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Abstract—A multiscale Canny edge detection is equivalent to
finding the local maxima of a wavelet transform. We study the
properties of multiscale edges through the wavelet theory. For
pattern recognition, one often needs to discriminate different
types of edges. We show that the evolution of wavelet local
maxima across scales characterize the local shape of irregular

structures. Numerical descriptors of edge types are derlved The
completeness of a multiscale edge representation is also studied.
We describe an algorithm that reconstructs a close approximation
of 1-D and 2-D signals from their multiscale edges. For images,
the reconstruction errors are below our visual sensitivity. As an
application, we implement a compact image coding algorithm that
selects important edges and compresses the image data by factors
over 30.

Index Terms—Edge detection, feature extraction, level cross-
ings, multiscale wavelets.

1. INTRODUCTION

OINTS OF SHARP variations are often among the most

important features for analyzing the properties of transient
signals or images. In images, they are generally located at the
boundaries of important image structures. In order to detect
the contours of small structures as well as the boundaries
of larger objects, several researchers in computer vision have
introduced the concept of multiscale edge detection [18], [23],
[25]). The scale defines the size of the neighborhood where
the signal changes are computed. The wavelet transform is
closely related to multiscale edge detection and can provide a
deeper understanding of these algorithms. We concentrate on
the Canny edge detector [2], which is equivalent to finding the
local maxima of a wavelet transform modulus.

There are many different types of sharp variation points
in images. Edges created by occlusions, shadows, highlights,
roofs, textures, etc. have very different local intensity profiles.
To label more precisely an edge that has been detected, it
is necessary to analyze its local properties. In mathematics,
singularities are generally characterized by their Lipschitz
exponents. The wavelet theory proves that these Lipschitz
exponents can be computed from the evolution across scales of
the wavelet transform modulus maxima. We derive a numerical
procedure to measure these exponents. If an edge is smooth,
we can also estimate how smooth it is from the decay of the
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wavelet transform maxima across scales. Lipschitz exponents
and smoothing factors are numerical descriptors that allow us
to discriminate the intensity profiles of different types of edges.

An important open problem in computer vision is to under-
stand how much information is carried by multiscale edges
and how stable a multiscale edge representation is. This issue
is important in pattern recognition, where one needs to know
whether some interesting information is lost when representing
a pattern with edges. We study the reconstruction of 1-D and
2-D signals from multiscale edges detected by the wavelet
transform modulus maxima. It has been conjectured [16],
(18] that multiscale edges characterize uniquely 1-D and 2-D
signals, but recently, Meyer [21] has found counterexamples to
these conjectures. In spite of these counterexamples, we show
that one can reconstruct a close approximation of the original
signal from multiscale edges. The reconstruction algorithm
is based on alternate projections. We prove its convergence
and derive a lower bound for the convergence rate. Numerical
results are given both for 1-D and 2-D signals. The differences
between the original and reconstructed images are not visible
on a high-quality video monitor.

The ability to reconstruct images from multiscale edges
has many applications in signal processing. It allows us to
process the image information with edge-based algorithms.
We describe a compact image coding algorithm that keeps
only the “important” edges. The image that is recovered from
these main features has lost some small details but is visually
of good quality. Examples with compression ratio over 30
are shown. Another application to the removal of noises from
signals is described in [17].

The article is organized as follows. Section II relates mul-
tiscale edge detection to the wavelet transform. It shows
that a Canny edge detector is equivalent to finding the local
maxima of a wavelet transform modulus. Until Section VI,
we concentrate on 1-D signals. Section III-A reviews the
wavelet transform properties that are important for under-
standing multiscale edges. The wavelet transform is first
defined over functions of continuous variables, and Section
HI-B explains how to discretize this model. The numerical
implementation of fast wavelet transform algorithms is given
in Appendix B. Section IV explains how to characterize
different types of sharp signal variations from the evolution
across scales of the wavelet transform maxima. Section V
studies the reconstruction of signals from multiscale edges. We
review some previous results and explain how to formalize
the reconstruction problem within the wavelet framework.
The reconstruction algorithm is described in Section V-B,
and numerical results are presented in Section V-C. A 2-D
extension of the wavelet transform is given in Section VI-A,
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and its discrete version is explained in Section VI-B. Fast 2-
D wavelet algorithms are given in Appendix D. Section VII
differentiates the edges of an image from the evolution across
scales of the wavelet modulus maxima. The reconstruction of
images from multiscale edges is explained in Section VIII-A,
and numerical examples are shown in Section VIII-B. Section
IX describes an application to compact image coding.

Notation: L*(R) denotes the Hilbert space of measurable,
square-integrable 1-D functions f(z). For f € L*(R) and
g € L2(R), the inner product of f(x) with g(z) is written:

+00

(a(x), F(x)) = / o) (2)dz.

—0o0

The norm of f(z) € L*(R) is given by

+o0
I = / (@) d.

We denote the convolution of two functions f(z) € L%(R)
and g(z) € L*(R) by

+oo
frg(@) = / f(w)g(x — u)du.

The Fourier transform of f(z) € L*(R) is written f(w) and
is defined by

fw) = [ ™ fa)e .

—0oC

L%(R?) is the Hilbert space of measurable, square-integrable
2-D functions f(z,y). The norm of f(z,y) € L?(R) is given

by
+o00 +o0
71 = / / () P dady.

The Fourier transform of f(z,y) € L*(R?*) is written
f(wz,wy) and is defined by

" +oo too .
famon = [ [ st tem oy,
—~o0 J—00

II. MULTISCALE EDGE DETECTION

Most multiscale edge detectors smooth the signal at various
scales and detect sharp variation points from their first- or
second-order derivative. The extrema of the first derivative
correspond to the zero crossings of the second derivative and
to the inflection points of the smoothed signal. This section
explains how these multiscale edge detection algorithms are
related to the wavelet transform.

We call a smoothing function any function #(z) whose
integral is equal to 1 and that converges to 0 at infinity. For
example, one can choose 6(z) equal to a Gaussian. We suppose
that f(z) is twice differentiable and define, respectively, ¥*(x)
and 9*(x) as the first- and second-order derivative of §{z)

_ di(x) _ d*9(x)
= d ahrr

¥ () and 4" (z) (1)
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By definition, the functions () and ¥*(z) can be consid-
ered to be wavelets because their integral is equal to 0
+00 +o0

P (z)dz = 0 and / Y (z)dz = 0.

—oc —

In this paper, we denote

which is the dilation by a scaling factor s of any function £(z).
A wavelet transform is computed by convolving the signal
with a dilated wavelet. The wavelet transform of f(z) at the

scale s and position z, computed with respect to the wavelet
P*(z), is defined by

Wi f(z) = f g (x). @
The wavelet transform of f(z) with respect to ¢*(z) is
Wl f(z) = f = ui(=). &)

We derive that

Wef(@) = £ (s

0
dx

@) = s (f#0)a) and ()

2 2
Wi = [+ (220 @) = (0. ©)

The wavelet transforms W f(z) and W?f(z) are, respec-
tively, the first and second derivative of the signal smoothed
at the scale s. The local extrema of W¢ f(x) thus correspond
to the zero crossings of W? f(z) and to the inflection points of
f *6,(x). In the particular case where 6(z) is a Gaussian, the
zero-crossing detection is equivalent to a Marr-Hildreth [19]
edge detection, whereas the extrema detection corresponds to
a Canny [2] edge detection. When the scale s is large, the
convolution with 8,(x) removes small signal fluctuations; we
therefore only detect the sharp variations of large structures.

Detecting zero crossings or local extrema are similar pro-
cedures, but the local extrema approach has some important
advantages. An inflection point of f % 6,(x) can either be
a maximum or a minimum of the absolute value of its first
derivative. The maxima of the absolute value of the first
derivative are sharp variation points of f * 65(x), whereas
the minima correspond to slow variations. With a second
derivative operator, it is difficult to distinguish these two types
of zero crossings. On the contrary, with a first-order derivative,
we easily select the sharp variation points by detecting only
the local maxima of |W¢ f(z)|. In addition, zero crossings give
position information but do not differentiate small amplitude
fluctuations from important discontinuities. When detecting
local maxima, we can also record the values of W¢ f(x) at
the maxima locations, which measure the derivative at the
inflection points. Section IV explains how to characterize
different types of sharp variation points from the evolution
across scales of W2 f(r) at the modulus maxima locations.

The Canny edge detector is easily extended in two dimen-
sions. We denote by

1
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the dilation by s of any 2-D function £(z,y). We use the
term 2-D smoothing function to describe any function #(z, y)
whose integral over = and y is equal to 1 and converges to 0
at infinity. The image f(z,y) is smoothed at different scales s
by a convolution with 6,(z,y). We then compute the gradient
vector V(f%8,)(z, y). The direction of the gradient vector at a
point (g, yo) indicates the direction in the image plane (z,y)
along which the directionai derivative of f(z, y) has the largest
absolute value. Edges are defined as points (o, yo) where the
modulus of the gradient vector is maximum in the direction
towards which the gradient vector points in the image plane
Edge points are inflection points of the surface f*8,(z,y). Let
us relate this edge detection to a 2-D wavelet transform. We
define two wavelet functions v!(z,y) and %?(x,y) such that

06 a0
W(e) = 0 ana e = LY. )
Let ¢5(z,y) = 59'(5,Y) and 9¥(z,y) = F¥*(%,¥). Let
flz,y) € LQ(RZ) The wavelet transform of f(x,y) at the

scale s has two components defined by
W, f(z,y) = fxiy(z,y) and W} f(x,y) =

Similarly to (4), one can easily prove that
Wif(z,y)) ( (f %8,)(z,) .
(W;"f(m,y) af’t(f*e)( )) V(f *8)(z, zg)

Hence, edge points can be located from the two components
Wlf(z,y) and W2f(x,y) of the wavelet transform.

Fr3(z,y). (7)

III. DYADIC WAVELETTRANSFORM IN ONE DIMENSION

A. General Properties

For most purposes, the wavelet model is not required to
keep a continuous scale parameter s. To allow fast numerical
implementations, we impose that the scale varies only along
the dyadic sequence (Zj)j 7+ We review the main properties
of a dyadic wavelet transform and explain under what con-
dition it is complete and stable. For thorough presentations
of the wavelet transform, refer to the mathematical books
of Meyer [20] and Daubechies [5] or to signal processing
oriented reviews [15], [22]. The wavelet model has first been
formalized by Grossmann and Morlet [10]. A wavelet is a
function ¥(z) whose average is zero. We denote by 19, (z)
the dilation of ¢(x) by a factor 27

¥ (0) = S5 0(5).

The wavelet transform of f(z) at the scale 27 and at the
position z is defined by the convolution product

Wai f(x) = f * 995 (x). &)

We refer to the dyadic wavelet transform as the sequence of

functions
Wf= (W2J'f(-’”))]’ez

and W is the dyadic wavelet transform operator.

(10)

Let us study the completeness and stability of a dyadic
wavelet transform. The Fourier transform of Wy, f(z) is

:%

<

i Fl
J\

o M2 w). 11

Y
J

By imposing that there exists two strictly positive constants
Ay and Bj such that

400
VweR AL Y (W)’ < B

j==o0

(12)

we ensure that the whole frequency axis is covered by dilations
of w(w) by (zf) cz SO that f(w), and thus, f(z) can be re-
covered from its dyadlc wavelet transform. The reconstructing
wavelet x(x) is any function whose Fourier transform satisfies

+o0
3 @w)(@w) =1

Jj=—0

13)

If property (12) is valid, there exists an infinite number of func-
tions x(w) that satisfy (13). The function f(z) is recovered
from its dyadic wavelet transform with the summation

f(z) = Z Wai f * xs ().

]——OO

(14)

This equation is proved by computing its Fourier transform
and inserting (11) and (13). With the Parseval theorem, we
derive from (11) and (12) a norm equivalence relation

+oo
> AW f@I1° < BullfI1%

j=—o00

Al £ < (15)

This proves that the dyadic wavelet transform is not only
complete but stable as well. If % is closer to 1, it will be
more stable.

