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On Denoising and Best Signal Representation

Hamid Krim, Senior Member, IEEEDewey Tucker, $phane MallatMember, IEEE and David Donoho

Abstract—We propose a best basis algorithm for signal en- the contaminating noise. An estimation problem also entails
hancement in white Gaussian noise. The best basis search ishe specification of an error objective criterion to be optimized

performed in families of orthonormal bases constructed with in some chosen functional space. The choice of the criterion
wavelet packets or local cosine bases. We base our search for the Its i timat ith diff t ) tructi f
“best” basis on a criterion of minimal reconstruction error of the ~ 'ESUIS IN €StMates wi ifrerent reconstruction performances

underlying signal. This approach is intuitively appealing because Which depend on
the enhanced or estimated signal has an associated measure of 3) the additive noise,

performance, namely, the resulting mean-square error. Previous b) the smoothness class of the underlying signal
approaches in this framework have focused on obtaining the most . !
c) the selected estimator.

“compact” signal representations, which consequently contribute
to effective denoising. These approaches, however, do not pos-One can easily verify that the performance of a Wiener filter
sess the inherent measure of performance which our algorithm |pses its optimality to a nonlinear filter for signal inputs from

provides. a class of piecewise-smooth signals, confirming statement b
We first propose an estimator of the mean-square error, based above P 9 ’ 9 )

on a heuristic argument and subsequently compare the recon- . . . .
struction performance based upon it to that based on the Stein  The recent resurgence of interest in the nonparametric esti-
unbiased risk estimator. We compare the two proposed estimators mation problem may primarily be attributed to the emergence
by providing both qualitative and quantitative analyses of the of wavelet bases as not only unconditional orthogonal bases for
bias term. Having two estimators of the mean-square error, we 5 |56 class of smoothness spaces [6], [10], but as an efficient
incorporate these cost functions into the search for the “best framework for function expansion as well. The problem of
basis, and subsequently provide a substantiating example to . . : " ; s
demonstrate their performance. estimating an unknown signal embedded in Gaussian noise
has received a great deal of attention in numerous studies, and
will also be of interest in this sequel. For such a problem, one
is generally led to invoke the least squares error criterion in
evaluating a given signal reconstruction/estimation procedure.
. INTRODUCTION Different estimation rules could subsequently be compared

HE quintessential goal of statistical estimation is t@n the basis of their resultingnean-square error(MSE)

elicit useful information about a signal underlying arthenceforth referred to as the risk).
observed random process. This information, which could eitherStein [16] has under quite general conditions, derived an
completely characterize the signal or at least consist of sighébiased estimatasf such a risk for a Gaussian estimator. The
parameters crucial to the problem at hand (e.g., delay estirdgak differentiability he assumed for an adopted estimation
tion), is generally obtained by using some side informatidile allows one to theoretically evaluate a wide class of
about the process itself. The reconstruction of an unkno\ﬁﬁtimators, including those which are nonlinear, as discussed
(or minimally known) signal embedded in noise, for examp|é),e|OW. This resulting risk estimator thus provides one with a
would generally make use of some prior information abomeoretical means to pI'EdiCt performance, which in turn is key

to not only selecting an acceptable signal estimation procedure,
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optimalmin-max estimatoof a noisy piecewise-smooth signalapproximation of the signal. To approximate a signal in a
in a wavelet basis [6]. In spite of its nonlinearity, such given smoothness clas$, which includes piecewise-smooth
wavelet-based estimator can be theoretically evaluated withlynomial signals, an adapted wavelet basis offers, as noted
no need for experimentation by way of its predicted risk, thwesarlier, more flexibility than the classical Karhuneneke
affording one the ability to appropriately select an analys{&-L) basis. This synergy between an adapted signal represen-
wavelet. tation and the noise removal problem is of central importance
As briefly alluded to earlier, a given wavelet function mayo our proposed best basis search technique.
not necessarily be best adapted to an underlying signal of atWe can succinctly state the problem as one of retrieving an
observed process; furthermore, the reconstruction performanc&nown deterministic signgls(¢)} after observing a process
is dependent upon the noise realization. This indicates tha{&(¢)} sampled over an interval of lengtN. We henceforth
universal wavelet basis is more than one could hope for, aassume that the observed samplegm]} are those of an
that further optimization is required. When a signal includasderlying unknown signdls[m]} and of white nois€n[m]},
more complex structures and in particular high-frequeneyhere
oscillations, it becomes necessary to adaptively select an
appropriatebest basisvhich provides the best signal estimate x[m] = s[m] + n[m] 1)
upon discarding (thresholding) the noisy coefficients. Note that
the entropy-based adapted/best basis search proposed inf{@];n = 1,2, ---, N.
[12], and [17] does not account for the statistical propertiesLet B € D = {57|p € P} wherep € P is some partition
of the noise and, as a result, is fraught with highly variablef the unit interval[0, 1] and B> = {W% },<;<y is a set
performance, particularly in noisy scenarios. To address tlif vectors forming a basis of our observation space. Our
inherent variability? a new class of algorithms have recentlgoal is to guard against theorst case noiseoefficients (i.e.,
been studied in [5] and also in [9]. An approach was firstxclude the components which are potentially only noise) by
proposed in [5] and consisted of performing a best basis seausing the supremum value of a Gaussian random variable.
in families of orthonormal bases constructed with waveldowards that end, we call upon a statistical theory which
packets or local cosine bases. This is achieved by capitalizisifpulates that the extreme values assumed by variables from
on a representation mismatch of the underlying signal and @fgiven distribution enjoy a corresponding limit distribution
the additive noise in such a basis. This, as a result, affordtbich represents a domain of attraction [15]. This limit
one the ability to discriminate against the noise and optimalfyistribution may providesupremavaluesin probability, from
retrieve the signal by minimizing a risk estimate similar to thavhich a thresholding procedure naturally follows. It consists
described for wavelet coefficient thresholding. Estimating thi discarding all inner product§(z, W% )} below a threshold
risk in a given basis will be the first focus of this paper. B{, in order to reconstruct an estimafé[m]} of {s[m]}. We
specializing the derivation to a white Gaussian noise settirdgnote the vector of observed samplegm|} by z and the
we are able to analyze this estimate and prove it to be bias#htbasis vector byW?, . Let K = Card {|(x, W% )| > T}
by calling upon the Stein unbiased risk estimator of a meamd suppose that the coefficientér, W2 )} are sorted in
of a multivariate normal distribution. decreasing magnitude far< ¢ < N. We then have
To stay within the intended scope of this paper, we as- X«
sume throughout that the statistical properties of the noise .
are known,gnamely, Gaussian with Fz)erg—mean and known &= ZWQ' (e, WZ)- (2)
variance, and that the signal of interest is unknown. In the =t

