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ABSTRACT

We present a new representation of harmonic sounds that linearizes
the dynamics of pitch and spectral envelope, while remaining sta-
ble to deformations in the time-frequency plane. It is an instance of
the scattering transform, a generic operator which cascades wave-
let convolutions and modulus nonlinearities. It is derived from
the pitch spiral, in that convolutions are successively performed
in time, log-frequency, and octave index. We give a closed-form
approximation of spiral scattering coefficients for a nonstationary
generalization of the harmonic source-filter model.

1. INTRODUCTION

The spectro-temporal evolution of harmonic spectra conveys es-
sential information to audio classification, blind source separation,
transcription, as well as other processing tasks. This information
is however difficult to capture in time-varying, polyphonic mix-
tures. On one hand, spectrogram-based pattern recognition algo-
rithms [1] are exposed to detection errors as they enforce strong
constraints on the shape of harmonic templates. On the other,
time-varying generalizations of matrix factorization [2] are under-
constrained and thus may fail to converge to a satisfying solution.
In this article, we address the characterization of harmonic struc-
tures without any detection nor training step.

Wavelets have long proven to provide meaningful, sparse acti-
vations as long as they operate on a dimension on which the signal
has already some regularity. Although a single sine wave draws
a regular edge on the time-frequency plane, a harmonic comb is
made of distant sharp peaks over the log-frequency axis, an irreg-
ular pattern that is hard to characterize globally. This irregularity
weakens the discriminative power of existing wavelet-like repre-
sentations, such as Mel-frequency cepstral coefficients (MFCC).

To recover regularity across partials within a wavelet frame-
work, we capitalize on the fact that power-of-two harmonics are
exactly one octave apart. By rolling up the log-frequency axis
into a spiral, such that octave intervals correspond to full turns,
these partials get aligned on a radius. Consequently, introducing
the integer-valued octave variable reveals harmonic regularity that
was not explicit in the plane of time and log-frequency.

Once specified the variables of time, log-frequency, and oc-
tave index, our representation merely consists in cascading three
wavelet decompositions along them and applying complex modu-
lus. Thus, the constant-Q scalogram is "scattered" into channels
over which main factors of time variability are disentangled and
regularized, yet harmonicity is preserved.
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source code to reproduce figures and experiments is available at
www.github.com/lostanlen/scattering.m.

Figure 1: The spiral wavelet is a product of wavelets along time,
log-frequency, and octave index. Blue and green oscillations rep-
resent the real and imaginary parts. The red envelope represents
the complex modulus. Partials of an hypothetical harmonic sound
are marked as thick dots.

Section 2 gives a formal definition of the spiral scattering trans-
form. Section 3 introduces a nonstationary formulation of the
source-filter model relying on time warps, and shows that its vari-
abilities in pitch and spectral envelope are jointly linearized by the
spiral scattering transform. Section 4 provides a visual interpreta-
tion of the spiral scattering coefficients of a nonstationary musical
note.

2. FROM TIME SCATTERING TO SPIRAL SCATTERING

This section builds the spiral scattering transform progressively as
a cascade of wavelet transforms along time, log-frequency, and
octave index. All three variables share the same framework.

2.1. Time scattering

An analytic "mother" wavelet is a complex filter ψ(t) whose Fou-
rier transform ψ̂(ω) is concentrated over the dimensionless fre-
quency interval [1 − 1/2Q, 1 + 1/2Q], where the quality factor
Q is in the typical range 12–24. Dilations of this wavelet define a
family of bandpass filters centered at frequencies λ1 = 2

j1+
χ1
Q ,

where the indices j1 ∈ Z and χ1 ∈ {1 . . . Q} respectively denote
octave and chroma:

ψ̂λ1(ω) = ψ̂(λ−1ω) i.e. ψλ1(t) = λ1ψ(λ1t). (1)
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The wavelet transform convolves an input signal x(t) with the
filter bank of ψλ1 ’s. We denote convolutions along time by the

operator
t∗. Applying complex modulus to all wavelet convolutions

results in the "scalogram" matrix

x1(t, log λ1) = |x
t∗ ψλ1 | for all λ1 > 0, (2)

whose frequential axis is uniformly sampled by the binary log-
arithm log λ1. The scalogram x1 localizes the energy of x(t)
around frequencies λ1 over durations 2Q/λ1, trading frequency
resolution for time resolution.