A dyadic wavelet transform is more than complete; it is
redundant. Any sequence (g;(z)), z, with g;(z) € L%(R), is
not necessarily the dyadic wavelet transform of some function
in L2(R). We denote by W' the operator defined by

Z g; * X23 (®)-

j=—00

W (g;(x)) )iz = (16)

The reconstruction formula (14) shows that (g]( ) jez) is the
dyadic wavelet transform of some function in L*(R), if and
only if

404 an
If we replace the operators W and W~ by their expression
given in (9) and (16), we obtain

“Ha(@)iez) = (95(2)) ez

+oo

VicZ Z g * K; j(z) = g;(z), with (18)
I=—0c0

K j(z) = xo1 * p2i (). 19

These equations are known as reproducing kernel equations.
The energy of the kernel K; ;(z) measures the redundancy of
the wavelet transform at the scales 27 and 2.
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Fig. 1. (a) This wavelet is a quadratic spline of compact support that is
continuously differentiable. It is defined in Appendix A, and it is the derivative
of the cubic spline function 8(x) shown in (b).

Fig. 1(a) is a quadratic spline wavelet of compact support,
which is further defined in Appendix A. It is the derivative of
the smoothing function §(z) shown in Fig. 1(b). Fig. 2(a) is
the plot of a discrete signal of 256 samples. Fig. 2(b) shows its
discrete dyadic wavelet transform computed on nine scales. At
each scale 27, we compute a uniform sampling of the wavelet
transform that we denote WQdJ f- The next section explains
how to discretize the continuous wavelet model and solve
border problems. Fast algorithms to compute the wavelet and
the inverse wavelet transform are described in Appendix B.
The reader not interested in numerical issues might want to
skip Section III-B. Since our wavelet is the derivative of a
smoothing function, (4) proves that W2dj f is proportional to
the derivative of the original signal smoothed at the scale 27.
Fig. 2(c) gives the locations and values of the local maxima
of the dyadic wavelet transform modulus, as in a Canny
edge detection. At each scale 27, each modulus maximum is
represented by a Dirac that has the same location and whose
amplitude is equal to the value of Wy, f(x). The modulus
maxima detection is an adaptive sampling that finds the signal
sharp variation points.

B. Discrete Wavelet Transform

In numerical applications, the input signal is measured at
a finite resolution; therefore, we cannot compute the wavelet
transform at an arbitrary fine scale. Let us normalize the finest
scale to 1. In order to model this scale limitation, we introduce
a real function ¢(z) whose Fourier transform is an aggregation
of %(2/w) and §(2/w) at scales 27 larger than 1

+o0o
B =D h(@w)x(2w). (20)

i=1
We suppose here that the reconstructing wavelet x(w) is such
that ¥ (w)x(w) is a positive, real, even function. One can prove
that property (13) implies that the integral of ¢(x) is equal to
1 and, hence, that it is a smoothing function. Let Sy; be the
smoothing operator defined by

. 1 T
Soi f(@) = f * o () with ¢g,(z) = gd’(g @D

If the scale 27 is larger, the more details of f(z) are removed
by Ss;. For any scale 27 > 1, (20) yields
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Fig. 2. (a) Signal of 256 samples; (b) discrete dyadic wavelet transform of
signal (a) computed on nine scales. At each scale 27, we plot the signal W;j £
which also has 256 samples; (c) modulus maxima of the dyadic wavelet
transform shown in (b). Each Dirac indicates the position and amplitude of
a modulus maximum.

J
) — 627 w)| = Y PP w)X(2w).

j=1

(22)

One can derive from this equation that the higher frequencies
of Sy f(x), which have disappeared in Sys f(z), can be re-
covered from the dyadic wavelet transform (Ws; f()), <j<J
between the scales 2 and 27.

We suppose that the original signal is a discrete sequence
D = (dn),cz of finite energy. If there exists two constants
C; > 0 and Cs > 0 such that ¢A>(w) satisfies

+00
VweR, 1< Y |plwt2nmmP<Cr (23)

n=—od
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then one can prove prove [18] that there exists a function
f(z) € L*(R) (not unique) such that

VaeZ, Sif(n)=d,. 4)

The input signal can thus be rewritten D = (S1f(n)),c5-
For a particular class of wavelets defined in Appendix A, the
discrete signal D = (S1f(n)),c, allows us to compute a
uniform sampling of the wavelet transform of f(z) at any
scale larger than 1. Let us denote

Wi f = (Was f(n + w)) ez and SE f = (Soi f(n +w)) e 5
(25)

where w is a sampling shift that depends only on v(z). For
any coarse scale 27, the sequence of discrete signals

{885, W1) s}

is called the discrete dyadic wavelet transform of D =
(81f(n)),cz- The coarse signal S¢, provides the signal com-
ponents below the scale 27. A fast discrete wavelet transform
algorithm and its inverse are described in Appendix B.

In practice, the original discrete signal D has a finite
number N of nonzero values: D = (dn); <, «n- To solve
the border problems, we use the same periodization technique
as in a cosine transform. We suppose that our signal has a
period of 2N samples, and we extend it with a symmetry
for N < n < 2N: d, = dant1-n- By periodizing the
signal with a symmetry, we avoid creating a discontinuity
at the borders. The discrete wavelet coefficients are also 2N
periodic. If the wavelet is antisymmetrical with respect to 0,
as in Fig. 1(a), the wavelet coefficients are antisymmetrical at
the borders. For the class of wavelets defined in Appendix
A, one can also prove that when the scale is as large as
the period (27 = 2N), S, f is constant and equal to the
mean value of the original signal D. We thus decompose any
signal of N samples over J = log,(N) + 1 scales. Appendix
B describes a fast discrete wavelet transform algorithm that
requires O(N log(N)) operations. The fast inverse wavelet
transform also requires O(N log(IV)) operations.

From the discrete wavelet transform, at each scale 27,
we detect the modulus maxima by finding the points where
IWs; f(n + w)| is larger than its two closest neighbor values
and strictly larger than at least one of them. We record the
abscissa n+w and the value Ws; f(n+w) at the corresponding
locations.

(26)

IV. ANALYSIS OF THE MULTISCALE INFORMATION

One signal sharp variation produces modulus maxima at
different scales 2. We know that the value of a modulus
maximum at a scale 2/ measures the derivative of the signal
smoothed at the scale 27, but it is not clear how to combine
these different values to characterize the signal variation. The
wavelet theory gives an answer to this question by showing
that the evolution across scales of the wavelet transform
depends on the local Lipschitz regularity of the signal. This
section explains what a Lipschitz exponent is and how this
exponent is computed from the wavelet transform maxima.

S&f
1 T T T T
0 1 2 @ 3 4 5
VV;, f
~— l' -~
Waf
VaN A A
V ' \ve
Wif
JAN V A, /\\/
W A
V o |4
Fig. 3. (a) Four sharp variation points of this signal have a different Lipschitz
regularity arg and smoothing variance o2, These values are given, respectively,
by (ag = 0,0 = 3), (ap = 0.0 = 0), (a9 = —1,0 = 0), and
(ag = —1.0 = 4); (b) behavior of the modulus maxima across scales

depends on the Lipschitz regularity ao and the smoothing factor o.

A more detailed mathematical and numerical analysis of this
topic can be found in [17]. When the signal is not singular,
we show that one can still measure how smooth the signal is
by estimating the decay of the wavelet maxima across scales.

Definition 1: Let 0 < a < 1. A function f(z) is uniformly
Lipschitz o over an interval a, b if and only if there exists a
constant K such that for any (zo,z1) €]a,b[>

[f(z0) — f(z1)] £ K|zo — 71|

We refer to the Lipschitz uniform regularity of f(z) as the up-
per bound ap of all a such that f(z) is uniformly Lipschitz a.

If f(z) is differentiable at zg, then it is Lipschitz o = 1.
If the uniform Lipschitz regularity oy is larger, the singularity
at o will be more “regular.” If f(z) is discontinuous but
bounded in the neighborhood of z, its uniform Lipschitz
regularity in the neighborhood of x¢ is 0. Theorem 1 proves
that the Lipschitz exponent of a function can be measured from
the evolution across scales of the absolute value of the wavelet
transform. We suppose that the wavelet 1 (x) is continuously
differentiable and has a decay at infinity that is O(rlzz)

Theorem 1: Let 0 < o < 1. A function f(z) is uniformly
Lipschitz « over ]a, b[ if and only if there exists a constant
K > 0 such that for all z €la,b], the wavelet transform
satisfies

27)

|Was f(a)] < K(2)°. (28)

The proof of this theorem can be found in [20]. From (28),
we derive that

log, [Wy, f(z)| < logy(K) + aj.

If the uniform Lipschitz regularity is positive, (28) implies
that the amplitude of the wavelet transform modulus maxima
should decrease when the scale decreases. On the contrary,
the singularity at the abscissa 3 of Fig. 3(b) produces wavelet

29
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transform maxima that increase when the scale decreases.
Such singularities can be described with negative Lipschitz
exponents, which means that they are more singular than
discontinuities. The signal is then viewed as a tempered
distribution. At the abscissa 3 of Fig. 3(b), this distribution
is locally equal to a Dirac. The reader might want to consult
Folland [7] for a quick presentation of the mathematical
theory of distributions. The wavelet transform of tempered
distributions is well defined if the wavelet ¢ (z) is smooth
enough [17]. For example, if ¢)(x) is continuous, the wavelet
transform of a Dirac §(z) is given by
Wasb(x) = 65 o (x) = a5 (). (30)

To extend Lipschitz exponents to distributions, we say that
a distribution has a uniform Lipschitz regularity equal to a
on |a,b[ if and only if its primitive has a uniform Lipschitz
regularity equal to a + 1 on ]a, b[. For example, the primitive
of a Dirac centered at zg is a function that is bounded and
has a discontinuity at zo (step edge). The uniform Lipschitz
regularity of the primitive of this Dirac is thus cqual to 0 in
the neighborhood of . Hence, a Dirac centered at x¢ has a
uniformly Lipschitz regularity equal to —1 in the neighborhood
of zg. One can prove that Theorem 1 is also valid for negative
Lipschitz exponents. Let ag < 1 be a real number that may be
negative. A tempered distribution f(z) has a uniform Lipschitz
regularity equal to o over |a, b if and only if for any o < ap
there exists K such that

|[Was f(z)] < K(27)°. (31)
Since the Lipschitz regularity of a Dirac is —1, this result
implies that the maxima values of |W,,8(z)| increase propor-
tionally to the scale 27. This can indeed be verified in Fig.
3(b).

In practice, we can only process discrete signals that ap-
proximate the original function at a finite resolution, which
we normalize to 1. Strictly speaking, it is not meaningful to
speak about singularities, discontinuities, or Diracs. In fact, we
cannot compute the wavelet transform at scales finer than 1 and
thus cannot verify (31) at scales smaller than 1. Even though
we are limited by the resolution of measurements, we can
still use the mathematical tools that differentiate singularities.
Suppose that the approximation of f(z) at the resolution 1 is
given by a set of samples (fn), c,, With f, = 0 for n < ng
and f, = 1 for n > ny, like at abscissa 2 of Fig. 3(a).
At resolution 1, f(z) behaves as if it has a discontinuity at
n = ng, although f(z) might be continuous at ng with a
continuous sharp transition at that point, which is not visible
at this resolution. The characterization of singularities from
the decay of the wavelet transform gives a precise meaning to
this “discontinuity at the resolution 1.” We measure the decay
of the wavelet transform up to the finer scale available, and
the Lipschitz regularity is computed by finding the coefficicnt
ap such that K(29)* approximates at best the decay of
[Wy; f(x)| over a given range of scales larger than 1. In
Fig. 3(b), in the neighborhood of z = 2, the maxima values
of |Wy; f(z)| remain constant over a large range of scales.
Equation (31) implies that the Lipschitz regularity oy is equal
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to 0 at that point, which means that this singularity is a
discontinuity. In the edge detection procedure described in
Section II, we only keep the local maxima of the wavelet
transform modulus. It has been proved [17] that if a signal
is singular at a point xo, there exists a sequence of wavelet
transform modulus maxima that converge to zo when the
scale decreases. Hence, we detect all the singularities from
the positions of the wavelet transform modulus maxima.
Moreover, the decay of the wavelet transform is bounded by
the decay of these modulus maxima, and we can thus measure
the local uniform Lipschitz regularity from this decay.

