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Analysis of Low Bit Rate Image Transform Coding
St́ephane Mallat,Member, IEEE, and Fŕed́eric Falzon

Abstract—Calculations based on high-resolution quantizations
prove that the distortion rate D( �R) of an image transform coding
is proportional to 2�2

�R when �R is large enough. In wavelet and
block cosine bases, we show that if�R < 1 bit/pixel, then D( �R)
varies like �R1�2
 , where 
 remains of the order of 1 for most
natural images. The improved performance of embedded codings
in wavelet bases is analyzed. At low bit rates, we show that
the compression performance of an orthonormal basis depends
mostly on its ability to approximate images with a few nonzero
vectors.

Index Terms— Distortion-rate, image compression, JPEG,
wavelet basis.

I. INTRODUCTION

I F THE SIGNALS to be encoded are realizations of a
Gaussian process, under the high-resolution quantization

hypothesis, we know nearly everything about the performance
of a transform coding. For an average of bits per pixel,
the mean-square error varies proportionally to
with a constant that depends on the bit allocation and the
basis. Current image transform coders operate below 1 bit per
pixel. For such low bit rates, the high-resolution quantization
assumption yields an incorrect estimate of the distortion rate

In this range, we show that depends mostly
on the error when approximating signals with a limited
number of vectors selected from the orthogonal basis. We
verify that in wavelet and block cosine bases, varies like

, where remains of the order of for most “natural”
images.

Transform coding algorithms can be improved by an em-
bedding strategy that sends the larger amplitude coefficients
first and then progressively refines their quantization. This
improvement is analyzed mathematically and evaluated nu-
merically for the wavelet zero-tree algorithm of Shapiro [13].
Embedded coders outperform classical transform coders when
there is some prior information on which basis vectors produce
large, average, or small decomposition coefficients for typical
signals.

This paper begins with a brief review of entropy-constrained
scalar quantizers and high bit rate transform coding. Section
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III analyzes the distortion rate at low bit rates and gives
numerical examples with a wavelet transform coder and JPEG.
The performance of embedded transform coders and their
applications to wavelets is studied in Section IV.

II. HIGH BIT-RATE COMPRESSION

The class of signals to be encoded is represented by a
random vector of size Although these signals may be
multidimensional-like images, they are indexed by an integer

to simplify notations: A transform coder decomposes
these signals in an orthonormal basis

Each coefficient is a random variable defined by

To construct a finite code, each coefficient is approxi-
mated by a quantized variable We concentrate on scalar
quantizations, which are most often used for transform coding.
The next section reviews important results concerned with
minimizing the quantization error.

A. Entropy-Constrained Scalar Quantization

A scalar quantizer approximates a real random variable
by a quantized variable , which takes its values in a
finite set. Suppose that takes its values in , which may
correspond to the whole real axis. We decompose into

intervals of variable lengths, with
and If , then We denote

Pr Pr

The Shannon theorem [5] proves that the entropy

is a lower bound of the average number of bits per symbol
used to encode the values of Arithmetic entropy coding
[16] achieves an average bit rate that can be arbitrarily close
to the entropy lower bound; therefore, we shall consider that
this lower bound is reached. Anentropy constrained scalar
quantizer is designed to minimize for a fixed mean-
square distortion
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Let be the probability density of the random source
The differential entropy of is defined by

A quantizer is said to have ahigh resolution if is
approximately constant on each quantization bin
of size This is the case if the sizes
are sufficiently small relative to the rate of variation of
The following theorem [5] proves that uniform quantizers
are optimal among high-resolution quantizers. It is equivalent
to the result of Girsh and Pierce [6], which proves the
asymptotic optimality of uniform quantizers when the sizes
of the quantization bins tend to zero.

Theorem 1: If is a high-resolution quantizer with respect
to , then

(1)

This inequality is an equality if and only if is a uniform
quantizer, in which case,

For a fixed distortion , under the high-resolution quanti-
zation hypothesis, the minimum average bit rate
is therefore achieved by a uniform quantizer, and

(2)

The distortion rate is obtained by taking the inverse of (1)

(3)

Farvardin and Modestino [4] proved that even though the
high-resolution quantization hypothesis may not hold, for a
large class of probability distribution including generalized
Gaussians, the uniform quantizer yields a distortion rate that
is close to the optimal quantizer if the number of quantization
bins is large enough.

