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Analysis of Low Bit Rate Image Transform Coding

Stephane MallatMember, IEEE and Féderic Falzon

Abstract—Calculations based on high-resolution quantizations Ill analyzes the distortion rate at low bit rates and gives
prove that the distortion rate D([) of an image transform coding numerical examples with a wavelet transform coder and JPEG.

is proportional to 27" when R is large enough. In wavelet and The performance of embedded transform coders and their
block cosine bases, we show that iff < 1 bitipixel, then D(I) = jications to wavelets is studied in Section IV.
varies like R'=27, where ~ remains of the order of 1 for most

natural images. The improved performance of embedded codings

in wavelet bases is analyzed. At low bit rates, we show that II. HIGH BIT-RATE COMPRESSION

the compression performance of an orthonormal basis depends ) .

mostly on its ability to approximate images with a few nonzero ~ The class of signals to be encoded is represented by a

vectors. random vectorY” of size N. Although these signals may be
Index Terms— Distortion-rate, image compression, JPEG, multidimensional-like images, they are indexed by an integer
wavelet basis. n to simplify notations:Y'[n]. A transform coder decomposes

these signals in an orthonormal ba&is= {gm }o<m « ~

I. INTRODUCTION N-1

F THE SIGNALS to be encoded are realizations of a Y= Z Alm] gm.
Gaussian process, under the high-resolution quantization
hypothesis, we know nearly everything about the performangeach coefficientd[m] is a random variable defined by
of a transform coding. For an average Af bits per pixel,
the mean-square erraP(R) varies proportionally to2=2% .
with a constant that depends on the bit allocation and the Alm] = (Y, gm) = Z Yn] gm[n]-
basis. Current image transform coders operate below 1 bit per n=0
pixel. For such low bit rates, the high-resolution quantizatioto construct a finite code, each coefficietfpn] is approxi-
assumption yields an incorrect estimate of the distortion raigated by a quantized variabﬁa[m]. We concentrate on scalar
D(R). In this range, we show thaD(£R) depends mostly quantizations, which are most often used for transform coding.
on the errorDy when approximating signals with a limitedThe next section reviews important results concerned with
number of vectors selected from the orthogonal basis. Wgnimizing the quantization error.
verify that in wavelet and block cosine baséX ) varies like
_Rl—”, where~ remains of the order of for most “natural” 5 Entropy-Constrained Scalar Quantization
images.

Trgansform coding algorithms can be improved by an em_AscaIar_quantiz«_aQ aApproximatesa?reaI rand_om variab_[e
bedding strategy that sends the larger amplitude coefficiefds@ duantized variabl& = Q(.X), which takes its values in a
first and then progressively refines their quantization. Thigite Set. Suppose tha takes its values ifia, b], which may
improvement is analyzed mathematically and evaluated rff2TeSPond to the whole real axis. We decompsé] into
merically for the wavelet zero-tree algorithm of Shapiro [13[* INtervals(yx—1,yxli<k<s Of variable lengths, witlyo = a
Embedded coders outperform classical transform coders wiflf vk = b- If & € (yr—1,3x], thenQ(z) = ;.. We denote

N-1

there is some prior information on which basis vectors produce o

" o . .= Pr{X —1, Y]} = PHX = 23 }.
large, average, or small decomposition coefficients for typical Pr X0 (sl { i}
signals. The Shannon theorem [5] proves that the entropy

This paper begins with a brief review of entropy-constrained

scalar quantizers and high bit rate transform coding. Section . K
H(X) = - Z prlogy pr
k=1
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Let p(z) be the probability density of the random sour€e frequencies. A weighted mean-square norm takes into account

The differential entropy ofX is defined by this sensitivity by emphasizing low-frequency errors. Suppose
too that g,,, is a vector whose Fourier transform is localized in
Hqa(X) = —/ p(z)log, p(z) dx. a frequency neighborhood that dependsmenas in a block
—oo cosine basis or in a wavelet basis. A weighy, is adjusted,

A quantizer is said to have high resolutionif p(z) is dependingl on our visuallsens.itivity in this frequency range.
approximately constant on each quantization bip_,1;] 1he resulting weighted distortion is

of size Ay, = y, — yr—1. This is the case if the sizeay No1 No1

are suff|0|e_ntly small relative to the rate of yanauon;;éf;:)_. DU — Z w2, Dy, = Z D¥

The following theorem [5] proves that uniform quantizers

are optimal among high-resolution quantizers. It is equivalent

to the result of Girsh and Pierce [6], which proves th@here D¥ = w2, D,, is the mean-square quantization error
asymptotic optimality of uniform quantizers when the sizegf A*[m] = w,, A[m]. The previous bit allocation result

m=0 m=0

of the quantization bins tend to zero. . _ applied to the coefficientd®[m] proves thaD™ is minimized
Theorem 1:1f @ is a high-resolution quantizer with respechy quantizing uniformlyA*[m] with a bin sizeA, which is
to p(z), then equivalent to quantizingi[m] with a bin sizeA,,, = (A/wy,).

(1) In the rest of the paper, we choosg, = 1 and, thus, evaluate
the error with a standard mean-square norm as opposed to a
This inequality is an equality if and only i) is a uniform weighted norm. All calculations are easily extended to any
quantizer, in which casel) = (A?/12). other choice of weights by replacing[m] by w,, A[m].
For a fixed distortionD, under the high-resolution quanti- The distortion rate (4) depends on the orthonormal basis
zation hypothesis, the minimum average bit r&te :’}-[(X) B through?_-ld. In general, it is difficult to find3, which

H(X) > Ha(X) — 1 log, (12D).

is therefore achieved by a uniform quantizer, and minimizes H, because the probability density of[m] =
(Y, gm) may depend ory,, in a complicated way. 1Y is
Ry = Ha(X) —log, A (2) a Gaussian random vector, then the coefficieA{s:] are

Gaussian random variables in any basis. In this case, the
probability density ofA[m] depends only on the varianeg,,
D(Ry) = &5 22Ma(X) 9=20x (3) and we can verify that

The distortion rate is obtained by taking the inverse of (1)

Farvardin and Modestino [4] proved that even though the Ha(A[m]) = log, o + log, V2me.
high-resolution quantization hypothesis may not hold, for a
large class of probability distribution including generalizeghserting this expression in (4) yields
Gaussians, the uniform quantizer yields a distortion rate that
is close to the optimal quantizer if the number of quantization