A signal is often not singular in the neighborhood of
local sharp variations. An example is the smooth edge at the
abscissa 1 of Fig. 3(a). It is generally important to estimate
the smoothness of the signal variation in such cases. We
model a smooth variation at zo as a singularity convolved
with a Gaussian of variance ¢?. Since the Gaussian is the
Green’s function of the heat equation, one can prove that o2 is
proportional to the time it would take to create a singularity at
the point zo if we apply a backward heat equation to the signal.
Let us explain how to measure the smoothing component o as
well as the Lipschitz regularity of the underlined singularity.
We suppose that locally, the signal f(z) is equal to the
convolution of a function h(z), which has a singularity at
To, with a Gaussian of variance o2

h* go(z) with I SV s

f(ﬂ}') - 9o Z) w1 ga(m) ma °XPp 20_2 .

We also suppose that h(z) has a uniform Lipschitz regularity
equal to g in a neighborhood of xg. If the wavelet P(x) is
the derivative of a smoothing function 8(z), (4) proves that
the wavelet transform of f(x) can be written

Was (@) = 2/ 200))(&) = 9 1-(hgo *62))(2)- G3)

T

Let us suppose that the function #(z) is close to a Gaussian
function in the sense that

B9; % go(z) & B4, () With s = /2% + o2.

Equation (33) can thus be rewritten

(34)

Was f(a) = 2 (5 )0) = = Wgha) ()

where W, h(z) is the wavelet transform of h(z) at the scale so
W h(z) = h x5y ().

This equation proves that the wavelet transform at the scale
97 of a singularity smoothed by a Gaussian of variance ¢ is
equal to the wavelet transform of the nonsmoothed singularity
h(z) at the scale sop = v/2%7 4+ ¢2. Equation (28) of Theorem
1 proves that the Lipschitz regularity is the upper bound of

the set of « that satisfy
|Was h(z)] < K(27)*. (36)

This result is valid for any scale s > 0. Hence, o is the upper
bound of the set of o such that there exists K that satisfy

|Wsh(z)] < Ks*
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for any scale s > 0 and any « in the corresponding neighbor-
hood of x¢. By inserting this inequality in (35), we obtain

[Wa, f(x)] < K2750% 7. with s = /22 + 2. (37)

This equatjon is satisfied at all points .- if and only if it is
satisfied at the locations of all the local maxima of Wy, f(a)]|.
If the signal is multiplied by a constant A, then K is also
multiplied by A, but o and « are not affected. On the contrary,
if the signal is smoothed by a Gaussian of variance o (and
integral 1), then K and o are not affected, but 2 becomes
o2 4+ o2. This shows clearly that the parameters «, o, and
K describe different properties of the sharp variation that
occurs at xg. Fig. 3 gives the examples of a step edge and a
Dirac smoothed by Gaussians of different variances. The decay
of the maxima are clearly affected by the different Lipschitz
exponents as well as the variance of the Gaussian smoothing.

Let us explain how to compute numerically the Lipschitz
regularity «o and the smoothing scale o from the evolution
of the wavelet transform modulus maxima across scales. If
we detect the modulus maxima at all scales s, instead of just
dyadic scales 2/, their position would define a smooth curve
in the scale-space plane (s. ). These curves have been called
“finger prints” by Witkin [25]. We say that a modulus maxima
at the scale 27 propagates to a maxima at the coarser scale
2/ +1 if and only if both maxima belong to the same maxima
curve in the scale-space plane (s.x). In Fig. 3, there is one
sequence of maxima that belongs to the same maxima curve
and converges to the position of the discontinuity at z = 2. For
the Dirac at abscissa 3, there are two such sequences. Each one
gives information, respectively, on the left and the right part of
the Dirac singularity. In order to find which maxima propagate
to the next scale, one should compute the wavelet transform
on a dense sequence of scales. However, with a simple ad-
hoc algorithm, one can still estimate which maxima propagate
to the next scale by looking at their value and position with
respect to other maxima at the next scale. The propagation
algorithm supposes that a modulus maximum propagates from
a scale 27 to a coarser scale 27 + 1 if it has a large amplitude
and if its position is close to a maximum at the scale 2/ + 1
that has the same sign. This algorithm is not exact but saves
computations since we do not need to compute the wavelet
transform at any other scale. The Lipschitz regularity as well
as the smoothing variance ¢? of a sharp variation point are
then computed from the evolution of the modulus maxima
that propagate across scales. Let us suppose that we have a
sequence of modulus maxima that propagate from the scale
2! up to the scale 2' and converge to the abscissa xo. Let
a; be the value of the wavelet transform at the maximum
location at the scale 27, and let us also suppose that in a given
neighborhood of 1z, the wavelet transform modulus is smaller
than a;. This means that the signal change at x¢ is the sharpest
variation in this neighborhood. We compute the three values
K, o, and «ap so that the inequality of (37) is as close as
possible to an equality for each maximum «a;. These values

are obtained by minimizing

1 2
-1 )
Z (log2 laj] — logy(K) - j — 0402 logy(a® + 22J)> .

=1

(38)

This is done with a steepest gradient descent algorithm. The
value K gives the amplitude of the sharp variation. When
computing the values of o and « from the evolution of the
maxima across scales in Fig. 3, we have a numerical error
of less than 10%, which is mainly due to the fact that the
wavelet we use is not the derivative of a Gaussian but is only
an approximation. In this case, () is the cubic spline shown
in Fig. 1(b). When the variance o2 increases, the measurement
of «y becomes more unstable because the smoothing removes
the fine scale components that characterize reliably «g. For
singularities of fractal textures such as in the right part of Fig.
2(a), this analysis is not valid because singularities are not
isolated, and none of the singularities dominate the others in
a given neighborhood. The behavior of the wavelet transform
modulus maxima of nonisolated singularities is studied in more
detail in [17].

V. SIGNAL RECONSTRUCTION FROM MULTISCALE EDGES

Section IV shows that one can get a precise description
of the signal sharp variation points from the evolution of
the wavelet transform modulus maxima across scales. An
important question is to understand whether the whole signal
information is embedded into these modulus maxima. Is it
possible to have a stable signal reconstruction only from the
modulus maxima information at the dyadic scales 27? The next
section reviews briefly some results on the reconstruction of
signals from zero crossings and multiscale edges. Section V-B
describes an algorithm that reconstructs a close approximation
of the original signal from the wavelet transform modulus
maxima. Numerical results are presented in Section V-C.

A. Previous Results

The reconstruction of signals from multiscale edges has
mainly been studied in the zero-crossing framework. We saw
in Section II that if the wavelet is given by %*(z) = dzdi(f),
multiscale edges are detected from the zero crossings of the
wavelet transform W f(z). The most basic result concerning
the reconstruction of signals from the zero crossing is the
Logan theorem [14]. However, as it is explained in [18], the
hypotheses of the Logan theorem are not appropriate to study
the reconstruction of signals from multiscale edges. The Logan
theorem has been generalized by several authors [4], [24],
[28]; Refer to a review by Hummel and Moniot [11] for more
details.

If the smoothing function #(z) is a Gaussian, the properties
of the wavelet transform zero crossings are more easily un-
derstood because W f(x) can be interpreted as the solution
of a heat diffusion process at time ¢ = s [12]. With this
approach, Hummel and Moniot [11], as well as Yuille and
Poggio [27], have proved some completeness properties under
restrictive conditions, like supposing that f(x) is a polynomial
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[29]. In general, there are known counterexamples that prove
that the positions of the zero crossings of W2 f(z) do not
characterize uniquely the function f(z). For example, the
wavelet transforms of sin(z) and sin(z) + 1 sin(2z) have the
same zero crossings at all scales s > 0. Meyer [21] found a
large family of such counterexamples.

To obtain a complete and stable zero-crossing representa-
tion, Mallat [16] conjectured that it is sufficient to record the
zero-crossing positions of W, f(z) at all dyadic scales 27 f,
as well as the integral values

z,+1
en = / ’ W5, fu)du (39)

between any pair of consecutive zero crossings (z,, zn, + 1).
This conjecture was motivated by a reconstruction algorithm
that is able to recover a close approximation of the original
signal from these zero crossings and integral values [18]. We
proved in Section II that the zero crossings of WY, f(x) occur
at the extrema points of the wavelet transform W, f(x), which

are defined with respect to the wavelet °(z) = %@ From
(4), (5), and (39), we derive that
en = W flzn + 1) — W f(2n). (40)

To record the zero-crossing positions and integral values of
WzbJ f(z) is therefore equivalent to recording the positions
where W3, f(x) has local extrema and the value of W, f(x)
at the corresponding locations. Meyer [21] proved that the
completeness of this representation depends on the choice of
the smoothing function 6(x) but that the conjecture is not
valid in general. Let

fo(z) = { i(l +cos(z)) if [z| <

) (41)
0 otherwise

For the wavelet shown in Fig. 1(a), Meyer [21] found a
noncountable family of functions

fe(z) = folz) + xc(2)

such that at all scales 27, Wy, f.(x), and Wy, fo(x) have the
same extrema (positions and values). The functions x.(x)
are small high-frequency perturbations, which are implicitly
defined by constraint equations that guarantee that the local
extrema of Wy, fo(x) are not modified. It seems that in order
to maintain the local extrema of Wy, fo(x) unchanged, the
perturbations x.(z) must remain small, which would explain
the quality of the signal reconstructions obtained in [16],
but this has not been proved. For another wavelet defined
by ¥(z) = %2, with §(z) = fo(z), Meyer proved that
any function of compact support is uniquely characterized by
the zero crossings and integral values of its dyadic wavelet
transform. This characterization is, however, not stable at high
frequencies. The numerical precision of reconstructions is,
thus, not improved with this other wavelet. A discrete analysis
of the completeness conjecture was done independently by
Berman [1], who found numerical examples that contradict
the completeness conjecture.

We explained in Section II that for a wavelet equal to the
first derivative of a smoothing function, the local minima of the
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wavelet transform modulus correspond to slow variation points
of the signal. Hence, among all the wavelet transform extrema,
we detect only the points where the wavelet transform modulus
is locally maximum. For the quadratic wavelet of Fig. 1(a),
since the wavelet transform local extrema do not provide a
complete signal representation, the subset of modulus maxima
is certainly not complete either. The next section describes
an algorithm that still recovers a precise approximation of the
original signals from these modulus maxima.

B. Reconstruction Algorithm

Let f(x) € L*(R) and (Wa, f(2)) ¢ 7 be its dyadic wavelet
transform. We describe an algorithm that reconstructs an
approximation of (Wa, f()),cz, given the positions of the
local maxima of |Wa; f(z)| and the values of Wy, f(z) at
these locations. For this purpose, we characterize the set
of functions h(z) such that at each scale 27, the modulus
maxima of Wy, h(x) are the same as the modulus maxima of

"5 f(x). We suppose that the wavelet ¢(x) is differentiable
in the sense of Sobolev. Since Wy, f(x) is obtained through a
convolution with ¢5;(x), it is also differentiable in the sense
of Sobolev, and it has, at most, a countable number of modulus
maxima. Let (zJ)nez be the abscissa where |Woy, f(x)] is
locally maximum. The maxima constraints on Wy h(x) can
be decomposed in two conditions.

1. At each scale 27, for each local maximum located at z7,,

Waih(a3,) = W, f(az,).
2. At each scale 2/, the local maxima of |Wy;h(z)| are
located at the abscissa (2)nez.
Let us first analyze the condition 1. The value of Wy; f(x) at
any xo can be written as an inner product in L?(R). Indeed

400

Wasf(o0) = £+ (o) = [ flaa (a0 = a)a. thos

J =0

Wi f(wo) = (f(2), Pa: (wo — ). (42)
Condition 1 is, thus, equivalent to
(F(u), s (), — w)) = (h(u), s (x), — w)).  (43)

Let U be the closure in L?(R) of the space of functions that
are linear combinations of functions in the family

{z/)w (11731 — ‘L)}(jn)ezz (44)
One can easily prove that the functions h(x) that satisfy (43)
for all abscissa (.’L‘]r;)(j’n)e z2 are the functions whose orthog-
onal projection on U is equal to the orthogonal projection of
f(x) on U. Let O be the orthogonal complement of U in
L?(R), which means that the space O is orthogonal to U and

that
0aU = L*R). (45)

The functions that satisfy (43) for all abscissa (wﬁl)(j_n)ezz
can therefore be written

h(z) = f(z)+ g(x) with g(z) € O.