B. Distortion Rate

Let us optimize the transform coding of
The average bit budget to encode
is For a high-

resolution quantization, Theorem 1 proves that the error
is minimized when using a uni-

form scalar quantization. An optimal bit allocation minimizes
the total number of bits for a specified total
error Let be the average number
of bits per sample. With Lagrange multipliers, we verify that

is minimum if all are equal [7], in which case

(4)

where is the averaged differential entropy

A mean-square error is not always a good measurement
of visual degradations in images. In particular, we are often
less sensitive to high-frequency distortions as opposed to lower

frequencies. A weighted mean-square norm takes into account
this sensitivity by emphasizing low-frequency errors. Suppose
that is a vector whose Fourier transform is localized in
a frequency neighborhood that depends on, as in a block
cosine basis or in a wavelet basis. A weight is adjusted,
depending on our visual sensitivity in this frequency range.
The resulting weighted distortion is

where is the mean-square quantization error
of The previous bit allocation result
applied to the coefficients proves that is minimized
by quantizing uniformly with a bin size , which is
equivalent to quantizing with a bin size
In the rest of the paper, we choose and, thus, evaluate
the error with a standard mean-square norm as opposed to a
weighted norm. All calculations are easily extended to any
other choice of weights by replacing by

The distortion rate (4) depends on the orthonormal basis
through In general, it is difficult to find , which

minimizes because the probability density of
may depend on in a complicated way. If is

a Gaussian random vector, then the coefficients are
Gaussian random variables in any basis. In this case, the
probability density of depends only on the variance ,
and we can verify that

Inserting this expression in (4) yields

(5)

One can prove that is minimum if and only if
is a Karhunen-Lòeve basis of [5], which means that

diagonalizes the covariance matrix ofThe transform coding
of a Gaussian process is thus optimized in a Karhunen-Loève
basis. When is not Gaussian, the Karhunen-Loève basis is
a priori no longer optimal. This is the case for images that
cannot be considered to be realizations of a Gaussian process.

Let us describe a simple wavelet transform coder for images.
Separable wavelet bases of images include three wavelets with
horizontal, vertical, or diagonal orientations [10], indexed by

At an orientation and scale , the wavelet
vector is approximately centered at ,
with a square support whose size is proportional to At
high bit rates, we saw that the distortion rate is optimized
by quantizing uniformly all decomposition coefficients. The
domains where the image has smooth grey-level variations
yield small amplitude wavelet coefficients that are quantized
to zero. To improve the efficiency of this transform coding,
the wavelet coefficients are scanned in a predefined order, and
the position of zero versus nonzero quantized coefficients is
recorded with a run-length coding that is entropy encoded. In
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Fig. 1. Four test images for numerical experiments.

the same scanning order, the amplitude of the nonzero quan-
tized coefficients are also entropy encoded with a Huffman or
an Arithmetic coding.

Fig. 2 gives the distortion of this wavelet trans-
form coding for the test images shown in Fig. 1. These
numerical experiments are performed with an orthogonal cubic
spline Battle-Lemaríe wavelet [10]. The distortion rate formula
(4) predicts that

where is the average differential entropy of the wavelet
coefficients at all scales and positions. This formula implies
that should decay with a slope of as a function
of This is indeed verified in Fig. 2 for but not for

, where has a much faster decay. At low
bit rates , the distortion rate formula (4) is not valid
because the high-resolution quantization assumption does not
hold. Wavelet transform codings are most often used for
because they recover images of nearly perfect visual quality
up to bits per pixel. The next section studies the
distortion rate at these low bit rates.

III. L OW BIT-RATE COMPRESSION

At low bit rates, the decomposition coefficients of an image
in an orthonormal basis are coarsely quantized. Since many
coefficients are set to zero, the positions of zero versus nonzero
quantized coefficients are stored in a binary significance map,
which is recorded with a run-length coding or a more sophisti-
cated zero-tree algorithm. The distortion rate theory previously
described does not apply for two reasons. First, the high-
resolution quantization hypothesis does not hold because the

Fig. 2. Log distortion rate curve for the wavelet transform coding of each
test image.

quantization bins are large. Second, one cannot treat the total
bit budget as a sum of bits allocated independently to
each decomposition coefficient. Indeed, the encoding of the
zero quantized coefficients through a significance map is a
form of vector quantization, which relates the encoding of
different coefficients.