next section, we briefly discuss the issues associated withrpe thresholdz” will clearly vary with the noise statistics
noise removal by thresholding. In Section I, we derive agnq is ideally chosen so thatip, |(n, W2 )| — T almost
unbiased risk estimate of a wavelet-based signal estima\‘gmrmy (a.s.)[15]. For Gaussian white noise of varianeg,
which we compare to a heuristically derived risk. In Sectioge coefficients{(n, W” )}1<;<n are N independent Gauss-
IV, we extend the application of the risk estimate to selectjg, random variables with the same variance. Under some
“best” basis which leads to an enhanced signal reconstructi@@nerm conditions, the value assumed by the supremum of
We give some concluding remarks in Section V. {|(n, W2 )2}, is then 202 log N”3 in probability
(i.p.) [7].7 To guarantee that the thresholded coefficients
[I. NOISE REMOVAL BY THRESHOLDING always include some signal information, one choo%es=

As briefly alluded to earlier, any prior knowledge (quantiy/ 29~ log N, which was shown to be an optimal threshold

tative or qualitative) about an undesired noise contaminatifig™ & number of perspectives [6], [8]. The vectdts, for

a signal can and should be used in estimating the latter. yns K will generally have weights that correspond to the

addition, implementing an estimator in an orthogonal bagionzero signal coefficients (i.ej(s, W7 )| # 0). Wavelet

is intuitively appealing on account of the distribution of thd@S€S are known to concentrate the energy of piecewise-
noise energy in such a basis. This indeed provides importgAt0Oth signals into a few high-energy coefficients [4]. If the
information for discriminating between the signal and nois€€r9Y of {s[m]} is concentrated into a few high-amplitude
which to a great extent contributes to obtaining a go(ﬁpefﬂments, such a representation can provide an accurate

2The basis search is very sensitive to noise realization. 3Unless otherwise indicatedlot” indicates the natural logarithriog,_ .
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. Hard Inverse
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Fig. 1. Procedure for reconstructing a noisy signal.

estimate of{s[r]}. Thus the advantage of expressifgm]|} In recovering signal coefficients in additive noise, this decision
in an orthogonal wavelet basis is two-fold. rule has an associated quadratic loss which depends amd
a) If the contaminating noise samples are independent &A@ signal coefficieny;, or
identically distributed (i.i.d.) Gaussian, so are the coef-

ficients, and their statistical independence is preserved. L{vr (Y2 )s yss Ty = (ys — 0 (). 5)
b) Intrinsic properties of the signal are preserved in a . o )
wavelet basis. Note that when applied to the wavelet coefficients in a

padicular basiss? = {W7 }, the mean value of the loss is

When a signal possesses more complex features, one N xS R
e estimation error or risk ifjs — 8], or

to search for the basis which would result in its best signg]
estimation. Before introducing this idea, we first discuss a "
method for estimating the mean-square error associated with BLL(yrW3), 8. T)} =R(s, T) . -
thresholding wavelet coefficients at a given le@elGiven a =E{lls = WorrWOII'}.  (6)
signal{s[m]} in some basis representation, we will threshold . _

the coefficients and estimate the resulting error, and this erfd? compactnes3y’; represents the vector with components

will then be used in the search for the best basis, as discus¥€fi = (&, W7 ), and W7 represents the corresponding
in Section IV. matrix of basis functions.

Since we only consider orthogonal bases here, the risk can

be expressed in terms of the basis coefficients, or
Ill. RISk OF A WAVELET-BASED ESTIMATOR

In this section, we propose a mean-square error estimator R(s, T) =E{||WEWE — W2~y (WD)|*}
and proceed to derive its bias. The mean-square error, or more N
formally therisk, is given by = Z E{W? — v (WP} (7)
i=1
R(s, T) = E{lls - &]1*} 3)

There are two cases that must be analyzed in order to define
where 8 is the vector representation of the reconstructegh estimator.
signal. As shown in Fig. 1, a signal reconstruction is obtained
by thresholding a set of coefficients in a given basis and
then applying an inverse transformation. This is the genefe
procedure that we use throughout the paper. For cIari&
the thresholding procedure will be strictly limited to a hard
thresholding rule.

Case 1: If (W2 |? < T? with the hard thresholding strat-
y, this coefficient is set to zero. This contributes the value
WP |? to the total risk. Since

E{W2, 2+ o7 ®)

y=r

. . (WP |? is evaluated agWr |? — o2,
A. Proposed Risk Estimator ! !

