at this scale. This is
coherent with the fact that when looking at the noisy image,
one has the impression that the noise is a uniform texture that
blurs our visualization of the image. At the next scale, we
can distinguish the contours of the house among all the
modulus maxima created by the noise, which means that the
image information is not completely dominated by the noise.
At the scale 2°, the image structures clearly stand-out of the
noise, and the values of the modulus maxima at the borders
of most image components are much less affected by the
noise.

In order to estimate the evolution of the modulus maxima
amplitude across scales, we need to relate at different scales
27 and 2/*!, the modulus maxima that belong to the same
maxima line in the scale-space cube (s, x, y). We relate the
modulus maxima across scales with the same ad hoc algo-
rithm as in one dimension. We consider that at a scale 27,
only the maxima of largest amplitude propagate to the next
scale. Any such modulus maximum propagates to a modulus
maximum at the scale 2/*', which has a close position in the
image plane and a similar angle value Af2/*!, x, y). The
denoising algorithm removes all modulus maxima that do not
propagate to coarser scales or whose modulus values in-
crease, on average, when the scale decreases. Among the
remaining maxima, we keep the modulus maxima that belong
to maxima chains that are longer than a given threshold. This
simple geometrical criteria selects modulus maxima that are
part of coherent geometrical structures, which most probably
belong to the original image rather than the noise. The
maxima removal is performed at scales larger or equal to 22,
because at the finest scale 2', the noise dominates the signal.
The position, modulus and angle values of the maxima that
are kept, are mostly influenced by the original image singu-
larities but also depend upon the noise values in the corre-
sponding neighborhoods. The geometrical coherence hypoth-
esis, that we used at the selection stage, supposes that
important singularities belong to regular curves, and that the
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Fig. 14. Top left: original image. Top right: image contaminated by a
Gaussian white noise. SNR is 2.9 db. Lower left: image reconstructed from
the regularized maxima shown in the second column of Fig. 15. SNR is 14.3
db. Lower right: image reconstructed from the same modulus maxima, but
without regularization along the maxima curves. SNR is 14.2 db.

singularity type varies smoothly along these curves. Hence,
the irregular variations of the positions, angle and modulus
values of the maxima along the remaining maxima chains,
are mostly due to the noise influence. We remove part of the
noise by applying low-pass filters on these values, along each
maxima chain. This regularization does not affect the sharp-
ness of the image singularities but it smooths their evolution
in the image plane. The second column of Fig. 15 shows the
maxima curve obtained after this regularization. At the finest
scale 2!, if we remove all modulus maxima, we restore a
blurred image. Instead, like in one-dimension, we create a
modulus maximum at the scale 2!, at the abscissa where
there exists a modulus maximum at the scale 22. The edge
map at the scales 2' and 22 are thus the same. The angle
value of a maximum created at the scale 21 s copied from
the angle value of the corresponding maximum at the scale
22, Its modulus value is computed by estimating the Lipschitz
regularity « from the decay of the modulus maxima at scales
larger than 22, at the same location. The ratio of the modulus
values at the scales 2 and 2! is set to 2%, in order to keep
the same modulus decay at the finest scale. Like in one
dimension, at scales larger than 24, the SNR is large enough
so that we do not need to process the low-frequency image
Sf(2%, x, y). The lower left of Fig. 14 is the image recon-
structed from the cleaned modulus maxima representation.
The denoising algorithm suppressed a large portion of ‘the
noise but also all the image textures. The SNR of this image
is 14.3 db. The lower right of Fig. 14 is the image obtained if
we do not regularize the angle and modulus values along the
maxima chains, at the different scales. The SNR is 14.2 db
which is approximately equal to the SNR with regularization.

Fig. 15. First column gives the position of the wavelet transform modulus
maxima of the noisy image shown in Fig. 14. Second column displays the
position of the modulus maxima selected by the denoising algorithm, after
regularization along the maxima chains.