This defines an affine space that we denote f + O. If U =
L*(R), then O = {0}, which implies that k(z) must be equal

(46)
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to f(x). In general, this is not the case; therefore, (43) does
not characterize uniquely f(z).

Condition 2 is more difficult to analyze because it is not
convex. In order to solve this problem numerically, we approx-
imate condition 2 with a convex constraint. Condition 2 defines
the value of the wavelet transform at the points (7)(j,n)c z2.
Instead of imposing that the local maxima of Wy, h(x) are
located at these points, we impose that |Wy, h(z)|? is as small
as possible on average. This generally creates local modulus
maxima at the positions (%)(y‘,n)e z2. The number of modulus
maxima of Wy, f(z) depends on how much this function
oscillates. To have as few modulus maxima as possible outside
the abscissa (z7)(j.n)cz2, We also minimize the energy of
the derivative of Ws;h(z). Since these conditions must be
imposed at all scales 27, we minimize globally

| (Wosh(a))eq|
+oo

>

j=—o0

[

OW@hW 1oz W W) @)

The weight 227 expresses that the relative smoothness of
Wo; f(x) increases with the scale 2J. Let ¢'(z) be the
derivative of v(z). If there exist two constants A > 0 and
B; such that for all w € R

Ay < Z lh(27w)2 + Z W1(2Pw)2 < By  (48)
j=—oc j=—2c
then for any h(z) € L*(R)
Az||pl* < RN < Belhlf*. (49)

Hence, || | is a norm over L%(R), which is equivalent to
the classical L?(R) norm. We prove that (48) implies (49) by
observing that
AWy, h(z
zf—Q(Emﬂ = f =y, (2).
As for the norm equivalence equation (15), we then prove the
implication by applying the Parseval theorem to each L2(R)
norm component of the norm defined by (47). Equation (48)
is valid for any dyadic wavelet ¢)(z) that satisfies (12) and is
smooth enough. For example, there exist two such constant A,
and B for the wavelet shown in Fig. 1(a). By replacing condi-
tion 2 by the minimization of ||k||, we define a problem that has
a unique solution. Indeed, condition 1 imposes that A(x) must
belong to the closed affine space f + O, and the minimization
of a norm over such a closed convex has a unique solution.
Although there exists a unique element of f + O whose
norm || || is minimum, the computation of this function might
not be stable. If the two constants A, and By of (48) are
equal, the norm || || is proportional to the classical L*(R)
norm. The solution of the minimization problem is therefore
the orthogonal projection of f(x) over U. The frame theory
proves [6] that one can make a stable computation of the
orthogonal projection of f(z) onto U from the inner products
({(f(2). 92 (22, _‘T»)(j‘n)eZz if and only if the family of

functions (\/2_11/)21(5011 - z))( ez is a frame of U. The
jn)€

(50)

factor V/2J normalizes the L2(R) norm of each function in
the family. By definition, such a family is a frame of U [6]
if and only if there exist two constants A3 > 0 and Bj such
that for any function g € U

Asllgll® < D7 2 g(w). o (2]

n.jez?

—w)|” < Byllgl2. (51)

When the two constants A, and By of (48) are different, the
norm || | is not equal but is equivalent to the classical L?(R)
norm. In this case, the stability also depends on whether the
family of wavelets is a frame of U. The closer to 0 the value
of %3;—31, the more stable the computations. Outside of a few
particular cases, it is difficult to prove analytically whether a
given family of wavelets (\/51/)2]'(1:; —-z)) - is or is
not a frame of the space U that it generates bcgéﬁ)see the points
xJ are not uniformly distributed.

Let us now describe an algorithm that computes the solu-
tion of our minimization problem. Instead of computing the
solution itself, we reconstruct its wavelet transform with an
algorithm based on alternate projections. Let K be the space

of all sequences of functions (gfm)) jez such that

+oc

2

J=—oc

2 :

asteD,es] = X (lall + 20207) < voc. 52
The norm | | defines a Hilbert structure over K. Let V be the
space of all dyadic wavelet transforms of functions in L*(R).
Equation (49) proves that V is included in K. Let [' be the
affine space of sequences of functions (g;(x)),c, € K such
that for any index j and all maxima positions z7,

g;(a}) = Was f(a},).

One can prove that I is closed in K. The dyadic wavelet trans-
forms that satisfy condition 1 are the sequences of functions
that belong to

A=VnT.

We must therefore find the element of A whose norm | | is
minimum. This is done by alternating projections on V and I'.

Equation (17) shows that any dyadic wavelet transform is
invariant under the operator

Py =WoW ™. (53)

For any sequence X = (g;(z));., € K, it is clear that
Py X € V; therefore, Py is a projector on V. We saw in

(19) that this operator is characterized by the kernels
Kij(z) = xat * s ().

One can easily prove that the projector Py is self-adjoint
and therefore orthogonal if and only if the kernels K j(x) are
symmetrical functions. This is the case if the wavelet ¢(x)
is symmetrical or antisymmetrical. For the wavelet shown
in Fig. 1(a), the orthogonal projection on the space V is
thus implemented by applying the operator W™ followed
by the operator W. The fast discrete implementation of these
operators is given in Appendix B. Appendix E characterizes
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the projection on the affine set I', which is orthogonal with
respect to the norm | | We prove that this operator Pr
is implemented by adding piecewise exponential curves to
each function of the sequence that we project on I'. Let
P = PyoPp be alternate projections on both spaces. Let
P™ be y iterations over the operator P. Since I is an affine
space and V' a Hilbert space, a classical result on alternate
projections [26] proves that for any sequence of functions
X = (9;(2)e7 € K

lim P™X = P4X.

n——+oo

(54

Alternate projections on I' and V converge strongly to the
orthogonal projection on A. If X is the zero element of K,
which means that g;(z) = 0 for all j € Z, the alternate
projections converge to the element of A, which is the closest
to zero, and thus whose norm | | is minimum. This is
illustrated by Fig. 4. This iterative algorithm can be related to
techniques based on frame operators for reconstructing signals
from irregular samplings [9].

If the minimization problem is unstable, the conver-
gence of the alternate projections is extremely slow.
We saw that the numerical stability depends on whether

(@1/)2; (o, —z))( ez is a frame of U. Appendix F
n.5)€
proves that if (\/—271/)2]’("I,"ZL — g:))
(n,j)€Z?

and if there exists a constant 0 < D < 1 such that at all scales
27 the distances between any two consecutive maxima satisfy

is a frame of U

|le - I;Jb—ll > D2’
then the convergence is exponential. Moreover, there exists a
constant R such that for any X € K

PMX -~ PpX| < R(1- %)“/2 (55)
where the Aj is the frame bound defined in (51) and By the
norm equivalence bound defined in (48). This equation gives
a lower bound for the convergence rate and shows how it
decreases when the frame bound Ajz goes to zero.

When the original wavelet transform Ws; f(2) has an abrupt
transition, the minimization of | | can yield a smoother
solution Wy, h(x), which oscillates slightly at the location
where W,, f(z) has this sharp change. These oscillations are
similar to a Gibbs phenomenon. Appendix E explains how
to modify the alternate projections in order to suppress these
oscillations. Numerical experiments show that this oscillation

removal does not perturbate the convergence of the algorithm.

C. Numerical Reconstruction of 1-D Signals
from Local Maxima

There are several open issues behind the reconstruction
algorithm that we described. From the results of Meyer’s
work [21], we know that, in general, we cannot reconstruct
exactly a function from the modulus maxima of its wavelet
transform. Our algorithm approximates this inverse problem
by replacing the maxima constraint by the minimization of a
norm that yields a unique solution. We thus do not converge
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Fig. 4. Approximation of the wavelet transform of f(x) is reconstructed by
alternating orthogonal projections on an affine space I" and on the space V' of
all dyadic wavelet transforms. The projections begin from the zero element
and converge to its orthogonal projection on T NV

toward the wavelet transform of the original signal but toward
some other wavelet transform that we hope to be close to
the original one. We also explained that the computation of
the solution might be unstable, in which case, the alternate
projections converge very slowly. It is therefore important to
measure how far we are from the convergence point after a
given number of iterations.

If the original signal has N samples, we record the positions
and values of the modulus maxima at all scales 2/ for
1 < j < logy(N) + 1. We also keep the average value
of the original discrete signal, which characterizes SgJ f for
J = log,(IN) +1, as explained in Section III-B. Equation (53)
proves that we can compute the projection Py, by implement-
ing W followed by W. With the fast algorithms described in
Appendix B, this requires a total of O(N log,(IN)) operations.
Appendix E proves that the implementation of Pp also
requires O(N log,(IN)) operations. The projection operator
that suppresses the wavelet transform oscillations is computed
with the same complexity. Hence, each iteration on P involves
O(N logy(N)) operations.

The rms signal-to-noise ratio (SNR) of the reconstruction is
measured in decibels. At the scale 27 for 1 < j < 6, Fig. 6(a)
gives the value of the SNR for the reconstruction of Wz‘lj f
after n iterations on the operator P, with 1 < n < 100. At all
scales, the error decreases quickly during the first 20 iterations
and then decays much more slowly. For a fixed number of
iterations on P, the SNR increases when the scale increases.
This proves that the remaining error is rather concentrated
at fine scales, like in the counterexamples of Meyer [21].
After n iterations, we can reconstruct a signal by applying
the inverse wavelet transform operator on the reconstructed
wavelet transform. Fig. 6(b) shows the increase of the SNR,
which is computed with respect to the original signal. This
SNR is an aggregation of the wavelet transform SNR at all
scales. The signal in Fig. 5(b) is reconstructed by applying
the inverse wavelet operator on the reconstructed wavelet
transform after 20 iterations. In this case, the SNR is 34.6
db. The remaining error after n iterations has two components.
The first one is the distance between the reconstructed wavelet
transform and the wavelet transform to which we converge.
The other one is the distance between the wavelet transform to
which we converge and the wavelet transform of the original
signal. We saw that the convergence rate of the algorithm
is related to the frame properties of the family of wavelets
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Fig. 5. (a) Original signal; (b) signal reconstructed with 20 iterations from

the modulus maxima shown in Fig. 2(c).

defined by the maxima positions. In numerical computations,
there is a finite number of maxima; therefore, the family of
wavelets that generates U is finite. A finite family of vectors is
always a frame, but the frame bound A3 can be very small. The
lower bound of the convergence rate given by (55) can thus
also be very small. Fig. 7 is the SNR of the reconstructed signal
computed with respect to the signal to which we converge.
Instead of measuring the error with respect to the original
signal as in Fig. 6(b), the error is measured with respect
to the signal to which we converge. After 30 iterations, the
slope of the SNR curve is constant, which proves that the
convergence is exponential, but the convergence rate is slow.
In Fig. 6(b) and Fig. 7, the increase of the SNR slows down
after approximately 20 iterations. At this point, the distance
between the reconstructed signal and the signal to which we
converge is of the same order as the distance between the
original signal and the signal to which we converge. Increasing
the number of iterations slowly reduces the distance with
respect to the point to which we converge but does not largely
decrease the distance with respect to the original signal. This
is why the SNR in Fig. 7 continues to increase slowly, whereas
the SNR in Fig. 6(b) reaches a maximum on the order of 38 db.

We made extensive numerical tests including reconstruc-
tions of special functions such as sinusoidal waves, Gaussians,
step edges, Diracs, fractals, and the counter example of Meyer
given by (41). In all these examples, the SNR has the same
type of behavior as in Figs. 6 and 7. In most cases, after 30
iterations, the relative increase of precision that is obtained
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Fig. 6. (a) SNR for the reconstruction of the wavelet transform W% f as a
function of the number of iterations on the operator P. Each curve is labeled
by the scale 2/ for 1 < j < G; (b) SNR of the reconstructed signal computed
with respect to the original signal as a function of the number of iterations
on the operator P.

by increasing the number of iterations is negligible. Since
each iteration requires O(N log(/N)) operations, these recon-
structions do not require extensive computations and can be
done in real time. The reconstructed functions are not equal
to the original signal but are numerically close. They have no
spurious oscillations and the same types of sharp variations.
Qualitatively, the reconstructed signals are thus very similar
to the original one, and the errors are hardly noticeable by
comparing the graphs, as shown by Fig. 5. We have no
upper bound on the error due to the distance between the
signal to which we converge and the original signal. This is
an open mathematical problem, but the numerical precision
of this reconstruction algorithm is sufficient for many signal
processing applications.