. . : . Case 2: If WP |? > T?, this coefficient is left unchanged,
It is often desirable to theoretically assess the quality | . i .
. L . . lelding a mean-square error that is on average equal to the
of an estimator and predict its limitations in a variety o

i i 2
. , . . noise variances=.
scenarios. We first follow a simple approach to derive an

estimator of the risk as defined in (3). While this approach is The total approximation error can thus be estimated by
certainly applicable to any noise scenario with a corresponding
threshold7’, we restrict our study to Gaussian noise for the N
clarity of exposition. Moreover, we prove the existence of an Ri(s, T) = Z Wz,
unbiased risk estimator for this case by deriving it. =1

To proceed, letyr(y,) for any giveny. € R denote | hare
a thresholding rule which eliminates basis coefficients at or

%) (9)

below a levelZ. As we have argued earlier, the choice of () = {u — 02, A (10)
the threshold is based upon ensuring that any isolated noise T o2, if uw> T2
coefficient (i.e., noise only and devoid of signal contribution)
will be discarded We use the symboR (s, T') to denote that this estimator
y it .| > T is biased, a fact which will be shown below. In the following
r(yz) = { o o (4) theorem, we compute the true rigKs, 7') = E{||s—3||}* and
0, if Jy.| < T derive the bias using the Stein unbiased risk estimator [16].
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Theorem 1:Let {W? };<;<y be an orthonormal basis of Substituting the above expressions back into (12) yields
the observation space. If the coefficierts[m]} are zero-

mean, uncorrelated Gaussian random variables with variance N
o2, the bias of the estimat® 5 (s, 7") with respect tdR (s, T°) E{Z [y (W) — WSZ_]Q}
is i=1
n=R(s, T)~E{Rp(s. T)} = ERats D)
N 2
=270 37 [T ~ (s, WE ) +(~T—(s, WE )] (10) H29P D T = We) + (=T =Wl O
i=1
with We now define the risk estimat® (s, 7) = Rp(8,T)+u,
Plu) = ;e—(uz/%z). which Theorem 1 has shown to be unbiased. Henceforth,
oV2r we typically refer to Ry (s,7) as the unbiased risk for

Proof: Recall that the basis coefficients resulting fronghort. Theorem 1 also proves that the expected value of the

the orthogonal transform are denoted{dyr } along with the Suboptimal estimatoR (s, T') is a lower bound on the mean-
corresponding vector of basis functiof¥ 1. In the proof Square error. The estimator is biased because we have assumed

below, we drop the superscriptfor clarity. Define that the magnitudes of the signhal components are always above
T in (9). Since we did not account for the errors due to
(W) =We. Ly, 151} an erroneous decision arourdd we see that a coefficient
gr(Ws,) = —Wa L., 1<1} composed of both signal and noise components may be present

below the threshold’, when the signal contribution should

whereZ, , is an indicator function constrained by its argume ave set it above.

and where the noisy coefficielV,, has a normal distribution
W,, ~ N(W;., o2). We can then write
WT(WJH) = Wl‘i + gT(Wl‘i)

to obtain the following:
N The biased riskRp(s,T) is clearly different from the

B. Interpretive Analysis of the Risk Bias

Z e W, ) = W, |2 optimal or unbiased risk, and the significance of this difference

im1 will be dependent upor?” and {s[m]}. Heuristically, this
N difference is due to the naive and perhaps optimistic rule which

= Z E{{W., — W,,) + grOWV.)]*} attributes any coefficient belo® to noise and any coefficient
i=1 above T’ to the underlying signal. In short, a noisy signal
N coefficient can be less than or equal fodepending on its

= (E{(Wn,)?} + 2E{Wn,gr(W2)} + E{g7(W=)})-  local energy and how it is modified by the noise, regardless of
i=1 the noise-free coefficient. The nature of the underlying signal

(12) in the presence of noise at a level around the threstold

Using the property described in [16] (i.e., differentiation of & therefore very relevant. Recall thitis solely determined
by the noise variance and the length of the observation inter-

distribution)
val, V.
E{Wn, gr(Wn,)} = / Waogr(Wa, + W5, )W, ) dWn, A first-order evaluation of the unbiased rigk; (s, T)can
be graphically performed by considering its variation with a

— g2 /gT(Wn; F W) (W, ) dW, single _signal coefficien?tV? an_d a single noi_se co_effi_c_ient_
W . Fig. 2(a) shows the resulting plot. The discontinuities in
the risk estimate occur along the two*4thes, W5 +W?
T. For clarity, a cross section of this plot is shown in Fig. 2(b)
where “” denotes appropriate differentiation. Calling uporﬁOr the .caseW,{’,z_ N 2.5,Nar:d ':Eet kz)latsheq rllSk 'S mclude? tfor”
generalized derivatives, one can write comparison purposes. Note that both risks are asymptotically
constant, since all of the errors upfthave been accounted for
d Tiow, <y = S(Wa, +T) — §(Wy, — T) and since any com_ponent abc_ﬂieis considered to correspo.nd
dWy, o= to the underlying signal. As Fig. 2(b) demonstrates, the biased

with 6(-) denoting the Dirac impulse, and as a result, we obtaffs¥ IS @ fairly good approximation to the unbiased risk in the
regions whergW? | is away from7" (in this casel’ = 5).

—o? / G W, + W, )W, ) W,

/g/T(Wm W, ) p(W,,) dW,, Note also that we are only pl(_)ttlng our estlm_ate of the_ risk,
so that for some noise realizations (e.g., a noise coefficient of
2.5) the risk estimate may be negative. In the remainder of
=—-11Z W, ) dW, ) . . . , .
/ (e 1<y $ (W) DV, this section and later in Section IlI-E, we will quantify the

+T(p(T —Ws,) + (=T —W,,)). significance of the bias term.
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Fiws)

d(w+T)

-T= -Aoc T=Xc

Fig. 3. Graphical illustration of the significance of the bias term as a function
of o and the underlying distribution of the signal coefficients.

