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Multifrequency Channel Decompositions of Images
and Wavelet Models

STEPHANE G. MALLAT

Abstract—In this paper we review recent multichannel models de-
veloped in psychophysiology, computer vision, and image processing.
In psychophysiology, multichannel models have been particularly suc-
cessful in explaining some low-level processing in the visual cortex. The
expansion of a function into several frequency channels provides a rep-
resentation which is intermediate between a spatial and a Fourier rep-
resentation. We describe the mathematical properties of such decom-
positions and introduce the wavelet transform. We review the classical
multiresolution pyramidal transforms developed in computer vision and
show how they relate to the decomposition of an image into a wavelet
orthonormal basis. In the last section we discuss the properties of the
zero crossings of multifrequency channels. Zero-crossings represen-
tations are particularly well adapted for pattern recognition in com-
puter vision. -

1. INTRODUCTION

WITHIN the last 10 years, multifrequency channel
decompositions have found many applications in
image processing. In the psychophysiology of human vi-
sion, multichannel models have also been particularly
successful in explaining some low-level biological pro-
cesses. The expansion of a function into several fre-
quency channels provides a representation which is inter-
mediate between a spatial and a Fourier representation. In
harmonic analysis, this kind of transform appeared in the
work of Littlewood and Payley in the 1930’s. More re-
search has recently been focused on this domain with the
modeling of a new decomposition called the wavelet
transform. In this paper we review the recent multichan-
nel models developed in psychophysiology, computer vi-
sion, and image processing. We describe the motivations
of the models within each of these disciplines and show
how they relate to the wavelet transform.

In psychophysics and the physiology of human vision,
evidence has been gathered showing that the retinal image
is decomposed into several spatially oriented frequency
channels. In the first section of this paper, we describe
the experimental motivations for this model. Biological
studies of human vision have always been a source of
ideas for computer vision and image processing research.
Indeed, the human visual system is generally considered
to be an optimal image processor. The goal is not to im-
itate the processings implemented in the human brain, but
rather to understand the motivations of such processings
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and analyze their application to computer vision prob-
lems. From this point of view, the recent experimental
findings in psychophysics and physiology open challeng-
ing questions. In order to get a better understanding of
multichannel decompositions, we review the main math-
ematical results in this domain. The best-known decom-
position which is intermediate between a spatial and a fre-
quency representation is the window Fourier transform.
The window Fourier transform is used in signal process-
ing for coding and pattern detection [47]. We describe its
properties but also show why it is not a convenient de-
composition for image analysis. The wavelet transform
was introduced by Morlet to overcome the shortcomings
of the window Fourier transform. It is computed by ex-
panding the signal into a family of functions which are
the dilations and translations of a unique function ¥ (x).
Grossmann and Morlet [20] have shown that any function
in L ( R) can be characterized from its decomposition on
the wavelet family (\/E Y(s(x = u)))s.mere- A wavelet
transform can be interpreted as a decomposition into a set
of frequency channels having the same bandwidth on a
logarithmic scale. We review the most important proper-
ties of a wavelet transform and describe its discretization
as studied by Daubechies [11]. A very important partic-
ular case of discrete wavelet transform was found by
Meyer [45] and Stromberg [55]. They proved that there
exist some wavelets ¥ (x) such that (\/?\&(2’()6 -
2 _jn)))“-‘,,)ezz is an orthonormal basis of L>( R). Wavelet
orthonormal bases provide an important new tool in func-
tional analysis. Indeed, it was believed that we could not
build simple orthonormal bases of L ( R) whose elements
have a good localization both in the spatial and Fourier
domains. These bases have already found many applica-
tions in pure and applied mathematics [27], [33], [57], in
quantum mechanics [15], [48], and in signal processing
[30].

In computer vision, multifrequency channel decompo-
sitions are interpreted through the concept of multireso-
lution. Generally, the structures that we want to recognize
have very different sizes. Hence, it is not possible to de-
fine a priori an optimal resolution for analyzing images.
Several researchers [22], [42], [52] have developed pat-
tern matching algorithms which process the image at dif-
ferent resolutions. Some pyramidal implementations have
been developed for computing these decompositions [4],
[10], [50]. A multiresolution transform also decomposes
the signal into a set of frequency channels of constant
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bandwidth on a logarithmic scale. It can be interpreted as
a discrete wavelet transform. We review the wavelet mul-
tiresolution model [38] which provides a mathematical
interpretation of the concept of resolution. We see in par-
ticular that a large class of wavelet orthonormal bases can
be computed from quadrature mirror filters [39].
Multifrequency channel decompositions are well
adapted for data compression in image coding. We show
that this efficiency is due to the intrinsic statistical prop-
erties of images and to the ability of such representations
to match the sensitivity of human vision. For pattern rec-
ognition applications, it is also necessary to build a signal
representation which translates when the signal translates.
Indeed, the representation of a pattern should not depend
upon its position. When a pattern is translated, its repre-
sentation should be translated without being modified. The
pyramidal multiresolution representations as well as dis-
crete wavelet transforms do not have this translation prop-
erty. In the last section, we study the properties of rep-
resentations based on zero crossings of multifrequency
channels. These representations do translate, and for a
particular class of band-pass filters, the zero crossings
provide the location of the signal edges. It remains to show
that a zero-crossing representation can provide a complete
and stable signal decomposition. We review previous re-
sults on zero-crossings properties and explain how the
problem can be expressed through the wavelet model.

II. MULTICHANNEL MODELS IN PSYCHOPHYSICS AND
PHYSIOLOGY OF VISION

In this section, we summarize some experimental re-
sults showing that a multifrequency channel decomposi-
tion seems to be taking place in the human visual cortex.
For further details, we refer to tutorials by Georgeson [18]
and Levine [34]. Over the past 20 years, a large effort has
been devoted in psychophysics and physiology to analyze
the response of the human visual system to stimuli having
particular orientation and frequency tunings. Linear
models have been partly successful in explaining some
experimental data. The simplest, which was first devel-
oped in psychophysiology, approximates the human vi-
sual system with a linear filter. Fig. 1 illustrates the ana-
tomical pathway in the human visual system.
Photoreceptors in the eyes measure the light input inten-
sity. This information is processed by bipolar and gan-
glion cells in the retina and is transmitted through the op-
tic nerve. The optic nerve ends in a relay station (the
lateral geniculate nucleus) whose axons extend to the vi-
sual cortex.

Replacing these different stages by a global linear filter
is clearly an extremely simplified model, but it gives some
insights about the visual system sensitivity. Given this hy-
pothesis, Campbell and Green [6] tried to measure the
global transfer function of the visual system. In their ex-
periments, the visual stimuli shown to the observer were
vertical sinusoidal gratings of different spatial frequencies
(see Fig. 2).
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Fig. 1. Illustration of the anatomical visual pathway. The higher level pro-
cesses are the least understood and are difficult to evaluate in psycho-
physical experiments.

Fig. 2. This image is a typical visual stimulus used in psychological ex-
periments for computing the transfer function of the visual system. It
consists of a sinusoidal grating whose frequency varies during the ex-
periment. In order to evaluate the sensitivity to orientation, these grat-
ings are rotated.

In psychophysics, frequencies are measured in cycles
per degree of visual angle subtended on the eye. The
transfer function H(w) of the visual system is defined as
the ratio of the contrast perceived by the observer to the
real contrast of the stimulus for sinusoidal gratings of fre-
quency w. The contrast is given by

Lmax - Lmin

C =
Lmax + Lmin

where L,,, and L, are the maximum and minimum lu-
minance of the stimuli. In order to estimate this transfer
function, a solution which is widely adopted is to measure
the Contrast Sensitivity Function. At each frequency w,
we measure the minimum contrast C, (w) necessary to dis-
tinguish the sinusoidal gratings from a uniform back-
ground. This contrast is called the contrast threshold. The
contrast sensitivity function is then defined by

CSF(w) = C(l 3 and H(w) = CSF(w).

(w

Many experiments [5], [6], [31] have been performed to
measure the function CSF(w) and they agree approxi-
mately with the function shown in Fig. 3. Although this
linear model is clearly oversimplified, it shows qualita-
tively the sensitivity of the human system to stimuli of
different frequencies.
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Fig. 3. Contrast Sensitivity Function (redrawn from Kulikowski and King-
Smith [31]). The visual system has the maximum sensitivity to contrast
when the frequency of the stimulus is around 5 cycles /deg.

With further experiments, Campbell and Robson [8]
have shown that the retinal image is likely to be processed
in separate frequency channels. These experiments were
based on adaptation techniques. If a stimulus is shown to
an observer for a long time, the visual sensitivity for the
same kind of stimuli decreases. This behavior is called an
adaptation process. Campbell and Robson [8] have shown
that if the visual system adapts to a sinusoidal grating of
a given frequency wy, the sensitivity decreases for any
stimuli whose frequency is in a frequency band around wy,.
However, outside this frequency band, the sensitivity is
not affected. These experiments indicate that at some
stage, the visual information in different frequency bands
is processed separately. Researchers in psychophysics
have tried to measure the width of these bands. In order
to simplify the analysis of the problem, Campbell and
Robson supposed that the retinal image is decomposed
through independent band-pass linear filters as shown in
Fig. 4. Their first estimate of the frequency bandwidth of
these filters was very narrow. However, other experi-
ments by Georgeson [17] and Nachmias [46] have since
contradicted their results. They showed that the frequency
bandwidth of these filters is more likely to be around one
octave. In other words, the retina image seems to be de-
composed in several frequency bands having approxi-
mately the same width on a logarithmic scale.