To evaluate the distortion rate, we cannot rely on a precise
stochastic model for images. There is, as yet, no model that
incorporates the full diversity of image structures, such as
nonstationary textures and edges. To avoid this difficulty, we
shall consider the signals to be deterministic vectors whose
decomposition coefficients in the basishave a parameterized
decay. The distortion rate is, therefore, not calculated with
an ensemble average but for each signalThe key result
shows that this distortion rate depends mostly on the ability
to precisely approximate with a small number of vectors
selected from Low bit-rate image compressions in wavelet
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Fig. 3. Normalized histograms of the cubic-spline wavelet coefficients of the test images.

bases and block cosine bases illustrate the distortion rate
results.

A. Distortion Rate

Let be a signal decomposed in an orthonormal basis

with

The transform coder quantizes all coefficients and reconstructs

The coding error is

(6)

We denote by the discrete histogram of the coef-
ficients normalized so that The values of
this histogram are interpolated to define a function
for all such that This is the
probability density of a random variable We suppose
to be sufficiently large and the histogram sufficiently regular
so that for all functions that appear in our calculations,
we have

(7)

This hypothesis holds for the histograms of the test images
shown in Fig. 3, as well as for most “natural” images. It is

equivalent to the coefficients being successive values of
the random variable Applied to , (7)
yields

Let be the average number of bits per coefficient to encode
the If is a high-resolution uniform quantizer with
step size , then (3) implies a distortion rate formula similar
to (4)

If the basis is chosen so that many coefficients
are close to zero and few have a large amplitude, then

has a sharp high peak at This is the case for
the histograms of wavelet coefficients shown in Fig. 3. If
is large, then has important variations in the zero bin

, where coefficients are quantized to zero.
Hence, the high-resolution quantization hypothesis does not
apply in this zero bin. This explains why , which is
shown in Fig. 2, decays like only for

If is a Laplacian distribution
, then Sullivan [14] proved that the

optimal entropy-constrained scalar quantizer is a nearly
uniform quantizer. All the nonzero quantization bins have
the same size , but the zero bin is larger, with a
ratio that can be calculated. Sullivan’s result does
not apply to the quantization of wavelet image coefficients
because Section III-B shows that has a slower decay,
which is rational instead of exponential. Yet efficient low
bit-rate wavelet transform coders are often implemented
with a nearly uniform quantizer, whose zero bin
is larger than the other bins. This can be justified with
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a high-resolution assumption outside the zero bin. For
, we shall consider that the relative variations of

in each quantization bin is sufficiently small to apply
the high-resolution hypothesis. This assumption is only
an approximation, but it captures sufficiently precisely the
quantizer properties to obtain accurate calculations up to
very low bit rates. For , the high-resolution
quantization hypothesis does not hold because varies too
much. Theorem 1 implies that outside , the optimal
entropy-constrained quantizer has bins of constant size
The ratio is a parameter that must be adjusted
to minimize the overall distortion

Any coefficient that is not quantized to zero
is called a significant coefficient. Coding the position of
nonzero quantized coefficients is equivalent to storing a binary
significance map, which is defined by

if
if

(8)

JPEG and the wavelet image coder of Section II-B use a run-
length coding to store this significance map. More efficient
zero-tree encoding techniques may also be used for wavelet
significance maps [9].

Let be the total number of bits required to encode
the significance map. Let be the number of significant
coefficients. There is a proportion of indices
such that An upper bound for is computed by
supposing that there is no redundancy in the position of the 0
and the 1 in the significance map. The average number of bits
to encode the position of one coefficient is then the entropy
of a binary source with a probability to be equal
to 1 and to be equal to 0

For , then ; therefore, the
average number of bits per significant coefficient to encode
the significance map is

(9)

For wavelet coefficients, when the proportion of significant
coefficients is small, a run-length coding yields an
average bit rate , which is much smaller than the
upper bound (9), because of the redundancy in the positions
of the zero coefficients. For large classes of images, numerical
calculations show that varies slowly relative
to

The amplitude of the significant coefficients is uniformly
quantized with a step , and these quantized values are
entropy encoded. Let us compute the total number of bits
of the resulting entropy coding. For , the significant
coefficients above have a normalized histogram that
is interpolated by

Let be the random variable whose probability density
is Since the high-resolution quantization hypothesis

applies to significant coefficients, the average number of bits to
encode the amplitude of each quantized significant coefficient,
which is denoted , is calculated from (2)

(10)

Overall, the transform coding requires bits.
To estimate the quantization error [ in (6)],

insignificant coefficients quantized to zero are separated from
significant coefficients , where

(11)

is the error due to quantizing insignificant coefficients, and

(12)

is the error due to quantizing significant coefficients. The
average quantization error per significant coefficient
is calculated with the high-resolution quantization assumption

(13)

To compute the error due to quantizing insignificant coeffi-
cients, we denote by the approximation of using the
vectors of such that

The signal can also be interpreted as an approximation of
from the vectors of , whose inner products with have

the largest amplitude. The distortion can be rewritten

(14)

In approximation theory, is called anonlinear approxi-
mation error because the vectors are selected depending
on as opposed to linear algorithms that approximate all
signals with the same vectors. Clearly, decays when

increases, but how fast? This issue is a central question
that is studied in approximation theory in relation to particular
functional spaces [3], [11].

