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On Denoising and Best Signal Representation
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Abstract—We propose a best basis algorithm for signal en-
hancement in white Gaussian noise. The best basis search is
performed in families of orthonormal bases constructed with
wavelet packets or local cosine bases. We base our search for the
“best” basis on a criterion of minimal reconstruction error of the
underlying signal. This approach is intuitively appealing because
the enhanced or estimated signal has an associated measure of
performance, namely, the resulting mean-square error. Previous
approaches in this framework have focused on obtaining the most
“compact” signal representations, which consequently contribute
to effective denoising. These approaches, however, do not pos-
sess the inherent measure of performance which our algorithm
provides.

We first propose an estimator of the mean-square error, based
on a heuristic argument and subsequently compare the recon-
struction performance based upon it to that based on the Stein
unbiased risk estimator. We compare the two proposed estimators
by providing both qualitative and quantitative analyses of the
bias term. Having two estimators of the mean-square error, we
incorporate these cost functions into the search for the “best”
basis, and subsequently provide a substantiating example to
demonstrate their performance.

Index Terms—Best basis, denoising, Stein risk, thresholding,
wavelet, wavelet packet.

I. INTRODUCTION

T HE quintessential goal of statistical estimation is to
elicit useful information about a signal underlying an

observed random process. This information, which could either
completely characterize the signal or at least consist of signal
parameters crucial to the problem at hand (e.g., delay estima-
tion), is generally obtained by using some side information
about the process itself. The reconstruction of an unknown
(or minimally known) signal embedded in noise, for example,
would generally make use of some prior information about
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the contaminating noise. An estimation problem also entails
the specification of an error objective criterion to be optimized
in some chosen functional space. The choice of the criterion
results in estimates with different reconstruction performances
which depend on

a) the additive noise,
b) the smoothness class of the underlying signal,
c) the selected estimator.

One can easily verify that the performance of a Wiener filter1

loses its optimality to a nonlinear filter for signal inputs from
a class of piecewise-smooth signals, confirming statement b)
above.

The recent resurgence of interest in the nonparametric esti-
mation problem may primarily be attributed to the emergence
of wavelet bases as not only unconditional orthogonal bases for
a large class of smoothness spaces [6], [10], but as an efficient
framework for function expansion as well. The problem of
estimating an unknown signal embedded in Gaussian noise
has received a great deal of attention in numerous studies, and
will also be of interest in this sequel. For such a problem, one
is generally led to invoke the least squares error criterion in
evaluating a given signal reconstruction/estimation procedure.
Different estimation rules could subsequently be compared
on the basis of their resultingmean-square error(MSE)
(henceforth referred to as the risk).

Stein [16] has under quite general conditions, derived an
unbiased estimatorof such a risk for a Gaussian estimator. The
weak differentiability he assumed for an adopted estimation
rule allows one to theoretically evaluate a wide class of
estimators, including those which are nonlinear, as discussed
below. This resulting risk estimator thus provides one with a
theoretical means to predict performance, which in turn is key
to not only selecting an acceptable signal estimation procedure,
but to also obviating costly and time-consuming simulations
in its assessment.

Donoho and Johnstone [6] were first to formalize the
wavelet coefficient thresholding for removal of additive noise
from deterministic signals. The discrimination between sig-
nal and noise is achieved by choosing an orthogonal basis
which efficiently approximates the signal (with few nonzero
coefficients). A signal enhancement can thus be obtained
by discarding components below a predetermined threshold.
Wavelet orthonormal bases have been shown to be particu-
larly well-adapted to approximate piecewise-smooth functions.
The nonzero wavelet coefficients are typically located in the
neighborhood of sharp signal transitions, and thresholding any
coefficient at a specific level was shown to provide a quasi-

1This can be interpreted in terms of an optimal Karhunen–Loève expansion
of a signal.
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optimalmin-max estimatorof a noisy piecewise-smooth signal
in a wavelet basis [6]. In spite of its nonlinearity, such a
wavelet-based estimator can be theoretically evaluated with
no need for experimentation by way of its predicted risk, thus
affording one the ability to appropriately select an analysis
wavelet.