VI. WAVELET TRANSFORM OF IMAGES

We explained in Section II that in two dimensions, a mul-
tiscale edge detection can be reformalized through a wavelet
transform defined with respect to two wavelets %! (x,y) and
(. y). The second part of this article extends our 1-D results
for image processing applications.

A. General Properties

We denote that 3, (x,y) = z79'(&. %) and that
Vi (x.y) = s¥*(&.4£). The wavelet transform of a
function f(x.y) € LQ(R2) at the scale 27 has two components
defined by

W, f(z.y) = f 93, (x.y) and W2 f(z,y) = f *¥3,(2,y).
(56)
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Fig. 7. SNR of the reconstructed signal computed with respect to the signal to
which we converge as a function of the number of iterations on the operator P.

We refer to the 2-D dyadic wavelet transform of f(z,y) as
the set of functions

W= (Whi(eu) W3 £@9),ep0

Let ' (we,w,) and 1/32(wz,wy) be the Fourier transforms of
¢! (z,y) and ¢*(z, y). The Fourier transforms of Wy, f(z,y)
and W2 f(z,y) are, respectively, given by

57

W211 f(“-’z"-"y) = f(wm,wy)zﬁl(?wz, 2jwy)v (58)
W221 flwz,wy) = f(wszy)'&?(?jwwa Qj“’y)' (59)

To ensure that a dyadic wavelet transform is a complete
and stable representation of f(z,y), we impose that the 2-D
Fourier plane is covered by the dyadic dilations of ¢! (w;, w,)

and 1/;2(wr,wy). This means that there exist two strictly
positive constants A; and By such that

V(ws,wy) € R?,

+oo
A< )y ({zﬁl(mz,zwy)

j=—o

(60)
Let x'(x,y) and x%(z,y) be two functions whose Fourier
transform satisfy

“+oo

>

j=—o00

(1/:'1(2jwz, P )X (P we, P wy)

+1;2(21'%,2J'wy)f<2(2fw1,2jwy)> =1. (61)

There is an infinite number of choices for x!(z,y) and
x%(z,y). We can derive from (58), (59), and (61) that f(z,y)
is reconstructed from its dyadic wavelet transform with
+o0
f(m,y) = Z (WzlJf * X%j(x’ y) + W221f * ng(l',y))
j=—00

(62)
A 2-D dyadic wavelet transform is more than complete; it is
redundant. Any sequence of functions (gjl (z, y),g?—(w, y))jEZ
is not necessarily the dyadic wavelet transform of some
functions in LZ(R?). We denote by W~ the operator defined
by

W (g} (2.9), 97(2,9)) ;e

2 . . . 2
+ l1/12(2]wr,2’wy)l ) < By.
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+oc
= ) (gh X3 (@) + 63+ (z.))-

j=—oo

(63)

The sequence (gj(z,y),95(z, y))jEZ is a dyadic wavelet
transform if and only if

W(W‘l(g]l(x-,y)vgf-(w,y))jez) = (95 (z.9). 57(,9) ;e -

(64)

In Section II, we explained that multiscale sharp variation
points can be obtained from a dyadic wavelet transform if

6 (x, 9(x,
o = P g P,

Equation (8) proves that the wavelet transform can be rewritten
(W%Jf(x7y)> — 97 < %(f * 62f>($7y))
W3, fx,y) Fy(f*ezj)(w,y)

= PV(f *62)(w, ).

(65)

(66)

The two components of the wavelet transform are proportional
10 the two components of the gradient vector ¥ (f %5 )(x, ).
This appears clearly in Fig. 8, which shows the 2-D wavelet
transform of the image of a circle. At each scale 27, the
modulus of the gradient vector is proportional to

My f(2,9) = \[IWh F(z. ) + (W2 £ (. 9)P.

The angle of the gradient vector with the horizontal direction
is given by

Ay f(z,y) = argument (Wzljf(:r7 y) + injf(m, y)). (68)

(67)

Like in the Canny algorithm [2], the sharp variation points
of f * 0y;(x,y) are the points (x,y), where the modulus
Mo; f(z,y) has a local maxima in the direction of the gradient
given by Ao f(z,y). We record the position of each of
these modulus maxima as well the values of the modulus
M,; f(z,y) and the angle A,; f(x,y) at the corresponding
locations.

The circle image at the top of Fig. 8 has 128 by 128 pixels.
The first two columns of Fig. 8 give the discrete wavelet
transform W;;d f and W;’d f for 1 < j < 8 The next
section explains how to define such a discrete dyadic wavelet
transform and how to solve border problems. The reader that is
not interested by numerical implementations can skip Section
VI-B. The discrete modulus images Mélj f and angle images
Agj f are shown along the next two columns. Along the border
of the circle, the angle value turns from O to 2w, and the
modulus has a maximum amplitude. When the scale 27 is
larger than 26, we see that the circle is deformed due to the
image periodization that we use for border computations. The
position of the modulus maxima at all scales is given in the last
column on the right. The original Lena image is shown at the
top left of Fig. 12 and has 256 by 256 pixels. The first column
of Fig. 9 displays its discrete modulus images MY, f, and the
second column gives the position of the modulus maxima for
1 < j < 9. At fine scales, there are many maxima created
by the image noise. At these locations, the modulus value
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modulus maxima have different ;)Osm(m::; than at fine scales.
This is due to the smoothing of the image by fa: (2

B. Discrete Waveler Transform of Images

Images are measured at a finite resolution; therefore, we
cannot compute the wavelet transform at scales below the
limit set by this resolution. As in one dimension, in order (o
model the limitation of resolution, we introduce a smoothing
function ¢{x.y) whose Fourier transform is an aggregation of
the wavelet components dilated by scales larger than |

energy 2
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' (R (not unique) such that
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For the class of wavelers given in

Appendix C, from zm a ies (8 fn. ez

We shall suppose that ¢{x, y) is real. From the
condition (61}, one can derive that the imegml
equal to 1, which means that it is a smoothing f
define the smoothing operator Sy by

admissi bih’w

for hos{, gy with
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7
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that computes the discrete dyadic wavelet transform
2.d

{ngf’ (Wzlfdf)lgjgf <W2] )15151} 7

Images are finite 2-D discrete signals D = (d"»m)(n,m)el\”
of N by N pixels. We solve border problems such as those
in a 2-D cosine transform. We suppose that the image is
symmetrical with respect to each of its border and has a period
of 2N by 2N pixels. For J = log,(N)+ 1, one can prove that
Sg 5 f is constant and equal to the average of the original image
D. Figs. 8 and 9 give two examples of wavelet transforms
computed over log,(/N)+ 1 scales. The numerical complexity
of the fast discrete wavelet transform is O(N? log(N)). The
reconstruction of the original image from its discrete wavelet
transform is also performed with O(N?log(N)) operations.
The discrete modulus images ng f and angle images Agj f
are computed with (67) and (68). The modulus maxima are the
points of the modulus images Mg]- f that are larger than the
two neighbors whose positions are in the direction indicated
by the angle value of A‘;J f at the corresponding location.

VII. CHARACTERIZATION OF IMAGE EDGES

Sharp variations of 2-D signals are often not isolated but
belong to curves in the image plane. Along these curves,
the image intensity can be singular in one direction while
varying smoothly in the perpendicular direction. It is well
known that such curves are more meaningful than edge points
by themselves because they generally are the boundaries of
the image structures. For discrete images, we reorganize the
maxima representation into chains of local maxima to recover
these edge curves. As in one dimension, we then characterize
the properties of edges from the modulus maxima evolution
across scales.

At a scale 27, the wavelet modulus maxima detect the
sharp variation points of f 6y, (z,y). Some of these modulus
maxima define smooth curves in the image plane along which
the profile of the image intensity varies smoothly. At any point
along a maxima curve, §( f * 09:)(z,y) is perpendicular to
the tangent of the edge curve. We thus chain two adjacent
local maxima if their respective position is perpendicular to the
direction indicated by Aa; f(x, y). Since we want to recover
edge curves along which the image profile varies smoothly,
we only chain together maxima points where the modulus
M, f(z,y) has close values. This chaining procedure defines
an image representation that is a set of maxima chains. Image
edges might correspond to very different types of sharp varia-
tions. As in one dimension, we discriminate different types of
singularities by measuring their local Lipschitz regularity.

Definition 2: Let 0 < o < 1. A function f(z,y) is
uniformly Lipschitz o over an open set € of R? if and only
if there exists a constant K such that for all (z¢,yo) and
(z1,791) in Q

|f(zoyy0) = fla1,y1)] < K|(zo—21)*+(yo—1)%*/%. (73)

The Lipschitz regularity of f(z,y) over Q is the superior
bound of all « such that f(x,y) is uniformly Lipschitz c.
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In two dimensions, the Lipschitz regularity is character-
ized by the decay across scales of both |W, f(z,y)| and
|W2 f(z,y)|- The decay of these two components is bounded
by the decay of M, f(z,y). Let us suppose that the two
wavelets ¥!(z,y) and 1% (x,y) are continuously differentiable
and that their decay at infinity is O((—lﬁw)‘

Theorem 2: Let 0 < o < 1. A function f(z,y) is
uniformly Lipschitz o over an open set of R® if and only
if there exists a constant K such that for all points (z,y) of
this open set

My, f(z,y) < K(27)*. (74)

This theorem is the 2-D extension of Theorem 1, and its
proof is essentially the same [20]. The logarithm of (74) yields

logo (Mo f(,y)) < logo(K) + aj.

Uniform Lipschitz exponents can thus be measured from
the evolution across scales of log,(My; f(z,y)). This result
enables us to discriminate between different types of singu-
larities.

When the signal variations are smooth, we can measure how
smooth they are with the same approach as in one dimension.
Locally, we model the smooth variation of f(xz,y) at (zo,yo)
as the convolution of a function h(x,y) that has a singularity
at (xo,y0) with a 2-D rotationally symmetric Gaussian of
variance o

75

72 + 92
- 202 )-
(76)
We suppose that the uniform Lipschitz regularity of h(z,y) in
a neighborhood of (2¢, 30) is ag. If the two wavelets ¥} (z, y)
and 2 (x, y) are the partial derivatives of a smoothing function
6(z,y), which closely approximates a rotationally symmetric
Gaussian, then we can estimate the variance o2. The wavelet
transform modulus of f(z,y) is defined at any scale s by

M, f(z,y) = VIWf(z,y)|2 + [W2f(z,y)2.

With the same derivations as for (35), we prove that

. 1
fla.y) = hxgo(z,y) with g, (2,y) = 5—s exp(

)

27 . -
Moy f(z,y) = S—Mso h(z,y) with s = V227 + 02, (78)
0

Equation (74) of Theorem 2 is valid not only at dyadic scales
27 but at all scales s > 0. For & < ag, h(z,y) is uniformly
Lipschitz o in a neighborhood of {z¢, yo). Hence, there exists
K > 0 such that for any points (x,y) in this neighborhood

M h(z,y) < Ks§. (79)
We thus derive from (78) that
ngf(l',y) S K2j38_1 with Sy = \/—m (80)

Along a maxima chain, the singularity type varies smoothly;
therefore, the parameters K, ag, and o2 do not change much.
We thus estimate these values for portions of chains by looking
at the evolution of the modulus values across scales. Let us
suppose that we have a portion of the maxima chain that
propagates between the scales 2! and 2. We also suppose



724 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 7, JULY 1992

that in a given neighborhood, at each scale 27 the value of
M,; f(z,y) is bounded by its values along this maxima chain.
This means that the maxima chain corresponds to the sharpest
image variation in the neighborhood. Since M,; f(z,y) is
bounded by the maxima values, we estimate the parameters
« and o that satisfy (80) from the evolution across scales
of these modulus maxima values. In theory, this should be
done by using the absolute maximum of M,; f(xz,y) along the
maxima chain at each scale 27. It is often better to regularize
these computations by averaging the maxima modulus value
along the corresponding portion of the chain. This is justified
since we suppose that the singularity type does not vary greatly
along this portion of chain. Let a; be the average value of
M,; f(z,y). As in one dimension, we estimate the smoothing
factor o and the Lipschitz regularity ay by computing the
values that minimize

I

. g —
3 (log2 lay] — logy(K) — j — 22

=1

1 N2
log, (o + 22])) .
(81)

This algorithm associates, with each portion of maxima
chain, three constants K, g, and o that describe the intensity
profile of the image sharp variation along the chain. Such
a characterization of edge types is important for pattern
recognition. For example, we can discriminate occlusions
from shadows by looking at whether the image intensity is
discontinuous or is smoothly varying. For the circle image
of Fig. 8, the wavelet transform modulus along the boundary
remains constant across scales, which means that ag = 0,
and o = 0. Indeed, the image intensity is discontinuous along
the border, and the constant K gives the amplitude of the
discontinuity. In general, we believe that an edge detection
should not be viewed as a binary process that labels the image
pixels as edge points or nonedge points but as a procedure
that characterizes precisely the different types of image sharp
variations.