Let us sort the inner products by their amplitude. The
amplitude of the th coefficient is written

(15)

The approximation error is the sum of the squared
coefficients of smaller amplitude

(16)
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(a) (b)

Fig. 4. Amplitude of the sorted decomposition coefficients of the test images in two bases.

The error has a fast decay when increases
if decreases quickly when increases.

Observe that is related to the inverse of by

(17)

The probability density is defined as a function of a
continuous variable by interpolating the normalized histogram
of the decomposition coefficients of This also defines a
function for any , which interpolates the values

To estimate the decay of when increases, a standard
approximation theory approach computes the rational decay
of the sorted coefficients and, hence, compares with
for some For functions decomposed in a
wavelet orthonormal basis, the exponentcharacterizes par-
ticular functional spaces called Besov spaces [3]. To suppose
that would clearly be too restrictive to model
interesting classes of signals. We shall rather suppose that this
exponent is slowly varying and define

(18)

Fig. 4 plots as a function of for the wavelet
coefficients and the block cosine coefficients of the test images.
Observe that in both cases, the slope varies slowly for

This behavior is further discussed in Section III-B.
To compute the distortion rate, we shall assume that the

second-order derivative is bounded by a small

(19)

We also suppose that

(20)

for (21)

and that is symmetric

(22)

The four test images, as well as most natural images, have
wavelet and block cosine coefficients that satisfy (19)–(22).
The concavity (21) is a technical condition that is used to
control corrective terms in distortion rate calculations but
is generally satisfied. The symmetry (22) of the probability
density is verified in Fig. 3. Assuming (19)–(22), the following
theorem relates the distortion rate to the approximation
error through parameters that are evaluated as a function
of and the number of significant coefficients.

Theorem 2: Suppose that satisfies (19)–(22). Let
If and , then

(23)

with

(24)

and

(25)

Moreover, the derivative of satisfies

(26)

The proof is in Appendix A.1. To understand the impli-
cations of this theorem, these formulae are simplified with an
approximation, and we neglect the corrective terms inSince
the second-order derivative (19) remains small, the slope

(27)

varies slowly as a function of In the compression
range of interest, it will be considered constant
It follows from (24) and (25) that and

are also constant. We have already mentioned
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that this is also the case for Hence,
is calculated in (23) by scaling and multiplying the nonlinear
approximation error by constant factors

(28)

Since , (26) implies that so that

This distortion rate decay is very different from the high-
resolution formula where

The distortion in (28) depends essentially on the ap-
proximation error of from vectors
selected in the basis To optimize the transform coding, the
basis must be able to approximate precisely each signal
with a small number of basis vectors. If we considerto
be a realization of a random vector, then we may wonder
which is the basis that minimizes over all
realizations. This problem is difficult because the basis
vectors are selected depending on each realizationof
They are the ones that have the largest inner products with
The energy compaction theorem [5] proves that the Karhunen-
Loève basis is optimal for approximating from vectors
chosen once and for all, but it has no optimality property
in this nonlinear setting, where the vectors depend on each
realization. In some cases, we know how to find bases that
minimize the maximum error over a whole signal
class. For example, wavelet bases are optimal in this min-
max sense for piecewise regular signals that belong to Besov
spaces [3].