N-1 N
bins K is large enough. D(R)=N %e <H 0?) g—2R (5)

m=0
B. Distortion Rate . _ N _ _
Let us optimize the transform coding oY’ = One can prove the}Hm=0 _07271 IS minimum if and only if
Eﬁ,\;;é Alm] g¢m. The average bit budget to encodég_ is a K_arhunen—Leve_ basis oiY_ [5], which means that?’
fl[m] — O(4[m]) is Rn = H(A[m]). For a high- dlagonallze.s the covariance matrlxkifThe'transform co‘dlng
gp a Gaussian process is thus optimized in a Karhunexno
asis. Whert” is not Gaussian, the Karhunenéw® basis is
a priori no longer optimal. This is the case for images that
cannot be considered to be realizations of a Gaussian process.
Let us describe a simple wavelet transform coder for images.
?eparable wavelet bases of images include three wavelets with
ahorizontal, vertical, or diagonal orientations [10], indexed by
1 < k < 3. At an orientationk and scale2?, the wavelet
D(R) = N 92Ha 9—2R (4) Vectorg, = Pk 1S approximately centered _@jpa?j@'
12 with a square support whose size is proportiona2to At
where7, is the averaged differential entropy high bit rates, we saw that the distortion rate is optimized

by quantizing uniformly all decomposition coefficients. The

resolution quantization, Theorem 1 proves that the err
D,, = E{|A[m] — A[m]|?} is minimized when using a uni-
form scalar quantization. An optimal bit allocation minimize
the total number of bitfz = X¥_L R, for a specified total

m=0

errorD = X! D,,. Let R = (R/N) be the average number

of bits per sample. With Lagrange multipliers, we verify th
R is minimum if all D,,, are equal [7], in which case

o M= domains where the image has smooth grey-level variations
Ha= N Z Ha(Alm]). yield small amplitude wavelet coefficients that are quantized
m=0 to zero. To improve the efficiency of this transform coding,

A mean-square errab is not always a good measurementhe wavelet coefficients are scanned in a predefined order, and
of visual degradations in images. In particular, we are oftehe position of zero versus nonzero quantized coefficients is
less sensitive to high-frequency distortions as opposed to lowecorded with a run-length coding that is entropy encoded. In
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Fig. 1. Four test images for numerical experiments.

the same scanning order, the amplitude of the nonzero quan- log, D(R)
tized coefficients are also entropy encoded with a Huffman or 28
an Arithmetic coding. _ e
Fig. 2 gives the distortiotog, D(R) of this wavelet trans-
form coding for the test images shown in Fig. 1. These 2
numerical experiments are performed with an orthogonal cubic 22
spline Battle-Lemaé wavelet [10]. The distortion rate formula
(4) predicts that

vl = |

20+

_ __ N _
log, D(R) = 2Hg+ log, <E) —2R 16

. ) . “ 1 % I S R
where H, is the average differential entropy of the wavelet

coefficients at all scales and positions. This formula implié:éﬂ- 2. Log distortion rate curve for the wavelet transform coding of each
thatlog, D(R) should decay with a slope ef2 as a function fest image.

of R. This is indeed verified in Fig. 2 foR > 1 but not for

R < 1, wherelog, D(R) has a much faster decay. At lowquantization bins are large. Second, one cannot treat the total
bit rates R < 1, the distortion rate formula (4) is not validbit budgetR as a sum of bitsk,,, allocated independently to
because the high-resolution quantization assumption does @ath decomposition coefficient. Indeed, the encoding of the
hold. Wavelet transform codings are most often useddfer 1  zero quantized coefficients through a significance map is a
because they recover images of nearly perfect visual qualifm of vector quantization, which relates the encoding of
up to R = 0.5 bits per pixel. The next section studies thgifferent coefficients.

distortion rate at these low bit rates. To evaluate the distortion rate, we cannot rely on a precise
stochastic model for images. There is, as yet, no model that
lll. Low BIT-RATE COMPRESSION incorporates the full diversity of image structures, such as

At low bit rates, the decomposition coefficients of an imag@onstationary textures and edges. To avoid this difficulty, we
in an orthonormal basis are coarsely quantized. Since maiall consider the signals to be deterministic vectors whose
coefficients are set to zero, the positions of zero versus nonz8ggomposition coefficients in the bagishave a parameterized
quantized coefficients are stored in a binary significance majgcay. The distortion rate is, therefore, not calculated with
which is recorded with a run-length coding or a more sophisén ensemble average but for each sigfialThe key result
cated zero-tree algorithm. The distortion rate theory previous#ows that this distortion rate depends mostly on the ability
described does not apply for two reasons. First, the higte- precisely approximatg with a small number of vectors
resolution quantization hypothesis does not hold because #etected from3. Low bit-rate image compressions in wavelet
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Fig. 3. Normalized histograms of the cubic-spline wavelet coefficients of the test images.

bases and block cosine bases illustrate the distortion ratguivalent to the coefficientgm| being successive values of

results. the random variableX. Applied to ¢(z) = |z — Q(x)|?, (7)
yields
A. Distortion Rate D g N
Let f be a signal decomposed in an orthonormal basis NN Z la[m] — Q(a[m])|? = E{|X — Q(X)|*}.
B = {gm}Oﬁm < N m=0
N-1 Let R be the average number of bits per coefficient to encode
F=Y" amlgm with alm] = (f, gm)- the Q(a[m]). If @ is a high-resolution uniform quantizer with
m=0 step sizeA, then (3) implies a distortion rate formula similar
The transform coder quantizes all coefficients and reconstruts(4)
L Nl D@R) _ 1 2H4(X)o—2R
f = Z Q(a[m]) m- N 122 2 )
) ) m=0 If the basisB is chosen so that many coefficientpn] =
The coding error is (f,gm) are close to zero and few have a large amplitude, then
R N—1 p(z) has a sharp high peak at = 0. This is the case for
D=|f-fI*= Z la[m] — Q(a[m])|*. (6) the histograms of wavelet coefficients shown in Fig. 3Alf
m=0 is large, thenp(z) has important variations in the zero bin
We denote byh[z] the discrete histogram of tha coef- [~(4/2),(A/2)], where coefficients are quantized to zero.

this histogram are interpolated to define a functigm) > 0 @PPly in this zero bin. This explains wilyg, D(ft), which is
for all z € R such that/*>® p(z) dz = 1. This p(z) is the SNOWN in Fig. 2, decays like-212 only for & > 1.

probability density of a random variabl®. We supposeV If p(z) is a Laplacian distribution p(z) =
to be sufficiently large and the histogram sufficiently regule{ﬂ/a\@)@_ﬁlxl/a, then Sullivan [14] proved that the

so that for all functionsp(x) that appear in our calculations,0Ptimal entropy-constrained scalar quantizer is a nearly
we have uniform quantizer. All the nonzero quantization bins have