However, the edges are more irregular and qualitatively the
image is of lower visual quality. The regularization improve-
ment is mostly qualitative because after smoothing, the edge
locations might be slightly shifted so the SNR is not much
improved. Table II gives the evolution of the SNR of the
denoised images, when we vary the amount of Gaussian
white noise added to the original image. At low SNR, the
gain is over 10 db. Like in one dimension, this gain de-
creases when the SNR increases because we can not recover
the original image textures. Indeed, at the scales 2! and 22,
we only select the modulus maxima that propagate at least up
to the scale 2°. The removal of textures has relatively less
impact on the error at low SNR. Fig. 16 gives another
example of image denoising. The SNR of the noisy image is
5.5 db. We applied the same denoising procedure, with the
same threshold parameters as for Fig. 15. The SNR of the
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Fig. 16. Top left: original image. Top right: image contaminated by a
Gaussian white noise. SNR is 5.5 db. Lower left: image reconstructed from
the modulus maxima recovered by the denoising algorithm. SNR is 13.7 db.

TABLE 11
Noisy SNR House Denoised SNR Pepper Deﬁoised SNR
9.0 16.4 14.6
6.0 15.6 13.7
3.0 14.2 13.5
0.0 12.2 11.0
-3.0 10.5 9.2

The first column gives the SNR of the noisy house image as well as the
noisy peppers image. The second column gives the SNR of the resulting
house image after denoising. The third column gives the SNR of the peppers
image after denoising.

denoised image with regularization is 13.7 db. We reproduce
an image where all textures have disappeared. Table II gives
also the evolution of the SNR when changing the amount of
white noise added to the peppers image. Let us emphasize
that this denoising algorithm is only a preliminary study. A
more precise statistical model needs to be developed in order
to restore textures.

XI. CONCLUSION

We proved that the wavelet transform modulus maxima
detect all the singularities of a function and we described
strategies to measure their Lipschitz regularity. This mathe-
matical study provides algorithms for characterizing singular-
ities of irregular signals such as the multifractal structures
observed in physics [2]. Oscillations can also be measured
from the general maxima of the wavelet transform, with a
technique similar to the approach of Escudie and Torresani
[10].

It is possible to reconstruct a close approximation of one
and two-dimensional signals from the modulus maxima of
their wavelet transform. For images, the errors introduced by
the reconstruction are not visible. We studied an application
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to signal denoising. The prior information on the regularity
of a signal, versus the local properties of the noise, are
expressed through constraints on the behavior of the wavelet
transform modulus maxima. The representation of images
with multiscale edges has also applications in pattern recogni-
tion as well as compact image coding. An algorithm that
selects the important edges for building a compact image
code is described in [18].
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APPENDIX A
PrOOF OF THEOREM 3

We prove Theorem 3 by proving by induction the following
proposition.

Proposition (P,): Let y(x) be a wavelet that can be written
Y(x) = d"¢(x)/dx, where ¢(x) is a continuous function of com-
pact support. Let f(x) be a function and we suppose that for any
e > 0, there exists a constant K, such that at all scales s

b+e
/ | f*6,(x)|dx <K, (54)

Ya—e
If Wf(s, x) has no maxima for x€]a, b[ and s < s,, then for any
€ > 0, there exists a constant A, such that for any x€]a + e, b

— €l and 5 < s,
| Wf(s, x)| = A, ,s".

(55)

If we modify f(x) by multiplying it by the indicator function of
[a, b], we do not modify its regularity on any interval [@ + €, b —
e]. We shall thus suppose that f(x) = 0 for x¢[a, b]. Let us first
prove that (54) is satisfied. Since f(x)e L'([a, b]), and f(x) =0
for x¢é[a, b],

Jlreotacs [N ax[ s

With a change of variable in the integral, we obtain

[ e |

+ o0

[¢(x)]|dx.

Hence, [’ | f *é,(x)|dx is bounded by a constant independent of
the scale s, as in (54). In order to prove the proposition (P,) for
n = 1, we introduce a first lemma.