As briefly alluded to earlier, a given wavelet function may
not necessarily be best adapted to an underlying signal of an
observed process; furthermore, the reconstruction performance
is dependent upon the noise realization. This indicates that a
universal wavelet basis is more than one could hope for, and
that further optimization is required. When a signal includes
more complex structures and in particular high-frequency
oscillations, it becomes necessary to adaptively select an
appropriatebest basiswhich provides the best signal estimate
upon discarding (thresholding) the noisy coefficients. Note that
the entropy-based adapted/best basis search proposed in [2],
[12], and [17] does not account for the statistical properties
of the noise and, as a result, is fraught with highly variable
performance, particularly in noisy scenarios. To address this
inherent variability,2 a new class of algorithms have recently
been studied in [5] and also in [9]. An approach was first
proposed in [5] and consisted of performing a best basis search
in families of orthonormal bases constructed with wavelet
packets or local cosine bases. This is achieved by capitalizing
on a representation mismatch of the underlying signal and of
the additive noise in such a basis. This, as a result, affords
one the ability to discriminate against the noise and optimally
retrieve the signal by minimizing a risk estimate similar to that
described for wavelet coefficient thresholding. Estimating this
risk in a given basis will be the first focus of this paper. By
specializing the derivation to a white Gaussian noise setting,
we are able to analyze this estimate and prove it to be biased
by calling upon the Stein unbiased risk estimator of a mean
of a multivariate normal distribution.

To stay within the intended scope of this paper, we as-
sume throughout that the statistical properties of the noise
are known, namely, Gaussian with zero-mean and known
variance, and that the signal of interest is unknown. In the
next section, we briefly discuss the issues associated with
noise removal by thresholding. In Section III, we derive an
unbiased risk estimate of a wavelet-based signal estimator,
which we compare to a heuristically derived risk. In Section
IV, we extend the application of the risk estimate to select a
“best” basis which leads to an enhanced signal reconstruction.
We give some concluding remarks in Section V.

II. NOISE REMOVAL BY THRESHOLDING

As briefly alluded to earlier, any prior knowledge (quanti-
tative or qualitative) about an undesired noise contaminating
a signal can and should be used in estimating the latter. In
addition, implementing an estimator in an orthogonal basis
is intuitively appealing on account of the distribution of the
noise energy in such a basis. This indeed provides important
information for discriminating between the signal and noise,
which to a great extent contributes to obtaining a good

2The basis search is very sensitive to noise realization.

approximation of the signal. To approximate a signal in a
given smoothness class, which includes piecewise-smooth
polynomial signals, an adapted wavelet basis offers, as noted
earlier, more flexibility than the classical Karhunen–Loève
(K-L) basis. This synergy between an adapted signal represen-
tation and the noise removal problem is of central importance
to our proposed best basis search technique.

We can succinctly state the problem as one of retrieving an
unknown deterministic signal after observing a process

sampled over an interval of length. We henceforth
assume that the observed samples are those of an
underlying unknown signal and of white noise ,
where

(1)

for .
Let where is some partition

of the unit interval and is a set
of vectors forming a basis of our observation space. Our
goal is to guard against theworst case noisecoefficients (i.e.,
exclude the components which are potentially only noise) by
using the supremum value of a Gaussian random variable.
Towards that end, we call upon a statistical theory which
stipulates that the extreme values assumed by variables from
a given distribution enjoy a corresponding limit distribution
which represents a domain of attraction [15]. This limit
distribution may providesupremavaluesin probability, from
which a thresholding procedure naturally follows. It consists
of discarding all inner products below a threshold

, in order to reconstruct an estimate of . We
denote the vector of observed samples by and the
th-basis vector by . Let

and suppose that the coefficients are sorted in
decreasing magnitude for . We then have

(2)

The threshold will clearly vary with the noise statistics
and is ideally chosen so that almost
surely (a.s.)[15]. For Gaussian white noise of variance,
the coefficients are independent Gauss-
ian random variables with the same variance. Under some
general conditions, the value assumed by the supremum of

is then “ ” 3 in probability
(i.p.) [7]. To guarantee that the thresholded coefficients
always include some signal information, one chooses

, which was shown to be an optimal threshold
from a number of perspectives [6], [8]. The vectors for

will generally have weights that correspond to the
nonzero signal coefficients (i.e., ). Wavelet
bases are known to concentrate the energy of piecewise-
smooth signals into a few high-energy coefficients [4]. If the
energy of is concentrated into a few high-amplitude
coefficients, such a representation can provide an accurate

3Unless otherwise indicated, “log” indicates the natural logarithmlog
e

.
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Fig. 1. Procedure for reconstructing a noisy signal.

estimate of . Thus the advantage of expressing
in an orthogonal wavelet basis is two-fold.

a) If the contaminating noise samples are independent and
identically distributed (i.i.d.) Gaussian, so are the coef-
ficients, and their statistical independence is preserved.

b) Intrinsic properties of the signal are preserved in a
wavelet basis.