The constant-Q transform (CQT) S1x corresponds to a low-
pass filtering of x1 with a window φT (t) of size T :

S1x(t, log λ1) = x1
t∗ φT = |x t∗ ψλ1 |

t∗ φT . (3)

To recover the amplitude modulations lost when averaging by
φT in Equation (3), the time scattering transform also convolves
x1 with a second filterbank of wavelets ψλ2 and applies complex
modulus to get

x2(t, log λ1, log λ2) = |x1
t∗ ψλ2 | = ||x

t∗ ψλ1 |
t∗ ψλ2 |. (4)

The wavelets ψλ2(t) have a quality factor in the range 1–2,
though we choose to keep the same notation ψ for simplicity. Like
in Equation (3), averaging in time creates invariance to translation
in time up to T , yielding

S2x(t, log λ1, log λ2) = x2
t∗ φT = ||x t∗ ψλ1 |

t∗ ψλ2 |
t∗ φT . (5)

Due to the constant-Q property, S1x and S2x are stable to
small time warps of x(t) as long as they do not exceed Q−1,
i.e. one semitone. This implies that small modulations, such as
tremolo and vibrato, are accurately linearized [3].

2.2. Joint time-frequency scattering

The time scattering transform defined in Equation (4) decomposes
each frequency band separately, and so cannot properly capture
the coherence of time-frequency structures, such as those induced
by pitch contour. To remedy this, Andén et al. [4] have redefined
the wavelets ψλ2 ’s as functions of both time and log-frequency,
indexed by pairs λ2 = (α, β), where α is a modulation frequency
in Hertz and β is a frequency along log-frequencies in cycles per
octaves. The joint wavelets ψλ2(t, log λ1) factorize as

ψλ2(t, log λ1) = ψα(t)× ψβ(log λ1). (6)

We write
χ1∗ to denote convolutions along the log-frequency

axis, i.e. along chromas. Wavelet scattering is extended to two-
dimensional convolutions by plugging Equation (6) into the defi-
nition of x2 in Equation (4):

x2(t, log λ1, log λ2) = |x1
t,χ1∗ ψλ2 | = |x1

t∗ ψα
χ1∗ ψβ |. (7)

The joint time-frequency scattering transform corresponds to
the "cortical transform" introduced by Shamma and his team to
formalize his findings in auditory neuroscience [10].

Figure 2: Two spiral waveletsψλ2(t, log λ1) in the time-frequency
plane, with different values of λ2 = (α, β, γ). Left: α−1 =
120 ms, β−1 = −0.25 octave, γ−1 = +2 octaves. Right:
α−1 = 60 ms, β−1 = +0.5 octave, γ−1 = −4 octaves. Darker
color levels corresponds to greater values of the real part.

2.3. Spiral scattering

The time-frequency scattering transform defined in Equation (7)
provides template-free features for pitch variability along time.
However, it is unaware of the harmonic structure of voiced sounds,
such as vowels or musical notes. The temporal evolution of this
structure yields relevant information about attack transients and
formantic changes, almost independently from the pitch contour.

In order to capture this information, we extend the joint time-
frequency scattering transform to encompass regularity in time
across octaves at fixed chroma, in conjunction with regularity along
neighboring constant-Q bands. Just like wavelet filterbanks along
time and log-frequency have been defined in the two previous sub-
sections, we capitalize on harmonicity by introducing a third wave-
let filterbank.

We roll up the log-frequency variable log λ1 into a pitch spi-
ral making one full turn at each octave (see Figure 1). Since a
frequency interval of one octave corresponds to one unit in binary
logarithms log λ1, pitch height and pitch chroma in the spiral cor-
respond to integer part blog λ1c and fractional part {log λ1}:

log λ1 = blog λ1c+ {log λ1} = j1 +
χ1

Q
. (8)

In this setting, the fundamental frequency f0 is aligned with
its power-of-two harmonics 2f0, 4f0, 8f0 and so forth. Likewise,
the perfect fifth 3f0 is aligned with 6f0. As the number of har-
monics per octave increase exponentially, the alignment of upper
harmonics — 5f0, 7f0, and so forth — in the spiral is less crucial,
because it can also be recovered with convolutions along chromas
for β−1 of the order of a few semitones.