Lemma 1: Let [c, d] be an interval of R. Let K be a positive
constant. Let g(x) be a function which satisfies

/d|g(x)|dx<K, (56)

and such that | dg(x)/dx| has no local maxima on [c, d]. Let
B > 0 with 8 < (d — c)/4. There exists two constants Bg and Cj
such that

vxe[c+B,d- 8], lg(x)| < By (57)
and
d,
vxe[c+B,d- 8], l%)—‘<cg. (58)

The constants B and C; only depend upon 8, d — ¢ and K.
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Proof: We denote g'(x) = dg(x)/dx. Although quite simple,

this proof is long because it includes many subcases. We prove (57)
and then (58). In the following, we only consider the values of g(x)
over the interval [c, d]. We first have two cases. Since | g’(x)| has
no local maximum, either g’(x) has a constant sign or g’(x) is
monotonic.

1) If we suppose that g’(x) has a constant sign then g(x) is
monotonic. Equation (56) yields

c+B d
/ |g(x)|dx <K and / fg(x)|dx=K. (59)

c d-§

Since, g(x) is monotonic on [c, d], these integral constraints imply
that

K
fe(c+B8)| SE and |g(d-8)| =<

w|

(60)

To prove (60), one must distinguish several cases. For example, if
g'(x) is positive and g(x) remains positive, the second integral of
(59) implies that | g(d — 8)| < K /B and since | g(c + B)| <
| g(d — B)], (60) is valid. The other cases are treated similarly.
Since g(x) is monotonic, | g(x)| < max(|g(c + B)|, | g(d -
B)1), hence, (57) is satisfied for By= K/B.

2) Let us suppose that g’(x) is monotonic. For example, suppose
it decreases so that g(x) is concave. The following proof would be
the same if g(x) was convex.

@) We first suppose that g(x) does not change sign on Jc +
B, d — 8l
1) If g(x) is negative, since it is concave |g(x)| <
max (| g(c + B)|, | g(d — B)|), for xelc+ B.d — BL.
Since g’(x) is monotonically decreasing, either it is positive
at all points of [c, c + B] or it is negative at all points of
[c + B, d]. We know that g(x) remains negative and

c+B
/ lg(x)|dx <K,

d
/ [g(x)|dx =K.

c c+B
We can, thus, derive that | g(c + B)| < max(K /B, K /d
— ¢ — ). Since g < (b — c)/4, we obtain | g(c+ B)]
< K /B. Similarly we can prove that | g(d ~ 8)| < K /8.
Hence, | g(x)| = K/B.
If g(x) remains positive, there exists eelc + 8, d — 8[
such that g(x) < g(e), for all xe]c + B, d — B[. Since
g(x) is concave, one can derive that

2

~

/dfﬁg(x)dxz g(e)(d—;c_zﬂ'

c+B

Since B8 < (d ~ ¢)/4, we obtain g(e) < 4K/d — c.
Hence, | g(x)| =4K/d - c.

b) Let us now suppose that g(x) changes of sign over [¢ +
B, d — B]. Either both g(c + B) and g(d — B) are negative or
only one of them is negative. We only consider the case where both
are negative. The other case can be treated with the same approach.
Since g(x) is concave, it has two zero-crossings at the locations 2o
and z, 25 < z,. For xelc + 83, z5[U 1z, d — B[, g(x) is nega-
tiveand | g(x)| < max(|g(c + B)|, | g(d — B8 ]). Over [c, ¢ +
Bland [d — B, d] g(x) is monotonic. With the same argument than
in 1), we prove that

and

le(c+B8)| =

@ | X

le(d-8)| =

@ | =
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For xe[z4, z;], g(x) = 0 and there exists e €]z, z,[ such that
g(x) < g(e) for xe]z,, z,[. We must prove that g(e) is bounded.
Since g(x) is concave over [z,, Z,], one can derive that

k=

Z

“(yann K5

(61)
Let us suppose that g(e) = K /B. Let /(x) be the affine function
which crosses O at the abscissa z,, and equal to g(e) at the abscissa
e. Before the abscissa z,, /(x) is negative and /(x) > g(x) be-
cause g(x) is concave. Hence, |/(c + B)| = |g(c+ B)| = K/B.
We know that