VIII. RECONSTRUCTION OF
IMAGES FROM MULTISCALE EDGES

A. Reconstruction Algorithm

The algorithm that reconstructs images from the local max-
ima of their wavelet transform modulus is an extension of the
1-D algorithm described in Section V-B. Let f(x,y) € L*(R?)
and (W3, f(z,y), W3 f(z, y))jez be its dyadic wavelet trans-
form. For each scale 27, we detect the local maxima of
My; f(z,y) along the direction given by the angle image
Ay f(z,y). We record the positions of the modulus maxima
((.’Ev,'l}v)) as well as (MZJf( 7yv) Asz(‘T{Myv))veR
In two d1mens10ns the number of modulus maxima is no
longer countablc From Mj; f(x{,,yv) and Ay; f(zd,y7), we
can compute W, f(x, y7), W2, f(x,y?), and vice versa. The
inverse problem con51sts of ﬁndmg the set of functions h(z,y)
that satisfy the following two constraints:

1. At ‘eac‘h scale 27 and for each modulus maxima lqcation

1;7_:‘/{;) =
h(:l"v7 L) - ( {v’y{v)

2. At each scale 2/, the modulus maxima obtained from
W, h(z,y) and W} h(z,y) are located at the abscissa

((@2,) er:

Let us analyze property 1. At any point (zg, yo), the wavelet
transform can be rewritten as inner products

Wy h(zo,y0) = (£(z,9), %3 (z0 — 7,50 — ¥)),
W2 h(zo,y0) = (£(z,1), %3 (z0 — T, %0 — ))-

Let U be the closure of the set of functions that are linear
combinations of any function of the family

{2]¢27 ) — Z, yv - y) 2]1/}23(

(82)

Ty Yy — y)}(j,v)EZxR'

The factor 2/ normalizes the L?(R?) norm of each function.
One can prove that the set of functions h(z, y) whose wavelet
transform satisfies the condition 1 are the functions whose or-
thogonal projection on U is equal to the orthogonal projection
of f(z,y) on U. Let O be the orthogonal complement of U
in L2(R?). This set is therefore the affine space f + O of
functions that can be written

h(x,y) =

We replace condition 2 with a convex constraint that has
a similar effect in order to solve the problem numerically.
We do not impose .that the points ((z7,y7)) Gwyezxr 2T the
only modulus maxima of the wavelet transform but that they
minimize a Sobolev norm defined by

f(z,y) + g(z,y) with g(z,y) € O. (84)

2
17 = | (W3 h(e,), W A(2,3) o
+o00

>

j=—o0
OWLh aW,h )
+22f(|| 2lty> yy OWash n?)) (85)

The minimization of this norm creates a wavelet transform
whose horizontal and vertical components have an L*(R?)
norm that is as small as possible. In conjunction with condition
1, this has a tendency to create modulus maxima at the po-
sitions (z,y). The partial derivative components are added
in order to create a wavelet transform with as few spurious
oscillations as possible. Since W), h(z,y) is computed by
smoothing the signal and taking the partial derivative along z,
it oscillates mostly along the z direction, and we use a partial
derivative along z in (85) to minimize these oscillations. The
transpose Tesult is valid for W2 h(z,y). The weight on the
derivative components is propomonal to the scale 27 because
the smoothness W, h(z, y) and W7, h(z, y) increases with the
scale 27. )

Let ¢3(z,y) = M and 94(z,y) = Z5EY If there
exist two constants A5 > 0 and Bs > 0 such that for all
(we,wy) € R?

(nw;muz WP

+o0
A5 < Z (‘1/;1(21(*}“2]"”?;)'2 + |¢2(2jwz>2jt‘)y)|2)+

j=—oco



MALLAT AND ZHONG: CHARACTERIZATION OF SIGNALS

+oo
Y (@ P+ 15 (2r, 20,)) < Bs
]I=—x

(86)

then for any function i(z,y) € L*(R?), the norm defined in
(85) is equivalent to the L*(R?) norm

As|[l* < IR)* < Bs|lhll?. &7

Similar to (49), we prove this implication by applying the
Parseval theorem on each L?(R?) norm component of the
norm defined in (85). We saw that the set of functions h(z,y)
whose wavelet transform satisfies condition 1 is the closed
affine space f + O. The minimization of the norm || || over
this closed convex has a unique solution whose computation
might, however, not be stable. As in one dimension, we can
prove that the computation of this minimum is stable if and
only if the family of functions

{ijéa (T{: -, y;"f - y>, znga (T{J -, yﬂ - y)}(j,v)€Z><R'
(88)

is a frame of the space U that they generate. The factor 2
normalizes the L*(R?) norm of the functions in this family.
The frame condition expresses the equivalence of the L*(R?)
norm of any function in U and the sum square of the inner
products of this function with each function of the family (88).

To compute the solution of our minimization problem,
we use an alternate projection algorithm just as in one di-
mension. Let K the space of all sequences of the function
(9j(z,y), g7 (x,y) such that

‘(g}(%y),gf(w,y))jezl <400

where the norm | | is defined by expression (85).
We define the set I' of all sequences of functions
(gjl-(a:,y),gf-(x, y))jez € K such that for any index ;j and
all maxima position (z7,y7)

g5 (@, yl) = Wy, f(ad,yl) and g3 (2], yl) = W3, f (2], ).

(89)
The set I is an affine space that is closed in K. Let V' be the
space of dyadic wavelet transforms of all functions in L?(R?).
Equation (87) proves that V' C K. The sequences of functions
that satisfy condition 1 are the elements of K that belong to

A=VnT.

To reconstruct the element of I' N V' that minimizes the norm
| |, we alternate projections on I and V that are orthogonal
with respect to the norm | |. As in one dimension, one can
prove that the orthogonal projection on V is the operator
Py = WoW ™! that was defined by (64). The orthogonal
projections Py on T are defined in Appendix E. For a discrete
image of N? pixels, the implementations of both Py, and
P require O(N?log,(N)) operations. Let P = PyoPp
be the alternate projection on both sets. Since I' is an affine
space and V' a vector space, for any initial sequence X =
(g]l(x,y),g]z(:v,y))jez, lim P™X converges strongly to
n—+oc
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Fig. 10. (a) SNR when reconstructing the wavelet transform components
W;;df and Wf;d f from the modulus maxima of the Lena image shown in
Fig. 9. The abscissa gives the number of iterations on the operator P. Each
curve is labeled by the scale 2/ for 1 < j < 6; (b) SNR of the reconstructed
Lena images computed with respect to the original image as a function of the
number of iterations on the operator P.

the orthogonal projection of X onto A = I'NV. Hence, if we
begin the iteration from the zero element of K, the algorithm
converges strongly to the element of A whose norm | | is
minimum.

B. Numerical Reconstruction of Images from Multiscale Edges

We study the error of the reconstruction algorithm as a
function of the number of iterations on the operator P. At
each scale 27, the SNR integrates the error on the horizontal
and the vertical components of the wavelet transform. Fig.
10(a) gives the evolution of the SNR when reconstructing
the wavelet transform of the Lena image from the modulus
maxima shown in the Fig. 9. After n iterations, we reconstruct
an image by applying the inverse wavelet transform operator
on the reconstructed wavelet transform. Fig, 10(b) is the SNR
of the reconstructed images, computed with respect to the
original one, as a function of the number of iterations on the
operator P. The graphs of Fig. 10 are very similar to the
graphs of Fig. 6 that show the reconstruction SNR for a 1-
D signal. The increase is fast during the first 20 iterations
and then slows down. After a given number of iterations,
Fig. 10(a) shows that the error is mostly concentrated at fine
scales. This error has two components. The first one is the
distance to the wavelet transform to which we converge, and
the other one is the distance between the point to which we
converge and the wavelet transform of the original image.
As in one dimension, the convergence is exponential, but the
convergence rate is very slow. After 20 iterations, the distance
between the reconstructed image and the image to which we
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11, Top left original image. Top rightt image xcumsimcw& {(un
@ representation shown in the second column of
ormed with 10 alternate projec
reconstructed from the th modulus muxima
shown in the thisd column of Fig. 9 with 10 iterstions on the operator P,

converge is of the same order as the distance between the
original image and the image to which we converge. Increasing
the number of iterations thus does not greatly increase the
SNR. The top right image in Fig. 1} is reconstructed with
10 dterations. The SNR is 28 db.
has no visual ditference with the {mg:,xmi image shown at
‘the top left of Fig. 11, which means that the errors are
below our visual sensitivity. Qualitatively, the original image
is well reproduced because the reconstruction has no spurious
oscillation, the singularities are not blured, and the errors are
mosily concentrated at fine scales, where our visual sensitivity
is not so acute,

The reconstructed image

The reconstruction algorithm has been tested for
collection of images including
Diracs, sinusoidal waves, step edges, Brownian noises, etc. For
all these experiments, the SNR behaves similarly to Fig, 10
The visual quality of reconstructed images, with 10 iterations,
is as good as in Fig. 11. For image processing applications,
the numerical precision of this reconstruction algorithm is
sufficient even if we limit the number of iterations below 10.
Since each iteration requires O{N?log,(N)) computations,
this reconstruction can be implemented in hardware for real-
time applications. The reconstruction algorithm is stable for
precisions on the order of 30 db. We can therefore slightly per-
turbate the wavelet transform modulus maxima and reconstruct
¢ image. The lower left image in Fig.
from the

a large

special 2-D functions such as

4 Clf

11 is reconstructed
modulus maxima shown in the third column of Fig.
9. By thresholding the wavelet transform modulus maxima
based on their modulus values, we suppressed the modulus
maxima produced by the image noise and the light textures. As
expected, these textures have disappeared in the reconstructed
image, but the sharp variations are not affected. In the lady’s

shoulder, the thresholding removes the maxima created sxy
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the image noise, and the reconstructed image reproduces 2
skin guality that is much smoother, whereas the boundaries
of the shoulder are kept sharp. This thresholding can be
viewed as a nonlinear noise removal technique. Hwang and
Mallat {17] have developed s more sophisticated proced
to suppress white noises from images, which removes the
maxima produced by the noise through an analysis of their
behavior across scales.

EX. CoMPaCT IMAGE CODING FROM MULTISCALE EDGES

An important problem in image processing is to code imug
with a minimum number of bits for transmission or storage.
To obtain high compression rates in image coding, we cannot
afford to code all the information available in the fmage. It
is necessary to remove the parts of the image components
that are not important for visualization. A major problem
is to identify the “important” information that we need
keep. From this point of view, the problems encountered in
compact image coding are similar to computer vision tasks,
where one also wants to extract the “important” information
for recognition purposes. Since edges provide meaningful
features for image interpretation, it is natural to represent the
image information with an edge-based representation in order
o select the information to be coded. Previous edge-coding
algorithms have already been developed by Carlsson [3] and
Kuat et @l [13] butl at a single scale. This section describes
a compact coding algorithm based on the wavelet transform
modulus maxima. The coding algorithm involves two steps.
First, we select the edge points that we consider important
for the visual image quality. This preprocessing is identical to
the feature extraction stage of a pattern recognition algorithm.
We then make an efficient coding of this edge information.
Selection of the “most important” edge curves can require
sophisticated algorithms if we take into account the image
context. For example, in the Lena image, it is important o
introduce o distortion around the eyes because these are
highly visible for & human observer. In the following, we do
not introduce such context information in the selection.