Ne1 the same size\, but the zero bif—7,7] is larger, with a
1 ratio # = (7T'/A that can be calculated. Sullivan’s result does
= alm]) = x) hlx '
N Z ¢lalm]) zw: ¢() hla] not apply to the quantization of wavelet image coefficients
/+oo because Section IlI-B shows thafx) has a slower decay,

ficients a[m] normalized so thak, hlz] = 1. The values of Hence, the high-resolution quantization hypothesis does not

m=0

~
~

d(z) p(x) de = E{¢p(X)}.(7) which is rational instead of exponential. Yet efficient low
i bit-rate wavelet transform coders are often implemented
This hypothesis holds for the histograms of the test imagedth a nearly uniform quantizer, whose zero bir7,T]
shown in Fig. 3, as well as for most “natural” images. It iss larger than the other bins. This can be justified with
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a high-resolution assumption outside the zero bin. Fapplies to significant coefficients, the average number of bits to

|| > T, we shall consider that the relative variations oéncode the amplitude of each quantized significant coefficient,

p(z) in each quantization bin is sufficiently small to applwhich is denoted-, is calculated from (2)

the high-resolution hypothesis. This assumption is only R

an approximation, but it captures sufficiently precisely the "n=gr = Hy(X7) — log, A. (10)

quantizer properties to obtain accurate calculations up to

very low bit rates. Forz € [-T,T), the high-resolution Overall, the transform coding requirds= R, + R, bits.

quantization hypothesis does not hold becau(sé varies too  To estimate the quantization errab[= || — f||* in (6)],

much. Theorem 1 implies that outside 7,77, the optimal insignificant coefficients quantized to zero are separated from

entropy-constrained quantizé€} has bins of constant siza. significant coefficientsD = D, + Dy, where

The ratiod = (T'/A) is a parameter that must be adjusted

to minimize th((e o/ve)rall distortiorD. Do = Z |afm]|* (11)
Any coefficient |a[m]| > T that is not quantized to zero lafm]|<T'

is called asignificant coefficient Coding the position of s the error due to quantizing insignificant coefficients, and
nonzero quantized coefficients is equivalent to storing a binary

significance mapwhich is defined by Di= Y la[m] - Qalm])” (12)
by = 0 1T lalm]| < T - falmll=%
1 if Ja[m]|>T " is the error due to quantizing significant coefficients. The

average quantization errdp,/M per significant coefficient

JPEG and the wavelet image coder of Section II-B use a run- . ; X o .
. SR _ |? calculated with the high-resolution quantization assumption
length coding to store this significance map. More efficien

zero-tree encoding techniques may also be used for wavelet D1 _ 2
significance maps [9]. M > T|a[m] Q(alm])|
Let Ry be the total number of bits required to encode lafm]|> )
the significance map. Led/ be the number of significant =E{| X7 — Q(X7)[*} = A_ (13)
12

coefficients. There is a proportign= (M /N) of indicesm
such thath[m] = 1. An upper bound forf, is computed by To compute the error due to quantizing insignificant coeffi-
supposing that there is no redundancy in the position of thecfents, we denote by,, the approximation off using theM

and the 1 in the significance map. The average number of bjtsctorsg,, of B such thatla[m]| = |{f, gm)| > T
to encode the position of one coefficient is then the entropy

of a binary source with a probability = (M/N) to be equal Iu = Z alm]gm.
to 1 andl — p to be equal to 0 la[m]|>T

The signalf,; can also be interpreted as an approximation of

f from the M vectors ofB3, whose inner products witli have
Forz € (0,1], then—zlog, = < (1 — z)log, e; therefore, the the largest amplitude. The distortidn, can be rewritten

average number of bits per significant coefficient to encode M ) )
the significance map is Do< ) =If=fullP= > laml®. (14)
la[m]|<T

R
WO < —plog, p — (1 — p)log,(1 — p).

N
To = i) < logy, — + log, e. 9) N . . .
M M In approximation theory D, is called anonlinear approxi-

For wavelet coefficients, when the proportion of significaff@tion error because thel/ vectors are selected depending
coefficients M/N is small, a run-length coding yields an®" / as opposed to linear algorithms that approximate all
average bit rate, = (Ro/M), which is much smaller than the Signals with the samé/ vectors. Clearly,Dy decays when
upper bound (9), because of the redundancy in the positiohs increases, but how fast? This issue is a central question
of the zero coefficients. For large classes of images, numeri3t iS studied in approximation theory in relation to particular
calculations show that, = (Ro/M) varies slowly relative functional spaces [3], [11]. . _
to M/N. Let us sort the inner productgm] by their amplitude. The
The amplitude of thé// significant coefficients is uniformly @mplitude of thekth coefficient is written
quantized with a stepd, and these quantized values are k E4+1
_ +
entropy encoded. Let us compute the total number of Rits z| ) =lalmu]| < x| ——
of the resulting entropy coding. Fé# >> 1, the M significant
coefficientsa[m| aboveT have a normalized histogram that
is interpolated by The approximation errab, is the sum of theV — M squared
coefficients of smaller amplitude
E
N

=|a[mgs1]] for1 <k < N. (15)

N
pr(z) = 7rp(2) L{je>1)-

| N | M 3
Let X1 be the random variable whose probability density Dy N/ Z
is pr(z). Since the high-resolution quantization hypothesis k=M+1

2
(16)
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Cubic spline wavelet basis Block cosine basis
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Fig. 4. Amplitude of the sorted decomposition coefficients of the test images in two bases.

The errorDo(M/N) has a fast decay whei//N increases The four test images, as well as most natural images, have

if (z) decreases quickly when increases. wavelet and block cosine coefficients that satisfy (19)—(22).
Observe thap(z) is related to the inverse(z) of z(z) by The concavity (21) is a technical condition that is used to
. control corrective terms in distortion rate calculations but
2(x)=1 _/ p(u) du. (17) is generally satisfied. The symmetry (22) of the probability
-z density is verified in Fig. 3. Assuming (19)—(22), the following

The probability densityp(z) is defined as a function of atheorem relates the distortion raf¥ 12) to the approximation _
continuous variable by interpolating the normalized histografiror Do through parameters that are evaluated as a function
of the decomposition coefficienigm] of f. This also defines a ©f 7(2) and the numbe/ of significant coefficients.

function z:(z) for any z € [0, 1], which interpolates the values Theorem 2:Suppose thatx(z) safisfies (19)-(22). Let

.’IZ(I{J/N) YM = ’V(M/N) > % If (M/N) <eandM > (1/6), then
To estimate the decay d@¥,(z) whenz increases, a standard B R
approximation theory approach computes the rational decay D(R)=(1+ K)Do<7,1 n 7’0) (23)

of the sorted coefficients and, hence, compates with 2=~

for some~ > 0. For functionsf € [0, N]> decomposed in a with

wavelet orthonormal basis, the exponentharacterizes par- Dy 2yy -1 o o1

ticular functional spaces called Besov spaces [3]. To supposelX = Do~ 1202 [1+O(ellogy el + ™ 77)]  (24)
that x(z) = Cz~" would clearly be too restrictive to model

interesting classes of signals. We shall rather suppose that it

exponent is slowly varying and define o= % =14 (14 ~a)log, e + log, s + log, 6 + O(e).
dlog, x(z)
2) = -2 18 (25)
7(%) dlog, » (18)