To optimize the quantization, the size of the zero bin
must be adjusted with respect to the other quantization bins
of size To minimize the distortion , we want to find

such that for a fixed

(29)

Appendix A.2 proves the following theorem that gives an
analytic formula for

Theorem 3: Suppose that satisfies (19)–(22) and that
is a constant independent of Let
If and , then the

optimal zero bin ratio is

(30)

B. Wavelet Transform Coding

Wavelet bases are known to efficiently approximate piece-
wise regular functions with a small number of nonzero wavelet
coefficients [11]. Since images often include piecewise regular
structures, wavelet bases are good candidates for building
efficient image transform coders. The central assumption of
Theorem 2 is that the sorted decomposition coefficients
of in the basis have a rational decay. In wavelet bases,
this is in accordance with asymptotic image models based on
Besov spaces introduced for compression by DeVoreet al. [3]

and further studied in [1]. Let If there exists
and so that for all the wavelet coefficient

of of rank is bounded by , then belongs to a family
of Besov spaces whose indexes depend onLet us consider
a piecewise regular image, which is uniformly regular
(Lipschitz ) inside the regions that partition

This image has discontinuities along the borders of the
, which have a finite length. One can then prove [11] that the

sorted wavelet coefficients decay like with The
discontinuities create large amplitude wavelet coefficient that
are responsible for this decay exponent. This piecewise regular
model applies to an image such as Lena because even the
fur texture does not create enough large wavelet coefficients
to modify the exponent On the other hand, the
Mandrill image is composed of regions with highly irregular
textures that create enough high-amplitude wavelet coefficients
to reduce the exponent For finite images, , which
is why we renormalize and compare the decay
of with when increases in [0,1]. Theorem 2 does
not require to be a constant, but (19) assumes that it varies
slowly as a function of

If for large enough, then one can derive
from (51) that However, Fig. 3 shows that

has an exponential decay whenis small. This can be
explained by looking at the normalized histograms of
the wavelet coefficients at a fixed scale for all
positions and orientations
Such histograms are well modeled by generalized Gaussian
distributions [10], which have an exponential decay and a
variance that increases with the scale It is the aggregation
of these histograms that yield a global histogram , which
has a rational decay for sufficiently large [8]. However, the
finite image resolution implies that wavelet coefficients are
zero for One can verify that the “border effect” created
by the absence of finer scale wavelet coefficients implies that

for small. This explains the exponential decay
of when is small, and the rapid variation of the slope

for in Fig. 4(a).
Let us now evaluate numerically the precision of the analytic

formula given by Theorem 2. The wavelet transform coder
is implemented with a quantizer whose zero bin is
twice as large as the other quantization bins, which means that

This is a standard choice in most wavelet
image transform coders. The significance map is stored with
a run-length coding, as explained in Section II-B. The ratio

was calculated numerically for the wavelet transform
coding of Lena. Fig. 5 compares this value with the theoretical
estimate (24), where the corrective terms inare neglected

The slope in (27) is computed
numerically from the sorted coefficients of Lena shown
in Fig. 4(a). For , Fig. 5 shows that closely
approximates the true value of The error increases for

because the Theorem hypothesis
is not respected.

Fig. 6 displays the value of computed numerically
from the entropy of the quantized wavelet coefficients of Lena.
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Fig. 5. Comparison of D1=D0 with the theoretical estimate
K = (2
M � 1)=12�2 for the wavelet coding of Lena.

Fig. 6. Comparison of R1=M with the theoretical estimate
r1 = 1 + (1 + 
M ) log

2
e + log

2

M + log

2
� for the wavelet

coding of Lena.

The theoretical estimate (25)

(31)

is plotted in the same figure. The curves remain close, which
verifies the precision of this calculation.

To simplify the expression of the distortion rate, the slope
is approximated by a constant , which corresponds

to piecewise regular image models. Although can differ
from 1 in many images such as Mandrill, this approximation
is justified by the small sensitivity of and with
respect to fluctuations of around 1. Since , we get

and Fig. 7 displays

, which was computed numerically for the four test images. For
, the ratio can be approximated

by a constant The distortion calculated in
(23) is thus approximated by

(32)

Fig. 8 compares the peak signal-to-noise ratio

which was calculated numerically for the four test images,
with the approximated derived from (32). Observe
that gives a remarkably precise evaluation of the true

Fig. 7. Variations ofR=M for the wavelet transform coding of the test
images.

distortion rate , despite the fact that is not exactly
equal to 1.

The increment of for each additional bit is calcu-
lated by inserting (26) in (30) while neglecting the variations
of and

For Lena, so that increases by 3 db for each
additional bit, which is indeed verified in Fig. 8. For the three
other images, the variations of cannot be neglected over
the whole compression range , and Fig. 8 shows
that has a slope that varies slowly with

Theorem 3 gives an analytical expression that computes
, which minimizes the distortion For

and , we get This theoretical estimate
is precisely the choice that is most often used in wavelet
compression softwares after ad-hoc numerical trials.