To code efficiently the edge information, we need 1o take
vantage of the similarities between edges obtained at ditferent
scales. As it can be observed in Fig. 9, the edges of the main
image structures have similar positions at the three finer scales:
, and 2% These three finer scales also carry more than
0% of the image frequency bandwidth and, thus, cover most
of the image information. We build our edge encoding from
these scales only. The coarse scale information, correspoading
{0 the wavelet transform at scales 27 > 27, is kepl as 2
low-frequency image ‘ai efined in Section VI-B. Ihe ed
selection is first pert formed at the scale 27 because at
scale 2, edges are oo greatly contaminated by high-
noises. The houndaries of the important coherent struciures of-
ten generate long edge curves. We thus remove any edge curve
whose length is smaller than a given length threshold. Among
the remaining curves, we select the ones that correspond to the
sharpest image variations. This is done by removing the edge
curves along which the average value of the wavelet trans
modulus is smaller than a given amplitude threshold,
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Once the selection is done, we must efficiently code the
remaining information. This requires coding the position,
modulus value, and angle value of each modulus maximum
along the maxima curves at the scales 21, 2%, and 2°, plus
the low-frequency image Sd f. The geometry of the edge
curves is coded only at the scale 27 bb(du‘ﬁu we neglect the
differences between the maxima positions at the scales 2!, 2%,
and 2°. Maxima chains are coded by recording the position
of the first point of each chain and then coding the increment
between the position of one edge point to the next one along
the chain. Carlsson [3] showed that this requires, on average,
10 b for the first point and 1.3 b per point along the chain
with an entropy coding. At each scale, the direction of the
gradient image intensity at the edge locations is approximately
orthogonal to the tangent of the edge curves. We thus do not
code the angle values but approximate each of them by the
orthogonal direction of the edge tangent at the corresponding
location. The values of the modulus along the edge curves at
the scales 2%, 2%, and 2° are recorded with a simple predictive
coding using a coarse quantization of the prediction values. In
the frequency domain, the image 5% f has an encrgy that is
mostly concentrated in a domain that is (2%)7 times smaller
than the frequency support of the original image. We thus
subsample this image along its rows and columns by a factor
2%, and iis grey level values are coded on 6 b.

We give, in Fig. 12, two examples of images coded with
this algorithm. The same length and amplitude thresholds were
used for each of these images to select the edge chains af the
scale 2°. For each example, we display, at the top left, the
original image, at the top right, the image reconstructed from
the coded representation, at the boltom right, the edge map
at the scale 27 that is encoded, and at the bmmm left, the
subsampling of the low-frequency image 5% f. Each original
image has 256 by 256 pixels. The total amount of data to
code the reconstructed images is 0.30 b per pixel for Fig.
12(a) and 0.24 b per pixel for Fig. 12(b). The compression
rate varies with the number of edge points that remain after
the selection operation. This type of coding removes the image
textures; however, it does not produce distortions such as
Gibbs phenomena. For the Lena image, errors are particularly
visible around the eyes because oo many edge points have
been removed in this region by our simple selection algorithm.
Although a lot of details have been removed in the coded
images, they remain sharp, and most of the information is kept.

This compact coding algorithm is a feasibility study, and
it can certainly be improved both at the selection and the
coding stages. For applications to images where texiores are
important, Froment and Mallat [8] have extended the method
by developing an algorithm that makes a specific coding of
textures after this edge-based coding. Distortions of lextures
are gencrally much less visible than distortions of edges, and a
separate coding of these two tvpes of features can be adapted
to the specificity of the visual perception.

We showed that multiscale cdges can be detected and
characterized fram the local maxima of a wavelet transform,

{a)

(024 b per
g it

imate the Li
smoothing compongnt of
evolution of the wavelet

One can e

n points from the
maxima across scales. We believe
that this complement of information is important for pattern
recognition algorithms based on edges.

The reconstruction algorithms that are described in 1-D and
2-D> recover & close approximation of the original signals
For images, the reconstruction errors are below our vi
sensitivity and can thus be neglected in image proc
or computer vision applications. To reconstruct such signals
requires few iterations that can be implemented in real time
on a pipeline hardware architecture. As an application, we
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described a compact image coding procedure that selects the
important visual information before coding. The compression
rates are between 30 and 40 in the examples that are shown, but
most of the light image textures are not coded. A double layer
coding based on multiscale edges and textures has recently
been developed by Froment and Mallat [8].

APPENDIX A
A PARTICULAR CLASS OF 1-D WAVELETS

This appendix defines a class of wavelets that can be used
for a fast implementation of discrete algorithms. We first define
the smoothing function ¢(z) introduced in Section III-B, and
then, we build the wavelet () and the reconstructing wavelet
x(z), which are associated with ¢(z).

We impose that the Fourier transform of the smoothing
function ¢(z) defined by (20) can be written as an infinite
product

+oo
$w) =" [[HE@™)

p=1

(90)

where H(w) is a 2r periodic differentiable function such that

|H(w)|> + |H(w+ 7)* <1 and |H(0)| = 1. 91)

One can prove [15] that the conditions (91) are sufficient
so that (90) defines a smoothing function ¢(z), which is
in L?>(R). The parameter w is the sampling shift that was
introduced in Section III-B. It is adjusted in order so that ¢(x)
is symmetrical with respect to 0. Equation (90) implies that

$(2w) = e H(w)p(w).

We define a wavelet v(z) whose Fourier transform (w) is
given by

92)

P(2w) = e G (w)d(w)

where G(w) is a 27 periodic function. Equation (22) for J = 1
proves that ¥)(w), x(w), and ¢(w) must satisfy

(93)

P(2w)x(2w) = |$(w)|* — |6(2w)|*. (94)
Let us impose that x(w) can be written
(2w) = e K (w)d(w) (95)

where K (w) is a 2m periodic function. If we insert (92) and
(95) into (94), we obtain
[H(w)]> + Gw)K (w) = 1. (96)
One can prove that (96) is sufficient to define K(w) such that
X(w) is the Fourier transform of a reconstructing wavelet that
satisfies (13).
We want a wavelet ¢)(x) equal to the first-order derivative of
a smoothing function §(x). This implies that ¢/(«s) must have
a zero of order 1 at w = 0. Since |$(0)| = 1, (93) yields that
G(w) must have a zero of order 1 at w = 0. We choose H(w)
in order to obtain a wavelet 1(z), which is antisymmetrical,
as regular as possible, and has a small compact support. A

TABLE 1
FINITE IMPULSE RESPONSE OF THE FILTERS H, G, X', AND L THAT
CORRESPOND TO THE QUADRATIC SPLINE WAVELET OF FIG. 1(a)

n H G K L
-3 0.0078125 0.0078125
-2 0.054685 0.046875
-1 0.125 0.171875 0.1171875
0 0.375 20 | -0.171875 0.65625
1 0.375 20 | -0.054685 0.1171875
2 0.125 -0.0078125 0.046875
3 0.0078125

family of 27 periodic functions H(w), G(w), and K (w) that
satisfy these constraints is given by

H(w) = ¢/ (cos(w/2))"*, ©7)
G(w) = 4ie*/? sin(w/2), (98)
_ 2
K(w) = %{f‘)"i (99)
From (90) and (93), we derive
. 2n+1
Hw) = (S—I%E%) , (100)
. 42
P(w) = iw(%@) . (101)
The Fourier transform 6(w) of the primitive is therefore
. 2n+2
f(w) = (-51“7(‘;@) . (102)

In the example of Fig. 1, we chose 2n + 1 = 3. In order to
have a wavelet antisymmetrical with respect to 0 and ¢(z)
symmetrical with respect to 0, the shifting constant w of (92)
is equal to 1/2. Equations (101) prove that ¢(z) is a quadratic
spline with compact support, whereas #(z) is a cubic spline
whose integral is equal to 1. The 27 periodic function H(w),
G(w), and K(w) can be viewed as the transfer function of
discrete filters with finite impulse response. The corresponding
impulse responses are given in Table I. These filters are used
in fast wavelet transform computations.

APPENDIX B
FAST WAVELET ALGORITHMS FOR 1-D SIGNALS

This appendix describes an algorithm for computing a
discrete wavelet transform and the inverse algorithm that
reconstructs the original signal from its wavelet transform. We
suppose that the wavelet (z) is characterized by the three
discrete filters H,G, and K described in Appendix A. We
denote H,, G, and K, the discrete filters obtained by putting
2P —1 zeros between each of the coefficients of the filters H, G,
and K. The transfer function of these filters is, respec}ively,
H(2Pw), G(2Pw), and K(2Pw). We also denote by H,, the
filter whose transfer function is the complex conjugates of
H(2Pw): H(2Pw). We denote by A x B the convolution of
two discrete signals A and B.
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The following algorithm computes the discrete wavelet
transform of the discrete signal Sf. At each scale 27, it
decomposes Sg, f into Sp; + 1¢f and Wy, + 14f.
j=0
while (j < J)
Wiinif = 5 85, f * G;
ng+1f = Sgi:f * Hj
j=J+1

end of while.

The proof of this algorithm is based on the properties of
the wavelet ¢(z) described in Appendix A. At each scale
27, we divide the values of the samples of Sg] f*xG; by Aj
to obtain accurate measures of Lipschitz exponents from the
wavelet maxima. Due to discretization, the wavelet modulus
maxima of a step edge do not have the same amplitude at all
scales as they should in a continuous model. The constants
A; compensate for this discrete effect. The values of A; that
correspond to the filters of Table I are given in Table II
The border problems are treated by making symmetry and a
periodization of (S1f(n));<, <> as explained in Section III-
B. The convolutions must take into account this periodization.
The complexity of this discrete wavelet transform algorithm
is O(N log(N)), and the complexity constant is proportional
to the number of nonzero coefficients in the impulse response
of the filters H and G.

The inverse wavelet transform algorithm reconstructs 5§ f
from the discrete dyadic wavelet transform. At each scale 27,
it reconstructs S¢; | f from Sg, f and W, f. The complexity
of this reconstruction algorithm is also O(N log(N)).
i=J
while (j > 0) N

S af =X Wi fxKj1 + S5+ Hj
= -1
end of while.

APPENDIX C
A PARTICULAR CLASS OF 2-D DYADIC WAVELETS

In this appendix, we characterize the 2-D wavelets used
for numerical computations. In order to compute the wavelet
transform with a minimum amount of operations, we choose
two wavelets 9!(x,y) and ¥?(z,y) that can be written as
separable products of functions of the z and y variables.
Let 9(z) be a wavelet that belongs to the class described
in Appendix A and whose Fourier transform is defined by

$(2w) = e G(w)do(w) with do(w)

= WY H H(27Pw).

(103)
p=1
We define
P (2,y) = $(x)260(2y) and $*(z,y) = 2¢0(22)9(y)-
(104)
Since ¢(z) = dz(f) , these two wavelets can be rewritten
09 (z,y) 00%(z,y) .
1 _ ) 200 N '
"p (I) y) - or and "b (:1'9y) ay ’ with
(105)
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TABLE II
NORMALIZATION COEFFICIENTS A; FOR THE QUADRATIC
WAVELET OF FiG. 1(a). For j > 5, A; = 1.

J A;

1 1.50
2 1.12
3 1.03
4 1.01
5 1.00

6% (z,y) = 0()2¢0(2y) and 6°(x,y) = 2¢0(22)8(y).

The fast discrete wavelet algorithm does not allow us to
have 01(z,y) = 6%(z,y). However, the functions 6}(z,y)
and #%(z,y) are numerically close enough so that they can
be considered to be equal to a single function #(z,y) in a
first approximation. Equations (103) and (104) imply that the
Fourier transform of the two wavelets 9'(z,y) and ¢%(z,y)
are given by

P (2wg, 2wy) = €7 Q(wy )o(wz ) do(wy) and
P2 (2w, 2wy) = o(ws)e™ ™ Glwy)do(wy)-

One can define the smoothing function ¢(z, y) of Section VI-B
as

(106)

(z,y) = do(z)do(y)-

Let us now define ¥'(w,w,) and X2(w;,wy) such that

R 2wz, 2wy) = €7 K (w5 L(wy) $(wz )Py,
X2 (2w, 2wy) = € K (wy) L(wz)$(wa ) (wy)
where the functions K (w) and L(w) are 2 periodic and satisfy

GW)K (w) + |Hw)* =1, (107)
L+ [H@)P?
2

One can prove that ¥*(w,,w, ) and X2(w,,wy) are the Fourier
transform of reconstructing wavelets that satisfy (61). As
in Appendix A, we choose G(w) = 4ie™/Zsin(w/2) to
approximate a derivative. The 2-D wavelets used in the
computations of this article are derived from the 1-D quadratic
spline wavelet shown in Fig. 1. The values of the discrete
filters H, G, K, and L are given in Table 1.