[(c+8)| z2-c—8
OIS ‘

Since |I(c + B)| = K/B and I(e) = g(e) = K /2, we obtain

e— 2,

e—2zp=22z5—-c¢— B.
With the same argument applied between on the second zero-cross-
ing z, and d — @8, we can also prove that

z,—e=d-8-z,.
Adding these two equations yields

d—c-28 d-c
-z, = = .
T %= 4

If we insert this equation into (61), we obtain

8K
d-c’

Hence, g(e) = max (8K /d — ¢, K /B). This last case finishes the
proof of (57) of Lemma 1, for a constant B such that By =
max 8K /d — ¢, K/B).

Let us now prove that g’(x) is bounded. Since | g’(x)| has no
maxima on the interval [c + 8/2,d — 3/2], we know that
| g(x)] <max(|g'(c+B)]|,|g(d-pB)|) for xe[c+ B, d -
B]. Let us suppose for example that | g’(c + 8)| = | g'(d — B)|.
Then, | g’(x)| is monotonically decreasing on [¢ + 8/2, ¢ + 8]
and g’(x) does not change sign over this interval. Hence,

gle) =

2 e+ B
leg'(c+B)] = —| g'(x)dx|
ﬁ c+B/2
2 4
= Elg(c+ B/2) —glc+8)| = 533/2.

Since | g'(x)| = max(|g'(c+B)|,|g(d - B)|) for xe[c+
B,d — B], we derive that | g’(x)| is bounded by a constant Cj
which only depend upon 8, b — ¢, and K.

End of proof of Lemma 1. O

Lemma 2: Let [c, d] be an interval of R. Let K be a positive
constant. Let g(x) be a function which satisfies

-d
/ lg(x)|dx < K.
c
and such that | d”>g(x)/dx?| has no local maxima on [c, d]. Let
B >0 with 8 < (d — ¢)/4. There exists a constant D that only
depends upon 3, d — ¢, and K, such that

(62)

a2
vxe[c+B,d- 8], I%‘<Dﬁ.
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The proof of this second lemma is mostly the same as for Lemma
1 and we leave it to the reader. Let us now prove that the
proposition (P,) is true for n = 1. Since ¥(x) = d¢(x)/dx, we
derive that

W (5. %) = s (148, (5).

Our induction hypothesis supposes that g(x) = f * ¢(x) satisfies
(56) of Lemma 1, for ¢ = @ + ¢/2 and d = b — ¢ /2. The result of
this lemma for 8 = ¢/2 and s < s, yields

| Wf(s, x)| <sC.p.

This concludes the proof of (55) for n = 1. The proof of (P,) for
n = 2 is based on Lemma 2. Since Y(x) = d’¢(x)/dx?, we derive
that

2

Wi (s, x) = 5122 (£+6)(3).

We can apply the result of Lemma 2 to g(x) = f * ¢ (x), with
B=¢€¢/2,c=a+e/2and d = b — /2. Equation (62) yields

| Wf(s, x)| <s*D, )

which finishes to proof of (P,) for n = 2.

Let us now prove that if (P,) is true, for n = 2, then (P, ) is
also true. Let y(x) be a wavelet with n + 1 vanishing moments
and f(x) a function that satisfies (61). The wavelet ¥(x) can be
written ¢ (x) = dx(x)/dx where the wavelet x(x) has n vanish-
ing moments. Let df(x)/dx be the derivative of f(x) in the sense
of distributions,

df
Wf(s, x) =s— *x,(x). 63
F(s, %) = 572 x(%) (63)
In order to apply our induction hypothesis (P,) to df(x)/dx with
respect to the wavelet x(x), we need to prove for any e > 0, there
exists a constant K, such that at all scales s

b—e¢ df
——*o,(x)
/a+e dX y
Since the wavelet y/( x) has more than two vanishing moments, the

proposition (P,), that we just proved, implies that for any € > 0, if
xela+e, b— ¢

dx<K,. (64)

| Wf(s, x)| = s*A,,.