] ] Moreover, the derivative oDy(z) satisfies
Fig. 4 plotslog, z(z) as a function ofog, = for the wavelet

coefficients and the block cosine coefficients of the test imageg10g2 Do <%)

Observe that in both cases, the slope) varies slowly for = (1 = 29a)[1 + O(e|Togy €2 + 27 1Y].

z < 271, This behavior is further discussed in Section II-B. dlog, »
To compute the distortion rate, we shall assume that the (26)
second-order derivative is bounded by a snagH 0

The proof is in Appendix A.1l. To understand the impli-

d*log, x(2) <e¢ forze <0 1} (19) cations of this theorem, these formulae are simplified with an
(dlogy 2)? | ~ "2 approximation, and we neglect the corrective terms i8ince
We also suppose that the second-order derivative (19) remains small, the slope
M
inf v(z)>0 (20) —dlogy x <—>
z€[0,1] _ N
d*log, z(2) = dlogy z &7)
£ 28T <0 forze(0,1) (21) 2
(dlog; z) varies slowly as a function dbg,(M/N). In the compression

range of interest, it will be considered constany =~ ~.
It follows from (24) and (25) thatX’ = (D;/Dy) and
p(z) = p(—=x). (22) r; = (R1/M) are also constant. We have already mentioned

and thatp(zx) is symmetric
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that this is also the case fot, = (Ro/M). Hence, D(R) and further studied in [1]. Lef € L?[0, N]?. If there exists
is calculated in (23) by scaling and multiplying the nonlinea® > 0 and+~y > % so that for allk > 0 the wavelet coefficient

approximation errotDy(z) by constant factors of f of rankk is bounded by” k=7, then f belongs to a family
~ R of Besov spaces whose indexes dependyobet us consider
D(R)=(1+ K)D0< - - ) (28) a piecewise regular imag¢, which is uniformly regular
1o (Lipschitza > 1) inside the region$$; }1<x.<x that partition
Sincevy & ~, (26) implies thatDy(z) ~ 227~1 so that [0, N]?. This image has discontinuities along the borders of the
_ 1o 2;, which have a finite length. One can then prove [11] that the
D(R) ~ 7. sorted wavelet coefficients decay likek=" with v = 1. The

This distortion rate decay is very different from the highgiscontinuities create large amplitude wavelet coefficient that
resolution formula whereD(R) ~ 9—2R are responsible for this decay exponent. This piecewise regular

The distortion D in (28) depends essentially on the apMmodel applies to an image such as Lena because even the
proximation errorDq of f from M = R/(r, + ro) vectors fur texture does not create enough large wavelet coefficients
selected in the basi8. To optimize the transform coding, theto modify the exponenty = 1. On the other hand, the
basisB must be able to approximate precisely each sighalMandrill image is composed of regions with highly irregular
with a small number of basis vectors. If we consideto textures that create enough high-amplitude wavelet coefficients
be a realization of a random vectbt, then we may wonder to reduce the exponent. For finite imagesk < N, which
which is the basis that minimizeB{Dy(M/N)} over all is why we renormalizez = (k/N) and compare the decay
realizations. This problem is difficult because thé basis of z(z) with 2= whenx increases in [0,1]. Theorem 2 does
vectors are selected depending on each realizafiaf Y. not requirey to be a constant, but (19) assumes that it varies
They are the ones that have the largest inner products fwithslowly as a function oflog, z.

The energy compaction theorem [5] proves that the Karhunendf z(z) ~ »~7 for  large enough, then one can derive
Loeve basis is optimal for approximatiig from M vectors from (51) thatp(x) ~ 21~/ However, Fig. 3 shows that
chosen once and for all, but it has no optimality property ;) has an exponential decay whenis small. This can be

in this nonlinear setting, where the vectors depend on eaéiblained by looking at the normalized histogramsz) of
realization. In some cases, we know how to find bases thgk wavelet coefficientéf, % ) at a fixed scale’ for all
minimize the maximum erroDy(M/N) over a whole signal positions0 < p,q < 2-N and orientationsl < k < 3.
class. For example, wavelet bases are optimal in this migych histograms are well modeled by generalized Gaussian
max sense for piecewise regular signals that belong to Be%ﬂgtributions [10], which have an exponential decay and a
spaces [3]2 o . . variance that increases with the scale It is the aggregation

To optimize the quantization, the size of the zero[l;HfT,_T] of these histograms that yield a global histografn), which
must be adjusted with respect to the other quantization b||,r]‘|asS 2 rational decay f fici

. S . . ) y far sufficiently large [8]. However, the
of size A. To minimize the distortionD, we want to find finite image resolution implies that lot ficient
8 = (T/A) such that for a fixedR ag ples tha V\‘/‘avee coe |cj|en s are
zero forj < 0. One can verify that the “border effect” created

OD(R,9) —0 (29) by the absence of finer scale wavelet coefficients implies that
o0 ' p(z) = p1(x) for z small. This explains the exponential decay
Appendix A.2 proves the following theorem that gives aRf () whenz is small, and the rapid variation of the slope
analytic formula foré. v for logy z > —1 in Fig. 4(a).

Theorem 3: Suppose thak(z) satisfies (19)-(22) and that Letus now evaluate numerically the precision of the analytic
ro = (Ro/M) is a constant independent af. Let vy, = formula given by Theorem 2. The wavelet transform coder
y(M/N) > % If (M/N) < e and M > (1/e), then the is implemented with a quantizer whose zero P, T] is
optimal zero bin ratio is twice as large as the other quantization bins, which means that

6 = (T/A) = 1. This is a standard choice in most wavelet
_ \/7’1 +70  2ym — 1[1 + O] (30) image transform coders. The significance map is stored with