The wavelet ψλ2 is now defined as a product between wavelets
in time, log-frequency, and octave index:

ψλ2(t, log λ1) = ψα(t)× ψβ(log λ1)× ψγ(blog λ1c). (9)
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Examples of the "spiral wavelet"ψλ2 are shown in Figure 2 for
different values of α, β and γ. To ensure invertibility and energy
conservation, the quefrencies β and γ must take negative values,
including zero. We adopt the shorthand notation

log λ2 = (logα, log |β|, signβ, log |γ|, sign γ) (10)

to specify their indexing. In the special case β = 0, ψβ is no
longer a wavelet but a low-pass filter whose support covers one
octave. By convention, the corresponding log-quefrency index is
log |β| = −∞. The same remark applies to ψγ for γ = 0, which
covers six octaves. Since its Fourier transform ψ̂λ2 is centered at
(α, β, γ), the spiral wavelet ψλ2 has a pitch chroma velocity of
α/β and a pitch height velocity of α/γ, both measured in octaves
per second.

We write
j1∗ to denote convolutions across neighboring oc-

taves. The definition for x2 is comparable to Equations (4) and
(7):

x2(t, log λ1, log λ2) = |x1
t,χ1,j1∗ ψλ2 |

= |x1
t∗ ψα

χ1∗ ψβ
j1∗ ψγ |.

(11)

Rolling up pitches into a spiral is a well-established idea in
music, if only because of circularity of musical pitch classes. It has
been studied by Shepard [5], Risset [6], and Deutsch [7] to build
paradoxes in perception of pitch, and is corroborated by functional
imaging of the auditory cortex [8].

3. DEFORMATIONS OF THE SOURCE-FILTER MODEL

A classical model for voiced speech production consists in the con-
volution of a harmonic glottal source e(t) with a vocal tract filter
h(t). Introducing independent deformations to both components
brings realistic variability to pitch and spectral envelope. This sec-
tion studies the decomposition of the deformed source-filter model
in the spiral scattering transform.

3.1. Overview

Let e(t) =
∑
n δ(t−n) be a harmonic signal and t 7→ θ(t) a time

warp function. We define a warped source as eθ(t) = (e ◦ θ)(t).
Similarly, we compose a filter h(t) and a warp t 7→ η(t) to define
hη(t) = (h ◦ η)(t). The warped source-filter model is the signal

xθ,η(t) = (eθ
t∗ hη)(t) (12)

Observe that θ̇(t) induces a change of fundamental frequency, where-
as η̇(t) accounts for a local dilation of the spectral envelope |ĥ|(ω).
We show in this section that, for θ̇(t) and η̇(t) reasonably regular
over the support of first-order wavelets, the local maxima of x2
are clustered on a plane in the (α, β, γ) space of scattering coeffi-
cients. This plane satisfies the Cartesian equation

α+
θ̈(t)

θ̇(t)
β +

η̈(t)

η̇(t)
γ = 0. (13)

In a polyphonic context, this result means that harmonic sounds
overlapping both in time and frequency could be resolved accord-
ing to their respective source-filter velocities.

Our proof is driven by harmonicity and spectral smoothness
properties — Equation (18) — and derives Equation (13) from the
computation of wavelet ridges on the pitch spiral [9].

3.2. Source-filter factorization in the scalogram

Given λ1 near the pth partial pθ̇(t) where p ∈ N, we linearize θ(t)
and η(t) over the support of the first-order wavelet ψλ1(t). We
work under the following assumptions:

(a) Q large enough to discriminate the pth partial: Q > 2p,

(b) slowly varying source: ‖θ̈/θ̇‖∞ � λ1/Q,

(c) slowly varying filter: ‖η̈/η̇‖∞ � λ1/Q, and

(d) spectral smoothness:
‖d(log |ĥ|)/dω‖∞ × ‖1/η̇‖∞ � Q/λ1.