To optimize the wavelet transform coder, the distortion
rate (32) shows that one must choose a wavelet basis that
gives precise approximations of images with few wavelet
coefficients in order to maintain a small approximation error

This essentially depends on the support size and the
number of vanishing moments of the wavelets [11]. The
optimization of the wavelet basis may depend on the particular
class of images to be encoded.

C. JPEG Image Coding

The JPEG image standard decomposes an image in a block
cosine basis Images of pixels are divided in
blocks of by pixels. Fig. 4(b) shows that the decay
of the sorted local cosine coefficients satisfies the assumptions
of Theorem 2 for the four test images.

JPEG uniformly quantizes the block cosine coefficients. In
each block of 64 pixels, there is one DC coefficient, which
is proportional to the average image value over the block.
Instead of directly quantizing this DC coefficient, JPEG quan-
tizes the differences between the DC values of two adjacent
blocks. Since the amplitudes of the DC coefficients are not
directly quantized, their values are not included in the sorted
coefficients shown in Fig. 4(b). A significance map gives
the position of zero versus nonzero quantized coefficients.
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Fig. 8. PSNR(D) (solid line) andPSNR(D̂) (dashed line) for a wavelet coder witĥD = (1 + 1

12
)D0( �R=6:5):

Fig. 9. Comparison of D1=D0 with the theoretical estimate
K = (2
M � 1)=12�2 for the JPEG coding of Lena.

It is encoded with a run-length coding, which scans the 64
cosine coefficients of each block. The following numerical
calculations are done with a baseline JPEG compression coder.
Following our explanation in Section II-B, the weights
used to improve the visual quality of JPEG images are set to
1, which maintains a uniform quantization with the same bin
size for all coefficients.

Since JPEG uniformly quantizes the decomposition coef-
ficients, the zero bin is equal to other bin sizes ,
and hence, For Lena, Fig. 9 compares
the ratio computed numerically and the theoretical
estimate derived from Theorem 2

The slope is calculated from the coefficient decay shown
in Fig. 4(b). Both curves are very close up to

Fig. 10. Variations ofR=M for the JPEG coding of the test images.

For , the estimation error of
increases because it does not respect the theorem hypothesis
that

JPEG uses a mixed format that encodes the run-length
coding for significant coefficients and the amplitude of these
significant coefficients together [15]. It is therefore not possible
to compute and separately. Fig. 10 displays

as a function of for the four test images.
If , then

In the compression range of JPEG, the slope remains
slightly above 1. Approximating yields The
distortion rate formula calculated with (23)



1036 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 4, APRIL 1998

Fig. 11. PSNR(D) (solid line) andPSNR(D̂) (dashed line) for JPEG, witĥD = (1 + 1

2
)D0( �R=5:5):

is thus approximated by

(33)

Fig. 11 compares calculated numerically with JPEG
software and its approximation derived from (33).
It shows that the distortion rate formula (33) is a precise
approximation over the whole compression range of JPEG and
that we can neglect the variations of and

IV. EMBEDDED TRANSFORM CODING

For rapid transmission or fast image browsing from a data-
base, one should provide a coarse signal approximation quickly
and then progressively enhance it as more bits are transmitted.
Embedded coders offer this flexibility by grouping the bits
in order of significance. The decomposition coefficients are
sorted, and the first bits of the largest coefficients are sent
first. An image approximation can be reconstructed at any
time from the bits already transmitted. Embedded coders
can take advantage of any prior information on the location
of large versus small coefficients. Such prior information is
available for natural images decomposed in wavelet bases.
As a result, an implementation with zero trees designed by
Shapiro [13] yields better compression rates than classical
wavelet transform coders.

The decomposition coefficients are partially
ordered by grouping them in sets of indexes defined for
any by

The set is encoded with a binary significance map

if
if

(34)

An embedded algorithm quantizes uniformly with a
quantization step (bin size) that is progressively
reduced. Let with The amplitude
of the quantized number is represented in base 2 by a binary
string with nonzero digits between the bitand the bit The
bit is necessarily 1 because Hence,

bits are sufficient to specify this amplitude to which one
bit is added for the sign.

The embedded coding is initiated with the largest quantiza-
tion step to produce at least one nonzero quantized coefficient.
To refine the quantization step from to , the algorithm
records the significance map and the sign of for

This can be done by directly recording the sign of
significant coefficients with a variable incorporated into the
significance map Afterwards, the code stores the bit

of all amplitudes for with If
necessary, the coding precision is improved by decreasing

and continuing the encoding. The different steps of the
algorithm can be summarized as follows [12].