Other psychophysical experiments have shown that the
visual sensitivity to a sinusoidal grating also depends upon
its spatial orientation. The results of Campbell and Kuli-
kowski [7] show that the human visual system has a max-
imum sensitivity when the signal has an orientation of 0°
or 90°. In between, the sensitivity decreases monotoni-
cally reaching a minimum at 45°. The filters of the model
shown in Fig. 4 must therefore have a spatial orientation
selectivity.

This filter bank model only provides a qualitative de-
scription of some low-level processing of the visual sys-
tem. In particular, it does not take into account the non-
linearities of the biological processes. However, recent
physiological experiments support such approaches. Cell
recordings are generally performed on cats and monkeys
which have a visual cortex similar to the human one. In
the cat’s visual cortex, Hubel and Wiesel [23] discovered
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Fig. 4. Multichannel model. The retinal image is supposed to be filtered
by independent band-pass filters. These filters have approximately the
same bandwidth on a logarithmic scale and have a spatial orientation
selectivity.

a class of cells whose response depends upon the fre-
quency and orientation of the visual stimuli. These cells
are called simple cells. Maffei and Fiorentini [35] have
shown that their response is reasonably linear and that they
can be modeled with linear filters. Several groups of re-
searchers have recorded the impulse responses of simple
cells [2], [36], [59]. These studies showed that the band-
widths of simple cells range from 0.6 to 2.0 octaves with
an average value of 1.3 octaves. The response of simple
cells also depends upon the spatial orientation of the stim-
uli. Fig. 5 shows the two-dimensional impulse response
of simple cells measured by Webster and De Valois [61].
These impulse responses have been modeled by Daug-
mann [12], [13] with Gaussians modulated by sinusoidal
waves. As explained in the next section, these functions
generate a particular window Fourier transform called the
Gabor transform. Fig. 5 shows the comparison between
the impulse response of a simple cell and the correspond-
ing Gabor function model. These graphs clearly show that
a simple cell behaves like a band-pass filter with a spatial
orientation tuning. The support of the impulse response
of a cell is called the receptive field. It corresponds to the
domain of the retina where the input light influences the
cell firings. Simple cells have a receptive field of varying
size depending on their frequency tuning [49].

Much evidence has now been gathered about this mul-
tifrequency channel modeling of the low-level visual cor-
tex processing. However, we do not know what type of
information is extracted from this decomposition and how
it relates to further processing by complex and hyper-
complex cells [49]. Since the human visual cortex is an
excellent image processor, this low-level biological model
raises important questions from an image processing point
of view. What is the advantage of decomposing a signal
into several frequency channels? Is it refated to the intrin-
sic statistical properties of images? Does it lead to a better
reorganization of the image information? If we do accept
that such a decomposition offers a useful representation
of images, it remains to find out how to process these
different frequency channels. What type of information do
we want to extract? Should we process each channel in-
dependently or compare the values of the signal from band
to band? In the following sections, we show that some
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Fig. 5. (Reprint from Webster and De Valois [61].) (a) This surface is the
two-dimensional transfer function of a simple cell. It is a band-pass ori-
ented filter. Its bandwidth is 0.94 octaves. (b) Impulse response com-
puted by taking the inverse Fourier transform of (a). (c) and (d) Cross
sections of the impulse response respectively along the x and y axes. The
dashed lines give the best fitting Gabor functions.

results in mathematics, computer vision, and image cod-
ing give elements of answers to these questions. Our pri-
mary goal is not to build a model of the human visual
cortex but rather to justify the use of such decompositions
in image processing.

III. MATHEMATICAL ANALYSIS OF MULTICHANNEL
MOoODELS

In this section we review the mathematical properties
of multifrequency channel decompositions. We do be-
lieve that a good mathematical understanding of these de-
compositions is necessary in order to evaluate their range
of applications in image processing. We summarize the
most relevant mathematical results in this domain. No
proof is written, but references to original works are
given. Most results are first introduced for one-dimen-
sional functions and then generalized to two dimensions
if needed. We review the properties of the window Fou-
rier transform which is the most well-known intermediate
decomposition between spatial and Fourier representa-
tions. This decomposition has already found many appli-
cations in signal coding and pattern detection {47]. We
describe the drawbacks of the window Fourier transform
for analyzing signals like images. The wavelet transform
is then introduced and compared to the window Fourier
transform. More details can be found in a complete article
by Daubechies [11] and an advanced functional analysis
book by Meyer [44].

Notation: Z, R, and R™ denote, respectively, the sets
of integers, real numbers, and positive real numbers.
L*(R) denotes the Hilbert space of measurable, square-

integrable one-dimensional functions f(x). We suppose
that our signals are finite energy functions f (x) € L*(R).
For a pair of functions f(x) € LY(R), g(x)e L*(R), the
inner product of f(x) with g(x) is written

+oo

(0. f) = | _s@f@man ()

where f(x) is the complete conjugate of f(x). The norm
of f(x) in L*(R) is given by

117 = | Lreo) a @)

We denote the convolution of two functions f (x) € L*(R)
and g(x) € L*(R) by

frsw = | f@aw-va @)

The dilation of a function f(x) € L*(R) by a scaling fac-
tor s is written

Ax) = s f(sx). (4)
The reflection of f(x) about 0 is written
F(x) = f(=x). (5)

The Fourier transform of f(x) € L*(R) is written f(w)
and is defined by

fwy= | rean (6)
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A. Definition of a Window Fourier Transform

From the Fourier transform of a function f(x), we get
a measure of the irregularities (high frequencies) but this
information is not spatially localized. Indeed, the Fourier
transform f () is defined through an integral which cov-
ers the whole spatial domain. It is therefore difficult to
find the position of the irregularities. In order to localize
the information provided by the Fourier transform, Gabor
[16] defined a new decomposition using a spatial window
g(x) in the Fourier integral. This window is translated
along the spatial axis in order to cover the whole signal.
At a position u and for a frequency w, the window Fourier
transform of a function f(x) € L*(R) is defined by

+oo

Gf o) = | e gl — ) f() v

—o0o

(7)

It measures locally, around the point &, the amplitude of
the sinusoidal wave component of frequency w. In the
original Gabor transform, the window function g(x) is a
Gaussian. It has since been generalized for any type of
window function and is called a window Fourier trans-
form [28]}. The window function is generally a real even
function and the energy of its Fourier transform is con-
centrated in the low frequencies (see Fig. 6). It can be
viewed as the impulse response of a low-pass filter. For
normalization purposes, we suppose that the energy of
g(x)isequal to 1:

el = | fsto e =1,

Let us denote
gwo,uo(x) = eiwoxg(x - uO)-

A window Fourier transform can also be interpreted as the
inner products of the function f(x) with the family of
functions (g, 4 (X) )w.mer?:

Gf (@, u) = { f(x), guul(x)) . (8)

In quantum physics, such a family of functions is called
a family of coherent states. The Fourier transform g,, ,, (%)
is given by

9)

where g(w) is the Fourier transform of g(x). A family of
coherent states thus corresponds to a translation in the
spatial domain (parameter u) and in the frequency do-
main (parameter ) of the function g(x) (see Fig. 6).
This double translation is represented in a phase-space
where one axis corresponds to the spatial parameter u and
the other to the frequency parameter w (see Fig. 7). Fam-
ilies of coherent states have found many applications in
quantum physics because they make it possible to analyze
simultaneously a physical phenomena in both the spatial
and frequency domains.

gwo,uo(w) = e—iuwg(“’ - “’O)a
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Fig. 6. (a) Window function g(x). (b) Graph of g(x) cos (wox). (c) Graph
of g(x) cos (2wox). All these curves have the same support but the
number of cycles varies with the frequency of the sinusoidal modulation.
The curves (a’), (b’), (c') are, respectively, the Fourier transform of
g(x), g(x) cos (wyx), and g(x) cos (2wox). They have the same band-
width but different positions on the frequency axis.
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Fig. 7. Phase-space representation. The vertical axis gives the frequency
« whereas the horizontal axis gives the spatial position u. A window
Fourier coefficient Gf (wy, #o) provides a description of f (x) within the
resolution cell of [uy — 0,, o + 0,] X [wo = 6,,, W + a,].

Let us now describe how a window Fourier transform
relates to a spatial or a frequency representation. Let o,
be the standard deviation of g(x)

ol = ng )cz.g(x)!2 dx. (10)

Let o, be the standard deviation of the Fourier transform
of g(x)

(11)

+ oo 5
ol = Si wzlg(w). dw.

The function g, ,(x) is centered in u, and has a standard
deviation g, in the spatial domain. Its Fourier transform
given by (9) is centered in wy and has a standard deviation
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o,. By applying the Parseval theorem on (8), we get

G o, 1) = | 10 gmnl)

(12)

The first integral shows that in the spatial domain, Gf (w,,
up) essentially depends upon the values of f(x) for x €
[ug — 0,, ug + 0,]. The second integral proves that in the
frequency domain, Gf (wg, uy) depends upon the values
of f(w) for w € [wy — 0, wy + 0,,]. The spatio-frequency
domain which is covered by Gf (wy, ) can thus be rep-
resented in the phase-space by the resolution cell [u, —
oy, Uy + 0,] X [wy — 0, wg + 0,] as shown in Fig. 7.
The surface and shape of the resolution cell is indepen-
dent from u, and w,. The uncertainty principle applied to
the function g(x) implies that

Sj:f(w)m de.