Unbiased Risk Estimate

normalized by the valu&'o2, which corresponds to the noise
energy E||n|*}. To indicate the dependence of the bias on

Noise Coefficjeg > 1o -0 g&‘@ the noise variance, we |&f = Ao
. R(s, T)—E{Rp(s, T)}
@ s, o) = =15
35 , ‘ . =200 Y [p(Ae = WE) + ¢(—Ao — WE)ROWE).
— Unbiased Risk Estimator wr
30t -—-— Biased Risk Estimator || i
(15)
»y ] This parameterization is also useful, as we will later demon-

strate thatA\ = /2 log N may not necessarily provide the
optimal threshold, when an adaptive basis is used.

From (15), the value ofi(s, o)/2Ac is composed of two
shifted Gaussian functions weighted by the histogram of the
signal coefficients. Fig. 3 graphically illustrates these two
components (a continuous PO¥WY ) is shown for graphical
clarity). The illustration shows that the threshdldand the
histogram of the signal coefficients will determine how well
Rp(s, T) approximatesR (s, 7'). The plot, however, does not

Risk Estimate
S & 8

w
T

=10 s _ 0 - s 10 provide insight about the bias term as a function of these
Signal Coefficient parameters. A more formal and quantitative assessment of
(b) these factors will be provided in Section IlI-E.

Fig. 2. (a) Plot of the unbiased risk estimator as a function of a single signal Some inSight_ can nevertheles; b_e obtained .by ﬁnding a
coefficient and a single noise coefficient. (b) Cross section of the plot in (Bpund on the bias and by analyzing its asymptotic properties.

that shows the risk estimator as a function of a single signal coefficient apq)r a crude approximation note th@t) < 1/‘ /2702, and
a noise coefficient equal t®.5. ! - ’ ’
consequently,

To better understand the effects of the bias term, we rewrite (s, o) < 2)o 2 1 Z hW? ) = 2v2 A (16)
o ;

(11) as T Vor we, \/_
R(s, T)— E{RB(s )} For the case\ = /2 log N, an upper bound is then given by
= 2T0? Z H(T —WE )+ (=T — WP )] (s, o) < L\long
Qo
R(s, T) — E{Ri(s,T)} an
No-2 which is an increasing function of the signal length. Starting
with the expression given in (15), we also evaluate the
=2+ Z T =W5) + (=T =Wy (13) following asymptotic cases:
a) letting o approach0
=2T Z AT =W )+ (=T = WEHLWE).  (14) .
' ' ﬂO(sv 0) = hlrb ﬂ(sv 0) =0; (18)

In (14), A(-) represents the normalized histogram of the signal ) While letting o approachc results in
coefficients (i.e.,3_,,» A(WVL) = 1). In this form, it is N o C2V2A e
more apparent how the bias term is related to the underlying fioo(8, o) = lim ji(s, o) = NG ¢ :
distribution of the signal coefficients. In addition, (14) has been

(19)
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bias. The MLE of the bias term is then given by

N
(s, 0) =200 Y [p(T = WE )+ (=T - W2 ). (21)

=1

For notational convenience, we [Bty1.(8, T') denote the risk
Rp(s, T) + pmL(s, o), even thoughRyy, (s, T) is not the
MLE of the true risk. To illustrate the function given in (21),
we plot this risk estomatorfor the scalar case. Fig. 4(a) and
(b) shows plots similar to those previously shown in Fig. 2(a)
and (b). Fig. 4(a) shows that the risk estimaRyr (s, 1)) is
symmetric about the £5axis in thez—y plane, and Fig. 4(b)
comparesRyy(s, T) to Ry(s, T).

: One problem with using the MLE to estimai€s, o) is that
Noise Coefficien; 3 10 -10 g\‘é@ it is a biased estimator. To determine the significance of this
bias, we compute the expected value.gfi.(s, o)

ML Risk Estimate
=
!

@)

N

E{unir(s, 0)} = 270" > [E{¢((T — WE) — WE )}

35 1 T
— Unbiased Risk Estimator p—
- - - ML Risk Estimator
o : +E{o((=T - WE) - Wil
[
s B i ] (22)

To proceed, we must evaluatg &y — WE )}

(]
S
T

E{p(y—WV }/</>y R )POVE, ) dWE.

Risk Estimate
—_
n

10f
st '/’ A 27ra2
b S g )
---- _ 2 P 2 »
O—)_ ) , / (/2= W2 P+OVE ] qyp
i Noise Coefficient = 2.5 —o0
-5 L . .
~10 -5 0 5 10 i — p _ 1 i
Signal Coefficient Letting z = WL — 5y, we obtain
(b) 2,02y [T
—(y* /4
| o R W) = [ @)
Fig. 4. (a) Plot of the MLE risk estimator as a function of a single signal Viro —00
coefficient and a single noise coefficient. (b) Cross section of the plot in (a) = $r02(y) (23)
= oy )

that shows the MLE risk estimator as a function of a single signal coefficient

and a noise coefficient equal 5. . . . .
In this caseg,,2(y) corresponds to a Gaussian function with

For A = /2 log IV, the asymptotic value then becomes varianceo? evaluated ag. The final result can then be written

as
- 4+/log N
Noo(sa 0) = . E / , O
N oy )