From Theorem 1, we derive that f(x) is uniformly Lipschitz o on
the intervals Ja + ¢, b — €[, for any o < 2. Hence, (df(x))/(dx)
is uniformly bounded on any such interval. One can then easily
derive that (64) is satisfied. Let us now apply the induction hypothe-
sis (P,) to (df(x))/(dx) with respect to the wavelet x(x). There
exists a constant A, , such that for any xela + ¢, b — ¢ and
5§ < S,

af . ( ) <4 n
— x)| = s”.
’ XS e n
Equation (63) implies that
| Wf(s, x)| s A_,s"*".

This finishes the proof of (P, ).

By applying Theorem 1 on the statement (P,), we derive that the
function f(x) is Lipschitz « for any « < n. For o = n, Theorem
1 does not apply because it is an integer Lipschitz exponent.

Let us now prove that (55) implies that f(x) is Lipschitz n if the
wavelet ¥(x) can be written

d"e(x)
dx

v(x) = ; (65)

where 0(x) is a smoothing function. Let (d"f(x))/(dx") be the nth
derivative of f(x) in the sense of distributions. Similarly to (63),
(65) yields

n

a'f
Wf(s, x) =s" 0 %0,(x).
Equation (55) of the proposition (P,) implies that for any ¢ >0
there exists a constant A, , such that for any xe]a + ¢ b — ¢l
and s < 5,

0. (x)| <A, .

dx"

o

Since the integral of §(x) is nonzero, this equation implies that
(d"f(x))/(dx™) is a function that is bounded by A, , over the
interval )a + ¢, b — ¢[. Hence, f(x) is uniformly Lipschitz n over
the interval Ja + ¢, b — €.

ApPENDIX B
Proor oF THEOREM 4

We first derive from Theorem 3 that f(x) is Lipschitz n at all
points different than x,. Let x, €]a, x,[. For s <, | Wf(s, x)|
has maxima only in a cone pointing to x,. Hence, for ¢ > 0 such
that @ + e < x, — ¢, there exists s, such that for s <s,, and
xela+€/2, xo — €/2[, | Wf(s, x)| has no maxima. From Theo-
rem 3 we derive that f(x) is uniformly Lipschitz n in [@ + €, X,
— €]. From this result we easily derive that f(x) is uniformly
Lipschitz 7 in a neighborhood of any point x,; €]a, x,[. The same
proof is valid for x; €1x,, b[.

Let us now prove that the Lipschitz regularity at x,, is character-
ized by the decay of the wavelet transform modulus maxima. Let
x,€la, xy[ and x,€lxy, b[. We proved that f(x) is uniformly
Lipschitz n in the neighborhood of x, and x,. The necessary
condition of Theorem 1 is valid for integer Lipschitz exponents and
it implies that there exists s, such that for s < s,

| Wf(s, x,)| = A;s" and | Wf(s, x,)| < A,s™. (66)
For x€]x,, X,[ and s < s;, the value of | Wf(s, x)| is smaller or
equal to the maximum value among | Wf(s, x))|, | Wf(s, x5) |
and the wavelet transform modulus at all the local maxima that
occur at the same scale inside the cone pointing to x,. Theorem 4
supposes that all these modulus maxima have an amplitude smaller
than As®. Since o < n, we derive from (66) that there exists a
constant B such that if xe]jx, x,[ and s < 5,

| Wf(s, x)| < Bs“.

Since x,€1x,, x,[, Theorem 1 implies that f(x) is Lipschitz o
at x,.