1) Store the index of the first nonempty set , where

2) Store the significance map and the sign of
for

3) Store the th bit of all coefficients These
are coefficients that belong to some set for ,
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whose coordinates were already stored. Theirth bit is
stored in the order in which their position was recorded
in the previous passes.

4) Decrease by 1, and go to step 2.

This algorithm may be stopped at any time in the loop,
providing a code for any specified number of bits. The
distortion rate is analyzed when the algorithm is stopped at
step 4. All coefficients above are uniformly quantized
with a bin size The zero quantization bin
is therefore twice as big as the other quantization bins. This
quantizer is the same as in the direct transform coding studied
in Section III-A for a zero-bin ratio This value
was shown to be nearly optimal for wavelet image coders. The
total distortion is therefore not modified by the
embedding strategy.

Once the algorithm stops, we denote by the number of
significant coefficients above The total number of
bits of the embedded code is , where is the
number of bits needed to encode all significance maps
for , and is the number of bits used to encode the
amplitudes of the quantized significant coefficients ,
knowing that for

To appreciate the efficiency of this embedding strategy, the
bit budget is compared with the number of bits

used by the direct transform coder of Section III-
A. The value is the number of bits used to encode the
overall significance map

if
if

(35)

and is the number of bits used to encode the quantized
significant coefficients.

An embedded strategy encodes knowing that
and, hence, that , whereas a direct

transform coding knows only that Thus,
fewer bits are needed for embedded codes: This
improvement may be offset, however, by the supplement of
bits needed to encode the significance maps of
the sets A direct transform coder records a single
significance map , which specifies It provides
less information and is therefore encoded with fewer bits:

An embedded coder brings an improvement over a
direct transform coder if

This can happen if we have some prior information about the
position of large decomposition coefficients versus
smaller ones. It allows us to reduce the number of bits needed
to encode the partial sorting of all coefficients provided by
the significance maps The use of such prior
information produces an overhead of relative to that
is smaller than the gain of relative to Let be
the sorted amplitudes of the coefficients The following
theorem computes with the same hypotheses as Theorem
2, allowing us to compare it with

Fig. 12. Comparison of(Re
1
=M) � 1 with the theoretical estimate

re
1
� 1 = 1=(21=
 � 1) for the embedded coding of Lena.

Fig. 13. Variations ofR=M for an embedded wavelet coding of the test
images.

Theorem 4: Suppose that satisfies (19)–(22). Let
If and , then

(36)

and

(37)

where and is given by (24).
The proof of this theorem is in Appendix A-3. In the fol-

lowing, we omit the corrective terms to simplify the notation.
This theorem proves that is well approximated by

(38)

Fig. 12 verifies that the value of calculated
numerically with the embedded wavelet coding software of
Said and Pearlman [12] is close to the estimate calculated
by computing from Fig. 4(a). We subtract 1 bit because
Said and Pearlman do not encode the sign bits with the
amplitudes of the significant coefficients but store their values
in the significance maps.

Let us compare calculated in (36) with the
value estimated in (25) for a direct transform
coding, with The bit budget of an embedded coding
is smaller than that of a direct transform coding if

, and hence

(39)



1038 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 4, APRIL 1998

Fig. 14. PSNR(D) (solid line) andPSNR(D̂) (dashed line) for an embedded wavelet coding, withD̂ = (1 + 1

12
)D0( �R=5:5):

If , then The inequality (39) is satisfied
for embedded transform codings implemented in wavelet bases
[13] and in a block cosine basis [17] by taking advantage
of prior knowledge of the location of large versus small
coefficients using zero trees.

A wavelet coefficient has a large amplitude where
the signal has sharp transitions. If an imageis Lipschitz

in the neighborhood of , then for wavelets
located in this neighborhood, one can prove [11] that there
exists such that

The worst singularities are often discontinuities, which means
that In the neighborhood of singularities without
oscillations, the amplitudes of wavelet coefficients thus de-
crease when the scale decreases. This property is not valid
for oscillatory patterns. High-frequency oscillations create
coefficients at large scales that are typically smaller than
those at the fine scale that matches the period of oscillation.
Such oscillatory patterns are not often encountered in images,
although they do appear as thin lines in the Barbara image.