2
This approximation and qualitative analysis shows that inde- — 2To z; (202 (T = WE ) + g2 (=T = WE)]  (24)
pendent of the distribution of the signal coefficients, a crude ‘
upper bound and asymptotic values of the risk bias may be _ o7 2 Z { 1 o(T—WE)* /40 oo (T — WP)
obtained. The examples provided in Section IlI-D will show

that the underlying distribution determines the “shape” of the (TP 12 /a0
. ias. 4+ — e T s 7 g2 (=1 — Wg) .
risk bias 75 ¢ b2 ( )

. - . . . (25)
C. Maximum-Likelihood Estimate of the Risk Bias

Note that the bias term in (11) assumes prior knowledg@ée final equation shows that2 E{;r.(s, o)} is an upper
of the signal coefficients, and as a result, no true unbiasedund for the true bias. Equation (24) is useful because
estimator can be achieved in practice. This difficulty, howevat, shows that the only distinction between{/g;.(s, o)}
can be partially lifted by picking the maximume-likelihoodand x(s, o) is the variance of the Gaussian functions. As
estimate (MLE) (in this case, the MLE of the signal coefficierd result, the insight obtained from examining the value of
is the noisy coefficient [1]) to obtain an upper bound on the(s, o) is directly applicable to understanding fr.(8, o)}.
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Fig. 5. The synthetic signals considered in this numerical experiment. (a) Doppler. (b) Cusp. (c) HeaviSine. (d) MishMash.

For completeness, we include the asymptotic values wdlues ofs and A = /2 log N, where
E{pvr(s, 0)}/No?

. /(8. o)
8,0)=

Iim 7E{NML (S’ 0)} = 0 u( ) NO—(Q )
00 No2 o HML(S, 0

(26) /J]\{L(S O') TOQ
E{un (s, o)} 2\ ) The results are shown in Fig. 6 for the four signals of interest.

Uli_l)glo TQ’ = ﬁ N/, We note that the asymptotic values are equal for all four signals
(27) because the value of is constant in this example, and since

_ . N is large, the asymptotic valye..(s, o) is quite small. One
D. Numerical Experiment must remember, though, that Fig. 6 shows the normalized bias;
In this example, we continue the analysis of the ristherefore, the actual risk bias grows quadratically as a function
bias by considering some specific numerical examples. Toko.
four synthetic signals considered here are shown in Fig. 5.Comparing the plots shown in Fig. 6, we note that the major
The signals shown in Fig. 5(a)—(c) are well-represented indifferences are in the “shape” of the different bias terms. The
wavelet basis, and consequently, a histogram of the wavedbape will, in fact, be dependent on the histogram of the
coefficients for each of the signals is highly concentratachderlying signal coefficients, since the locations of the local
around zero. On the other hand, the more complex sigmalnima and maxima are functions of the coefficient values.
shown in Fig. 5(d) has wavelet coefficient values which afEhese interesting features, however, only occur for very small
less concentrated around zero. values ofc, since the risk bias approaches its asymptotic value
To illustrate the “shape” of the risk bias, the normalizedery rapidly. The intuitive reason for this is thatascreases,
biasesi(s, o) and (s, o) were computed for different the signal coefficients contribute less and less to the differences
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Fig. 6. Comparison of the risk bias and the maximum-likelihood estimate of the risk bias for different vatuab@standard deviation of the contaminating
noise. The signals shown in Fig. 5 were examined. (a) Doppler. (b) Cusp. (c) HeaviSine. (d) MishMash.

(Ao =WZ ) and(—Ao — WP ) in (15). As a result, for large  Fig. 6 also compares the maximum-likelihood estimate of
values ofs, the normalized histogram of the signal coefficientdhe risk bias with the true risk bias. For this example, the

can be approximated by asymptotic valuelim, o, finvi(s, o) is in fact larger than

1 WP — 0 fioo(8, o). We also note that the MLE of the risk bias is
(WP ) = {0’ otr?ér;vise (28) very close to the true bias for extremely small valuesrof
’ : This is understandable sin¢®?. is a good approximation of
Using this histogram in (15) yields WP if W is almost zero. Ag increases, however, the two
curves deviate anfl\1.(8, o) approaches its asymptotic value.
ii(s, 0) = ddap(\o) = 2V2A e : (29) The examples included in Section IV-C will show how these
’ N differences in the risk bias will affect the search for the basis

L ) . ) i . which produces the minimal reconstruction error.
which is the asymptotic valug..(s, o) given in (19). This

shows that the risk bias approaches its asymptotic value . o ) o

quickly as the signal coefficients become insignificant whén Risk Optimality Dependence on Signal Statistics
compared to\o. As a consequence, the risk bias should exhibit A more rigorous and systematic analysis of the bias may be
this property when the histograh{JV? ) drops off rapidly as performed and its behavior quantified in terms of the signal
the magnitude o¥V? increases. Comparing the results showstatistics, if these were available. This Bayesian-like approach
in Fig. 6, we note that the more complex MishMash signdéts us use this prior knowledge abdufrm]} to evaluate the
does not approach its asymptotic value as rapidly as the ote@gnificance of the bias term and to fully characterize it. As
signals because its histogram has a slower rate of decay. demonstrated below, a prior probability densjtp)V? ) for
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the signal coefficients is shown to have a strong influence ont.1 .
the bias and thus plays a key role in the search for an optimal
threshold 7. !