I

L(w) = (108)

APPENDIX D
FAST WAVELET ALGORITHMS FOR 2-D SIGNALS

We describe two fast algorithms to implement the wavelet
transform and the inverse wavelet transform in two dimen-
sions. We suppose that the two wavelets 1 (z,y) and ¥ (z, y)
are characterized by the three discrete filters H, G, K, and L
mentioned in Appendix C. We use the same notations as in
Appendix B, and L, is the discrete filter obtained by putting
2P — 1 zeros between consecutive coefficients of the filter L.
We also denote by D the Dirac filter whose impulse response
is equal to 1 at 0 and O otherwise. We denote by Ax(H, L) the
separable convolution of the rows and columns, respectively,
of the image A with the 1-D filters H and L.
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The following algorithm computes the 2-D discrete wavelet
transform of an image S¢f. At each scale 27, the algorithm
decomposes S ;[ into 52,+1 f, ;+1 f, and Wg;fl !

7 =0
while (j < J)

Wyt f = .58, f % (G;,D)

2;—+-lf - S‘(I'i'sgdjf*(DvG])
ng+1f = S2Jf* (HJ7H])
j=73+1

end of while.

The proof of this algorithm is based on the properties of
the wavelets ¢! (z,y) and ¥?(z,y) described in Appendix C.
If the original image (S1f(n,m)), ;n)cz> has N? nonzero
pixels, the complexity of the algorithm is O(N?log(N)). As
explained in Section VI-B, border problems are solved by
making a symmetry of the image with respect to each of its
borders and a periodization. The separable convolutions must
take into account this border procedure.

As in the 1-D case, the reconstruction algorithm computcs
S¢f by reconstructing at each scale 27 the signal 52] i
from Sg f, W),,df, and W}, df. The complexity of this
reconstructlon algorithm is also O(N?log(N)).
i=J
while (j > 0)

G f = X Wyt fx (Ko, Lima) + Ay - W f «

(L] 17K] 1)+S2]f (H] lij—l)
j=3-1
end of while.
APPENDIX E

PROJECTION OPERATOR ON [’

In this appendix, we characterize the orthogonal projection
on I' in one and two dimensions and explain how to suppress
oscillations for 1-D reconstructions. We first study the 1-D
case. The operator P p transforms any sequence (g;(z)),., €
K into the closest sequence (h;(x));., € ' with respect to
the norm | |. Let ¢;{z) = hj(x)—g;(z). Each function h;(z)
is chosen so that

= - deE;
> Nl + 221 (109)

j=—o0
is minimum. To minimize this sum, we minimize separately
each component

de;

llej 1* + 22712

Let 2p and z, be the abscissa of two consecutive modulus
maxima of W fp;(x). Since (h;(x)),., € T', we have
{ €(20) = Was f(20) — g;(x0)
ej(z1) = Wy f(21) — g;(21).

Between the abscissa zo and 1, the minimization of (109) is
equivalent to the minimization of

[ (st + 2129 Y,

(110)

(111)

The Euler equation associated with this minimization is
2; %€ (x)
€j(z) — d] 3 )
x
for z €]z, z1[. The constraints (110) are the border conditions
of this membrane equation. The solution is

(112)

—9—Jjz

€j(z) = ae?”" + Be (113)

where the constants « and (3 are adjusted to satisfy equations
(110).

In numerical computations, ng f is a uniform sampling of
Wa; f(z) at the rate 1 and has a total of N samples. At each
scale 27, the operator P modifies a discrete signal g}l =
(9i(n))1<,< v by adding a discrete signal et = (¢ (")1<nen
that is computed from (113) between two consccutlve modulus
maxima. This requires O(N) computations. Since there are at
most log, (V) + 1 scales, the total number of computations to
implement Pp is O(N logy(N)).

We know that the modulus maxima of the original wavelet
transform are only located at the positions x2. We can thus
also impose sign constraints in order to suppress any spurious
oscillation in the reconstructed wavelet transform. This is done
by imposing that the solution belongs to an appropriate convex
set Y. Let sign(x) be the sign of the real number z. Let Y be
the set of sequences (gj(z))j ez € K such that for any pair of

consecutive maxima positions (%, z’, +1) and z € [z7, @l +1]
sign(g;(x)) _ A ‘
= sign(zl,) if sign(zl) = sign(z? ;)
sign( )
(=g )

= szgn( zh o —ad)  if sign(zl) # sign(z), ).

The set Y is a closed convex and (Ws; f);., € Y. Instead
of minimizing | | over I' N V as explained in Section V-
B, we can minimize it over Y N T' N V. We thus alternate
projections on Y, I', and V. To compute the orthogonal
projection on the convex Y, we need to solve an elastic
membrane problem under constraints. This can be done with an
iterative algorithm that is computationally intensive. Instead,
we implement a simpler projector Py on Y, which is not
orthogonal with respect to the norm | |. Let (g;(z)) ;. € K
and Py (9;(z));cz = (h;(2)) - For each index j, h;(z) is
obtained by clipping the oscillations of g;(z). If the original
signal has N samples, at each scale 27, the discrete implemen-
tation of the clipping procedure requires O(N') computations.
There are, at most, logy(IN) + 1 scales; therefore, the total
number of computations to implement Py is O(N log,(N)).
Since this projector Py is not orthogonal, the iteration on
the alternate projections operator P = Py oP poPy is not
guaranteed to converge. Numerical experiments show that in
most cases, after a few iterations, we stay inside Y, even after
projections on I" and V. Hence, the operator Py acts as the
identity operator, and P can be rewritten P = Py oPp. The
analysis of Section V-B proves that we are then guaranteed to
converge strongly to an element in Y NT'NV.

In two dimensions, the operator P transforms a sequence
(9 (=), g2 (x, y))j€z € K into the closest sequence

(hi(@.v). W3 0),c, € T Let (h(z,9),(2,9)) ¢,
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be such that for any j € Z, €j(z,y) = gj(z,y) —
hi(z,y), and €X(z,y) = g?(x,y) — h3(x,y). The sequence

(hl(m y), h3(x, y))JeZ is chosen so that
400 a 2
> (”61”2 +[le2]|? + 2% (” L)% + 15, v ”2>) (114)
j=—o0

is minimum. The constraints on €}(z,y) and e?(w, y) are inde-
pendent. The minimization of (114) is obtained by minimizing
each component
12
lle;ll +

22]|1 n‘*’ (115)

and

lle3l1? + 22’ll II2 (116)
for all integers j € Z. Let us concentrate on the minimization
of (115). Let (zo,y) and (z1,y) be two consecutive modulus
maxima position at a fixed y. The function ejl-(a:,y) must
satisfy

{1(10, y) = Wy; f(xo,y) — g,(xo,y)
ei(z1,y) = Wr}J (@1,9) — 9;(z1,9)

The minimization of (115) subject to these constraints is
obtained by minimizing

/ )
To

For y fixed, we obtain a 1-D minimization problem, which is
identical to the minimization of expression (111). The solution
is a sum of two exponentials as in (113). This analysis shows
that the solution of the 2-D minimization problem is obtained
by fixing the parameter y for e}(x,y) and computing the
1-D solution along the z variable between two consecutive
modulus maxima. The same analysis can be performed on
the other component €?(z,y). The discrete implementation is,
thus, a straightforward extension of the 1-D algorithm that
is applied along the rows and columns of the images that
belong to the sequence that we project on I'. One can verify
that if the original image has N2 pixels, the implementation of
P requires O(N?log(N)) computations. In two dimensions,
we do not introduce any sign constraint as it is done in 1-D
reconstructions.

(117)

2
9€}(z,y)

1 2 2J
Iej(z,y)l +2 I or

dz. (118)

APPENDIX F
CONVERGENCE RATE OF THE ALTERNATE PROJECTIONS
is a frame of

We prove that if (\/ﬁ%; (zi — m)) -
U, then the alternate projection converg(géjieexponentially, and
we give a lower bound of the convergence rate. Let X =
(Waig(2));ez € V and ;(zd) = Wy f(a3) — Wasg(a) be
the error at each modulus maxima location. We first prove that
there exists a constant C; > 0 such that

|X-Ppx*>01 Y 2e(ad).
(n.)ez?

(119)

731

Let (hj(2)) ez

= PP(szg(w))jGZ = PFX and cj(w) =
hi(z) -

Waig(z). By definition

X - Ppx|’ = ](ej(z))JeZ[

@l
( [ ei@pda 2 /

We saw in Appendix E that ¢;(x) satisfies the differential
equation (112); therefore, by integrating by parts, we obtain

- 5

(n,g)€z?

|d€](‘l;)|2 )

(120)

2
X - Ppx|
o dei(@ha) e dei(ad)
g (22]6"(””i+1)"]‘dﬁ o) = )
(121)

We know that the function €;(z) is the sum of two exponentials
given by (113) between any two consecutive modulus maxima
located at z, and z], ;. If we replace the constants o and 3
with their values specified by ¢;(z? ) and €;(z?, +1)» With a few
algebraic manipulations, we derive that

@) de(a)
‘ 22]6j(wi'+1)]_(1av—+— - 22]5]’(7’%)# >
99 . . _
Z(lfj(wiﬂ)lz + lej(2)PMin(277 (], — 23,),1.).

(122)

The derivative at 5”"; 41 is the left derivative, whereas the
derivative at x,, is the right derivative. Since we suppose that
there exists a constant D > 0 such that 277 |zf — 27 ;| >
D < 1, we obtain
2 _ D . .
(X-Ppx[">2% > 2lgE)P (123
(n.j)ez?
which proves (119) for C1 = 2.
Let us now prove that there exists a constant Co such that
for any X = (W2jg($))jez eV
X -Pax’<ce 3 2e(=))
(n.j)€z?

Let U and O be the spaces defined in Section V-B. The
function g(x) can be decomposed into

(124)

9(z) = g1(z) + g2(z) (125)

with g1(z) € U and go>(x) € O. The original function f(x)
can also be decomposed into

fz) = fi(z) + falx)
with f1(x) € U and f5(z) € O. Let us now define the function
h(z) = fi(z) + g2(). 27

Since h(z) = f(z)+u(z), with u(z) € O, we know from (46)
that h(z) satisfies constraint 1 and, thus, that W5k € T'. We
also have h(z)—g(z) = fi(z)—g1(x) € U. Since we suppose

(126)
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that (\/51/121 (], — 1))

that

1 . .
|h(x)=g(z)||? < e Z _) V(h(x)—g(x). o, (2F, —2)) .
(n,7)€Z?

is a frame of U, (53) implies
(n.j)ez?

_ (128)
Since (Wy h(2));c, € I', we have Wy h(},) = W, f(a))
and thus

(h(x)=g(x). s (xh—x)) = Was f ()= Wasg(w)) = €;(x),).
(129)
From the norm equivalence of (49), we can also derive that

s

2
|(Waih(@))je 7 = (Warg(e))ez| < Ballhi) - g()|%
(130)
Since the projector P 4 is orthogonal and (W, h(z));ez €A
2
|(Was9(2)),e,7 = PAWar9(2)) ez |

2
< |Wag(e)) ez = Wah(a)ep| - (13D
Equations (128)—(131) imply that
2
(Wasg(a)),cz = PAWa 9(o) e
B
<3 2 ej (23 (132)
ez

This proves (120) for Cy = & From (123) and (132), we
then derive that

DAy
2B,

This inequality gives a lower bound for the “angle” between
the affine space I' and the space V. Let P = PyoPp be
the alternate projection on both spaces. A classical result on
alternate projections [26] enables us to derive that for any
element X € K, there exists a constant R such that

X - Ppx|P > T2 X - Pyx (33

P4X -P"MX|<R(1- —D—Ai‘)"/?. (134)
2B,

This proves that the algorithm converges exponentially with a
convergence rate larger than (1 — %)“1/2.
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