APPENDIX C
PROOF OF THEOREM 5

In order to apply Theorem 2, we want to prove that there exists a
scale s, and e > 0 such that if s < s, and x€]x, — €, Xy + e[,

| Wf(s, x)| <= B(s" + | x— x,17). (67)
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We prove this by showing separately that there exists two constants
B, and B, such that
| Wf(s, x)| = B,s?,

(68)
when (s, x) is in the cone of influence of x, and

Wf(s, x) =B, x — x,|7, (69)
when (s, x) is below the cone of influence of Xy. Once equation
(67) is proved, Theorem 5 is a simple consequence of Theorem 2,
for o < 7. For a = v, we can not apply Theorem 2 because we are
missing the logarithmic term. Theorem 5 supposes that Wf(s, x)
has a constant sign in a neighborhood of x,, and we shall suppose
that it is positive. For 5§ < s, and | X(s) — x,| < Cs, we have
Wf(s, X(s)) < As™. (70)

We first prove (68) and then (69) for ¢ = (K — C /4)s, and s, =
(K — C/4K)s,.

The wavelet ¥(x) is the nth derivative of a positive function
0(x) of support equal to [~ K, K] and which is strictly positive on
]—- K, K. Hence,

(71)

where fP(x) is the nth derivative of f(x) in the sense of
distributions. The function 8(x) is a positive function with a strictly
positive integral. Since equation (71) is valid at all scales s < Sg, it
implies that f"(x) = 0 for x€]a, b (positive in the sense of
distributions). Equation (71) can be rewritten

Wr(s, x) =s"(f" %0,)(x

Wf(s, x) =s""! /_+m0(x—_£)f“”(u) du.

Let (s, x) be a point in the cone of influence of x,, | x — x| < Ks.
The support of 8(x — u/s) is included in [x, — 2Ks, x, + 2 Ks]
so

X —

Wf(s, x) =s"*‘/xxij:0( u)f("’(u) du. (72)

Let M = max xe[-k, x} 8(X). Since §(x) is continuous and strictly
positive over ] — K, K[, there exists A > 0 such that

-K-C K+cC
2 T2

Vxe[ ] 6(x) > \M.

Let " =4Ks/K — C, we know that | x, — X(s)| = Cs’. For
uelxy - 2Ks, xo + 2Ks], we derive that | X(s") — u/s'| = K
+ C/2 and, therefore,

vue[x, - 2Ks, xo + 2Ks],

G(X(s')—u

. )2)\M.
N

Since 0 = 6(x — u/s) < M, and f(x) = 0,
Xot+2Ks (x —
[
xo—2Ks §
/xu+2Ks (
)‘ 0—2Ks

- )f("’(u) du

- )f‘")( ) du

Equation (72) yields

Wf(s, x) < ”‘)\/+w(

= %Wf(s’, X(s7).

/

)f<">( ) du

(73)

We suppose that (70) holds so

W, X(5)) = A(s")” AGK)”
s, §)) = A(s') = ————¢
/( ) (K _ C)’Y
We, thus, derive from (73) that
w) B,s" ith B AUK) (74)
s, xX) < Bs?, tl = —.
f( ) 1 wi 1 )\(K — C)‘Y

Let us now prove that if (s, x) is below the cone of influence of x,,
Wf(s, x) = B,| x — xo| 7.

Wf(s, x) =s""! ./jmﬂ(u)f"”(u) du.

Let s, = | x — xo|/K. Since (x, s) is below the cone of influence
of x5, | X — xo| = Ks, s0 s < s,. The support of 8(x — u/s) is
thus, included in [x, — 2Ks,, x, + Ks,] so

Wf(s, x) = s”"/

Xo—2Ks,

Xo+2Ks, (X —
0(
s

“ )f‘"’(u) du. (75)

Let us now define s; = 4Ks, /K — C. With the same argument as
for (73), we can prove that

1
Wr(s, x) < S WF(s5. X(s3)).

(76)

Equation (70) implies

A4y
Wi(sy, X(s3)) = A(s3)" = ————=|x - x0]7. (77
M55 X(s2)) = A1) = gzl x = ml™ ()
By inserting (77) in (76), we obtain
Wf(s,x) <B Y ith B A4 (78)
s, X) < x—x|7, wit = ——
f 2| 0| 2 )\(K* C)y

One can verify that both (74) and (78) are valid for x e 1xo — €, xq
+ eland s < s with e = (K — C/4)sgand s, = (K — C/4K)s,.