When a signal possesses more complex features, one has
to search for the basis which would result in its best signal
estimation. Before introducing this idea, we first discuss a
method for estimating the mean-square error associated with
thresholding wavelet coefficients at a given level. Given a
signal in some basis representation, we will threshold
the coefficients and estimate the resulting error, and this error
will then be used in the search for the best basis, as discussed
in Section IV.

III. RISK OF A WAVELET-BASED ESTIMATOR

In this section, we propose a mean-square error estimator
and proceed to derive its bias. The mean-square error, or more
formally the risk, is given by

E (3)

where is the vector representation of the reconstructed
signal. As shown in Fig. 1, a signal reconstruction is obtained
by thresholding a set of coefficients in a given basis and
then applying an inverse transformation. This is the general
procedure that we use throughout the paper. For clarity,
the thresholding procedure will be strictly limited to a hard
thresholding rule.

A. Proposed Risk Estimator

It is often desirable to theoretically assess the quality
of an estimator and predict its limitations in a variety of
scenarios. We first follow a simple approach to derive an
estimator of the risk as defined in (3). While this approach is
certainly applicable to any noise scenario with a corresponding
threshold , we restrict our study to Gaussian noise for the
clarity of exposition. Moreover, we prove the existence of an
unbiased risk estimator for this case by deriving it.

To proceed, let for any given denote
a thresholding rule which eliminates basis coefficients at or
below a level . As we have argued earlier, the choice of
the threshold is based upon ensuring that any isolated noise
coefficient (i.e., noise only and devoid of signal contribution)
will be discarded

if

if
(4)

In recovering signal coefficients in additive noise, this decision
rule has an associated quadratic loss which depends onand
the signal coefficient , or

(5)

Note that when applied to the wavelet coefficients in a
particular basis , the mean value of the loss is
the estimation error or risk in , or

E

E (6)

For compactness, represents the vector with components
, and represents the corresponding

matrix of basis functions.
Since we only consider orthogonal bases here, the risk can

be expressed in terms of the basis coefficients, or

E

E (7)

There are two cases that must be analyzed in order to define
an estimator.

Case 1: If with the hard thresholding strat-
egy, this coefficient is set to zero. This contributes the value
of to the total risk. Since

E (8)

is evaluated as .

Case 2: If , this coefficient is left unchanged,
yielding a mean-square error that is on average equal to the
noise variance .

The total approximation error can thus be estimated by

(9)

where

if
if .

(10)

We use the symbol to denote that this estimator
is biased, a fact which will be shown below. In the following
theorem, we compute the true risk E and
derive the bias using the Stein unbiased risk estimator [16].
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Theorem 1: Let be an orthonormal basis of
the observation space. If the coefficients are zero-
mean, uncorrelated Gaussian random variables with variance

, the bias of the estimator with respect to
is

E

(11)

with

Proof: Recall that the basis coefficients resulting from
the orthogonal transform are denoted by along with the
corresponding vector of basis functions . In the proof
below, we drop the superscriptfor clarity. Define

where is an indicator function constrained by its argument
and where the noisy coefficient has a normal distribution

. We can then write

to obtain the following:

E

E

E E E

(12)

Using the property described in [16] (i.e., differentiation of a
distribution)

E

where “ ” denotes appropriate differentiation. Calling upon
generalized derivatives, one can write

with denoting the Dirac impulse, and as a result, we obtain

Substituting the above expressions back into (12) yields

E

E

We now define the risk estimator ,
which Theorem 1 has shown to be unbiased. Henceforth,
we typically refer to as the unbiased risk for
short. Theorem 1 also proves that the expected value of the
suboptimal estimator is a lower bound on the mean-
square error. The estimator is biased because we have assumed
that the magnitudes of the signal components are always above

in (9). Since we did not account for the errors due to
an erroneous decision around, we see that a coefficient
composed of both signal and noise components may be present
below the threshold , when the signal contribution should
have set it above .