Proposition 1: Assume a probability densitf(V? ) of the 09
form

o
©

fFOVE) = VD) + (1 = 9 f0VF)

where fi(W?) is analytic and fo(W?) has a finite or
countably infinite number of singularities (i.efp(V?) =
> reo PRS(WE —14.)). The expected value of the bias term, § 5/
u(s, o), is then given by ©

o
@

etical Unbiased Risk
o
~

Uniform density. of coefficients over:

> 2 04r ~.—.:40% of total interval
_ 2 K —-:20% of total interval
Eslu(s, o)} =210°N e Z (25)! 1-3-- (27— 1) 03f ~10% of total interval .
j=0
PO+ RED -9 R e e s s e 0 e
oo

. Z [T — 1) + (=T — )] | - Fig. 7. Theoretical unbiased risk estimated for various cardinality ratios of
P signal/noise coefficients.

(30)
The proof of the above proposition is included in the Appen- 12 v
dix. Equation (30) shows that the bias term of the suboptimal
risk is strongly dependent dfi. This implies that the overall it
minimum of the true risk will be dependent on tlaepri-
ori probability densityf(-) (if available). The mode of the Z o8
E.{u(s, o)} will indeed determine the extremal point, and3
when combined withR 5(s, T') will result a posterioriin a 2 0
minimum at a corresponding “optimal” threshdld % *é -
lllustrative Example: For illustration purposes, we numeri- £ oal X +* Uniform density of coefficients over: |
cally analyze the two riskR z(s, T') and R(s, T) by con- g i "gg; of total interval
. . . . o —-:20% of total interval
sidering a class of signals that are well-approximated by | Xxx & HH —10% of total interval |
K coefficients of the orthonormal basid¥? }i<;<y. We F o A Suboptimal:
associate to the inner producfgs, W% )} a distribution | &M © 4 %:40% of total interval |
density given by T s o oftoral mienval
+ﬂ+++++ +. o Of 101al Interval
76) = "2 60) + 5 o) I S e S B

Out of NV coefficients, there are an average f— K zero Fig. 8. Comparison of the biased and unbiased theoretical risks estimated
coefficients andK nonzero coefficients whose values arér various cardinality ratios of signal/noise coefficients.

specified byh(6). As the proportionK /N becomes smaller,

the performance of the noise removal algorithm improves.

Fig. 7 shows the mean-square erfof||s — 3||?} as a function IV. ADAPTIVE SIGNAL REPRESENTATION

of the threshold, for different values &f/N. For this example,

we adjusted the parameters bff) so that the total signal A. Best Basis Search

energy was equal to the total noise energy (i.e., a signal-toyyhen the signal possesses more complex features, one pro-
?hOiSG rstio (dSNRk) of Ob?B)- ;j”}e mini”;umb?\:\(llﬁ?ﬁe_d Vlé"UG deeds to search for the basis which would result in its most
€ unbiased risk IS obtained 1or a value ICh 1S CloS€  parsimonious representation. In searching for a wavelet packet
to /202 log N (in this casey/20? log N ~ 2.9). However, gr local cosine Eest basis, we typically %ave a dictionﬂgry
the value of this optimall” does not remain invariant and isof possible bases, which for efficiency is endowed with a
a function of K/N. binary tree structure. Each no¢g j') (wherej € {0, ---, .J}
Fig. 8 compares the risR (s, T) with the expected error represents the depth and € {0, ---, 2/ — 1} represents
E{Rp(s, T)} computed with our estimator. The precision ofne pranches on thgth level) of the tree then corresponds
this lower bound increases when the proportion of nonzef® a given orthonormal basi8; ;; of a vector subspace of

coefficientsK/N decreases. For small valuesBfthe bias is ({1, ---, N}). Since a particular partitiop € P of [0, 1]
very large but is considerably reduced®t= \/20% log N js composed of intervald; ;, = [277/,277( 4+ 1)], an
which corresponds to the threshold we choose in our practig&dhonormal basis of?({1, -, NV is given by

algorithm. For this threshold, the suboptimal error estimator "
provides a reasonable estimate of the mean-square error. B = UG, cnBiit
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By taking advantage of the property B. Threshold Selection and Cost of Adaptivity

n If we wish to adaptively choose a basis, we must use a
Span{B;, ;s } = Span{B;41,2; }®Span{B,t1,2;-4+1} (32) higher threshold’ than the threshold value /2 log N used
when the basis is set in advance. Indeed, an adaptive basis
whered denotes a subspace direct sum, we associate to eabhice may also find vectors that better correlate the noise
node a cos€(-). We can then perform a bottom-up comparisonomponents. Let us consider the particular cgse] = 0 for
of children versus parent co$tand ultimately prune the tree.all m. To ensure that the estimated signal is close to zero,
Our goal is to choose the basis which leads to the beshcex = n, we must choose a threshdld that has a high
estimate {5[m]} among a collection of orthonormal basegrobability of being above all the inner produgis, W ) for
{B? = {W? }1<i<n|p € P}. In this analysis, we considerall vectors in the dictionary>. For a dictionary including?
two particular classes of orthonormal bases. Trees of waveliitinct vectors and” large, there is negligible probability for
packet bases studied by Coifman and Wickerhauser [17] dne noise coefficients to be above
constructed by quadrature mirror filter banks and comprise
functions that are well-localized in time and frequency. This I'=oyzlogP. (36)

family of orthonormal bases divides the frequency axis intgy;g threshold, however, is not optimal, and smaller values
intervals of different sizes, with each set corresponding toa,, improve the expected estimation error [11, p. 463].
specific wayelet packet basis. Another .family of orthonormal |, choosing an adaptive basis, it is also important to consider
bases studied by Malvar [12], and Coifman and Meyer [2}ye costs associated with this adaptivity. An approximation in
can be constructed with a tree of windowed cosine functions,pasis adaptively selected is necessarily more precise than
and (_:orresponq to a_d|V|S|on of the time axis into intervals of, approximation in a basis chosenpriori. However, in
dyadically varying sizes. _ the presence of noise, estimations by thresholding may not