Wavelet zero trees, which were introduced by Lewis and
Knowles [9], take advantage of the decay of wavelet co-
efficients by relating these coefficients across scales with
quad trees. These zero trees take advantage of a partial self-
similarity of the image [2]. Shapiro [13] used this zero-tree
structure to encode the embedded significance maps of wavelet
coefficients. Numerical experiments were performed with Said
and Pearlman’s software [12], which improves Shapiro’s zero-

tree coder with a set partitioning technique. A cubic spline
orthogonal wavelet basis was used. Fig. 13 displays the value
of as a function of for the four
test images. These curves have variations centered at 5.5. This
graph should be compared with Fig. 7, which shows
calculated with a direct wavelet image coder. An improvement
of approximately 1 bit per significant coefficient is obtained.

The embedded distortion rate function is calculated with
(37). Inserting in (24) yields Since

, we get an approximate distortion rate formula

Fig. 14 compares the calculated numerically for the
our test images and its theoretical approximation
Once more, we verify that the distortion rate essentially
depends only upon the approximation error function
The variations of the constants and can be neglected.
The embedding strategy reduces to , but the
variations of the distortion rate still depends on the nonlinear
approximation error

V. CONCLUSION

We have shown that at low bit rates, the distortion rate of
transform coders can be computed by separating the coeffi-
cients quantized to zero from all others. The resulting distor-
tion rate depends crucially on the precision of nonlinear
image approximations with few nonzero basis coefficients. In
wavelet and block cosine bases, we have demonstrated that
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if , then decays like , where is an
exponent of the order of 1, which varies slowly as a function
of Embedded transform coders improve the constant

but not the exponent, which depends on the image.

APPENDIX

PROOFS OFTHEOREMS

A.1. Proof of Theorem 2

The distortion rate formula (23) is derived by observing that
and By definition,

, and Inserting
these variables in the equation yields (23).

The main difficulty is in computing and
For this purpose, is approximated by a

function that is tangential to at We
first estimate and by replacing with and then
evaluate the error introduced by this approximation. We define

Since there are exactly coefficients above
, and

Both curves are thus tangential at , and the
concavity of guarantees that

Let us now prove that is given by (24). We
compute

(40)

This value is approximated by

(41)

The concavity of implies that for
and, hence, that To compute

, we write

(42)

with

The estimation error is

We cut this integral in two parts

(43)

with

(44)

and

(45)

To find an upper bound of , we compute an upper bound

of Clearly

Since is concave, The

hypothesis (19) guarantees that

and hence

(46)

which yields

(47)

The concavity of also implies that

for Since , it follows that

One can then derive that

(48)

Inserting (41), (45), and (48), in (43) proves (24).
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Let us now prove that satisfies (25). To compute
, we must calculate the differential entropy

where Since

(49)

This integral is calculated by relating it to Since

(50)

it follows that , and hence

(51)

Since , the change of variable in
(49) yields

and with a change of variable

(52)

This integral is first estimated by replacing by

(53)

Let us compute the error

Observe that

and so that

(54)

Since , it follows that

Since , we proved in (46) and (47) that

and

By inserting these inequalities in (54), one can verify that
From (53) and , we thus

derive that

which finishes the proof of (25).
Let us finally prove (26). We must calculate

(55)

We derive from (40) that

and (24) yields

Inserting these last two equations in (55) gives (26).

A.2. Proof of Theorem 3

We proved in (24) that

Since and

We decompose , where
is a constant, and (25) shows that

(56)
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If we neglect the residual terms

The variable depends on , and we can thus write
Hence

(57)

To compute , we need to calculate
Observe that

We compute by taking the derivative with
respect to at fixed of the equality

We get

The slow variation condition (19) on the slope imposes that

Inserting this in the previous equation proves that

Hence

(58)

Let us now compute a derivative from (57)

(59)

We know that

(60)

Inserting (58) and (60) with in
(59) proves (30).

A.3. Proof of Theorem 4

Suppose that the algorithm stops atIt performs a quan-
tization with intervals of size For each coefficient

, we saw that the number of bits required
to specify the quantized value of is

and we need one bit for the sign of The coefficients
above are the coefficients whose amplitudes are given
by Therefore

(61)

where corresponds to the sum for

and is calculated from

We proved in (47) that

(62)

As a consequence, for

(63)
Let us define

The inequalities (63) imply that

(64)

Let us calculate for any We decompose the sum
in slices where

for which the floor of the is equal to It corresponds to

Let We obtain

(65)

so that

(66)
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We can verify that

(67)

Approximating the finite sum (65) by this infinite sum yields

(68)

The inequality (64) can thus be rewritten

Since , it follows that

(69)

To compute the discrete sum, we use (62), which proves
that

Hence

We thus derive from (61) and (69) that
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