B. Interpretive Analysis of the Risk Bias

The biased risk is clearly different from the
optimal or unbiased risk, and the significance of this difference
will be dependent upon and . Heuristically, this
difference is due to the naive and perhaps optimistic rule which
attributes any coefficient below to noise and any coefficient
above to the underlying signal. In short, a noisy signal
coefficient can be less than or equal todepending on its
local energy and how it is modified by the noise, regardless of
the noise-free coefficient. The nature of the underlying signal
in the presence of noise at a level around the threshold
is therefore very relevant. Recall that is solely determined
by the noise variance and the length of the observation inter-
val, .

A first-order evaluation of the unbiased risk can
be graphically performed by considering its variation with a
single signal coefficient and a single noise coefficient

. Fig. 2(a) shows the resulting plot. The discontinuities in
the risk estimate occur along the two 45lines,

. For clarity, a cross section of this plot is shown in Fig. 2(b)
for the case , and the biased risk is included for
comparison purposes. Note that both risks are asymptotically
constant, since all of the errors up tohave been accounted for
and since any component aboveis considered to correspond
to the underlying signal. As Fig. 2(b) demonstrates, the biased
risk is a fairly good approximation to the unbiased risk in the
regions where is away from (in this case ).
Note also that we are only plotting our estimate of the risk,
so that for some noise realizations (e.g., a noise coefficient of

) the risk estimate may be negative. In the remainder of
this section and later in Section III-E, we will quantify the
significance of the bias term.
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(a)

(b)

Fig. 2. (a) Plot of the unbiased risk estimator as a function of a single signal
coefficient and a single noise coefficient. (b) Cross section of the plot in (a)
that shows the risk estimator as a function of a single signal coefficient and
a noise coefficient equal to2:5.

To better understand the effects of the bias term, we rewrite
(11) as

E

E

(13)

(14)

In (14), represents the normalized histogram of the signal
coefficients (i.e., ). In this form, it is
more apparent how the bias term is related to the underlying
distribution of the signal coefficients. In addition, (14) has been

Fig. 3. Graphical illustration of the significance of the bias term as a function
of � and the underlying distribution of the signal coefficients.

normalized by the value , which corresponds to the noise
energy E . To indicate the dependence of the bias on
the noise variance, we let

E

(15)

This parameterization is also useful, as we will later demon-
strate that may not necessarily provide the
optimal threshold, when an adaptive basis is used.

From (15), the value of is composed of two
shifted Gaussian functions weighted by the histogram of the
signal coefficients. Fig. 3 graphically illustrates these two
components (a continuous PDF is shown for graphical
clarity). The illustration shows that the thresholdand the
histogram of the signal coefficients will determine how well

approximates . The plot, however, does not
provide insight about the bias term as a function of these
parameters. A more formal and quantitative assessment of
these factors will be provided in Section III-E.

Some insight can nevertheless be obtained by finding a
bound on the bias and by analyzing its asymptotic properties.
For a crude approximation, note that , and,
consequently,

(16)

For the case , an upper bound is then given by

(17)

which is an increasing function of the signal length. Starting
with the expression given in (15), we also evaluate the
following asymptotic cases:

a) letting approach

(18)

b) while letting approach results in

(19)
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(a)

(b)

Fig. 4. (a) Plot of the MLE risk estimator as a function of a single signal
coefficient and a single noise coefficient. (b) Cross section of the plot in (a)
that shows the MLE risk estimator as a function of a single signal coefficient
and a noise coefficient equal to2:5.

For , the asymptotic value then becomes

(20)

This approximation and qualitative analysis shows that inde-
pendent of the distribution of the signal coefficients, a crude
upper bound and asymptotic values of the risk bias may be
obtained. The examples provided in Section III-D will show
that the underlying distribution determines the “shape” of the
risk bias.