For a discrete signal of sizéV, one can show that ape jmproved by an adaptive basis choice. Indeed, using a
tree of wavelet packet bases or local cosine baseshas ictionary of several orthonormal bases requires raising the
N(1 + log, N) distinct vectors but includes more thal/? reqhold, because the larger number of dictionary vectors
different orthogonal bases. One can also show that the sighghws possibly better correlation with the noise. The higher
expansion in these bases is computed with algorithms thgfashold removes more signal components, unless it is com-
requireO(N log, N) operathns. Wickerhauser and COlfmaTbensated by the adaptivity, which can better concentrate the
[17] proposed that for any signdlf{m|} and an appropriate sjgna energy over few coefficients. The same issue appears
functionalC(-), one finds the best basi" by minimizing an ;" harameterized models, where increasing the number of
“additive” cost function parameters may fit the noise as well as the data.

N For example, if the original signal is piecewise-smooth,
Cost (f, BY) = Z C(|{f, Wi>|2) (33) then a best wavelet packet.b.asis does not concentrgte the
o1 signal energy much more efficiently than a wavelet basis. In

the presence of noise, in regions where the noise dominates
over all bases. In this section, we select an expression fae signal, the best basis algorithm optimizes the basis to fit
C(-) so thatCost (f, B”) approximates the mean-square errahe noise. This is why the threshold value must be increased.
E{lls — 5/|°} of the noise-removal algorithm. This expressioMence, the resulting best basis estimation is not as precise as
corresponds to the estimator that was previously derived drthresholding in a fixed-wavelet basis with a lower threshold.
Section Ill. As a result, the basis which results from minimizon the other hand, for oscillatory signals, such as those
ing this cost function corresponds to the “best” estimator @bnsidered in the next section, a best local cosine basis

the underlying signal. concentrates the signal energy over much fewer coefficients
It was shown in (9) that H|s — $||*} can be estimated by than a wavelet basis, and thus provides a better estimator [11,
. p. 464].

Cost (z, B7) = 3 &(|(z, WZ)|?

i=1

)- (34) C. Numerical Experiment

In this example, we further analyze the risk estimators
This corresponds to an additive cost function and can therefdfes(8; 1), Ru (s, T), and Ry (s, T). For comparison pur-
be efficiently minimized in a wavelet packet or local cosinBoses, we will use the entropy cost function described in [3]
dictionary. The best basis? for estimating{s[m]} is then and defined as

defined by N .
CEntropy(x) = - Z Wgz IOg(Wgz)
Cost (&, B) = Iréig Cost (z, B?). (35) i=1
p
where

Some examples illustrating the performance of this estimator 3 wWe |2
are given in Section IV-C. WP = — i .

> Jalm]l?

4This in effect will eliminate the inadequate leaves of the tree. m=1
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Selecting a best basis by minimizing this function leads to a
compact representation, where most of the signal energy is 100}
concentrated in a few coefficients. The cost functions that we
have presented, however, will not necessarily lead to the most
compact representation. The advantage of our approach is that
a given basis has an associated cost that directly relates to the, !
reconstruction error. £ op A
In this analysis, white Gaussian noise with variandeis
added to a known signal at a specified SNR level, where SNR 500!
is defined as

500

N
> |3[m]|2 —1000}

SNR=10 logy, | ™= 53—
g

—1500L . L . . .
0 200 400 600 800 1000
m (samples)

@

Using one of the three risk estimators under consideration or
the entropy cost given above, a best basis is obtained for the
noisy signal by minimizing this cost (risk) in a dictionary of 1500F
possible bases. Due to the nature of the signals we consider in
this example, we have chosen to use a local cosine dictionary. jgo0l
The thresholding rule defined in (4) (fa@f = o+/2 log P and
P = N (1+1log, N)) is then applied to the coefficients, and
a reconstructed or estimated signal is obtained by applying
the appropriate inverse transformation. In this example, we —
focus on the performance of two real signals shown in Fig. 9. =
The first signal, shown in Fig. 9(a), corresponds to the voiced
fricative /S/ in the wordGreasy and the second signal, shown — —500¢
in Fig. 9(b), corresponds to a bird chirp. Both of these signals
possess high-frequency components; therefore, an adaptive-iooof
basis should generate lower reconstruction errors than a normal
wavelet decomposition. 0 200 200 600 800 1000
To compare the performances of the estimators, the risk m (samples)
was computed through an average of 600 different noise (b)

realizations for 100 different SNR levels. Specifically wéig. 9. Real signals used to illustrate the performances of the proposed cost
computed " " functions. (a) Speech signal (/S/ in the wdBdeasy. (b) Bird chirp signal.