252 > —, 13
0.0, = (13)

The _resolution cell can therefore not be smaller than
2+/2=w. The uncertainty inequality reaches its upper limit
if and only if g(x) is a Gaussian. Hence, the resolution
in the phase-space is maximized when the window func-
tion is a Gaussian as in the Gabor transform.

B. Properties of a Window Fourier Transform

A window Fourier transform is an isometry (to a pro-
portionality coefficient) from L*(R) into L*(R?)

+oo

SW )] ar = o Sm | oo ) do

- 27 J-oo
(14)

The function f(x) is reconstructed from Gf(w, u) with
the formula

f(x) = 51; S §vm Gf(w, u)g(u — x)e™ dw du.

(15)

Equations (14) and (15) are proved by applying the Par-
seval theorem and using the definition of Gf (w, x) given
in (7).

A window Fourier transform is a redundant represen-
tation. If instead of computing Gf(w, u) for all values
(w, u) € R* we sample uniformly both « and u, the rep-
resentation can still be complete and stable. Let 1, and v,
be the sampling intervals in both domains. A discrete
Fourier transform is defined by

vhneZ, VmeZ G;f(m,n) = Gf(muwgy, nug)

= S e "N g (x — nug) f(x) dx.

—oo

(16)

This discretization corresponds to a uniform sampling of
the phase-space as shown in Fig. 8. A discrete window
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Fig. 8. Sampling pattern of a discrete window Fourier transform in the
phase-space. Since the resolution cells are identical everywhere in the
phase-space, the sampling is uniform.

Fourier transform is equivalent to a division of the fre-
quency axis into intervals separated by wq (see Fig. 6). In
each of these intervals, the signal is sampled at a rate
1/uy. Daubechies [11] made a thorough study of the com-
pleteness and stability of a discrete window Fourier trans-
form. Intuitively, the sampling intervals u, and w, must
be chosen in order to cover the whole phase-space with
the resolution cells shown in Fig. 7. Formally, to recon-
struct any function f(x) € L2(R) from the set of sample
(G4 f(n, m)), myez2, the operator

G
L'(R) —> I(2%)
must be invertible on its range and have a bounded in-

verse. Each sample G, f(n, m) can also be expressed as
an inner product in L?(R)

Gy f(m, n) = (f(x), eimwmg(x - n”o))
= (f(%) s 8maonu(X) ) - (17)

The properties of a discrete Fourier transform thus depend
upon the family of functions (g, muo(*) )n.myez2- In order
to invert G,;, Daubechies [11] has shown that wy and uq
must verify

wollp < 2.

When wyuy = 27, we reach the Nyquist frequency limit
and G, does not have a bounded inverse. When wguy <
2w, the range of Gd has a complicated structure.

Although several researchers have tried to model the
impulse response of simple cells with Gabor functions, it
is unlikely that the human visual cortex implements some
type of window Fourier transform. Indeed, we saw that a
window Fourier transform decomposes a function into a
set of frequency intervals having the same size. On the
other hand, experimental data indicate that the retinal im-
age is decomposed into a set of frequency channels having
approximately a constant bandwidth on a logarithmic scale
(octave). The measured impulse responses of simple cells
do not have an increasing number of cycles for a constant
envelope as in a window Fourier transform (see Fig. 6).
Rather, they have a support (receptive field) of varying
size.

Although some researchers [58] have been using the
Gabor transform in computer vision, this decomposition
has several drawbacks when applied to image analysis.
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We saw that the spatial and frequency resolution of a win-
dow Fourier transform is constant. In the spatial domain,
the information provided by this decomposition is there-
fore unlocalized within intervals of size o,. The standard
deviation g, of g(x) defines a resolution of reference. If
the signal has a discontinuity such as an edge, with a win-
dow Fourier transform, it is difficult to locate this edge
with a precision better than o, (see Fig. 9). This local-
ization limit is generally not acceptable. If the signal has
important features of very different sizes, we cannot de-
fine an optimal resolution for analyzing the signal. This
is typically the case with images. For example, in the im-
age of a house, the pattern we want to analyze might range
from the overall structure of the house to the details on
one of the window curtains. With a given window size, it
is difficult to analyze both the fine and the large struc-
tures. This fixed resolution also introduces misleading
high frequencies when decomposing local features. Let
e(x) be an edge as shown in Fig. 9, and suppose that

( Ax

ifoxo——z—

0
1 1 T
3 + 5 sin <Ax (x x0)>
it g — A% Ax
1t xq 5 <x<x t 7
1 ifx = x5 + ﬂ
L 2
Let us denote wy = w/Ax. One would expect that at the
point xg, the decomposition coefficients Ge(w, x¢) =
(e(x), e'™"g(x — xp) decrease very quickly when w gets
larger than wy. Indeed, in the neighborhood of x,, the edge
e(x) is a sinusoidal wave of frequency wy. In reality, this
property does not hold because the edge is very localized
and has only half of the sinusoidal wave period. As a con-
sequence, when the frequency w is large with respect to
wy, the modulus of the coefficients Ge (xy, w) decreases
slowly. Although the signal e(x) is locally a pure sinu-
soidal wave of frequency wy, at a frequency 2wy, the win-
dow Fourier coefficient | Ge (x,, 2wy) | is still about half
the value of | Ge (xy, wg) |. This numerical property makes
it hard to interpret the window Fourier coefficients when
the features are very localized with respect to the size of
the support of g(x). More details about this property can
be found in the article of Daubechies [11]. A window
Fourier transform is better suited for analyzing signals
where all the patterns appear approximately at the same
scale.

In order to avoid the inconvenience of a transform hav-
ing a fixed resolution in the spatial and frequency do-
mains, Morlet defined a decomposition based on dila-
tions. In the next section, we describe the properties of
this decomposition which is called the wavelet transform.

C. Definition of a Wavelet Transform

Morlet [20] defined the wavelet transform by decom-
posing the signal into a family of functions which are the
translation and dilation of a unique function ¥ (x). The
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Fig. 9. With a window Fourier transform, a local feature such as an edge
e(x) cannot be located with a precision better than the variance o, of the
window function g (x). Since the variation step Ax of the edge e(x) is
small with respect to g,, in the neighborhood of x,, the window Fourier
transform of e(x) decreases slowly when the frequency w gets larger
than wy = 7/Ax.

function ¥ (x) is called a wavelet and the corresponding
wavelet family is given by (\/; V(s(x — u)))ser?- The
wavelet transform of a function f(x) € L*(R) is defined
by

Wi = | FNS Ut - w) de. (19)

The idea behind the wavelet decomposition is not new. It
is very much related to some other types of spatial-fre-
quency decompositions such as the Wigner-Ville trans-
form. Some versions of the wavelet transform have been
studied independently under other names such as the scale-
space decomposition of Witkin [62], and in mathematics
its origin can be traced back to be beginning of the cen-
tury. However, the formalization effort of Morlet and
Grossmann [20] opened a broader field of applications and
has led to important new mathematical results. Let us de-
note the dilation of ¥ (x) with a factor s by

Us(x) = Vs ¥(sx). (20)

A wavelet transform can be rewritten as inner products in
L*(R)

Wf(s’u) = <f(x)s ¢s('x - u))

It thus corresponds to a decomposition of f(x) on the
family of functions (y¥,;(x — #)).,)er2- As shown in Fig.
10, the functions ¥, (x) have the same type as ¢ (x), but
have a support s times smaller. In the following, we sup-
pose that the wavelet y (x) and the signal f(x) have real
values. As explained later, in order to reconstruct f(x)
from its wavelet transform, the Fourier transform y/(w)
of ¢ (x) must satisfy

+oo I ¢(w) ‘ g
= oL

dw < +oo. (21)

0 w

This condition implies that Q/(O) = 0, and that 12(0:) is
small enough in the neighborhood of w = 0. The function
¥ (x) can be interpreted as the impulse response of a band-
pass filter. For normalization purposes, we suppose that
the energy of ¥ (x) is equal to 1. Let us denote Jo(x) =
¥,(—x). We can rewrite the wavelet transform at a point
u and a scale s as a convolution product with ¢, (x)

Wf(s, u) = f* ¥s(u). (22)
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Fig. 10. (a) Graph of a wavelet y/(x). (b) Graph of y,, (x) fors, > 1. (c)
Graph of ,,(x) for s, < 1. The curves (a'), (b'), and (c¢') are, respec-
tively, the Fourier transform of the function shown in (a), (b), and (c).
They have the same rms bandwidth on a logarithmic scale.

A wavelet transform can therefore be viewed as a filtering
of f(x) with a band-pass filter whose impulse response is
¥.(x). From (20), we derive that the Fourier transform of
¥, (x) is given by

In opposition to a window Fourier transform which has a
fixed resolution in the spatial and frequency domain, the
resolution of a wavelet transform varies with the scale pa-
rameter s. Since ¥ (x) is real, | (w)| = |¥(—w)|. Let

wg be the center of the passing band of ¢/ (w)

So (0 — w0)|¢(w)|2dw = 0.

Let o, be the rms bandwidth around w,

o= | o )i de.

It is clear that the center of the passing band of ,(w) is
swy and that its rms bandwidth is so,. On a logarithmic
scale, the rms bandwidth of x,A{/S(w) is the same for all s €
R ™. Hence, a wavelet transform decomposes the signal
into a set of frequency bands having a constant size on a
logarithmic scale (see Fig. 10).