C. Maximum-Likelihood Estimate of the Risk Bias

Note that the bias term in (11) assumes prior knowledge
of the signal coefficients, and as a result, no true unbiased
estimator can be achieved in practice. This difficulty, however,
can be partially lifted by picking the maximum-likelihood
estimate (MLE) (in this case, the MLE of the signal coefficient
is the noisy coefficient [1]) to obtain an upper bound on the

bias. The MLE of the bias term is then given by

(21)

For notational convenience, we let denote the risk
, even though is not the

MLE of the true risk. To illustrate the function given in (21),
we plot this risk estomatorfor the scalar case. Fig. 4(a) and
(b) shows plots similar to those previously shown in Fig. 2(a)
and (b). Fig. 4(a) shows that the risk estimator is
symmetric about the 45axis in the – plane, and Fig. 4(b)
compares to .

One problem with using the MLE to estimate is that
it is a biased estimator. To determine the significance of this
bias, we compute the expected value of

E E

E

(22)

To proceed, we must evaluate E

E

Letting , we obtain

E

(23)

In this case, corresponds to a Gaussian function with
variance evaluated at . The final result can then be written
as

E

(24)

(25)

The final equation shows that E is an upper
bound for the true bias. Equation (24) is useful because
it shows that the only distinction between E
and is the variance of the Gaussian functions. As
a result, the insight obtained from examining the value of

is directly applicable to understanding E .
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(a) (b)

(c) (d)

Fig. 5. The synthetic signals considered in this numerical experiment. (a) Doppler. (b) Cusp. (c) HeaviSine. (d) MishMash.

For completeness, we include the asymptotic values of
E

E

(26)

E

(27)

D. Numerical Experiment

In this example, we continue the analysis of the risk
bias by considering some specific numerical examples. The
four synthetic signals considered here are shown in Fig. 5.
The signals shown in Fig. 5(a)–(c) are well-represented in a
wavelet basis, and consequently, a histogram of the wavelet
coefficients for each of the signals is highly concentrated
around zero. On the other hand, the more complex signal
shown in Fig. 5(d) has wavelet coefficient values which are
less concentrated around zero.

To illustrate the “shape” of the risk bias, the normalized
biases and were computed for different

values of and , where

The results are shown in Fig. 6 for the four signals of interest.
We note that the asymptotic values are equal for all four signals
because the value of is constant in this example, and since

is large, the asymptotic value is quite small. One
must remember, though, that Fig. 6 shows the normalized bias;
therefore, the actual risk bias grows quadratically as a function
of .

Comparing the plots shown in Fig. 6, we note that the major
differences are in the “shape” of the different bias terms. The
shape will, in fact, be dependent on the histogram of the
underlying signal coefficients, since the locations of the local
minima and maxima are functions of the coefficient values.
These interesting features, however, only occur for very small
values of , since the risk bias approaches its asymptotic value
very rapidly. The intuitive reason for this is that asincreases,
the signal coefficients contribute less and less to the differences
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(a) (b)

(c) (d)

Fig. 6. Comparison of the risk bias and the maximum-likelihood estimate of the risk bias for different values of�, the standard deviation of the contaminating
noise. The signals shown in Fig. 5 were examined. (a) Doppler. (b) Cusp. (c) HeaviSine. (d) MishMash.

and in (15). As a result, for large
values of , the normalized histogram of the signal coefficients
can be approximated by

otherwise.
(28)

Using this histogram in (15) yields

(29)

which is the asymptotic value given in (19). This
shows that the risk bias approaches its asymptotic value
quickly as the signal coefficients become insignificant when
compared to . As a consequence, the risk bias should exhibit
this property when the histogram drops off rapidly as
the magnitude of increases. Comparing the results shown
in Fig. 6, we note that the more complex MishMash signal
does not approach its asymptotic value as rapidly as the other
signals because its histogram has a slower rate of decay.

Fig. 6 also compares the maximum-likelihood estimate of
the risk bias with the true risk bias. For this example, the
asymptotic value is in fact larger than

. We also note that the MLE of the risk bias is
very close to the true bias for extremely small values of.
This is understandable since is a good approximation of

if is almost zero. As increases, however, the two
curves deviate and approaches its asymptotic value.
The examples included in Section IV-C will show how these
differences in the risk bias will affect the search for the basis
which produces the minimal reconstruction error.

E. Risk Optimality Dependence on Signal Statistics

A more rigorous and systematic analysis of the bias may be
performed and its behavior quantified in terms of the signal
statistics, if these were available. This Bayesian-like approach
lets us use this prior knowledge about to evaluate the
significance of the bias term and to fully characterize it. As
demonstrated below, a prior probability density for
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the signal coefficients is shown to have a strong influence on
the bias and thus plays a key role in the search for an optimal
threshold .