6log, e 12 ' a run-length coding, as explained in Section [I-B. The ratio

D, /Dy was calculated numerically for the wavelet transform

B. Wavelet Transform Coding coding of Lena. Fig. 5 compares this value with the theoretical

Wavelet bases are known to efficiently approximate piecgStimate (24), where the corrective termscimre neglected
wise regular functions with a small number of nonzero waveldt = (2va — 1)/126%. The slopeyy in (27) is computed
coefficients [11]. Since images often include piecewise regufd¢merically from the sorted coefficientsz) of Lena shown
structures, wavelet bases are good candidates for buildiigFig- 4(a). For(M/N) < 27, Fig. 5 shows thaf( closely
efficient image transform coders. The central assumption @pproximates the true value 6f, / Do. The error increases for
Theorem 2 is that the sorted decomposition coefficietity (M /N) > 27* because the Theorem hypothegld /N) < ¢
of f in the basisB have a rational decay. In wavelet basess not respected.
this is in accordance with asymptotic image models based orFig. 6 displays the value oR; /M computed numerically
Besov spaces introduced for compression by De¥ra. [3] from the entropy of the quantized wavelet coefficients of Lena.
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Fig. 5. Comparison of D;/Dy with the theoretical estimate | ’ | ) ) ) ’ N
K = (2yn — 1)/126% for the wavelet coding of Lena. Fig. 7. Variations of R/M for the wavelet transform coding of the test
images.
5
4'il n distortion rateD(R), despite the fact thaty, is not exactly
SSW equal to 1.
SR | The increment ofPsyr (D) for each additional bit is calcu-
25] M ] lated by inserting (26) in (30) while neglecting the variations
2 ] of K andry + rg
1.5 dPSNR(D)
I ] —=—_* =~ (2vap — 1)10log, 2.
0; dlog, R (2vm ) g10
0. 5 log; M For Lena;yys = 1 so thatPsxr(D) increases by 3 db for each

additional bit, which is indeed verified in Fig. 8. For the three
Fig. 6. Comparison of R,/M with the theoretical estimate other images, the variations ef,; cannot be neglected over
z‘;(l)din:g (}f —Ii_—er(é\.—i— ym)logy e + logyvar + logy 6 for the wavelet the whole compression range € [2-—67 1], and F_ig. 38 §h0WS
that Psnr (D) has a slope that varies slowly withg, R.
Theorem 3 gives an analytical expression that computes
The theoretical estimate (25) (T/A), which minimizes the distortiod. For r; + o = 6.5
(31) and~,s = 1, we getd = 0.81 = 1. This theoretical estimate
is precisely the choice that is most often used in wavelet
is plotted in the same figure. The curves remain close, whicbmpression softwares after ad-hoc numerical trials.
verifies the precision of this calculation. To optimize the wavelet transform coder, the distortion
To simplify the expression of the distortion rate, the slopate (32) shows that one must choose a wavelet basis that
~um is approximated by a constafi; ~ 1, which corresponds gives precise approximations of images with few wavelet
to piecewise regular image models. Althougky can differ coefficients in order to maintain a small approximation error
from 1 in many images such as Mandrill, this approximatiom,(z). This essentially depends on the support size and the
is justified by the small sensitivity o and r; + r¢ with  number of vanishing moments of the wavelets [11]. The
respect to fluctuations of,; around 1. Sincé = 1, we get optimization of the wavelet basis may depend on the particular

r1 =14+ (14 va)log, e + log, yar + log, 6.

K =~ (1/12) andr =~ 3.9. Fig. 7 displays class of images to be encoded.
R Ry R
MM T T ot C. JPEG Image Coding

, which was computed numerically for the four test images. For The JPEG image standard decomposes an image in a block
(M/N) € [277,27]+, the ratioR/M can be approximated Cosine basisB. Images of N pixels are divided inV?/64
by a constanty + 1 & 6.5. The distortionD calculated in blocks of L = 8 by 8 pixels. Fig. 4(b) shows that the decay

(23) is thus approximated by of the sorted local cosine coefficients satisfies the assumptions
_ of Theorem 2 for the four test images.
f)(}‘g) — <1 + i)p0<£>_ (32) JPEG uniformly quantizes the block cosine coefficients. In
12 6.5 each block of 64 pixels, there is one DC coefficient, which
Fig. 8 compares the peak signal-to-noise ratio is proportional to the average image value over the block.
N2552 Instead of directly quantizing this DC coefficient, JPEG quan-
Psxr(D) = 10logy, il tizes the differences between the DC values of two adjacent

blocks. Since the amplitudes of the DC coefficients are not
which was calculated numerically for the four test imagesirectly quantized, their values are not included in the sorted
with the approximatedDSNR(D) derived from (32). Observe coefficients shown in Fig. 4(b). A significance map gives
that D(R) gives a remarkably precise evaluation of the truthe position of zero versus nonzero quantized coefficients.
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Fig. 8. Psnr(D) (solid line) andPsxg (D) (dashed line) for a wavelet coder wilh = (1 + 5)Do(R/6.5).
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B 5 A5 4 35 F 25 & A5 k’gzw 1

M
) . ) ) . 0 log, =
Fig. 9. Comparison of D;/D, with the theoretical estimate 55 % 35 % 25 2 A5 1 OBy

K = (2vn — 1)/1262 for the JPEG coding of Lena.

Fig. 10. Variations ofR/M for the JPEG coding of the test images.

It is encoded with a run-length coding, which scans the 64

cosine coefficients of each block. The following numericd™2. For (M/N) > 273, the estimation error ofD;/Dj

calculations are done with a baseline JPEG compression codiereases because it does not respect the theorem hypothesis

Following our explanation in Section II-B, the weights,, that (M/N) < e.

used to improve the visual quality of JPEG images are set toJPEG uses a mixed format that encodes the run-length

1, which maintains a uniform quantization with the same bigoding for significant coefficients and the amplitude of these

size A for all coefficients. significant coefficients together [15]. It is therefore not possible
Since JPEG uniformly quantizes the decomposition codp computeR, and R, separately. Fig. 10 displayg:/M ) =

ficients, the zero bif—7,77] is equal to other bin sized, 7o+ 71 as a function olog, (A /N) for the four test images.

and hencef = (T/A) = . For Lena, Fig. 9 compares!f (M/N) € [27°,271], thenro + 71 ~ 5.5.

the ratio D, /D, computed numerically and the theoretical In the compression range of JPEG, the slopg remains

estimate derived from Theorem 2 slightly above 1. Approximating; ~ £ yields K ~ . The
- 29 =1 29y -1 distortion rate formula calculated with (23)
1262 3 ) _
The .slopeqM is calculated from the coefficient decay shown D(R)=(1+ K)D0< R )
in Fig. 4(b). Both curves are very close up (d//N) > To+T1
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Fig. 11. Psxr(D) (solid line) andPsnr (D) (dashed line) for JPEG, witlh) = (1 + $)Do(R/5.5).
is thus approximated by The setS;, is encoded with a binary significance magm|
\ 1 R .
D(R) = <1 + —)Do<ﬁ>. (33) _Jo ifmgs,
2 5.5 bi[m] 1 if me Sy (34)

Fig. 11 compare®snr(D) calculated numerically with JPEG

software and its approximatioRsxr (D) derived from (33). AN embedded algorithm quantize:gm] uniformly with a
It shows that the distortion rate formula (33) is a precis%l‘""‘m'z"’ltlon step (bm_ sizeh = 2" that IS progressively
duced. Letn € S with k& > n. The amplitude|Q(a[m])|

approximation over the whole compression range of JPEG it . ) ) _
that we can neglect the variations &f and o + r of the quantized number is represented in base 2 by a binary
0 L string with nonzero digits between the Bitand the bitn. The

bit & is necessarily 1 becaugé < |Q(a[m])| < 2¥+1. Hence,

) o ) ] k —n bits are sufficient to specify this amplitude to which one
For rapid transmission or fast image browsing from a datg;t is added for the sign.