Let g, be the standard deviation of | (x)|* around zero.
One can also show easily that the wavelet ¢ (x — ug) has
an energy concentrated around u, within a standard de-
viation o, /s. In the frequency domain, we saw that its
energy is concentrated around swy within a standard de-
viation sg,. In the phase-space, the resolution cell of this
wavelet is therefore equal to [ug — (0,/$), 4y + (0,/5)]
X [swy — s0,, Swy + s0,]. As opposed to a window
Fourier transform, the shape of the resolution cell varies
with the scale s. This is illustrated in Fig. 11, When the
scale s is small, the resolution is coarse in the spatial do-
main and fine in the frequency domain. If the scale s in-
creases, the resolution increases in the spatial domain and
decreases in the frequency domain (see Fig. 11). In the
next section, we show that this variation of resolution en-
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Fig. 11. In the phase-space, the shape of a wavelet resolution cell depends
upon the scale. When the scale increases, the resolution increases in the
spatial domain and decreases in the frequency domain. The surface of
all the resolution cells is the same.

ables the wavelet transform to zoom into the irregularities
of the signal and characterize them locally.

For some applications, it can be useful to use a complex
wavelet ¥ (s) in order to separate a phase and modulus
component from the wavelet transform. For this purpose,
Morlet and Grossmann are using wavelets whose Fourier
transform @(w) is equal to zero for @ < 0 [20]. Such
functions are called Hardy functions. The wavelet trans-
form Wf (s, u) is then a complex number. When the scale
s is fixed and u varies, the function Wf(s, u) is also a
Hardy function. The phase and the modulus of the
wavelet transform can easily be separated for any given
scale s and position u. Separating the phase and energy
component of the wavelet transform signal has found some
applications in speech processing [30].

Remark: There is a common misunderstanding in the
psychophysiological and computer vision literature around
Gabor and wavelet transforms. A Gabor function is a
Gaussian modulated by a sinusoidal wave. A Gabor func-
tion satisfies the condition (21) and is therefore an admis-
sible wavelet. If we build a transform based on a dilation
of this function, it will be a wavelet transform and not a
Gabor transform (window Fourier transform). Indeed, in
order to define a Gabor transform, we must modify the
frequency of the sinusoidal modulation without changing
the size of the window function. This is much more than
a terminology problem since the properties of a wavelet
transform and a Gabor transform are very different.

D. Properties of a Wavelet Transform

Morlet and Grossmann [20] have shown that the
wavelet transform is an isometry (to a proportionality coef-
ficient) from L?(R) into L*(R* X R)

e wfeas o |l e

(23)
The constant C, is defined by
n 2 2
= [P (sw)] = | (w)]
Cy = —ds = ——dw < too.
0 A 0 @
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Equation (23) is proved by applying the Parseval theorem
and using the definition of Wf (s, u) given in (19). Sim-
ilarly, we can derive that the reconstruction of f (x) from
Wf (s, u) is given by

flx) = CL‘L S_m So Wf(s, u)ys(x — u) ds du. (24)

Like a window Fourier transform, a wavelet transform is
redundant. In other words, the value of Wf(s', u') de-
pends upon the values of Wf (s, u) fors # s’ and u #
u'. By inserting (24) in the definition (19) of a wavelet
transform, one can show that the function Wf (s, u) sat-
isfies the following reproducing kernel equation [21]:

V(s',u')eR" X R, Wf(s',u’)

+o +o
= S So Wf(s, u)K(s, s', u, u') ds du, (25)
where
1 + oo
K(s,s u,u') = — S Yo(x — u) gy (x — u') dx.
C\I/ —Qo
K(s,s', u, u’)is called a reproducing kernel. It expresses
the redundancy between Wf (s, u) and Wf(s’, u’) for any
two pairs of points (s, u) and (s’, u'). Equation (25)
shows that, a priori, any function F(s, u) € L*(R* x
R) is not the wavelet transform of some function fx)e
L?(R). One can easily prove that there exists a function
f(x) € L*(R) such that F(s, u) = Wf (s, u), if and only
if
v(s',u')eR" xR, F(s',u')

+ oo + 00
= S S F(s, u)K(s,s', u, u'ydsdu. (26)
0

The function f(x) is then given by

1 +o n+oo
flx) = a S_W SU F(s, u)y(x — u)dxdu. (27)

The reproducing kernel equation is an important charac-
terization of a wavelet transform that we use later.

The wavelet transform can be discretized by sampling
both the scale parameter s and the translation parameter
u. In order to build a complete representation, we must
cover the phase-space with the resolution cells shown in
Fig. 11. This can be done with an exponential sampling
of the scale parameter. We first select a sequence of scales
(o )jez, Where « is the elementary dilation step. We saw
in (22) that the wavelet transform Wf (a’, u) can be re-
written

Wf(od, u) = f* Jo(u).

For each scale o/, J/a,(x) has a Fourier transform centered
in a’/w, with an rms bandwidth of o’s,.. Equation (28) can
therefore be interpreted as a decomposition of f(x) in a
set of frequency channels centered in o’/w, and whose rms
bandwidth is o/c,. In order to characterize the decom-

(28)
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Fig. 12. Sampling of the phase-space corresponding to a discrete wavelet
transform (adapted from Daubechies [11]). Each sample corresponds to
an inner product with a particular wavelet. This sampling pattern is
adapted to the shape of the wavelet resolution cells at the different scales
(see Fig. 11).

posed signal in each channel, we must sample it uni-
formly at a rate proportional to /. Let o/ /8 be the sam-
pling rate at the scale o/. The discrete wavelet transformed
is defined by

Watlim) = Wf<aj’r;—€> - S_mf(xm_f <x - %{ﬁj)dx
=f*117af<z—€>. (29)

Fig. 12 illustrates this sampling pattern in the phase-space.
When the scale increases, the density of samples in-
creases.

It is not possible to understand the properties of this
transform by using the Nyquist theorem since the Fourier
transform of ¥ (x) does not have a compact support (it is
not strictly band-limited). With an approach similar to her
study of the discrete window Fourier transform, Daube-
chies [11] analyzed the main properties of a discrete
wavelet transform. She made a clear comparison of these
two types of multichannel decompositions from a mathe-
matical point of view. In order to reconstruct a function
f(x) from the discrete wavelet transform (W, f(J,
R) )@, j)ez2, the operator

IX(R) —> 1(2%) (30)

must be invertible on its range and have a bounded in-
verse. Since

watiom = { 560, vu(x - 2. e

the properties of the operator W, depend upon the family
of functions (Y,i(x — (nB/a’)) ). j)ez. Daubechies [11]
studied the properties of this family of functions and gave
some necessary and sufficient conditions on «, 3, and
¥ (x) so that the operator W, admits a bounded inverse.
A very important class of discrete wavelet transform
was found independently by Meyer [45] and Stromberg
[55]. They showed that there exist some wavelets / (x) €
L*(R) such that (Y (x — (n/2’ ). jrez2 is an ortho-
normal basis of L*(R). These particular wavelets are
called orthogonal wavelets. A wavelet orthonormal basis
corresponds to a discrete wavelet transform for « = 2 and
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B8 = 1. Wavelet orthonormal bases can be built for se-
quences of scales other than (2 )jez> but we will concen-
trate on dyadic scales which lead to simpler decomposi-
tion algorithms. These new orthonormal bases had a
striking impact in functional analysis. It was indeed be-
lieved that one could not find simple orthonormal bases
whose elements have a good localization both in the spa-
tial and frequency domains. Any function can be recon-
structed from its decomposition into a wavelet orthonor-
mal basis with the classical expansion formula of a vector
into an orthonormal basis

f(x) = EZ ,Ez (f(u), Yo — n279) Y gp(x — n27).
(32)

The Haar basis is a well-known particular case of wavelet
orthonormal basis. The orthogonal wavelet corresponding
to the Haar basis is given by

1 ifo=x<l

Y(x)=4¢-1 ifi=x<1 (33)

0 otherwise.

The Haar wavelet is not continuous, which is a major in-
convenience for many applications. Meyer [45] showed
that we can find some orthogonal wavelets ¥ (x) which
are infinitely continuously differentiable and whose decay
at infinity are faster then any power x ", n > 0. In Sec-
tion IV-A, we show that the Fourier transform of a large
class of orthogonal wavelets can be expressed from the
transfer function of a quadrature mirror filter [38]. The
decomposition of a function in such a wavelet orthonor-
mal basis can be computed with a quadrature mirror filter
bank. Fig. 13 gives the graph of a particular orthogonal
wavelet and its Fourier transform. This wavelet is a cubic
spline studied independently by Lemarie [32] and Battle
[31].

An important property of a wavelet transform is to eas-
ily characterize the local regularity of a function. This can
have a particularly interesting application for discrimi-
nating image textures. In mathematics, it leads to a simple
characterization of the classical functional spaces such as
the L? (R) spaces, the Sobolev spaces, the Holder spaces,
etc. Let us give an example. One way to measure the local
regularity of a function is to measure the lipschitz expo-
nent. A function f(x) is lipschitz « in the neighborhood
of a point x,, if and only if, for any point x in a neigh-
borhood of x,

| f(x) = f@x)] = O(lx = x%).  (34)
A function which is differentiable in x, is lipschitz 1. The
larger the lipschitz coefficient «, the smoother the func-
tion is in the neighborhood of x;. Let us now suppose that
the wavelet ¥ (x) is continuously differentiable. We also
assume that our signal f(x) is continuous and that there
exist e > 0 such that f(x) is lipschitz e everywhere. Jaf-
fard [26) proved that for any o > 0, one can find whether
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Fig. 13. (a) Example of orthogonal wavelet ¥ (x). (b) Modulus of its Fou-
rier transform. The wavelet ¥ (x) can be interpreted as the impulse re-
sponse of a band-pass filter. This particular wavelet is a cubic spline.

f(x) is lipschitz & at xo by measuring the decay of wavelet
coefficients in the neighborhood of x,. More precisely,
f(x) is lipschitz o at xq if and only if

ac > 0, [ £(x). ¥l = m27))|
< C2—j(1/2+a)(1 + |2fx0 _ nl) (35)

The regularity of a function at a point x, thus depends
upon the decay rate of the wavelet coefficients in the
neighborhood of xo, when the scale increases. Other kinds
of regularity, such as the derivability at any order (in the
sense of Sobolev), can be derived similarly [33]. These
results show that it is necessary to combine the informa-
tion at different scales in order to analyze the local prop-
erties of a function. In the next section, we describe the
extension of the wavelet model to two-dimensional sig-
nals. We come back to orthonormal wavelets in Section
IV-A to explain their relation to the concept of multi-
resolution in computer vision.

vn e Z,

E. Wavelet Transform in Two Dimensions

The wavelet transform can be generalized in R", but we
only consider the two-dimensional case for image pro-
cessing applications. The model can first be extended
without distinguishing any spatial orientation. Let ¥ (x,
y)€e L*(R?) be a function whose Fourier transform ¥ (o,
w,) satisfies

a 2
+oo l ¥ (sw,, sw,) |

v(w,, w,) € R? go ds = Cy < + oo,

(36)
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The value of the integral (36) must be finite and constant
for all (w,, w,) € R?. For example, this property is sat-
isfied for a wavelet ¥ (x, y) which is isotropic (¥ (x, y)
= p(vx? +Ay2)) and whose Fourier transform is null at
the origin (¥ (0, 0) = 0). For normalization purposes,
we suppose that | ¥ || = 1. The function ¥ (x, y) can be
interpreted as the impulse response of a band-pass filter
having no preferential spatial orientation. The wavelet
transform of a function f(x, y) € L?>(R?) at the scale s
and a point (u, v) is defined by

Wf(s, (u, v))

+o + oo
= S_m Slm flx, y)s¥(s(x —u), s(y — v)) dx dy.

(37)
Let ¥, (x,y) = s¥ (sx,sy)and ¥, (x,y) = ¥ (—x, —y).
The wavelet transform of f (x, y) at the scale s and a point
(u, v) can be rewritten as a convolution product

Wf(s, (u, v)) = f* ¥ (u, ). (38)

It can be interpreted as a two-dimensional band-pass fil-
tering with no orientation selectivity. The wavelet trans-
form in two dimensions has the same properties as a one-
dimensional wavelet transform. There is an energy con-
servation equation

S“” SM SO“"’ ‘Wf(s, (u, v))‘zs ds du dv

— —®

-c Sm S: | £(x, )| ax dy.

—oo

(39)

As in the one-dimensional case, this equation is proved
with the Parseval theorem. We can also reconstruct a
function f (x, y) from its wavelet transform with a simple
two-dimensional extension of (24):

s = | s o

—o JO
- W (x — (40)

In two dimensions, a wavelet transform also satisfies a
reproducing kernel equation similar to (25).

For image recognition applications, it is often neces-
sary to have a decomposition which differentiates the lo-
cal orientation of the image features. Let us define N
wavelet functions ¥ (x, y) (1 =i < N) whose Fourier
transform ¥ (w,, w,) satisfies

N
2
i=1

u,y — v)sdsdudv.

¥ (w,, w}\)‘2 = [¥(w, m'\,)|2

(41)

Fig. 14 shows an example of decomposition of ¥ ( Wy, W)
into the different functions \ill(wx, w,). In the example
shown in Fig. 14, the decomposition is symmetrical, but
this is not a constraint of the model. Each function ¥ (x,
y) can be viewed as the impulse response of a band-pass
filter having a particular orientation tuning. The wavelet
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Fig. 14. Decomposition in the Fourier domain of the support of ¥ (w,, w, )
into 6 wavelets ¥'(w,, w,) (1 < i < 6) having different orientation
selectivities. In this example, the supports of the functions ¥i(w, w,)
are symmetrical about O and are rotated from one another.

transform within the orientation 7 is defined by

Wif(s, (u, v))

= S.Aw Sﬁm f(x, y)S\I/"(s(x ~u),s(y — v)) dx dy.

(42)

Let Wi(x, y) = s¥i(sx, sy)and ¥i(x, y) = Vi(—x,
—y). The wavelet transform of f(x, y) at the scale s and
a point (u, v), within the orientation i, can be rewritten

Wif(s, (u, v)) = f* ¥i(u, v). (43)

It can thus be interpreted as a filtering of f(x, y) with a
band-pass filter having an orientation selectivity. Similar
to (37), the wavelet decomposition in several orientations
defines an isometry from L?(R?) into L2(R* x R?)

% S*"’ SM’ SON’ ‘Wif(s, (u, v))‘zs ds du dv

i=1 J-o —o

=Cy S*“’ Sj: ‘f(x, y)|2dxdy.

—o0

(44)

We can also reconstruct a function f(x, y) from its
wavelet transform decomposed into several directions

e =2 2 0T 1 s o)

“Vi(x — u,y — v)s ds du dv.

The discretization of a wavelet transform in two dimen-
stons is similar to the discretization in one dimension. We
choose a sequence of scales (o )jez Where « is the ele-
mentary dilation step. For each scale «’, the translation
vector (u, v) is uniformly sampled on a two-dimensional
grid at a rate proportional to «”. In the next section, we
study the two-dimensional extension of the orthonormal
wavelet decomposition and its implementation.

IV. CoMPUTER VISION AND MULTIRESOLUTION
DECOMPOSITION

Let us now analyze the multiresolution approach to im-
age interpretation. A multiresolution decomposition is
also an image decomposition in frequency channels of
constant bandwidth on a logarithmic scale. It provides a
different perspective on this kind of transform. We de-
scribe the classical pyramidal implementation of multi-
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resolution transforms and show how it relates to a discrete
wavelet decomposition.

Multiresolution transforms have been thoroughly stud-
ied in computer vision since the work of Rosenfeld and
Thurston [51] on multiscale edge detection, and the Marr
theory of low-level vision [40]. At different resolutions,
the details of an image generally characterize different
types of physical structures. For example, a coarse reso-
lution satellite image of a coast gives a description of only
the overall shape of the coast. When the resolution of the
image is increased, we are able to successively distin-
guish the local relief of the region, and if the resolution
gets even finer, we can recognize the different types of
local vegetation. In order to process these different struc-
tures separately, researchers in computer vision have tried
to extract the difference of information between the ap-
proximation of an image at two different resolutions.
Given a sequence of increasing resolutions (7;);¢z, the de-
tails of f(x) at the resolution r; are defined as the differ-
ence of information between the approximation of f(x) at
the resolution r; . | and the approximation at the resolution
7.

A multiresolution representation also provides a simple
hierarchical framework for interpreting the image infor-
mation [29]. In some sense, the details of the image at a
coarse resolution provide the ‘‘context’’ of the image,
whereas the finer details correspond to the particular
“‘modalities.’” For example, it is difficult to recognize that
a small rectangle inside an image is the window of a house
if we did not previously recognize the house ‘‘context.’’
It is therefore natural to first analyze the image details at
a coarse resolution and then increase the resolution. This
is called a coarse-to-fine processing strategy. At a coarse
resolution, the image details are characterized by very few
samples. Hence, the coarse information processing can be
performed quickly. The finer details are characterized by
more samples, but the prior information, derived from the
context, constrains and thus speeds up the computations.
With a coarse-to-fine strategy, we process the minimum
amount of details which are necessary to perform a rec-
ognition task. Indeed, if we can recognize an object from
a coarse description, we do not need to analyze the finer
details. For example, in order to distinguish a car from a
house, the coarse details of the image should be enough.
Such a strategy is efficient for pattern recognition algo-
rithms. It has already been widely studied for low-level
image processing tasks such as stereo matching and tem-
plate matching [19], [22].

A. Pyramidal Multiresolution Decompositions

The approximation of a signal f (x) at a resolution r is
defined as an estimate of f (x) derived from r measure-
ments per unit length. These measurements are computed
by uniformly sampling at a rate r the function f(x)
smoothed by a low-pass filter whose bandwidth is pro-
portional to r. In order to be consistent when the resolu-
tion varies, these low-pass filters are derived from a
unique function 6 (x) which is dilated by the resolution
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factor r : 6, = \frﬂ(rx). The set of measurements A, f =
(f* 0,(n/r))yez is called a discrete approximation of
f(x) at the resolution r. In the following, we study the
approximation of a function on a dyadic sequence of res-
-olutions (27 )jez- The discrete approximation of a func-
tion f (x) at the resolution 2/ is thus given by

s ()

Tanimoto and Pavlidis [56], Burt [4], and Crowley [10}
have developed efficient algorithms to compute the ap-
proximation of a function at different resolutions. We first
describe these decompositions and then explain the Burt
and Crowley algorithms for computing the details at dif-
ferent resolutions. The details are regrouped in a pyramid
data structure called a Laplacian pyramid. This simple and
elegant algorithm does not define the details from the dif-
ference of information between A,,+ fand Ay; f. At dif-
ferent resolutions, the details computed with this
algorithm are correlated. It is thus difficult to know
whether a similarity between the image details at different
resolutions is due to a property of the image itself or to
the intrinsic redundancy of the representation. We review
the multiresolution wavelet model which shows that the
difference of information between two successive resolu-
tions can be computed by decomposing the signal in a
wavelet orthonormal basis.