Proposition 1: Assume a probability density of the
form

where is analytic and has a finite or
countably infinite number of singularities (i.e.,

). The expected value of the bias term,
, is then given by

E

(30)

The proof of the above proposition is included in the Appen-
dix. Equation (30) shows that the bias term of the suboptimal
risk is strongly dependent on. This implies that the overall
minimum of the true risk will be dependent on thea pri-
ori probability density (if available). The mode of the
E will indeed determine the extremal point, and
when combined with will result a posteriori in a
minimum at a corresponding “optimal” threshold.

Illustrative Example: For illustration purposes, we numeri-
cally analyze the two risks and by con-
sidering a class of signals that are well-approximated by

coefficients of the orthonormal basis . We
associate to the inner products a distribution
density given by

(31)

Out of coefficients, there are an average of zero
coefficients and nonzero coefficients whose values are
specified by . As the proportion becomes smaller,
the performance of the noise removal algorithm improves.
Fig. 7 shows the mean-square error as a function
of the threshold, for different values of . For this example,
we adjusted the parameters of so that the total signal
energy was equal to the total noise energy (i.e., a signal-to-
noise ratio (SNR) of 0 dB). The minimum expected value of
the unbiased risk is obtained for a value ofwhich is close
to (in this case ). However,
the value of this optimal does not remain invariant and is
a function of .

Fig. 8 compares the risk with the expected error
computed with our estimator. The precision of

this lower bound increases when the proportion of nonzero
coefficients decreases. For small values ofthe bias is
very large but is considerably reduced at
which corresponds to the threshold we choose in our practical
algorithm. For this threshold, the suboptimal error estimator
provides a reasonable estimate of the mean-square error.

Fig. 7. Theoretical unbiased risk estimated for various cardinality ratios of
signal/noise coefficients.

Fig. 8. Comparison of the biased and unbiased theoretical risks estimated
for various cardinality ratios of signal/noise coefficients.

IV. A DAPTIVE SIGNAL REPRESENTATION

A. Best Basis Search

When the signal possesses more complex features, one pro-
ceeds to search for the basis which would result in its most
parsimonious representation. In searching for a wavelet packet
or local cosine best basis, we typically have a dictionary
of possible bases, which for efficiency is endowed with a
binary tree structure. Each node (where
represents the depth and represents
the branches on theth level) of the tree then corresponds
to a given orthonormal basis of a vector subspace of

. Since a particular partition of
is composed of intervals , an
orthonormal basis of is given by
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By taking advantage of the property

(32)

where denotes a subspace direct sum, we associate to each
node a cost . We can then perform a bottom-up comparison
of children versus parent costs4 and ultimately prune the tree.

Our goal is to choose the basis which leads to the best
estimate among a collection of orthonormal bases

. In this analysis, we consider
two particular classes of orthonormal bases. Trees of wavelet
packet bases studied by Coifman and Wickerhauser [17] are
constructed by quadrature mirror filter banks and comprise
functions that are well-localized in time and frequency. This
family of orthonormal bases divides the frequency axis into
intervals of different sizes, with each set corresponding to a
specific wavelet packet basis. Another family of orthonormal
bases studied by Malvar [12], and Coifman and Meyer [2],
can be constructed with a tree of windowed cosine functions,
and correspond to a division of the time axis into intervals of
dyadically varying sizes.

For a discrete signal of size , one can show that a
tree of wavelet packet bases or local cosine bases has

distinct vectors but includes more than
different orthogonal bases. One can also show that the signal
expansion in these bases is computed with algorithms that
require operations. Wickerhauser and Coifman
[17] proposed that for any signal and an appropriate
functional , one finds the best basis by minimizing an
“additive” cost function

(33)

over all bases. In this section, we select an expression for
so that approximates the mean-square error

E of the noise-removal algorithm. This expression
corresponds to the estimator that was previously derived in
Section III. As a result, the basis which results from minimiz-
ing this cost function corresponds to the “best” estimator of
the underlying signal.

It was shown in (9) that E can be estimated by

(34)

This corresponds to an additive cost function and can therefore
be efficiently minimized in a wavelet packet or local cosine
dictionary. The best basis for estimating is then
defined by

(35)

Some examples illustrating the performance of this estimator
are given in Section IV-C.

4This in effect will eliminate the inadequate leaves of the tree.

B. Threshold Selection and Cost of Adaptivity

If we wish to adaptively choose a basis, we must use a
higher threshold than the threshold value used
when the basis is set in advance. Indeed, an adaptive basis
choice may also find vectors that better correlate the noise
components. Let us consider the particular case for
all . To ensure that the estimated signal is close to zero,
since , we must choose a threshold that has a high
probability of being above all the inner products for
all vectors in the dictionary . For a dictionary including
distinct vectors and large, there is negligible probability for
the noise coefficients to be above

(36)

This threshold, however, is not optimal, and smaller values
can improve the expected estimation error [11, p. 463].

In choosing an adaptive basis, it is also important to consider
the costs associated with this adaptivity. An approximation in
a basis adaptively selected is necessarily more precise than
an approximation in a basis chosena priori. However, in
the presence of noise, estimations by thresholding may not
be improved by an adaptive basis choice. Indeed, using a
dictionary of several orthonormal bases requires raising the
threshold, because the larger number of dictionary vectors
allows possibly better correlation with the noise. The higher
threshold removes more signal components, unless it is com-
pensated by the adaptivity, which can better concentrate the
signal energy over few coefficients. The same issue appears
in parameterized models, where increasing the number of
parameters may fit the noise as well as the data.

For example, if the original signal is piecewise-smooth,
then a best wavelet packet basis does not concentrate the
signal energy much more efficiently than a wavelet basis. In
the presence of noise, in regions where the noise dominates
the signal, the best basis algorithm optimizes the basis to fit
the noise. This is why the threshold value must be increased.
Hence, the resulting best basis estimation is not as precise as
a thresholding in a fixed-wavelet basis with a lower threshold.
On the other hand, for oscillatory signals, such as those
considered in the next section, a best local cosine basis
concentrates the signal energy over much fewer coefficients
than a wavelet basis, and thus provides a better estimator [11,
p. 464].

C. Numerical Experiment

In this example, we further analyze the risk estimators
, , and . For comparison pur-

poses, we will use the entropy cost function described in [3]
and defined as

where
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Selecting a best basis by minimizing this function leads to a
compact representation, where most of the signal energy is
concentrated in a few coefficients. The cost functions that we
have presented, however, will not necessarily lead to the most
compact representation. The advantage of our approach is that
a given basis has an associated cost that directly relates to the
reconstruction error.

In this analysis, white Gaussian noise with varianceis
added to a known signal at a specified SNR level, where SNR
is defined as

SNR

Using one of the three risk estimators under consideration or
the entropy cost given above, a best basis is obtained for the
noisy signal by minimizing this cost (risk) in a dictionary of
possible bases. Due to the nature of the signals we consider in
this example, we have chosen to use a local cosine dictionary.
The thresholding rule defined in (4) (for and

) is then applied to the coefficients, and
a reconstructed or estimated signal is obtained by applying
the appropriate inverse transformation. In this example, we
focus on the performance of two real signals shown in Fig. 9.
The first signal, shown in Fig. 9(a), corresponds to the voiced
fricative /S/ in the wordGreasy, and the second signal, shown
in Fig. 9(b), corresponds to a bird chirp. Both of these signals
possess high-frequency components; therefore, an adaptive
basis should generate lower reconstruction errors than a normal
wavelet decomposition.

To compare the performances of the estimators, the risk
was computed through an average of 600 different noise
realizations for 100 different SNR levels. Specifically, we
computed

(37)

where is the index of the realization number and is the
number of realizations. This average risk was computed for
different values of SNR. Note that the risk is normalized by

to allow comparisons between the risks corresponding
to signals with different energies. Fig. 10(a) and (c) shows
the results for the two signals considered here. Fig. 10(b)
and (d) emphasizes the differences between the estimators by
subtracting the unbiased risk from the risks associated with
the other three estimators.

The risks of all four cost functions are very similar, with
the risk associated with the optimal estimator being slightly
smaller than the others. For the two signals considered here,
the entropy cost function has slightly worse performance
than the estimators we have presented. We note that this
cost function essentially measures the parsimony of a given
signal representation. In fact, in the theory of inequalities,
there are a variety of criteria comparing the sparseness of
the components of two vectors, with the entropy criterion
being one of them [13]. The results corresponding to the
entropy cost function in Fig. 10 show that the most compressed

(a)

(b)

Fig. 9. Real signals used to illustrate the performances of the proposed cost
functions. (a) Speech signal (/S/ in the wordGreasy). (b) Bird chirp signal.

representation is certainly effective but does not guarantee
that the reconstruction is minimal in the mean-square sense.
We also note that the risk that uses the maximum-likelihood
estimate of the bias gives slightly better performance than the
biased risk for theChirp signal. Trying to estimate the bias
term with the MLE, in this case, appears to provide a more
reliable estimate of the true risk than simply ignoring the bias
term. The results, however, are exactly opposite for theGreasy
signal. In this case, the biased estimator generates a lower risk
than the ML estimator.

In this example, we have considered two real signals which
possess high-frequency oscillations. To show that an adaptive
basis is useful for these types of signals, we compare the
previous results to those obtained by using a simple wavelet
decomposition. Fig. 11(a) and (b) provides a comparison of
the risks. The disparity in the risks demonstrates that, in this
case, adaptivity is useful in reducing the mean-square error.

V. CONCLUSIONS

In this paper, we first used a simple-minded approach
to propose a risk estimator, and subsequently showed this
estimator to be biased. Comparing the biased and unbiased
risks, we found that the risk bias was strongly dependent on
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(a) (b)

(c) (d)

Fig. 10. Performances for theGreasy and Chirp signals as a function of SNR: (a) risk associated with theGreasy signal, (b) difference between the
estimated risk and the unbiased risk for theGreasysignal, (c) risk associated with theChirp signal, and (d) difference between the estimated risk and
the unbiased risk for theChirp signal.

the statistics of the underlying signal and the threshold. We
then used the proposed estimators to determine the wavelet
basis which minimized the reconstruction error of a signal
embedded in noise.

In this analysis, we adopted a thresholding strategy that
removes coefficients which are purely or primarily noise. Pre-
viously, this thresholding strategy and the search for a “best”
basis were unrelated. In our approach, the derived additive
cost function accounts for the threshold. By minimizing
this cost, the proposed algorithm finds the best representation
of the signal, so that discarding coefficients serves to improve
signal quality.

The examples in Section IV-C were included to illustrate
the performance of the proposed estimators. For real signals
containing high-frequency oscillations, we argued that an
adaptive signal representation, offered by wavelet packets or
local cosine bases, provides more flexibility than a wavelet
decomposition. This adaptivity allows “better” estimations to
be made with respect to the risk criterion that we proposed.

When an unbiased risk estimator is available for a given
noise distribution, this analysis may be repeated using the
established framework. This may be accomplished by finding
an appropriate threshold level and then using the resulting
reconstruction error as a search criterion. Extending this ap-
proach to two-dimensional signals is not only interesting but
challenging as well. For the one-dimensional case, we have
assumed that the signal samples are independent. In images,
however, the dependencies between neighboring pixels must
be taken into account in order to produce quality reconstruc-
tions. Subsequent research will reveal how to properly extend
this denoising procedure to two-dimensional signals.

APPENDIX

PROOF OF PROPOSITION 1

Proof: We assume that the wavelet coefficients of the
underlying signal are identically distributed. The expected
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(a)

(b)

Fig. 11. Comparison of the risks associated with an adaptive best basis
search and a wavelet decomposition. (a) Risks associated with theGreasy
signal. (b) Risks associated with theChirp signal.

value of the bias term is then given by

E

(38)

We will only consider densities of the following form, where
is the distribution for any

In particular, is infinitely differentiable, and has a
finite or countably infinite number of singularities. Since
is analytic, it can be represented by a Taylor series expansion,
and can be represented by

where

As a result, E can be separated into two expres-
sions, one that is dependent on and the other dependent
on , or

E

(39)

Given the similarity of the two terms in the first integral
of (39), we only evaluate the first term. Letting ,
we obtain the Taylor series expansion of around

(40)

This last expression is the sum of scaled moments of the
Gaussian function, which are known to be [14]

even
odd.

(41)

The other term in the first integral of (39) leads to a similar
expression. Evaluating the second integral for an arbitrary

, gives

(42)

Combining the results of (39)–(42), we obtain an expression
which proves the proposition.
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