base, one should provide a coarse signal approximation quicklyrhe embedded coding is initiated with the largest quantiza-
and then progressively enhance it as more bits are transmitiggh step to produce at least one nonzero quantized coefficient.
Embedded coders offer this flexibility by grouping the bitgg efine the quantization step frogfi+! to 27, the algorithm

in order of significance. The decomposition coefficients afgcords the significance map[m] and the sign ofa[m] for
sorted, and the first bits of the largest coefficients are sent- s  This can be done by directly recording the sign of
first. An image approximation can be reconstructed at agyynificant coefficients with a variable incorporated into the
time from the bits already transmitted. Embedded codeggynificance mapb,[m]. Afterwards, the code stores the bit
can take advantage of any prior information on the locatign o g amplitudes|Q(a[m])| for m € Sy with k& > n. If

of large versus small coefficients. Such prior information iﬁecessary, the coding precision is improved by decreasing

available for natural images decomposed in wavelet basgsang continuing the encoding. The different steps of the
As a result, an implementation with zero trees designed Byyorithm can be summarized as follows [12].

Shapiro [13] yields better compression rates than classica
wavelet transform coders.

The decomposition coefficienigm] = (f, g.,) are partially
ordered by grouping them in sef;, of indexes defined for
any k € Z by

IV. EMBEDDED TRANSFORM CODING

1) Store the index: of the first nonempty sef,,, where
n = [sup,, log,|alm]|].

2) Store the significance map,[m] and the sign ofz[m]
form € S,.

3) Store thenth bit of all coefficientda[m]| > 2"+, These

Sk = {m: 2% < |a[m]| < 2¥FLY. are coefficients that belong to some sktfor k > n,
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whose coordinates were already stored. Thir bit is

stored in the order in which their position was recorded

in the previous passes. T
4) Decreasen by 1, and go to step 2.

This algorithm may be stopped at any time in the loop,
providing a code for any specified number of bits. The
distortion rate is analyzed when the algorithm is stopped at 04}
step 4. All coefficients abov& = 2™ are uniformly quantized
with a bin sizeA = 2”. The zero quantization bif-7',7]
is therefore twice as big as the other quantization bins. This °. 5 5 198, %31—
guantizer is the same as in the direct transform coding studied
in Section I1I-A for a zero-bin rati@ = 7/A = 1. This value F'9- 12 Comparison of(f#j/1f) —~ 1 with the theoretical estimate
was shown to be nearly optimal for wavelet image coders. The™ 1= 1/(z/7 = 1) for the embedded coding of Lena.
total distortionD = Dy + D, is therefore not modified by the
embedding strategy.

Once the algorithm stops, we denote h¥ the number of 'm}& =
significant coefficients abov& = 2". The total number of
bits of the embedded code 1% = R + R, where K is the
number of bits needed to encode all significance nigps|
for £ > n, and RS is the number of bits used to encode the 4
amplitudes of the quantized significant coefficiet}t&:[m]), s
knowing thatm € &, for &k > n.

To appreciate the efficiency of this embedding strategy, the
bit budget Rf + R{ is compared with the number of bits

08}

06}

02}

m3|”

1

: : M
Ry + Ry used by the direct transform coder of Section IlI- o * 5 s & ) 5 log,
A. The V.all'!e.RO is the number of bits used to encode thEig. 13. \Variations ofR/M for an embedded wavelet coding of the test
overall significance map images.

0 if lafm]| < T Theorem 4: Suppose thatz(z) satisfies (19)—(22). Let

0l ]_{1 if |a[m]|;T (35) vy = Y(M/N) > % If (M/N)<eandM > (1/e), then
Ry 1
ri="F=14+ ——[1+O(¢|logy ¢ (36)
and R; is the number of bits used to encode the quantized M 2/ v — 1[ (cllog, )]
significant coefficients. and
An embedded strategy encod@sa[m]) knowing thatm & ~ R

Sy and, hence, tha* < |Q(a[m])| < 2¥*+1, whereas a direct D(R) = (1+ K)Do g (37)

transform coding knows only th#@)(a[m])| > T = 2". Thus, . . o
fewer bits are needed for embedded codg$: < R;. This Whﬁ:mo - ]ER(]{/JK[.) ahndK - .(D.l/lA)O) IS g_we: ?E)yl(z?' ol
improvement may be offset, however, by the supplement of . € proot of this 1 eorem IS in Appendix A-3. In the ol-
bits needed to encode the significance méipgm]}r - » of lowing, we omit the corrective terms to simplify the notation.
the sets{Sy }+ > ». A direct transform coder records a singIeThls theorem proves thaft{ /A is well approximated by
signifjcance mapb[m], \_/vhich specifiesUy>n Sy !t provides . =14 - 1 ' (38)
less information and is therefore encoded with fewer bits: 2/ — 1
R§ > Ry. An embedded coder brings an improvement overfig. 12 verifies that the value ofR{/M) — 1 calculated
direct transform coder if numerically with the embedded wavelet coding software of
Said and Pearlman [12] is close to the estimégtel calculated
e e by computingv,, from Fig. 4(a). We subtract 1 bit because
R+ RS < Ry + Ry.
0TS Hot Said and Pearlman do not encode the sign bits with the

) ) o ) amplitudes of the significant coefficients but store their values
This can happen if we have some prior information about the he significance maps.

position of large decomposition coefficient¥ a[m]) VErSUS | et us compare = (RS/M) calculated in (36) with the
smaller ones. It allows us to reduce the number of bits neeq(,.acqueT1 = (Ry/M) estimated in (25) for a direct transform
to encode the partial sorting of all coefficients provided bé’oding, withé = 1. The bit budget of an embedded coding

the significance mapgbi[m]}x > ». The use of such prior js gmajler than that of a direct transform coding§f-+ ¢ <
information produces an overhead £f; relative to R that ro + 1, and hence

is smaller than the gain aoR$ relative to R;. Let z(z) be . .
the sorted amplitudes of the coefficientsn]. The following 7o =70 =71 =71
theorem compute®§ with the same hypotheses as Theorem = (1 +yar)log, exp+log, yar —

: o —. (39
2, allowing us to compare it withR; . 21/var — ]
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Fig. 14. Psnr(D) (solid line) andPsxr (D) (dashed line) for an embedded wavelet coding, with= (1 + E—Q)DU(R/5.5).