According to (a), partials p′ 6= p have a negligible contribution to
the scalogram of the source at the log-frequency log λ1. For lack
of any interference, this scalogram is constant through time, and
we may drop the dependency in t:

|e t∗ ψλ1 | ≈ |ψ̂λ1(p)|. (14)

According to (b), the scalogram of the warped source eθ(t) can be
replaced by the scalogram of the original source translated along
the log-frequency axis at the velocity log θ̇(t):

|eθ
t∗ ψλ1 |(t) = |e

t∗ ψλ1 |(θ(t)) ≈ |ψ̂λ1(pθ̇(t))|. (15)

According to (c), we linearize η(t) over the support of ψλ1(t).
According to (d), we approximate ĥ(ω) by a constant over the
frequential support of the wavelet and factorize the filtering as a
product:

(hη ∗ ψλ1) (t) ≈ ĥ
(
λ1

η̇(t)

)
× ψλ1

(
η(t)

η̇(t)

)
. (16)

By plugging Equation (15) into Equation (16), the scalogram of
the deformable source-filter model appears as a separable product:

|xθ,η
t∗ ψλ1 |(t) = |ψ̂λ1(pθ̇(t))| ×

∣∣∣∣ĥ( λ1

η̇(t)

)∣∣∣∣ . (17)

3.3. Harmonicity and spectral smoothness properties

The second step in the proof consists in showing that the convo-
lution along chromas with ψβ only applies to e1,θ , whereas the
convolution across octaves with ψγ only applies to h1,η . Indeed,
all wavelets are designed to carry a negligible mean value, i.e. con-
volving them with a constant yields zero. Therefore, the harmonic-
ity and spectral smothness properties rewrite as∣∣∣|eθ t∗ ψλ1 |

j1∗ ψγ
∣∣∣ ≈ 0 and

∣∣∣|eθ t∗ ψλ1 |
χ1∗ ψβ

∣∣∣ ≈ 0. (18)

Gathering Equations (17) and (18) into the definition of spiral scat-
tering yields

xθ,η
t,χ1,j1∗ ψλ2 (19)

=

[(
|eθ

t∗ ψλ1 |
χ1∗ ψβ

)
×
(
|hη

t∗ ψλ1 |
j1∗ ψγ

)]
t∗ ψα,

where the superscripts t, χ1, and j1 denote convolutions along
time, chromas and octaves respectively.
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3.4. Extraction of instantaneous frequencies

As a final step, we state that the phase of (|eθ
t∗ ψλ1 |

χ
∗ ψβ) is

β×(log λ1−log pθ̇(t)). By differentiating this quantity along t for
fixed log λ1, we obtain an instantaneous frequency of−βθ̈(t)/θ̇(t).
Similarly, the instantaneous frequency of (|hη

t∗ ψλ1 |
j1∗ ψγ) is

−γη̈(t)/η̇(t). As long as

α ≥
∣∣∣∣ θ̈(t)θ̇(t)

β

∣∣∣∣ and α ≥
∣∣∣∣ η̈(t)η̇(t)

γ

∣∣∣∣ , (20)

the envelopes of these two convolutions are almost constant over
the support of ψα(t) [9]. We conclude with the following approx-
imate closed-form expression for the spiral scattering coefficients
of the deformed source-filter model:

x2(t, log λ1, log λ2) =
∣∣∣|eθ t∗ ψλ1 |

χ1∗ ψβ
∣∣∣× ∣∣∣|hη t∗ ψλ1 |

j1∗ ψγ
∣∣∣

×
∣∣∣∣ψ̂α (− θ̈(t)θ̇(t)

β − η̈(t)

η̇(t)
γ

)∣∣∣∣ . (21)

The Fourier spectrum |ψ̂α(ω)| of ψα(t) is a bump centered at
the frequency α. Equation (13) follows immediately from the
above formula. The same result holds for the averaged coefficients
S2x = x2 ∗φT if the velocities θ̈(t)/θ̇(t) or η̈(t)/η̇(t) have small
relative variations:∣∣∣∣ ...θ (t)θ̈(t)

− θ̈(t)

θ̇(t)

∣∣∣∣� T−1 and
∣∣∣∣ ...η (t)η̈(t)

− η̈(t)

η̇(t)

∣∣∣∣� T−1. (22)

In the example of a trombone signal, glissando can be modeled by
θ̈(t)/θ̇(t) in the source-filter model, whereas the brassiness profile
induces a timbral velocity η̈(t)/η̇(t). Figure 3 illustrates that these
two velocities are stably disentangled and characterized.

4. CONCLUSIONS

The spiral model we have presented is well-known in music theory
and experimental psychology [5, 6, 7]. However, existing methods
in audio signal processing do not fully take advantage from its
richness, because they either picture pitch on a line (e.g. MFCC)
or on a circle (e.g. chroma features). In this article, we have shown
how spiral scattering can represent the transientness of harmonic
sounds.
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