In pyramidal multiresolution algorithms, the low-pass
filter function 0 (x) is chosen such that its Fourier trans-
form can be written

(45)

+ o0
B(w) = H1 U(e™27"%), (46)
p=
where U(e ™) is the transfer function of a low-pass dis-
crete filter U = (u,) ,cz. Daubechies [11] studied the reg-
ularity and decay at infinity of the function 6 (x) depend-
ing upon the properties of the filter U(e ™). In general,
we want to have a function 6 (x) which is as smooth as
possible and which is well concentrated around O in the
spatial domain.

Let us suppose that we have already computed the dis-
crete approximation of a function f (x) € L*(R) at the
resolution 2% Ay f = (f* 02,+|(n/2“‘)),,ez. One
can show [4], [11], [38] that the discrete approximation
of f (x) at a resolution 27/ is calculated by filtering 4;,+1 f
with the discrete low-pass filter U = (u,) ,z and keeping
every other sample of the convolution product. Let A =
( N\,) nez be such that

A=Ay fxU, (47)

then

A f= ()\2,z)nez- (48)

A measuring device provides the approximation of an in-
put signal at a finite resolution. Let us suppose for nor-
malization purposes that this resolution is equal to one.
The approximation of this signal at any resolution 27,0
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Fig. 15. (a) Decomposition of A,;+: finto A, fand D,, f when computing

a Laplacian pyramid. (b) Reconstruction of A,,., f from 4,, fand D,, f

when reconstructing the original signal from a Laplacian pyramid.

> 0, can be computed by iterating on (47) and (48), and
Jj varying between O and J + 1. This pyramidal algorithm
is illustrated in Fig. 15(a). The set of discrete approxi-
mations (A;; f )= ;= -y Was called a Gaussian pyramid by
Burt [4].

We now describe the algorithm of Burt [4] and Crowley
[10] in order to extract the details of f (x) which appear
in A+ f but not in A,; f. The discrete approximation
A,yj+1 f has twice as many samples as A,; f, so we first
expand A,;f by a factor of two. This is performed with a
classical interpolation procedure [9]. We put a zero be-
tween each sample of A,; f and filter the resulting signal
with a low-pass filter. In this algorithm, the low-pass filter
is the filter U defined previously. Let A3, f be the ex-
panded discrete signal. The details D,; f at the resolution
2/ are then computed by subtracting 45, f from A,;+1 f

Dy f = Ayjnr f — A;;f. (49)

This algorithm decomposes a discrete approximation A4; f
at a resolution of 1 into an approximation 4, -, fat a coarse
resolution 27/ and the successive detail signals
(D1 f o< < -y If the signal 4, fhas N nonzero samples,
each detail signal D,, f has 277 'N samples, whereas the
coarse signal A, -; f has 27/N samples. Hence, the total
number of samples of this representation is approximately
2N. The signals {Ay-s f, (D, f)o<j< -} are regrouped
in a data structure called a Laplacian pyramid [4].

The original signal can easily be reconstructed from
such a decomposition. At each resolution, we compute
A,j+1 f by expanding A,, f by a factor two and adding
the details D,, f. By repeating this algorithm when j is
varying between —J and 0, we reconstruct 4, f. The re-
construction algorithm is illustrated by a block diagram
in Fig. 15(b).

In two dimensions, the discrete approximation of a sig-
nal f (x, y) € L*(R?) at the resolution 27 is similarly de-
fined by

A21f= (f* 921(2_jnv 2‘jm))(n.m)elz’ (50)
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where O(x, y) is a two-dimensional low-pass filter, and
©,,(x, y) = 2/6(2/x, 2’y). For image processing, the
pyramidal algorithm is extended with separable convolu-
tions along the rows and columns of the image [4]. The
low-pass filter ©(x, y) is chosen such that its Fourier
transform can be written

+ oo

é(wx, wy) = pl;]:l U(evi2 ‘wa) U(evizﬂj“’-"),

Let us suppose that the video camera provides an image
approximated at the resolution 1: A, f = (f * O(n,
m)) (n.myez2- With a separable extension of the algorithm
described in (47) and (48), we can compute the approxi-
mation of an image at any resolutions 2/, (j < 0). Fig.
16 shows an image approximated at the resolution 2/ for
0 = j = —3 (Gaussian pyramid). The detail signals
(D, f)o<j<-3 can also be computed with a straightfor-
ward extension of the one-dimensional algorithm. Fig. 17
shows the Laplacian pyramid of the image given in Fig.
16. If the original image has N? pixels, each detail image
D,, f has 2/ 'N? pixels and 4, f has 27/ N? pixels.
Hence, the total number of pixels of this representation is
approximately $N?.

In a Laplacian pyramid, the signals D,; f do not corre-
spond to the difference of information between Ay;.: f
and A,; f. If they did, the total number of pixels repre-
senting the signal would be the same as in the original
signal. We saw that the number of samples representing
the signal is increased by a factor of 2 in one dimension
and by a factor of § in two dimensions. This is due to the
correlation between the detail signals D,; f at different
resolutions. The correlation can be understood and sup-
pressed with the multiresolution wavelet model described
in [39] and [38]. It is indeed possible to extract exactly
the difference of information between A,,+ f and A,; f
by decomposing the signal into a wavelet orthonormal ba-
sis.

Let us first explain the multiresolution wavelet model
in one dimension. We saw in (45) that the discrete ap-
proximation of a function f (x) at the resolution 2’ is de-
fined by Ay, f = (f* 605, (2 7n)) ez Let us denote 8, (x)
= #,, (—x). Each convolution product in a point can be
rewritten as an inner product in LZ(R)

A f = ((f(). B(x = 270))) o (51)
Let us call the continuous approximation of f (x) at the
resolution of 2/ the best estimate of f(x) given the se-
quence of inner products A,, f. By “‘best’”” we mean as
close as possible to f (x) with respect to the L*(R) dis-
tance (mean square distance). One can easily derive from
the projection theorem that this best estimate is equal to
the orthogonal projection of f(x) on the vector space
V,; generated by the family of functions (0, (x —
27n)),ez. The vector space V,; can be viewed as the set
of all possible approximations of functions at the resolu-
tion 2. The sequence of vector spaces ( V,;) 7 is called
a multiresolution approximation of L*(R ). The proper-



U-M-1
Due to a lack of contrast between text and background, this page did not

reproduce well.
2104

Fig. 16. Gaussian pyramid. The image is approximated at the resolutions
1,5, 4, and §. As the resolution decreases, higher resolution details are
lost and the image is characterized by fewer pixels.

Fig. 17. Laplacian pyramid. This figure shows the detail images at the
resolution ). |, & and the coarse image approximated at the resolution
L. At each resolution, the pixels of the detail image have a large ampli-
tude when the original image is not ‘‘smooth’’ at the corresponding io-
cation.

ties of the vector space V,; are further studied in [38] and
[39]. For any function f (x) € L*(R), the continuous ap-
proximation of f (x) at the resolution 27/ is thus given by
the orthogonal projection of f (x) on V,;. In order to com-
pute this approximation, we need an orthonormal basis of
V,,;. One can show [39] that we can build such an ortho-
normal basis by dilating and translating a particular func-
tion ¢ (x) called a scaling function. For any resolution 27,
let us denote ¢, (x) = ¥2/¢(2’x). The family of func-
tions (¢, (x — 2 “I1)) pez is then an orthonormal basis of
V,;. The Fourier transform of ¢ (x) is characterized by

+ 0o

H H(e ~12’l’w) ,

r=1

(52)

where H(e ™) is the transfer function of a discrete filter
[39]. One can show that H(e ~*') satisfies the condition
—iw 2 —iw 2
|H(e )| + [H(—e7™)| = 1. (53)
The discrete filters H = (h,) ,cz Whose transfer function
satisfy (53) are called quadrature mirror filters [14].
The orthogonal projection of a function f(x) € L*(R)
on V,,; can now be computed by decomposing f (x) into
the orthonormal basis (¢,;(x — 27/n)),ez. Let Py, be
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Fig. 18. (a) Example of scaling function ¢ (x). (b) Fourier transform $(w).
A scaling function can be interpreted as the impulse response of a low-
pass filter. The computation of this particular function is described in
[38]. The corresponding orthogonal wavelet is shown in Fig. 13.

the orthogonal projection operator on Vy;:

PVZJ(f)(‘x)
= 2 (S (), u(u = 27n)) 62, (x = 27n).

(54)
Let us denote ¢(x) = ¢(—x). Since ¢ (x) is a low-pass
filter, we can redefine the discrete approximation A,; f
with the function ¢ (x) instead of 0(x)

Asif = (f* 82 (271))nez
(£, o e —270)))

The best estimate of f (x) can easily be derived from this
discrete approximation by using (54). Let H be the dis-
crete filter whose impulse response is (h_,) ,cz. From (52)
and (55), one can show [38] that the discrete approxima-
tions, A,; f, are computed with the same pyramidal algo-
rithm described in (47) and (48), by using the discrete
filter A instead of U. Fig. 18 gives the graph of a scaling
function ¢ (x).

Let us now explain how to extract exactly the difference
of information between the approximations of a function
at the resolutions 27/ and 2/*'. The approximations of a
function f (x) € L*(R) at the resolutions 27 and 27 * ' are
given by the orthogonal projection of f (x) on the vector
spaces V,; and V,;., respectively. Intuitively, the ap-
proximation at the resolution 27" must give a better es-
timate of f (x) than the approximation at the resolution
27, Hence, the vector spaces V,; and V,;+: should satisfy

V2] C V2]+I. (56)
The difference of information between the approximations
at the resolutions 2/ and 2/%! is therefore equal to the

(55)
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orthogonal projection of f (x) on the orthogonal comple-
ment of V,; in V,;.1. Let O,; be this orthogonal comple-
ment. The vector space 0,, is orthogonal to V,; and sat-
isfies

02j C:] sz = V2j+|.

To compute the orthogonal projection of a function f (x)
on 0,;, we need to find an orthonormal basis of Q,;. One
can show [39] that yuch an orthonormal basis can be built
by dilating and tra slating a particular wavelet ¥ (x). For
any resolution 27, flet us denote Yri(x) = \/?zﬁ(ij).
The family of functions (y,, (x — 27n)),., is then an
orthonormal basis §f O,,. The Fourier transform of Y (x)
is given by !

¥(20) = G(e[ ™) §(w)
With G(e ™) = e"™“H(e™™). (57)

G(e™™) is the trafsfer function of a discrete filter G —
(&n)nez- The filterff G and H make a pair of quadrature
mirror filters [54].

When the resolutljon 2/ varies between 0 and -+ oo, the
family of functions|{ y,; (x — 27 1)) (n,jyez2 COnSstitutes a
wavelet orthonorm| basis of L? (R ) [39]. This shows that
the multiresolution {Foncept and quadrature mirror filters

are directly related

Let Pgy,, f (x) be
tion f (x) € L*(R
gives the difference
mations of f (x) at

wavelet orthonormal bases.

the orthonormal projection of a func-
on the vector space 0,; . Py, f (x)
of information between the approxi-
he resolutions of 27 and 2/*". It can

be computed by exg
Of 021'

Pozxf(x)
= % (f(u

neZ

nding f (x) in the orthonormal basis

Vai(u = 27n) ) v (x ~ 27n).

(58)

This difference of information is characterized by the set

of inner products

Dyf=({.

f(x), Yo (x = 27n))) (59)

nez

Let G be the filter whose impulse response is given by G

= (8-r)nez- From

that D, ;fis computec

55), (57), and (59), one can derive
by filtering 4,; f with G and keeping

every other sample cff the convolution product [38]. This
algorithm is illustrated by the block diagram shown in Fig.

19(a); it is essentiall

bank decomposition

similar to a quadrature mirror filter
[14].

Let us now descripe a simple two-dimensional exten-

sion of the one-d
model. We saw that

tation is computed b
filter O (x, y) = 6(x

imensional multiresolution wavelet
r separable multiresolution represen-
filtering the signal with a low-pass
0(y) [(50)]. Let ©(x, y) = ©(—x,

—¥). The discrete apjproximation of a function f (x, y) €

L*(R? ) at the resolu

ion 2/ can also be rewritten

A2if: ((f(l’ y);

ézj(x

=27n,y = 27m))) (60)

(n,m)eZZ.
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(& HIz}» D,if
— At i {7 Ayif »

(a)

—»A,it Bff2] [ o1 Azi,,"—b
D, f—ff2}{G ]
(b)
: put one zero between each sample

IE : keep one sample out of two
[X] : comohe wi fiter  x
E : muttiplication by 2

Fig. 19. (a) Decomposition of A4, ., finto 4,; fand D,, f when computing
an orthogonal wavelet representation. The filters H and G make a pair
of quadrature mirror filters. (b) Reconstruction of Az f from A, f and
D;, f when reconstructing the original signal from an orthogonal wavelet
representation.

The extension of the one-dimensional model is straight-
forward. The best estimate of f(x, y) given the inner
products of A,; fis equal to the orthogonal projection of
f(x, y) on the vector space V., generated by the family
of functions

(6 (x —27n, y - 27m)) (61)
The sequence of vector spaces (V21)jez is called a mul-
tiresolution approximation of L?(R?). Similarly to the
one-dimensional model, the difference of information be-
tween the approximation of a signal f (x, y) at the reso-
lutions 2/ and 2/*" is equal to the orthogonal projection
of f(x, y) on the orthogonal complement 0,; of V,; in
V2j+1. We can build [45] an orthonormal basis of 0,; by
scaling and translating three wavelets: ¥!(x, y), ‘I/z(x,
), and ¥*(x, ). Let us denote ¥, (x, y) =2/¥i(27x,
27y)for1 < i < 3. The family of functions

(n,myeZ?’

27} (x - 27n, y—27m)
279%3(x — 27n, y - 27m)
2793 (x = 27n, y — 27 m)

(62)

(n,m)eZ?

is an orthonormal basis of 0,;. When the resolution 2/

varies between 0 and + oo, the family of functions
279} (x = 270, y — 27m)
273 (x — 27n, y—27m)
27993, (x = 27n, y — 27 m)

(63)

(n,m,j)eZ3

is a wavelet orthonormal basis of L2 (R?). Fig. 20 shows
approximately the frequency support of the three wavelets
¥'(x, y), ¥2(x, y), ¥3(x, y). Each wavelet Vi(x, y)
can be interpreted as the impulse response of a band-pass
filter having a specific orientation selectivity. This cor-
responds to a particular case of oriented two-dimensional
discrete wavelet transform.

In two dimensions, the difference of information be-
tween the approximations A,;+: f and A, [ is therefore
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Fig. 20. A\gproximate repartition of the frequency support of ¥ (w,, wy),
2(w,, wy), and ¥ (w,, w,) in the frequency plane.

characterized by the sequences of inner products
D%sz ((f(x’ y)a
Vi(x—27n,y - 2‘jm)))
D3if = ({f(x ),
¥2,(x —27n,y — 2'jm)))
Diif=({f(x.y),
V3 (x —27n,y — 2'jm)))

(n,myez?’
(n,m)ez?’

(n,m)eZ?’

Each of these sequences of inner products can be consid-
ered as an image. Dj; f gives the vertical higher frequen-
cies (horizontal edges), D3; f gives the horizontal higher
frequencies (vertical edges), and D3; f gives the higher
frequencies in both directions (comners) (see Fig. 21). Let
us suppose that initially we have an image A, f measured
at the resolution 1. For any J > 0, this discrete image can
be decomposed between the resolutions 1 and 277, and
completely represented by the 3J + 1 discrete images

(AZ'Jf’ (D%jf)—.lsjs—l’ (Dg}f‘)-JSjsfl’
(D%jf)—ls_/s—l)'

This set of images is called an orthogonal wavelet rep-
resentation in two dimensions [38]. The image A,-.f is a
coarse approximation, and the images D), f give the im-
age details for different orientations and resolutions. If the
original image has N? pixels, each image 4, f, D3, f,
D3, f, D3; f has 27 - N? pixels (j < 0). The total number
of pixels of an orthogonal wavelet representation is there-
fore equal to N 2_ It does not increase the volume of data.
This is due to the orthogonality of the representation.

A wavelet representation can be computed with a sep-
arable extension of the algorithm illustrated in Fig. 19(a)
[38]. This extension corresponds to a separable quadra-
ture mirror filter decomposition as described by Woods
[63]. Fig. 21(b) gives the wavelet representation of the
image in Fig. 16. From this representation, we can re-
construct the original image with a two-dimensional sep-
arable extension of the algorithm illustrated in Fig. 19(b)
[38]. Fig. 21(c) is the reconstructed image from the wave-
let representation shown in Fig. 21(b). The reconstruction
is numerically stable. It enables us to use this type of rep-
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Fig. 21. (a) Labeling of the detail images shown in the wavelet represen-
tation. (b) Orthogonal wavelet representation of the lady image for J =
3. At a given resolution, each detail image corresponds to a particular
spatial orientation tuning. (c) Reconstruction of the original image from
the orthogonal wavelet representation. The reconstruction is numerically
stable.

resentation for image coding. A more general nonsepar-
able extension of the wavelet model was studied by Meyer
[43]. Such extensions are, however, more difficult to im-
plement and are computationally more expensive.

B. Applications of Multiresolution Transforms

The wavelet model gives a precise understanding of the
concept of multiresolution by introducing the sequence of
vector spaces ( V,;) ez. A noncorrelated multiresolution
representation can be built by decomposing the signal into
a wavelet orthonormal basis. A difficult problem when
using a multiresolution representation for analyzing a
scene is to relate the details appearing at different reso-
lutions. Many ad hoc techniques have been developed for
this purpose. We saw in Section III-D that the local reg-
ularity of a function is provided by the decay rate of the
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wavelet coefficients when the resolution increases. These
theorems give a first approach for comparing the value of
the decomposition at different resolutions.

Multiband image decompositions are also well adapted
for coding images because it is possible to match the hu-
man visual system sensitivity and take advantage of the
intrinsic statistical properties of images. The contrast sen-
sitivity function (Fig. 3) shows that the sensitivity of hu-
man vision depends upon the frequency of the stimulus.
We want to quantize each frequency band with the mini-
mum number of bits, and at the same time try to recon-
struct the best possible image for the human visual per-
ception. For this purpose, we adapt the quantization noise
to the human sensitivity along each frequency band. The
more sensitive the human system, the less quantlzatlon
noise is introduced. This enables us to introduce a mini-
mum amount of perceivable distortion in the recon-
structed image. Watson has done some particularly de-
tailed psychophysical experiments to test this type of
approach for image coding [60].