APPENDIX D
WHITE NoisE WAVELET TRANSFORM

It is well known [25] that the average density of zero-crossings,
of a differentiable Gaussian process whose autocorrelation is R(7)
is

—_R®(0
— © , (79)
72R(0)
where R(7) is the nth derivative of R(7). If the process is twice
differentiable, the density of local extrema is equal to the density of
zero-crossings of the derivative of the process. The autocorrelation
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of the derivative is —R®(7). Hence, the average density of ex-

trema is ]
TR®(0) -
The autocorrelation of the Gaussian process Wn(s, x) is defined by

R(7) = E(Wn(s, x + 7)Wn(s, x))

= /ﬂ;m/¥1wE(n(u)n(V))

Y(x+ 17— u)(x - v) dudv.

(80)

Since n(x) is a white noise, E(n(u)n(»)) = ¢°8(u — v) and we
obtain

(81)

From this equation, we can prove that R®(©0) = (o2 ||y @|?)/(s")
and R®©0) = (o2|¥"|%)/(s*). From (80), we derive that the
average density of extrema of the process Wn(s, x) is

(R

sty )

R(7) = 02/_+°°®l[/5(7 + u)y (u) du.

(82)

Let m be the number of modulus maxima of a function, e the
number of local extrema and z the number of zero-crossings. One
can easily verify that

e
m=—+z.
2

Equations (79) and (81) prove that the average density of zero-cross-
ings of Wn(s, x) is (||yP|))/(s7| ¥ ). Hence, the average density
of modulus maxima of Wn(s, x) is equal to

@1 el )

1
= — |+ ——— 83
SW(ZHW”II vl (83)

REFERENCES

[11 F. Argoul, A. Arneodo, J. Elezgaray, and G. Grasseau, ‘‘Wavelet
analysis of fractal growth process,”” Proc. 4th EPS Liquid State
Conf., Arcachon, France, May 1988.

[21 A. Arneodo, E. Bacry, and J. F. Muzy, ‘‘Wavelet analysis of fractal
signals,”” preprint, Sept. 1991.

[3]1 A. Arneodo, G. Grasseau, and H. Holschneider, ‘“On the wavelet
transform of multifractals,”” in Wavelets, Combes ef al., Eds. New
York: Springer Verlag, 1988.

[4] E. Bacry, ‘“‘Transformation en ondelettes et Turbulence pleinement
developpee,”” Rapport de Magistere, Univ. Paris VII, 1989.

[5] E. Bacry, A. Arneodo, U. Frisch, Y. Gagne, and E. Hopfinger,
““Wavelet analysis of fully developed turbulence data and measure-
ment of scaling exponents,”” in Turbulence and Coherent Structure,
M. Lesieur and O. Metais, Eds. New York: Kluwer Academic
Publishers, to appear, 1990.

[6] J. Bony, ‘‘Propagation et interaction des singularites pour les solu-

(71
[8]

9

[10]

(11]

(12]

[13]

[14]

(15]

[16]

[17]

[18]

(19]

[20]
[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]
{30]

643

tions des equations au derivees paritelles non-lineaires,”” Proc. of the
Internations Congress of Mathematicians, Warszawa, Poland, 1983,
pp. 1133-1147.

J. Canny, ‘“A computational approach to edge detection,”” IEEE
Trans. Pattern Anal. Machine Intell., vol. 8, pp. 679-698, 1986.
L. Daubechies, ‘‘The wavelet transform, time-frequency localization
and signal analysis,”” IEEE Trans. Inform. Theory, vol. 36, pp.
961-1005, Sept. 1990.