() ot

lls — 311 representation is certainly effective but does not guarantee
R (s, Ao) M Z [ I1]12 } (37) that the reconstruction is minimal in the mean-square sense.
We also note that the risk that uses the maximum-likelihood
wherej is the index of the rea||zat|on number and is the estimate of the bias gives slightly better performance than the
number of realizations. This average risk was computed fgfased risk for theChirp signal. Trying to estimate the bias
different values of SNR. Note that the risk is normalized byerm with the MLE, in this case, appears to provide a more
l|s||* to allow comparisons between the risks correspondingliable estimate of the true risk than simply ignoring the bias
to signals with different energies. Fig. 10(a) and (c) showsrm. The results, however, are exactly opposite foGheasy
the results for the two signals considered here. Fig. 10(®iynal. In this case, the biased estimator generates a lower risk
and (d) emphasizes the differences between the estimatorsian the ML estimator.
subtracting the unbiased risk from the risks associated within this example, we have considered two real signals which
the other three estimators. possess high-frequency oscillations. To show that an adaptive
The risks of all four cost functions are very similar, withhasis is useful for these types of signals, we compare the
the risk associated with the optimal estimator being slightfytevious results to those obtained by using a simple wavelet
smaller than the others. For the two signals considered helecomposition. Fig. 11(a) and (b) provides a comparison of
the entropy cost function has slightly worse performanahe risks. The disparity in the risks demonstrates that, in this
than the estimators we have presented. We note that thise, adaptivity is useful in reducing the mean-square error.
cost function essentially measures the parsimony of a given
signal representation. In fact, in the theory of inequalities, V. CONCLUSIONS
there are a variety of criteria comparing the sparseness ofn this paper, we first used a simple-minded approach
the components of two vectors, with the entropy criterioto propose a risk estimator, and subsequently showed this
being one of them [13]. The results corresponding to thestimator to be biased. Comparing the biased and unbiased
entropy cost function in Fig. 10 show that the most compressesks, we found that the risk bias was strongly dependent on
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Fig. 10. Performances for th@&reasyand Chirp signals as a function of SNR: (a) risk associated with @reasysignal, (b) difference between the

estimated risk and the unbiased risk for tBeeasysignal, (c) risk associated with th@hirp signal, and (d) difference between the estimated risk and
the unbiased risk for theChirp signal.

the statistics of the underlying signal and the threstaldve When an unbiased risk estimator is available for a given
then used the proposed estimators to determine the waveleise distribution, this analysis may be repeated using the
basis which minimized the reconstruction error of a signalstablished framework. This may be accomplished by finding
embedded in noise. an appropriate threshold levél and then using the resulting

In this analysis, we adopted a thresholding strategy th#construction error as a search criterion. Extending this ap-
removes coefficients which are purely or primarily noise. Prgroach to two-dimensional signals is not only interesting but
viously, this thresholding strategy and the search for a “begthallenging as well. For the one-dimensional case, we have
basis were unrelated. In our approach, the derived additi@@sumed that the signal samples are independent. In images,
cost function accounts for the threshdld By minimizing however, the dependencies between neighboring pixels must
this cost, the proposed algorithm finds the best representati$htaken into account in order to produce quality reconstruc-
of the signal, so that discarding coefficients serves to improtig@ns. Subsequent research will reveal how to properly extend
signal quality. this denoising procedure to two-dimensional signals.

The examples in Section IV-C were included to illustrate
the performance of the proposed estimators. For real signals
containing high-frequency oscillations, we argued that an
adaptive signal representation, offered by wavelet packets or APPENDIX
local cosine bases, provides more flexibility than a wavelet PROOF OF PROPOSITION 1
decomposition. This adaptivity allows “better” estimations to  Proof: We assume that the wavelet coefficients of the
be made with respect to the risk criterion that we proposedunderlying signal are identically distributed. The expected
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I - ‘ - , As a result, E{x(s, o)} can be separated into two expres-
ool | sions, one that is dependent ¢i(x) and the other dependent
on fo(x), or
0.8} 1
0.7 = T 4 ES{/’L(‘g? O—)}
N
6| ——-  Entropy 1
&06 o = 272 Z [e /[</)(T - WP+ (=T - WP
é 0.5 ——  Unbiased 1 i=1
p4f| ~ 7 ML 1 . P P _ _ P
o ROV DV + (=) [ [T W)
0.3t 1
02t 1 + ¢(=T = WE] fo(WVE ) dVE | (39)
0.1f 1
0 . Given the similarity of the two termé(-) in the first integral
10° 107 < 10° of (39), we only evaluate the first term. Letting=7—W?,
NR (dB) we obtain the Taylor series expansionfe{T — ;) aroundT’
(@) '
N o N —TZ J R
A — [ s —myan = [ S 10w an.
09' 4 j:0 N
0.8} ] (40)
0.7 1 This last expression is the sum of scaled moments of the
06k -~ Entropy | Gaussian function, which are known to be [14]
~4 Biased e j p
2051 ——  Unbiased | mj = {(1) 3 (G = 1o, 1 e\ézn (42)
0.47 ——— e ML i ? J 0 .
ol Wavelet | The other term in the first integral of (39) leads to a similar
---------------- expression. Evaluating the second integral for an arbitrary
0.2f ] r = WP, gives
0.1f 1
NS BT Tl do
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SNR (dB) 00
Fig. 11. Comparison of the risks associated with an adaptive best basis oo k=0
search and a wavelet decomposition. (a) Risks associated witls sy
signal. (b) Risks associated with ti@hirp signal. = Z Pr[P(L—v)6(z— 1)+ (=T —13,)6(x— 1 )] dz
k=0
value of the bias term is then given b -
gven By =3 PUlHT =) +o(~T =) (42)
k=0

E{u(s, o)} =202 3 / [B(T — WP )+ $(—T — WP )]
=1

Combining the results of (39)—(42), we obtain an expression
O

FONVE) AV

We will only consider densities of the following form, where
f(z) is the distribution for anyA?

f(x) = cfu(@) + (1 — o) fax).

2
In particular, f1 (x) is infinitely differentiable, andf>(z) has a []
finite or countably infinite number of singularities. Sinfi€x) [3]
is analytic, it can be represented by a Taylor series expansion,
and f»>(x) can be represented by (4]

> (5]
fala) = D7 bz — )

k=0 (6]
(7]
(8]

(1]

where

1.

Z D
k=0

(38) which proves the proposition.
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