The statistical properties of images give another reason
for using multiband decompositions in image coding. It is
well known that the intensity of images is locally corre-
lated. Predictive codings have been particularly success-
ful to compress the number of bits used in coding an im-
age. The wavelet coefficients give a measure of the local
contrast at different scales. Since the image intensity is
locally correlated, these local contrasts generally have a
small amplitude [38]. We can take advantage of this prop-
erty for coding the wavelet coefficients on fewer bits with-
out introducing any noticeable distortion. As explained in
the previous section, a wavelet orthogonal representation
can also be imterpreted as a decomposition into a quad-
rature mirror filter bank. Several studies in image pro-
cessing have already shown the efficiency of these filter
banks for data compression [1], [63].

In order to use a multiresolution representation for pat-
tern recognition applications, we must be able to build
models of patterns within the multiresolution representa-
tion. The patterns might be located anywhere in the im-

. age. Hence, the models must be independent from the pat-
tern location. When a pattern is translated, its model
should only be translated but not modified. Let us show
that a multiresolution representation does not verify this
translation property. To simplify the explanation, we con-
sider the particular case of a one-dimensional orthogonal
wavelet decomposition. At the resolution 2/, the details
of a signal f (x) € L*(R ) are defined by

Dyf=({f(x), ¥5;(x = 27m)))

D, f can be expressed as a uniform sampling of the wave-
let transform at the scale 2/

DZJf= (Wf(zj’ z_jn))nel-
Let g(x) = f(x — 7) be a translation of f (x) by 7. Since

a wavelet transform can be written as a convolution prod-
uct [(22)], it is shift invariant

Wg(2/, u) = WF(2/,u — 7).
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Fig. 22. This drawing shows that the sampling of a wavelet transform
(given by the crosses) can be very different after translating the signal.
The wavelet transform is translated but the sampling does not translate
if the translation is not proportional to the sampling interval (adapted
from [37]).

However, the sampling of Wg (27, u) does not correspond
to a translation of the sampling of Wf (27, u) unless 7 =
k27 k € Z (see Fig. 22).

This distortion through translation implies that the
wavelet coefficients of a pattern at the resolution 2j de-
pend upon the position of the pattern modulo 27/, This
property is inherent to the notion of resolution. Indeed, at
the resolution 2/, we cannot measure anything smaller
than 27/ so we cannot represent a displacement smaller
than 2. One can find the same problem in all the pyram-
idal multiresolution representations and any uniform sam-
pling of a wavelet transform.

A first solution to this translation problem is to sample
the wavelet transform Wf (27, u) at a rate much larger
than 2/, The samples then translate approximately when
the signal translates. However, this solution considerably
increases the redundancy of the representation and the
translation is still not perfect. This technique is often
adopted for pattern recognition algorithms based on pyr-
amid decompositions. A second solution consists of de-
fining a representation based on an adaptive sampling of
the functions Wf (27, u) which translates when the signal
translates.

V. Zero CROSSINGS OF MULTIFREQUENCY CHANNELS

In the previous sections we studied the properties of the
decomposition of a function into multifrequency channels
of constant size on a logarithmic scale. We saw that such
a decomposition can be interpreted as a wavelet trans-
form. We then described the properties and applications
of a discrete wavelet transform built from a uniform sam-
pling of the continuous wavelet transform. However, we
showed that such a discretization is difficult to use for
pattern recognition applications because it is not invariant
through translation. Here, we review the characterization
of a signal from the zero crossings of a wavelet transform.
Such a characterization defines a discrete representation
which translates when the signal translates.

If a function f (x) is translated, for each scale s, the
function Wf (s, u) is translated along the parameter u.
Hence, the zero crossings of Wf (s, u) are translated as
well. Let us suppose that ¥ (x) is equal to the second de-
rivative of a smoothing function £ (x)

¥(x) = £"(x).
A smoothing function is a function which can be inter-
preted as the impulse response of a low-pass filter. Any
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zero crossing of Wf (s, u) corresponds to a point of abrupt
change in the function f(x) smoothed by £,(x) =
Vs (sx). Indeed, if ¥ (x) = £” (x)

W (s, u) = fxd(u) = s(f* £)" (u).

Hence, a zero crossing of Wf (s, u) is an inflection point
of the function f(x) smoothed by & (x). Fig. 23 illus-
trates this on a straight edge. This zero-crossing detection
is a standard edge finding operation in computer vision
[41].

Let us now study the completeness of stability of such
a representation. Is it possible to reconstruct f (x) from
the zero crossings of Wf (s, u)? We know that a wavelet
transform Wf (s, u) defines a stable and complete repre-
sentation of f (x). It is therefore equivalent to study the
reconstruction of Wf (s, u) from its own zero crossings.
If the function Wf (s, u) was a priori any function of
L*(R* X R), it is clear that such a reconstruction would
not be possible. Indeed, for a given set of zero crossings,
there is an infinite number of functions in L*(R* X R)
whose zero crossings correspond to this set. However, we
saw that a wavelet transform Wf (s, u) is not any function
of L*(R* x R). It verifies the constraint of the repro-
ducing kernel [(25)]. We must therefore study whether the
constraint of the reproducing kernel plus the information
on the zero-crossing positions is enough to have a stable
characterization of Wf (s, u).

An interesting particular case of wavelet transform con-
sists of choosing a wavelet equal to the Laplacian of a
Gaussian. Since a Gaussian is a smoothing function, the
zero crossings of such a wavelet transform can also be
interpreted as signal edges [41]. In this particular case,
the intrinsic redundancy of the wavelet transform Wf (s,
1) can be expressed with the differential equation of heat
diffusion [29]. By applying the maximum principles to the
solutions of the heat differential equation, Hummel [24]
proved that a function f (x) is indeed characterized by the
zero crossings of Wf (s, u). However, Hummel also
showed that this characterization is not stable. So a slight
perturbation of the zero crossings may correspond a sub-
stantial perturbation of the high frequencies of the recon-
structed function. Reconstruction algorithms have been
developed on images by Sanz and Huang [53] as well as
Zeevi and Rotem [64]. These reconstruction algorithms
are iterative. They were not able to reconstruct the image
perfectly in both cases. Hummel and Moniot [25] tried to
stabilize the zero-crossings representation by also record-
ing the value of the gradient of Wf (s, u) along each zero
crossing. By adding the gradient information, they have

" shown experimentally that one can then compute a stable
reconstruction of f (x) from the zero crossings of Wf (s,
u). In this algorithm, the position of the zero crossings
and the value of the gradients are kept along a uniform
sequence of scales: (jo);ez With oo > 0. Such a sequence
is much more dense than the dyadic sequences (27);ez
used when we discretized the wavelet transform.
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f(x)

Fig. 23. The zero crossings of a wavelet transform provide the location of
the inflection points (edges) of f * £,(x) (adapted from [37]).

Another way to stabilize a zero-crossing representation
is to record the energy of Wf (s, u) between two consec-
utive zero crossings appearing at the same scale [37]. This
energy preserves an L*(R) structure to the zero- crossmg
representation. In particular, we can then define an L*(R)
distance for pattern recognition applications. By keeping
the position of the zero crossings of Wf (s, u) and the
local energies only along a dyadic sequence of scales
(27) ez, we showed that the original signal can be recon-
structed exactly in few iterations [37]. The reconstruction
uses the reproducing kernel equation which is valid for
any type of wavelet transform. We believe that the math-
ematical tools developed within the wavelet model give a
simpler approach for analyzing the zero-crossing prob-
lem. From a practical point of view, the reconstruction
algorithm developed from the reproducing kernel is sim-
ple to implement in both one and two dimensions and con-
verges quickly (about 10 iterations ).

Representations based on zero crossings of multifre-
quency channels are still not well understood. They are
built with a nonlinear transform which is difficult to
model. However, they have very good potential for pat-
tern characterization. They characterize the position of the
signal edges and are translation invariant. '

VI. CONCLUSION

In this paper, we reviewed the application of multifre-
quency decompositions to image processing from several
viewpoints. We covered some psychophysical and phys-
iological data showing that such a decomposition seems
to be implemented in the human visual cortex. We then
described the mathematical properties of these decompo-
sitions. We first reviewed the properties of a window Fou-
rier transform and explained why this decomposition is
not convenient for analyzing signals such as images. We
then introduced the wavelet transform and described its
most important properties. Although the goal of this paper
was not to build any psychophysiological model of the
human visual system, it would be interesting to further
investigate the relevance of the wavelet model to some
low-level processes in the visual cortex.

In computer vision, multifrequency channel decompo—
sitions are interpreted through the concept of multires-
olution. We described the classical pyramidal multi-
resolution algorithms and the wavelet approach to multi-
resolution decompositions. This model shows that the dif-
ference of information between the approximation of a
function at two different resolutions is computed by de-
composing the function into a wavelet orthonormal basis.
We also explained the relationship between orthonormal
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wavelets and quadrature mirror filters. We can compute
the decomposition of a function into a wavelet orthonor-
mal basis with a quadrature mirror filter bank. A third
motivation for using multiband decomposition is due to
the intrinsic statistical properties of images. Images have
a relatively simple decomposition into frequency sub-
bands. These bands can be coded on fewer bits with no
visible distortions.

A uniform sampling of each multifrequency channel
defines a representation which is not translation invariant.
It is therefore difficult to build pattern recognition algo-
rithms from such decompositions. We reviewed the prop-
erties of zero crossing in multiband decompositions. This
adaptive sampling is translation .invariant but is much
more difficult to analyze. We described some previous re-
sults and gave the wavelet formalization of this problem
through the reproducing kernel equation.
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