If var & 1, thenr; — 7 & 1.9. The inequality (39) is satisfied tree coder with a set partitioning technique. A cubic spline
for embedded transform codings implemented in wavelet basethogonal wavelet basis was used. Fig. 13 displays the value
[13] and in a block cosine basis [17] by taking advantagef (R/M) = r§+ r{ as a function ofog, M/N for the four
of prior knowledge of the location of large versus smatest images. These curves have variations centered at 5.5. This
coefficients using zero trees. graph should be compared with Fig. 7, which shaowyst 71

A wavelet coefficient f, 1% has a large amplitude wherecalculated with a direct wavelet image coder. An improvement

)
1:P:4
the signal has sharp transitions. If an imafjldés Lipschitz of approximately 1 bit per significant coefficient is obtained.

« in the neighborhood ofzg, ), then for wavelet&/;,’{ 7 The embedded distortion rate function is calculated with
located in this neighborhood, one can prove [11] that the(@7). Inserting~y, = 1 in (24) yields K = % Since
exists A > 0 such that 7§+ 7§ & 3.5, we get an approximate distortion rate formula
(F k)] < A3t DRy = (1+ 2 \po (2.
12 5.5

The worst singularities are often discontinuities, which mea .
that & > 0. In the neighborhood of singularities Withoutﬁg' 14 compares théswy(D) calculated numerically for the

oscillations, the amplitudes of wavelet coefficients thus gar test images and its theoretical approximatis (D).

X . . .df)nce more, we verify that the distortion rate essentially
crease when the scak® decreases. This property is not vali o .
depends only upon the approximation error functiop(z).

for oscillatory patterns. High-frequency oscillations creatiahe variations of the constank§ andr ++< can be neglected
coefficients at large scaleX that are typically smaller than . ot '
The embedding strategy reduces+ r; to r§ + 7§, but the

those at the fine scale that matches the period of oscillation. ; . : .
Such oscillatory patterns are not often encountered in imag\é"ématlo.nS O.f the distortion rate still depends on the nonlinear
although they do appear as thin lines in the Barbara imagegpprommatlon erromy ().

Wavelet zero trees, which were introduced by Lewis and
Knowles [9], take advantage of the decay of wavelet co- V. CONCLUSION
efficients by relating these coefficients across scales withWe have shown that at low bit rates, the distortion rate of
quad trees. These zero trees take advantage of a partial sediasform coders can be computed by separating the coeffi-
similarity of the image [2]. Shapiro [13] used this zero-treeients quantized to zero from all others. The resulting distor-
structure to encode the embedded significance maps of wavétat rate D(R) depends crucially on the precision of nonlinear
coefficients. Numerical experiments were performed with Saichage approximations with few nonzero basis coefficients. In

and Pearlman’s software [12], which improves Shapiro’s zeraravelet and block cosine bases, we have demonstrated that
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if R < 1, then D(R) decays likeC R'~2?7, where~ is an The estimation error is

exponent of the order of 1, which varies slowly as a function
of log, R. Embedded transform coders improve the constant
C but not the exponent, which depends on the image.

APPENDIX
PROOFS OF THEOREMS

A.1. Proof of Theorem 2

The distortion rate formula (23) is derived by observing thyith
D = Do+ D; and R = (Ro/N) + (Ry/N). By definition,
K = (D1/Dy),r9 = (Ro/M), andr, = (R1/M). Inserting
these variables in the equatidh = Dy + D, yields (23).

The main difficulty is in computingk’ = (D;/D,) and
r1 = (Ry/M). For this purposegz(z) is approximated by a
function z (%) that is tangential ta:(z) at = = AM/N. We and
first estimateX’ andr, by replacingz(z) with zx;(z) and then
evaluate the error introduced by this approximation. We define

Nz —TM
.77]\4(2) IT<M> .

Since there are exactly/ coefficients above’, x(M/N) =
T = .QZA{(M/N), and

M M
d10g2x<ﬁ> - dlogy xn <N)

dlogyz dlog, z - T

— 2,
Do—Do:NTQ/1 <NZ> .
myn \ M

—2(8(2)—vm)
- () |

We cut this integral in two parts

|Do — Do| < I + I

2/(1/26)(1\4/1\’) <&>_2"/I\/{
M/N M

—2(8(2)—vm)
1-(5) |

+oo —2vum
I, =NT? / <NZ> dz
(/20m/8) \ M

MT?(2¢)%vm—1
B 2y —1 7

I =NT

o) o)

hypothesis (19) guarantees that

Both curves are thus tangential at = (M/N), and the
concavity oflog, z(z) guarantees that

log, x(2) < logy zpr(2).

Let us now prove tha{D;/Dy) is given by (24). We
compute

dy(2)
dlog, 2| ~

vz € [0,271], ‘

and hence

lvar —v(2)| L e

M
logs, z — log, N

1039

(43)

(44)

(45)

To find an upper bound aof;, we compute an upper bound
of 5(z) — vn. Clearly

Sincelog, z(z) is concave)yy — 3(2)| < |vamr — v(2)]- The

(46)

(47)

N-1 1 1 which yields
Dy = z2 <—> ~N 72(2) dz. (40) Nz
k;l N M/N Vz € [072_1]7 |’W\4 - /3(2)| <e 10g2 M‘

This value is approximated by The concavity oflog, z(z) also implies that3(z) — v > 0
. 1 1 —27m for z > (M/N). Since(1/2¢)(M/N) < 271, it follows that
Do=N 22,(2)dz = T2N <NZ> dz = (M/N) W/ ),( /) <

M/N M/N M I < NT? /(1/26)(1\4/1\) <NZ>—2"/M
_ T () (T ) PR M
- 2yn — 1 N ’ Nz —2¢log, (Nz/M)
The concavity oflog, z(z) implies thatz(z) < xa(z) for
z > (M/N) and, hence, thaD; — Dy > 0. To compute , [A/2OMINY /Ny =27
Dy — Dy, we write <NT /M/N M

—8(2)
N Z) (42)

2(2) :T<M

with

M
log, x <N> — log, z(2)

B(z) = M
log, #» — log, N

- 2—26(1og2(Nz/M))2] dz

(1/2¢) N
<MT? / 22 [ — g7 2e(logy )7 g,
1

One can then derive that

MT?
I <

O(e|log, €|?).
e (¢ logy €]%)

Inserting (41), (45), and (48), in (43) proves (24).

(48)
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Let us now prove thatR; /M) satisfies (25). To compute Sinceinf_ (g1 ¥(z) = p > 0, it follows that
R, we must calculate the differential entropy

+oo ’Y<%Z ’YM—’Y<AA{ )
HaXe) == [ pala)log pr(o) do o, | L[ <oy | 14—y
—o0 M
wherepr(z) = (N/M)p(a)1 (ujr) (2). Sincep(z) = p(—z) Lo <N )
+oo S—"Y<N75> =M\
HaXe)= =23 [ p@) g pe) e (49 "

o . Since(M/N)z < 271, we proved in (46) and (47) that
This integral is calculated by relating it ta(z). Since

M
T —2z —
Hz) =1~ / p(u) du (50) MN ) b
Y™ — ﬁ(NZ)‘ < e|log, 2|.

<e¢llog, 2| and

it follows that 2'(z) = —p(z) — p(—z) = —2p(x), and hence

P2 = 1 -1 (51) By inserting these inequalities in (54), one can verify that
() 2p(x)’ |Ha — Ha(X7)| = O(¢). From (53) andT” = #A, we thus
) ] ] derive that
Sincep(z) dz = —% dz, the change of variable = z(z) in R
(49) yields Ml =Hy(X7) — log, A
M/N I PN . .
Hy (XT _2_/ 1082 |2$( )% —10g29+1+(1+71\4)10g26+10g271\4+O(6)
which finishes the proof of (25).
and with a change of variable Let us finally prove (26). We must calculate
1
M M M M
Hy(X7) =1 —|—/ log, <N x’<ﬁz> D dz. (52) dlog, DO<N) dDo(w) M
’ dlog T s
This integral is first estimated by replacingz) by z:(z) 082 % ¢ NDO(N)
1
Hy=1 +/ log, <% Ty <%z> ) dz We derive from (40) that
o N N
1 M
:1+/ logy (Tymz™"71) dz dDO<N> o M 2
0 — = —Nz ~ )= —-NT
=1+log, T +logy yas + (yar + 1)1og. 2. (53) #
and (24) yields
Let us compute the error
1 2ym —1 2 2y —1
— = 14+ O(e|log =Y.
1 4%) Do = “appz Lt Olelloga ? + &)
|Ha — Ha(X7)| < / logy | — 77~ | % Inserting these last two equations in (55) gives (26).
0 ‘/L'/J\4<N7>

A.2. Proof of Theorem 3

Observe that We proved in (24) that

dlog, z(z) —za'(2)

= — = 2
) dlogy 2 z(z) D=D <1 P )
d ! that e
an = —(zxy(z)/xp(2)) SO ha
o (e (2)fn(2) Since D, = (MA?/12) = (MT?/126%) andT = «(M/N)
[Ha — Ha(X7)] 1 12
M M D=MT? <—2 + )
1 N M e 02 " 27y —1
< / log, | 2 | +1log, | —~ 2 ||dz M 1 12
0 YM M =Mz St —.
z| 6 2ypm =1
M We decompose(R/M) = (Ry/M) + (Ri/M), where
1 '7<NZ> M (Ro/M) = 19 is a constant, and (25) shows that
< / logy | —m———= | + <’YM - /3<—z>) log, 2
0 Y™ N Ry i i
—7 =r1(M,0) =14 (1+ ) log, e+logy vum

M
- dz. (54) +log, 8+ Ofe|log, €|). (56)
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If we neglect the residual terms

R
a7 = Ltro+(1+um) logy e+logy v +logy 6.

The variableM depends on(R,#), and we can thus write

(R/M) = (R, 6). Hence
- ..  NR L/ R 1 12
DUk.0) = 5y @ </3(R, 9)) <92 t o = 1)'
(57)

To computedD(R, 6)/96, we need to calculat8(R,6)/56.
Observe that

o B
PRG3R OM(R0)
96 o0 M2 00

We computedM(R,0)/06 by taking the derivative with

respect tod at R fixed of the equality
R=M[1+4+ro+ (1 +~vum) log, e+logy var + log, 9.

We get
_OM(R,0) [ R - dym 1 dym
0="5 {MJFMIO%? A Ty AM
M logg e
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A.3. Proof of Theorem 4

Suppose that the algorithm stopsratlt performs a quan-
tization with intervals of sizél’ = 2". For each coefficient
2% < |a[m]| < 2¥*+1, we saw that the number of bits required
to specify the quantized value ¢i[m]| is

b 2

and we need one bit for the sign afm]. The coefficients
above2” are theM coefficients whose amplitudes are given
by x(z). Therefore

m
Ry = i {108‘2 QZ(TN)

p:k—n:

+M=5L+L+M (61)

m=1

where I; corresponds to the sum fan > ¢M > 1

M B(m/N)
M
I = E \‘108‘2 <_m> J

m=Me

and I, is calculated fromm < eM

Me—1 e M B(m/N)
Og2 m .

The slow variation condition (19) on the slope imposes thaWWe proved in (47) that

_dw o,
dlog, (M)] ™
g2 N
Inserting this in the previous equation proves that
OM(R,0) [ R B log, e
0 [M “9(6)} =M=y
Hence
IB(R,6) R IM(R,6)
06 M2 a0
= 10%92 [1+0(e)] = 4. (58)
Let us now compute a derivative from (57)
dlog, D(R,0) Jei Rp
a0 T B(R, 9) " (R, 6)
<%> :
N 93
% =0.
Nz N 2’YM -1
(59)
We know that
dlog, x<%) Ma:’(%)
= (60)

= =—TM.
dlog, <%) Nx(%)

Inserting (58) and (60) wittB(R,8) = (R/M) = r1 4+ ro in
(59) proves (30).

L= >
"VM - /3(%)‘ < 6‘103;2 (%)‘ (62)

m=1
As a consequence, fon € [eM, M]

m
s = ellogy o = o < B(5) < Bu = s +e |logs .

(63)
Let us define
M 8
M h
1(8) = Z \‘108‘2 <—> J
m=Me m
The inequalities (63) imply that
I(Bo) < L < I(B1). (64)

Let us calculate/(3) for any 3. We decompose the sum
in slices where
3
m

for which the floor of thelog, is equal to:. It corresponds to
M2=CHD/8 < < M27Y8,

Let ¢ = |log, ¢|. We obtain

a8
I(8) =" i M(27/0 — o= (+1/7) (65)
7=0
so that
al
1p) ~/BY N o—(i/8)
7 =(1-2 ) Y2 . (66)

=0
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We can verify that

+ oo
S i) =
=0 [12]

Approximating the finite sum (65) by this infinite sum yields

[20]

9-(1/5)

A=y (67)

[11]

1(3) 1 ‘ [13]
7 = m + 0(6 |10g2 6|) (68)
The inequality (64) can thus be rewritten (14]
1 I 1
SR 1" O(e|log, €]) < i < Y] [15]
+ O(e|log, €). (6]
Sincefy — yar = yar — Po = € |log, ¢, it follows that (17
I 1
1 <Ol ). ©9)

M 20/m) —1

To compute the discrete sufs, we use (62), which proves
that

/3(%) <ym+e ‘10g2 %‘

Hence
Me—1

L= >

M Y +e| logy (m/M)|
log -
m=1 e < m )

<M / (a1 + €l logy ]) |log, |dz
0
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