N. Delprat, B. Escudie, P. Guillemain, R. Kronland-Martinet, Ph.
Tchamitchian, and B. Torresani, tech. rep. CPT-91/P.2512, Luminy,
Marseilles, France, Feb. 1991.

B. Escudie and B. Torresani, ‘‘ Wavelet representation and time-scaled
matched receiver for asymptotic signals,”” Proc. 5th. EUSIPCO
Conf., Barcelona, Spain, 1990, pp. 305-308.

G. Folland, Introduction to Partial Differential Equations, Mathe-
matical Notes. Princeton, NJ: Princeton Univ. Press, 1976.

A. Grossmann, ‘Wavelet transform and edge detection,”’ in Stochas-
tic Processes in Physics and Engineering, M. Hazewinkel, Ed.
Dodrecht: Reidel, 1986.

A. Grossmann and J. Morlet, ‘‘Decomposition of Hardy functions
into square integrable wavelets of constant shape,”” SIAM J. Math.,
vol. 15, pp. 723-736, 1984.

M. Holschneider, R. Kronland-Martinet, J. Morlet, and P.
Tchamitchian, ““A real-time algorithm for singal analysis with the
help of the wavelet transform,’” preprint from CPT, CNRS LUMINY,
Marseilles, 1988.

M. Holschneider and P. Tchamitchian, ‘‘Regularite locale de la
fonction non-differentiable de Riemann,”” in Les ondelettes en 1989,
Lecture notes in Mathematics, P. G. Lemarie, Ed. New York:
Springer-Verlag, 1989.

S. Jaffard, ‘‘Exposants de Holder en des points donnes et coefficients
d’ondelettes,”” Notes au Compte-Rendu de I’ Academie Des Sci-
ences, France, vol. 308, ser. I, pp. 79-81, 1989.

—, ‘‘Pointwise smoothness, two microlocalisation and wavelet co-
efficients,”” Publicacions Mathematiques, vol. 35, 1991,

S. Mallat and S. Zhong, ‘‘Characterization of signals from multiscale
edges,”” NYU, Comput. Sci. Tech. Rep., Nov. 1991, to appear in
IEEE Trans. Pattern Anal. Machine Intell.

B. Mandelbrot, in The Fractal Geometry of Nature.
W. H. Freeman, 1983.

D. Marr, in Vision. New York: W. H. Freeman, 1982.
D. Marr and E. Hildreth, “‘Theory of edge detection,”” Proc. Roy.
Soc. Lon., vol. 207, pp. 187-217, 1980.

Y. Meyer, in Ondelettes et Operateurs. Paris: Hermann, 1990.
—, ““Un contre-exemple a la conjecture de Marr et a celle de S.
Mallat,”’ preprint, 1991.

J. F. Muzy, E. Bacry, and A. Arneodo, ‘‘Wavelets and multifractal
formalism for singular signals: Application to turbulent data,”’ submit-
ted to Phys. Rev. Lett., July 1991.

A. Papoulis, in Probability, Random Variables, and Stochastic
Processes. New York: McGraw-Hill, 1984.

A. Rosenfeld and M. Thurston, ‘‘Edge and curve detection for visual
scene analysis,”” JEEE Trans. Comput., vol. C-20, pp. 562-569,
1971.

A. Witkin, ‘‘Scale space filtering,”’ presented at Proc. Int. Joint
Conf. Artificial Intell., 1983.

D. Youla and H. Webb, ‘‘Image restoration by the method of convex
projections,’’ IEEE Trans. Medical Imag., vol. 1, pp. 81-101, Oct.
1982.

S. Zhong, ‘‘Edges representation from wavelet transform maxima,”’
Ph.D. thesis, New York Univ., Sept. 1990.

A. Zygmund, Trigonometric Series. New York: Cambridge Uni-
versity Press, 1968.

New York:




