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1. Introduction. Second order moments characterize entirely Gaussian processes and
are often sufficient to analyze stochastic models, even though the processes may not be
Gaussian. When processes are wide-sense stationary, their covariance defines a convolution
operator. Many spectral estimation algorithms allow one to estimate the covariance operator
from a few realizations, because it is diagonalized with Fourier series or integrals. When
processes are not stationary, in the wide-sense, covariance operators may have complicated
time varying properties. Their estimation is much more delicate since we do not know a
priori how to diagonalize them. We will be dealing with wide-sense properties of processes
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in this paper so we will not mention this explicitly. The ideas and methods of Calderon
and Zygmund [8] in harmonic analysis have shown that although we are not able to find the
basis which diagonalizes complicated integral operators in general, it is nevertheless possible
to find well structured bases which compress them. This means that the operator is well
represented by a sparse matrix with such a basis. This approach allows characterization of
large classes of operators by the family of bases which do the compression. We show here
that the ability to represent covariance operators by sparse matrices in a suitable basis leads
to its efficient estimation from a few realizations.

We concentrate attention on the class of locally stationary processes, that is, processes
whose covariance operators are approximately convolutions. Since cosines and sines diago-
nalize the covariance of stationary processes, it is natural to expect that local cosine functions
are “almost” eigenvectors of locally stationary processes. This property is formalized by pos-
tulating that the covariance operator is well approximated by a nearly diagonal one in an
appropriate local cosine basis. We show that if the covariance operator is a pseudo-differential
operator of a specified class, then the process is locally stationary.

To estimate the covariance operator of a locally stationary process we search for a local
cosine basis which compresses it and estimate its matrix elements. The size of the windows
of a suitable local cosine basis must be adapted to the size of the intervals where the pro-
cess is approximately stationary. Since we do not know in advance the size of approximate
stationarity intervals, we introduce an algorithm that searches within a class of bases for a
“best” basis, to compress the covariance operator. This search is done using data provided
by a few realizations of the process. For locally stationary processes, we have a fast imple-
mentation of the search for a best local cosine basis based on the local cosine trees of Meyer
[9] and Coifman and Wickerhauser [6].

In section 2 we study the properties of locally stationary processes and in section 3 we
analyze the estimation of covariance operators with a “best” basis search. Fast numerical
algorithms and their application to examples of locally stationary processes are described in
section 4.

2. Locally Stationary Processes. Locally stationary processes appear in many phys-
ical systems in which the mechanisms that produce random fluctuations change slowly in
time or space. Over short time intervals, such processes can be approximated by a stationary
one. This is the case for many components of speech signals. Over a sufficiently short time
interval, the throat behaves like a steady resonator which is excited by a stationary noise
source. The length of these stationary time intervals can however vary greatly depending
on the type of sound that is generated. In the next section we describe qualitatively the
basics of locally stationary processes and explain how to construct “almost” eigenvectors of
the covariance operator with local Fourier analysis. The corresponding “almost” eigenval-
ues are given by the time-varying spectrum. This intuitive introduction is made precise in
section 2.2 by defining locally stationary processes as those whose covariance operators are
well compressed in some local cosine basis. In section 2.3 we prove that pseudo-differential
covariance operators are locally stationary. Such processes may also be realized by filtering
white noise with a time-varying filter whose properties are described in section 2.4.



2.1. Time-varying spectrum. Let X(¢) be a real valued zero-mean process with
covariance

R(t,s) = E{X(1)X(s)}.

The covariance operator is defined for any f € L*(R) by

(1) TH(H) = / T R(L, $)(5)ds.

—00
The inner product

< f, X >= +oof(t)X(t)dt

is a random variable which is a linear combination of the process values at different times.
For any f, g € L?(R), the covariance operator gives the cross-correlation

(2) E{< [,X)>< g, X >} =<Tf,g>.

The covariance can be expressed in terms of the distance between ¢ and s and the
mid-point between them
t+s

(3) R(t,5) = Co(—,t = s).

When the process is stationary then

t+ s

Cof 5

,t—8)=Cy(t —s)

and the covariance operator is a convolution

+0o0
Tf(t) :/ Co(t — s)f(s)ds = (Co* f)(2).
—00
If the process is locally stationary, we expect that in the neighborhood of any z € R,
there exists an interval of size [(z) where the process can be approximated by a stationary
one. The size [(z) of intervals of approximate stationarity may vary with the location z. For
I(z

t€x— @, T+ T)]’ the covariance is well approximated by a function of t — s

(4) B{X(#)X(s)} ~ C(z,t — s) if |t — 5| < 12,

The decorrelation length d(z) gives the maximum distance between two correlated points.

Forte[x—@,x-l—@]

(5) E{X(1)X(s)} = C(HTS,t — o) ~0 if|t—s| > dz).



Locally stationary processes have a decorrelation length that is smaller than half the size
I(x) of the stationarity interval

l
(6) d(z) < %
The conditions (4) and (5) imply that if ¢t € [z — l(w , T+ l(w =~| then
t
(7) c( ;S,t—s)%C(x,t—s) Vs € R.

With the change of variables (3), the covariance operator

t + s
Tf(t) = Co( — 5)f(s)ds
can be interpreted as a time varying convolution. To analyze the properties of this operator
when C(u,v) is a smooth function of u, Martin and Flandrin [10] have introduced a real

“time varying spectrum”, which is the Fourier transform of Cy(u,v) with respect to v

“+o00

(8) Ao(u,w) = ) Co(u,v)e ™ dy
9) - / " Rlu+ g u— %)e‘i””dv
(10) - / T B{X(u+ g)X(u - g)}e_i“”’dv.

This “time-varying” spectrum is the expected Wigner-Ville distribution of the process X (%)
Ao(u,w) = E{W X (t)}

where the Wigner-Ville distribution is defined by

(1) W) = [ et

—0o0

E)e_i“”’dv.

I

2
The terminology “spectrum” should be interpreted carefully because Ag(u,w) is generally not
equal to the eigenvalues of T'. It may in fact take negative values whereas 7' is a symmetric,
positive operator whose spectrum is therefore always positive.

The regularity of the time-varying spectrum is related to the size of stationarity intervals
I(z) and the decorrelation length d(z). If u € [z — @,m + @] then (5) shows that the
covariance C(u,v) has a fast decay in v relatively to d(x). Its Fourier transform Ag(u,w)

with respect to v thus remains approximately constant over intervals of size %. Since

C(u,v) has negligible time-variation in [z — @,x l(z] we derive that for any £ € R
the spectrum Ag(u,w) can be approximated by a constant Ag(z,£) in the time-frequency
rectangle

I(x) I(x) s s

(12) (u,w)e[fv—T,fE-FT]X[f_m’g"‘m
4

]



If the process X(t) is stationary, the covariance operator 7' is a convolution whose
eigenvectors are therefore the complex exponentials e™™?. In this case, the eigenvalues are
given by the spectrum

+0o0
Ao(u,w) = Ag(w) = Co(v)e ™ dv.
—00
If the process X (t) is locally stationary, we show that Ag(x,&) is an approximate eigenvalue
of the covariance operator T. Approximate eigenvectors are time-frequency atoms whose
energy are concentrated in the time-frequency rectangle (12), where Ag(u, §) is approximately
constant. The uncertainty principle proves that it is possible to construct such a time-
frequency atom only if d(z) is smaller than [(x), which corresponds to the local stationarity
condition (6).

Let ¢,(t) be a smooth window whose support is equal to [z — ‘”) , T+ ( |, and ¢, ¢(t) =
gz(t) cos(&t + 6). We show with non rigorous derivations that if X ( ) is locally stationary
then

Applying the covariance operator to q&z,g(t) gives

T e(t) = C(t = $)6uels)ds

—o0

@) g

The support of ¢, ¢(s) is [z — + @] The local stationarity condition (7) thus implies

that
+o00
T¢w,§(t) ~ C(ma t— 5)¢w,§(8)d8

Parseval’s identity gives

1 Foo N )
(14) Torelt) ~ / Ao (2, ) ae (o)™ doo,

o0

where ¢, ¢(w) is the Fourier transform of ¢, ¢(t)

bugw) = —W“(w—ﬂ e ga(w + ).

If g,(t) is a smooth window function, the energy of its Fourier transform g,(w) is mostly

concentrated in [—ﬁ %] The energy of ¢, ¢(w) is therefore localized in [—§ — Ty €+

%] Ul¢— & T 1 ] Since Ag(z,w) = Ag(z, —w) and d(z) < I) , (12) implies that
AO(.’,E,(A)) ~ AO(xaé-) for |w‘ € [6 - ﬁ:g—i_ ﬁ]

It results from (14) that

A e i
% QS.CC,{ (w)e“"tdw = AO (LE, €)¢$,€ (t)
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F1G. 1. A modulated window ¢, ¢ has a time support centered at z of size proportional to I(z). Its Fourier
transform is centered at w = £ and its energy is spread over an interval whose size is proportional to l%—;r) It
is represented by a rectangle centered at (z,£) in the time-frequency plane (t,w). Changing £ translates the
rectangle along the frequency axis.

In the time-frequency plane (¢,w), for w > 0 the approximate eigenfunction ¢, ¢ has an
energy mostly concentrated in the rectangle

[x—@,ﬂ@] xle— e+

2
Changing £ modifies the location of the center of this rectangle as indicated in Figure 1. To
show that T'¢, ¢(t) &= Ao(z,£)dse(t) we used the fact that Ay(t, w) is approximately constant
over the time-frequency support of ¢,¢. This is a crucial property for locally stationary
processes.

2.2. Local Cosine Approximations. It could be tempting to look for the exact eigen-
vectors of the operator 7. The characterization of covariance operators through eigenvectors
is however unstable. Indeed, when the eigenvalues are close, slight changes of the operator
may change completely the eigenvectors. In most cases, the eigenvectors are complicated
functions that cannot be used easily to describe properties of 7. Instead, we construct or-
thogonal bases of approximate eigenvectors. Let {@, }nen be an orthonormal basis of L?(R).
Any f € L%(R) can be expanded in this basis

+o00
f(t):Z<f:¢n>¢n(t)'
n=0

The covariance operator is represented by the matrix elements {< T'¢y,, ¢m >} m)ene- The
expansion coefficients of T'f in the basis {¢, },en are obtained by matrix multiplication

(15) Tt =) (Z < T, bn >< f, b >) én(1).

n
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In a basis of approximate eigenvectors the matrix coefficients < 1'¢,,, ¢, > decay rapidly as
|n — m| increases.

For locally stationary processes, we saw that one can find window cosine functions
Gz,e(t) = gz (t) cos(&t+0) that are approximate eigenvectors of . We explain the construction
of Coifman, Malvar and Meyer [7, 9, 11] that yields an orthonormal basis with such local
cosine vectors. The real line R is partitioned into intervals [a,, ay+1] of size

ly, = apy1 — ap.
We suppose that the sequence a, is increasing and that

lim a, =—o0 , lim a,=+o00
p——00 p—r+00

so that the whole line is segmented by these intervals. Each interval [a,, a,11] is covered by
a window function g,(t). Let [a, — mp, apt1 + Mp+1] be the support of g,(t). We construct
gp(t) so that its support intersects only the support of g, 1(¢) and the support of g,1(%),
which means that

(16) lp 2 1lp + Tlp1-

The supports of g,(t) and g,_1(t) intersect in [a, — 7,,a, + 1p]. Over this interval both
windows must be symmetric with respect to a,

(17) 9p(t) = gp-1(2a, —1).

The windows {g,(¢) },ez are, moreover, constructed so as to cover uniformly the time axis

(18) VteR , +Zoo lg,(1)]* = 1.

n=—oo

Such window functions are illustrated in Figure 2. The following theorem [9, 7] shows that
the resulting local cosine family is an orthogonal basis.

A

gp—2 (t) g 71(15) gp(t) gp+1(t)
} } } I I I
ap — Tp

|
I
ap—1 a, ap+mp Gp+1 — MpGp+laps1 + Mpt1

F1G. 2. Smooth cutoff window functions g,(t), p € N, used in local cosine bases. The supports of adjacent

windows g¢,(t) and g,_1(t) intersect over the interval [a, — 1p, ap + 1,]. Over this interval, both windows are
symmetric with respect to a,.

THEOREM 2.1 (COIFMAN, MALVAR, MEYER). If (16,17,18) are satisfied then

(19) {qsp,k(t) _ gp(t>\/% [”('“T”)(t - ap>] }

7
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is an orthonormal basis of L*(R).
The support of ¢, x(t) is [a, — Mp, ap+1 + Np+1]- The frequency of the cosine modulation
is
m(k+ 1)
(20) u= 0 T2)
P
Let g,(w) be the Fourier transform of g,(¢). The Fourier transform of ¢, 4 (t) is then

eiapgp,k

qu,k (w) =

(gp W = gp,k) + gp(w + gp,k)) .
21,
The bandwidth of ¢, x(w) around &, and —&, is equal to the bandwidth of g,(w). If g, (%)
is a smooth function, its frequency bandwidth is proportional to

A local cosine basis can be attached to a partition (pavement) of the time-frequency
plane by representing each ¢, x(t) with a rectangle which approximates the time support by
lap, ap11] and the frequency support with [, , — i, &kt %] The time and frequency spread
of ¢p 1 goes beyond the rectangle

(ap: @] X (6 = 72 G 7
P P
but this correspondence has the advantage of associating an exact partition of the time-
frequency plane with any orthogonal local cosine basis {¢, x(t)}pez ken, as shown in Figure
3.

Our qualitative analysis of locally stationary processes shows that there exists local co-
sine vectors that are almost eigenvectors of the covariance operator 7. This property is used
as a characterization of locally stationary processes by the following definition. It imposes
the existence of an orthogonal basis of local cosine vectors that are almost eigenvectors of 7T'.
In a given time neighborhood, the size of the local cosine windows corresponds to the size
of the interval where X (¢) is approximately stationary.

DEFINITION 1. A process X (t) is locally stationary if there exists a local cosine basis

{asp,k(t) _ gpu)\/g [”(’“T”)(t - ap>] }

such that for some constants u < 1 and A > 0 we have that for all p # q

max(ly, [,)

(21) min(ly, l,)

< Alp—q*,

and for allm > 1 we can find a constant Q,, such that for all (p,q, k,j) € Z*> x N* the matriz
elements of the covariance operator satisfy

@n
(1+p = gI") (1 + [max(ly, lg) (Epk — &4.0) ")

(22) | <Tpk, bg; > | <



2 27

lp—1 2 lp+1
[

(p—1 p Opt1 Up+2

F1G. 3. Time-frequency tiling of a local cosine basis. Each box represents the time-frequency localization
(approximate support) of a function in the basis. The collection of all the boxes forms a partition of the time-
frequency plane.

The parameters {l,} specify the support of the windows g,(¢). They indicate the size of
the intervals where X (¢) is approximately stationary. Condition (21) demands that the size
of these intervals should have a relatively slow variation in time. Condition (22) imposes that
the matrix elements of the covariance < T'¢,, ¢, ; > have a fast decay when we increase
Ip — q| and |&, x — & |, which depend respectively upon the distance between the time and
the frequency supports of ¢, and ¢, ;. This means that T'¢, is a function that is mostly
localized in the same time-frequency region as ¢, ;. Each local cosine vector ¢, is therefore
“almost” an eigenvector of 7.

The covariance operator 7" is not diagonal in the local cosine basis but if it comes from
a locally stationary process it can be approximated by a symmetric, sparse operator By
constructed from 7" by keeping only the matrix elements < T'¢, i, ¢, ; > for which ¢, and
¢q; are in the same time-frequency neighborhood. Inserting the expression (20) of &, and
&q,; We define Bi by

<Tpp,¢q; > if [p—q| < K and

1 1
< BiGpk, $gj >= max(ly, lp) (02 = 2)| < K

lg —

0 otherwise

For each (p,k), < Br®pk, ¢q; >F# 0 for at most (2K + 1)? coefficients (g, 7). When the
window lengths [, are not all the same, Bx does not have a band structure exactly. However,

9



it has fewer non-zero coefficients than the band restriction of the 1" operator to elements for
which |k — j| < K and [p — ¢| < K.
The sup operator norm of 7" is denoted

ITlls = sup [T,
Ifll=1

where ||f|| and ||Tf]| are the L?(R) norms. The following theorem shows that ||T||s is
bounded and that |7 — Bg||s decays rapidly when K increases.
THEOREM 2.2. IfT is the covariance operator of a locally stationary process then

Moreover, there exist for all integers n > 1 constant A,, such that for all K > 0

A,
1+ Kn'

(24) IT = Bills <

The proof of this theorem is given in appendix A. The theorem guarantees that the
covariance operator of a locally stationary process is arbitrarily well approximated by a
sparse operator in an appropriate local cosine basis. Next section connects our definition of
local stationarity to the properties of the covariance informally discussed in section 2.1.

2.3. Pseudo-differential Covariance Operators. The covariance operators of lo-
cally stationary processes introduced in section 2.1 were qualitatively described as time
varying convolution operators. Such operators can be considered as pseudo-differential op-
erators. We study necessary conditions which guaranty that the resulting process is locally
stationary, in the sense of definition 1.

To study the properties of the covariance, we make a non orthogonal change of variables
in the covariance R(t, s), as opposed to the orthogonal change of variable (3), so that

(25) R(t,s) = Cy(t,t — s).

The covariance operator can therefore be written as

(26) Tf(t) = /_+00 Ci(t,t — s)f(s)ds.

o0

Let us define a new “time-varying spectrum” by

+oo
Aqi(t,w) :/ Ci(t,v)e ™ dv.
The function A;(¢,w) has complex values because in general Ci(t, —v) # Ci(t,v). Applying
Parseval’s identity to (26) yields

THH) = - / At w) (@),

2r J_»
10



In the theory of pseudo-differential operators A;(¢,w) is called the symbol of T'.
In section 2.1 we give two qualitative conditions for a process to be approximately
stationary over an interval of size [(¢) in the neighborhood of ¢. One is that the covariance
I(t)

should vary slowly over [t — =%, ¢ + %] This may be done by supposing that for all £ > 0

there exists a constant A, such that

The other is that the decorrelation or decay of Ci(t,v) as a function of v should also be
rapid compared to [(t). This means that for any j > 0 there exists B; such that

+o0
(27) / (o |Cy (¢, v)|dv < Byl (2).
Since the Fourier transform of (—iv)?Cy(¢,v) is 07 A;(t,w) and the integral (27) gives an
upper bound on the Fourier transform, this condition implies that

051 (t,w)| < Bjl ().

We must now show that a process X (t) satisfying these two conditions is locally stationary
in the sense of Definition 1. This is the main theorem of this paper and it gives sufficient
conditions on the covariance function so that there exists a basis of local cosine vectors that
are almost eigenvectors of the covariance operator.

THEOREM 2.3. Suppose that there ezists a function [(t) such that for all k > 0 and
J > 0 we can find Ay ; which satisfies

(28) 0FO A (t,w)| < Ay P7R().

If for some o < % and a constant A

(29) V(t,u) e R® , |I(t) = I(uw)| < Alt — ul®,
and if

(30) %gﬂgl(t) >0,

then T 1is the covariance operator of a locally stationary process in the sense of Definition
1.

The function [(x) specifies the size of the neighborhood of z in which X (¢) is approx-
imately stationary. When [(t) = [ is a constant, the covariance operator 7" whose symbol
satisfies (28) is a classical pseudo-differential operator. It is well known [8] that such pseudo-
differential operators are well compressed in a local cosine basis where all windows have a
constant size [, = [. When [(¢) varies and can potentially grow to +oo, condition (28) on
the symbol defines a larger and non-standard class of scaled pseudo-differential operators.

The proof in appendix B constructs an appropriate local cosine basis in which 7" satisfies
the off-diagonal decay conditions (22)

@n

(14 Ip = g[*) (1 + [max(lp, lg) (& — &o.3)|")
11

(31) | <Tpk, bgy > | <



for all (p,q,k,j) € Z* x N?. Each window g,(t) covers an interval [a,, a,1] of size I, =
l(a,). It corresponds to a time domain where A;(¢,w) have small variations and where the
underlined process X (t) is approximately stationary. Conditions (29,30) guarantee that the
windows length [, satisfy the slow variation condition (21) imposed by the definition of local
stationarity .

The stationarity length [(¢) is not uniquely specified by A;(¢,w). When constructing
the windows of the local cosine basis, we would like the matrix elements | < T'¢y x, ¢q.; > |
to have the fastest possible decay away from the diagonal, so as to approximate as well as
possible T with a sparse operator By. The constants @), that appear in (31) grow with the
values of Ay ; of (28). It is thus important to know when these constants Ay ; are small and,
if possible, remain uniformly bounded for all £ and j. In many cases we can choose [(x) to
be proportional to

1
Sup,er [O1As (7, w)|’

which is a measure of the size of a neighborhood of z in which A;(¢,w) has variations of
order one, for all w.

2.4. Time-Varying Filtering of White Noise. Stationary processes can be con-
structed by filtering white noise with a time invariant filter. We may therefore expect that
a locally stationary process can be synthesized by filtering white noise with an appropriate
time-varying filter. This approach to non stationary processes was followed by Priestley [3].
Here, by asking that the time-varying filter be a pseudo-differential operator, we show that
the resulting process is locally stationary.

The Cramer representation gives a spectral decomposition of square integrable stationary
processes X (%)

X(t) = / ™ Aw)etdZ(w),

= % .
where Z(w) has orthogonal increments
(32) E{dZ(w)dZ*(w")} = 276 (w — w')dwdw'.

This can be interpreted as filtering of white noise with a time-invariant filter L defined for
any f € L2(R) by

Lt =5 | AW fwyde = [ K(t—)F(s)ds,

27r -0 — 00

where f(w) and A(w) are respectively the Fourier transform of f(v) and K (v). The kernel
K (v) is the impulse response of L.
Priestley [3] studied a class of non-stationary processes obtained through a time varying
filtering of white noise
1

(33) X() =5 / A w)e 2 (w).

—00

12



The process Z(w) has orthogonal increments that satisfy (32). The corresponding time-
varying filter L is

1 +oo A +oo
A(t,w)e™ f(w)dw = K(t,t— s)f(s)ds,

27 J_o o

(34) Lf(t)

where A(t,w) is the Fourier transform of K(¢,v) with respect to v. The kernel K (¢,v) can
be interpreted as a time-varying impulse response.

Priestley defines the evolutionary spectrum to be |A(¢,w)[>. The kernel A(t,w) depends
upon the covariance 7" of the process X (t) since we only specify the second order properties
of dZ(w). However, A(t,w) and L are not determined uniquely by 7. Since the increments
dZ(w) are uncorrelated, use of (32) shows that

1 [t

R(t,s) = E{X(#t)X"(s)} = Py A(t,w)A* (s, w)e =) dw.

—0o0

The covariance operator is thus related to the time-varying filter by
(35) T =LL',

where L! is the adjoint operator. In other words, L is a “square root” of the positive
symmetric operator 7. There exists, however, an infinite number of such square roots. If L
is any solution of (35) then for any U such that UU* = I, LU is also a solution of (35). Note

that the real time-varying spectrum Ao(£2,w) defined by (8) also satisfies

1 [t t+s ;
iw(t—s)
R(t,s) = o / Ao( 5 ,w)e dw.

-0

However A(t,w)A*(s,w) is in general not equal to Ag(22,w). In particular, |A(t, w)|? is
always positive whereas Aq(t,w) is not. To define A(¢,w) in a unique way, Priestley imposes
the condition that the inverse Fourier transform of A(¢,w) with respect to w is maximally
concentrated around zero [4]. This is equivalent to imposing a maximum smoothness con-
ditions on A(t,w) with respect to w. When trying to estimate the evolutionary spectrum
|A(t,w)|?, there is, however, no guarantee that we do estimate the maximally smooth ker-
nel. The non-uniqueness of the evolutionary spectrum has remained an issue in Priestey’s
approach, and we prefer to work directly with the covariance operator which is uniquely
defined.

Benassi, Jaffard and Roux [1] have studied a class of non-stationary processes, obtained
with elliptic pseudo-differential filters L, that have weak regularity conditions. They proved
that the covariance operator of these processes is well compressed in a wavelet basis. These
processes are not locally stationary but are used to construct multi-fractal models. The
following theorem concentrates on locally stationary processes X (t) and gives sufficient con-
ditions on the symbol A(t,w) of L.

THEOREM 2.4. Suppose that there ezists a function l(t) such that for all k > 0 and

J > 0 we can find Dy ; which satisfies

(36) 0P A(t, w)| < Dy U5 (2).
13



If for some o < % and a constant A

(37) V(t, ’LL) € R2 ’ |l(t) - l(’LL)| < A|t - u|aa
and if
(38) %gﬂgl(t) >0 ,
then
1 [T it
X(t) = e A(t,w)e "“"dZ(w).

18 a locally stationary process.

The proof of this theorem is given in appendix C. A simple class of time-varying filters
L is obtained by varying the scale, amplitude and frequency modulation of a linear filter.
Let h(v) be the impulse response of a time-invariant filter whose Fourier transform iz(w) is
concentrated at low frequencies. We construct a filter L whose time-varying impulse response
is

(39) Kt 0) = "9 5%y cos(e(t)o).

The Fourier transform of K (¢,v) with respect to v is

(40) A(t,w) = a(t) (hlo(t) (@ — @) + Ao () (w + £@)])
A Gaussian process obtained by filtering a Gaussian white noise can be written
+0o0 1 +00 ) R
(41) X(t) = K(t,t— s)dZ(s) = 2—/ A(t,w)e™“'dZ (w),
—00 T J -

where Z(t) and Z(w) are Wiener processes.

To guarantee that X (t) is locally stationary, we suppose that hA(t) is a Schwartz function
but we must also impose some smoothness conditions on a(t), o(t) and £(t). If a(t) and &(¢)
are constant and if for all £ > 1

OFa(t)] < Qo (t)] < 1

then it can be verified that the conditions (36) are satisfied with

l(t) _ KO _ Kla(t)
SUPy,eRr |atA(ta w)‘ |at0(t)| ’

as long as [0,0(t)| > € > 0 and |o(t)| > € for some € > 0. The constants By ; are then
uniformly bounded for all £ and j.
Figure 4 shows one realization of such a locally stationary Gaussian process X (¢). The
amplitude a(t) is a constant window inside [0, 1], with a smooth increasing profile beginning
14



at t = 0, and a smooth decreasing profile ending at ¢ = 1. The frequency shift £(¢) = £ is
constant. The filter impulse response is a Gaussian h(t) = ﬁe’%. It is scaled by o(¢) which

increases on [0,1]. As a result, the Fourier transform h(w) of h(t) is scaled by a decreasing
factor ﬁ The integral (41) over time is discretized over M = 1024 samples for discrete
calculations.

The bottom of Figure 4 gives the time-varying spectrum Ay(t,w). Only positive fre-
quencies w > 0 are shown. For fixed time ¢, along w the function Ay(¢,w) is similar to a
Gaussian centered at w = £ and scaled by % At early times t, Ag(¢,w) is a wide because
o(t) is close to zero. As o(t) increases, the bandwidth of Ay(t,w) decreases. For ¢ in the

neighborhood of 0 and 1 Ay(¢,w) is nearly zero because the amplitude a(t) is close to zero.

2000
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500 “ ‘ [ f 4
—
= | | il
e R | \ | ‘

-500f Il | ‘ ‘ 1
-1000 T
-1500 T
PO L S S S S S SR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (time)

I I I I I I I I =
0.10 020 030 040 050 060 070 080 090 1.00

t (time)
F1G. 4. The graph at the top shows one realization of a locally stationary process generated by filtering a

Gaussian white noise. The image at the bottom displays the time-varying spectrum Ag(t,w). The darker the
image the larger Aq(t,w).

3. Estimation of Covariance Operators. For general non-stationary processes the
covariance matrix cannot be estimated reliably from a few realizations of the process. How-
15



ever, if we can find a basis in which the covariance operator is well approximated by a sparse
matrix, it is possible to reduce substantially the variance by estimating only the (essentially)
non-zero matrix elements. For example, locally stationary processes have covariances that
are well approximated by a sparse matrix in an appropriate local cosine basis, whose win-
dows depend on the size I(t) of the intervals of stationarity. However, we do not know in
advance [(t), in general. It is thus necessary to estimate from the data the basis in which the
covariance operator is well approximated by a sparse matrix as well as the non-zero matrix
elements. We study this problem here in its full generality and present a best basis search
algorithm which optimizes an additive measure of departure from being sparse. To simplify
the explanations, we suppose that the sparse matrix is a band or near diagonal matrix,
although this condition is not required in the best basis search.

3.1. Approximation of Covariance Operators. From N independent realizations
Xk(t), k = 1,2,...,N, of a zero mean process X (t), we want to get an estimate T of the
covariance operator T with small bias and mean square error E{||T — T'||?} . By controlling
the operator norm |7 — T“s, we also bound the maximum error between the eigenvalues
of the estimated operator T and the true covariance operator T'. Let A, and A be the
eigenvalues of 7" and T, respectively. From linear algebra we know that for all n

(42) inf [\, — Xl < 1T~ T,

~ Let {¢n}nen be an orthonormal basis of L?(R). A simple but naive algorithm to compute
T is to estimate all the matrix elements

anm =< Tp, o >= E{< X, ¢, >< X, b, >}

with the sample means

N
~ 1 k k
(43) Qn,m = N ; < XP op >< X5, by >

The sample mean estimator is clearly unbiased

E{bnm} = anm.

In the Gaussian case its variance is given by the following proposition.
ProrosITION 3.1. If X(t) is a Gaussian process then

44 Ella 12V = (1+ — 2, -
(44) {anm|"} = 1+ )lanm|” + 5 nntmm,
and thus
1
(45) E{|anm — an,M|2} = _(‘an,m|2 + U Gmm)-

N

16



Proof:

2

N
1
E{inml”} = E|5 Y <X ¢n>< X 6 >
k=1
1 N
(46) = 5 2 B{< X5 0 >< XE 6 >< XF g >"< XF, >}
k=1
1 N
+ ¥ D E{< X*, ¢y >< X, ¢ ST VE{< X", by >< X!, b >7}.
k,l=1
k#£l

Each < X*, ¢, > are Gaussian random variables and for all &
E{< X* ¢ >< X* ¢y >*} = a1
If Ay, Ay, A3, A4 are Gaussian random variables, one can verify that
E{A1AsA3A,} = E{A1 Ao} E{As A} + E{A1 A3} E{ A Ay} + E{A1 A4} E{A2 A3},

Applying this to (46) yields
1 1
2y = mz\f(an,na,,m +2a2 ) + m(N2 — N)a?
which proves (44). Since E{|tnm — tnm|’} = E{a} ,,} — E{a; ,,}, we get (45). O
Let T be the covariance operator estimate whose matrix elements in {¢, },en are

E{|an.m

< qum ¢m >= dn,m-

The matrix elements of the error T — T are pm — On,m- LThe previous proposition shows that
if X (t) is Gaussian then E{(Gym — anm)?} does not depend only on a,,, but also on the
diagonal elements a, , and a, . Thus, even though a, , may decay quickly to zero when
|n — m| increases, since

a a
47 E Nnm_ nm2>wa
(47) {(@nm = anm)?} > =15

the expected error remains large if the diagonal coefficients are large. The errors a,, , — apm
for the matrix elements accumulate and give a very large operator norm error E{||T —T||2}.

To avoid this accumulation of error, we approximate 7" with the estimated coefficients
in a band of size K around the diagonal. Let Bx be the band operator obtained by setting
to zero all matrix elements ay, ,, of T with |[n —m| > K

_ ) Onm if |n—m|§K
< Bk ¢n, pm >= { 0 otherwise

The estimated matrix elements in this band of width 2K + 1 define an estimated band
operator

Qnm if [n—m| < K
0 otherwise
17
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Since E{anm} = anm, we derive

The error when estimating T with B is the sum of the bias due to the difference between
T and By and the variance of the estimator of Bx

E{|IT — Bk|l3} = T — Bkl + E{||Bx — Bxll3}-

The expected norm E{||Bx — Bgl|?} varies typically like W Indeed, E{(anm —
dnm)?} is proportional to N~! and (47) shows that these coefficients do not decay away from
the diagonal, within the band. The squared norm is thus proportional to the band width
squared (2K + 1)2. This shows that the variance term increases when K increases. On the
other hand, the bias ||T — Bg||? decreases when K increases since the approximation band
gets larger. Given the number of realizations N, an optimal choice for K is obtained by
balancing the bias and variance terms. When N is very small, which is the case in many

applications, the best choice is often K = 0 because the variance term dominates.

3.2. Best Basis Selection. The covariance operators of some processes may be well
approximated by a band matrix in a particular basis that is chosen from a limited collection
of bases, called a dictionary. For locally stationary processes, this dictionary is the collection
of local cosine bases constructed with windows of varying sizes.

Let D = {B"},er be a dictionary of orthonormal bases B? = {¢] },en of L?(R), indexed
by v € I'. We denote the matrix elements of 7" in B by
Uy =<TO), 07, > .
Let BJ. be the restriction of the operator T to a band of size 2K + 1 in the basis B”

aY

if [n —m| <
< Bg Z,¢7n>:{0n,m if |n —m| < K

otherwise

Given a covariance operator, we would like to find the basis B* in the dictionary which
minimizes the bias |7 — B%||s so as to reduce the total estimation error

E{|IT - B3} = 1T - BxII; + B{l Bk — B2}

However, the bias ||T" — B%||s; cannot be computed directly since we do not know 7. We
must therefore try to control this bias from the band coefficients a] ,, of B2. This can be
done by using a Hilbert-Schmidt norm.

The Hilbert-Schmidt norm of the operator T is the trace of TT* and it is therefore equal
to L?(R?) norm of its kernel that we suppose to be finite

+oo  ptoo
IT|2 = tx(TT") = / / R(t, ) Pdids < +o.

One can verify that the Hilbert-Schmidt norm of 7' can be also written as the sum of its
matrix coefficients squared in any orthonormal basis B

(48) 1717 = gl

18



Applying the Cauchy-Schwartz inequality on the expression (1) of T'f proves that the sup
operator norm of 7" is bounded by its Hilbert-Schmidt norm

(49) 1]} < {[T]]-

Inequality (49) shows that we can control the bias ||T — B%||? by a Hilbert-Schmidt
norm

IT = BRIl < IT = Bills = > lagml,

[n—m|>K
and hence
(50) IT - Byl < I~ 3 ol
Il <K

To minimize this upper bound we choose among the dictionary the basis that maximizes

(51) 1Bl =D lahm

n,m
In—m|<K

2

It is important to realize that the Hilbert-Schmidt norm ||T — B} ||, is often a crude
upper bound for ||T — BY||s- In general, minimizing || — B || is therefore not equivalent
to minimize | T — B}||s. However, Schur lemma A.1 shows that

IT =Bl — > lagml

n,m
|[n—m|>K

provides an effective control on ||T'— B} || if we are also guaranteed that the coefficients a]
have a fast off-diagonal decay as |[n—m/| increases. This will be the case when approxnnatmg
locally stationary processes in local cosine bases. The maximization of || B ||, then selects
a basis in which the operator norm |7 — BY%||5 is small.

Given N realizations of the process X(t), we compute sample mean estimates a; ,,, (43)
of the coefficients a},, in the band of B}. It defines an estimated band operator B}. The
Hilbert-Schmidt norm | BY||7 is then estimated by

1Bkla= > laim

n,m
[n—m|<K

2

If X(¢) is a Gaussian process then (44) shows that

1 QpnQm,m
BB = Y {0 e+ 2o
[n—m|<K
and hence
(52 BAIBKE} = 1+ DI+ Y tuntmn
[n— m|<K
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The estimate ||B ||? is biased but its maximization is a reasonable procedure for maximizing
|Bx||2. We will denote by B® the estimated “best” basis which maximizes the estimated
sum of squares of matrix elements in the band of size K

1B IIn = sup 1BXIn-

The variable & labels the estimated best basis. It is a random variable since it is a functional
of the observations.

3.3. Approximate Karhunen-Loeve Basis. As mentioned earlier, when the number
of realizations N is small the variance term ||B}. — B)||s of the mean square error grows like

2§i1 and is often much larger than || — B} ||s. To reduce the variance, therefore, we often

choose K = 0. We let D" = B] and D" = B] be the resulting diagonal matrices. The basis
B* which minimizes ||T — D7||, can be interpreted as the best approximation, within the
dictionary of bases, of a Karhunen-Loeve basis. A Karhunen-Loeve basis is indeed a basis
in which the covariance operator 7" is diagonal. If the dictionary D includes a Karhunen-
Loeve basis then || D?||, is maximized by this Karhunen-Loeve basis. The approximation of
a Karhunen-Loeve basis with a “best” basis selected from a limited dictionary has already
been studied by Coifman and Wickerhauser [6]. Their searching algorithm maximizes a
different criterion, based on an entropy measure, which is not, however, directly related to
the norm of the error ||T°— D7|[;.

Let d) = a), and d7 = a, , be the diagonal coefficients of D7 and D". The Hilbert-

n,n
Schmidt norm is the sum of the dlagonal elements squared

1D =D lduf®.

When K = 0, (52) shows that the expected trace norm of the estimated diagonal coefficients
(in a fixed basis) is

(53) E{ID"3} = (1 + %)Ilmlli-

The maximization of || D7||? is thus equivalent to the maximization of an unbiased estimator
of [|D7.

Let B% = {¢3},cn be the estimated best basis which maximizes ||D7||?. Since D% is a
diagonal matrix, its diagonal entries d, are the estimated eigenvalues of T. Note that for
K =0, we are guaranteed that the estimated covariance operator D% is a positive operator,
which is not always the case if K > 0.

In the diagonal case, the estimated time-varying spectrum is easily calculated from the
Wigner-Ville distribution of each basis vector. Indeed, the estimated covariance is

R(t, s) Z dy 6% (1)02 (s)
and the corresponding time-varying spectrum is

A oo DG v Uy _iwv
Ao(u,w) = / R%(u + 3 U~ 5)@ dv.

—00
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Inserting the Wigner-Ville distribution W ¢&(u,w) defined in (11) yields

(54) Ao(u,w) = dy Woh(u,w).

4. Basis Selection and Estimation Algorithms. Theorem 2.2 proves that the co-
variance operators of locally stationary processes are well approximated by band matrices
in a local cosine basis where the size of the windows is adapted to the size [(¢) of intervals
over which the process is approximately stationary. We introduce a dictionary D of local
cosine bases with windows of varying sizes. From a few realizations of the process we search
in this dictionary for the best approximate Karhunen Loeve basis, as described in section
3.3. To implement this search with a fast algorithm we use the tree structured dictionary
introduced by Coifman and Meyer [9]. In section 4.1 we describe this local cosine tree and
in section 4.2 we give some numerical results for covariance estimation.

4.1. Local Cosine Binary Trees. To reduce the complexity of the search for a best
local cosine basis with adapted window sizes, we limit the window sizes to powers of 2. We
consider signals and processes with compact support included in [0, M]. Local cosine bases
with dyadic window sizes are constructed along a binary tree. We consider separately the
dictionaries of local cosine bases for continuous time and discrete time signals.

Coifman and Wickerhauser [6] construct a dyadic tree of local cosine bases by associating
to each node of the tree a window that covers a sub-interval of [0, M]. The root of the tree
corresponds to a window which covers the whole interval [0, M]. The left and right branch
nodes are associated with the two half windows which cover [0, Z] and [¥, M], respectively.
Each of these windows are divided further into a left and right window of half their size,
and so on. Each node of the binary tree is characterized by the pair (j, p) which specifies
its depth j and its position p from left to right, at depth j. Such a node corresponds to
the window function g/(t) which covers the interval [pM277, (p + 1)M27], as illustrated in
Figure 5. All window functions gg(t) have an increasing and decreasing profile constructed
by translating a single, smooth function 3(¢) > 0 such that

_J 0 ift<—n
ﬁ(t)_{l if t >,

and
B2(t) + B°(—t) = 1.
The window gJ(t) is defined by

Bt — pM277) if t <pM277 +1n
gt)y=31 if pM2 I +n<t<(p+1)M27 —nq
Bllp+1)M277 —t) ift> (p+1)M277 — 1

This is valid only if M27 > 27, which limits the maximum depth of the tree to .J

M
< J=1 —.
J > 0g2277
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F1c. 5. Dyadic tree of local cosine bases. Each node is associated to a window modulated by cosine
functions whose frequencies are inversely proportional to the window length. The leaves of any admissible subtree
corresponds to a particular local cosine basis.
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To each window we associate a local cosine family defined by

- . 2 1.t — M279p
i — - il
{ 7 x(t) = gi(t) 57 008 [W(k + 2) 5 }}k N.
€

We call admissible binary tree any binary tree whose nodes have either 0 or 2 branches.
We denote by v the index set of the nodes (j, p) of a particular admissible binary tree. One
can verify that the windows {gJ(t)}(; ey define a partition of the interval [0, M] into dyadic
intervals of varying sizes. Figure 6 gives two examples of admissible binary trees and their
corresponding window decomposition of the interval [0, M]. It can be shown from the local
cosine theorem 2.1 that for any admissible binary tree indexed by ~y

B = {¢ ()} merken

is an orthogonal basis in a space V which includes L?([n, M — n]). The dictionary D =
{B"},er of local cosine bases constructed with all admissible binary trees puts the local
cosine bases in correspondence with all combinations of dyadic size windows that make an
exact cover of [0, M]. There are more than 2//2 different admissible binary trees of depth at
most J and hence the dictionary D = {B”},cr contains more than 27/2 different local cosine
basis.

Orthogonal bases for discrete time signals are obtained simply by discretizing the local
cosine functions. It can be shown that for m =1,2,..., M,

, , 2 1.m—27p

j — i I R
{ ) elm] = g3 (m) V27 ¢ |:7T(k+ 2) 93 }} |
0<k< M2

is an orthogonal family of discrete cosine vectors. For any admissible binary tree whose
branches have indices (j,p) in a set 7y, one can also prove that

BT = {QS;Z,k[m]}(j,p)67,0§k<M2—j

is an orthogonal family of M discrete vectors. It is an orthogonal basis in the space V which
contains discrete signals having compact support in [n, M — n]. Since n > 1, the binary tree
has depth

M
J =log, 2 < log, M.

At depth j of the binary tree there are 2’ families of local cosine vectors {¢;,k[m]}ogk< Ma—i,
which are a rearrangement of a total of M cosine vectors. By using a fast discrete cosine
transform, for any discrete signal f[m| whose support is in [p, M — 7] all inner products

{<f, ¢ﬁ,,k > }o<p<2i 0<k<M2-i

are calculated with O(M log, M) operations. To compute all discrete cosine products at all
depth 0 < j < J of the binary tree thus requires O(JM log, M) operations.
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19,04

Fic. 6. Examples of admissible binary trees corresponding to two partitions of the interval with windows of
varying sizes. The circles indicate the selected nodes. The resulting windows are drawn under the binary trees.
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4.2. Best Local Cosine Basis Search. Let X[m] be the samples of a locally sta-
tionary process whose support is included in [, M — n]. Let us consider the dictionary D
of discrete local cosine bases constructed with a binary tree of depth J. We search in the
dictionary D for the best approximate Karhunen-Loeve basis as described in section 3.3.

For each realization X9[m], we compute all inner products with the JM cosine vectors
stored in the binary tree

q 4 ) .
{<X s Py > }o<j<J,0<p<2i 0<k< M2-i

with O(JM log, M) operations. We estimate the diagonal covariance matrix elements for
each cosine vector with the sample mean

N
. 1 .
d = NZ| <Xy >
g=1

To each local cosine basis BY = {¢’ &S (G.p)er0<k<m2-i, corresponding to an admissible binary

tree indexed by 7, we associate the diagonal matrix D? whose diagonal elements are the
estimated ones

{dj,k}(j,p)€7,0§k<M271 .

The best basis maximizes the sum of the squares of these M diagonal coefficients

IDllr=" > |,
(J.p)€Y
0<k<M2~]

Since ||D7||? is an additive quantity over the local cosine coefficients of an admissible binary
tree, we can use the fast dynamic programming algorithm of Coifman and Wickerhauser to
find the best basis (admissible binary tree) which maximizes it. The dynamical programming
algorithm uses a bottom up strategy which progressively constructs the best admissible tree
by comparing the energy of the estimated local cosine coefficients of a tree node and its two
branches. The best basis B is found with O(M log, M) operations.

To guarantee that a local cosine basis compresses the covariance operator of a locally
stationary process, the proof of theorem 2.3 indicates that one must also insure that the
local cosine windows g,(t) have smooth rising and decaying profiles. These profiles should
vary over intervals of size 27, and 27,1, comparable to the length of the interval [a,, ay1]
covered by g,(t). This is a priori not satisfied by the windows included in the binary tree,
which all have rising and decaying intervals of the same length, equal to 27. This constraint
is necessary in order to freely combine any window with any other one when constructing a
local cosine basis. The parameter 27 is the minimum window size at the bottom of the binary
tree. It is thus typically small compared to M. This means that the large windows at the top
of the binary tree have rising and decaying intervals that are much smaller than the window
size that they cover (see Figure 7). Clearly, these window functions are not as smooth as
they could be. To by-pass this constraint, once the best basis B is selected, we modify the
rising and decaying profiles of the windows to increase their smoothness. The best basis
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choice decomposes the interval [0, M] in dyadic size intervals that we denote by [ay, api1].
Over these best basis intervals, we construct a new local cosine basis with non-symmetric
windows whose profiles rise and decay over the largest possible intervals compatible with
the constraints imposed by the neighboring windows. The construction of these windows
is specified at the beginning of appendix B by (67,68). It is illustrated in Figure 7. The
estimated variance matrix elements are recomputed with this new basis by decomposing
again the N realization of the process in this modified best basis. The diagonal operator in
this new best basis is still denoted by D?.

Qp—1 p Ap+1 Up+2

F1G. 7. The figure at the top gives an example of windows for a local cosine basis. The figure at the bottom
shows how to dilate the rising and decaying profiles to obtain windows of maximum smoothness, while maintaining
the necessary properties for local cosine bases.

4.3. Numerical Experiments. The algorithm is tested with a locally stationary pro-
cess synthesized by filtering a Gaussian white noise through a time-varying filter specified by
(39). Figure 4 shows one realization of this locally stationary process and its time-varying
spectrum Ag(t, w).

Equation (45) for n = m proves that the error when estimating the diagonal covariance
coefficients from N realizations of the process is

2 &

(55) Bl - i, = =%

A first experiment is performed with N = 1000 realizations in order to get accurate estima-
tions of these coefficients, ngk R d:f;,k. The time-frequency tiling of estimated the best basis
is shown in Figure 8. Each rectangle indicates the time-frequency support of a local cosine
window qﬁg,k in the selected best basis B*. The gray level of these rectangles gives the value

of cif;’k. The darker the rectangle the larger Ji,k. The window sizes are adapted to the time

and frequency variations of Ag(¢,w) that is shown at the bottom of Figure 9. The smoother

the time variation of Ay(¢,w) the larger the time support of the local cosine windows. For ¢

close to zero the frequency bandwidth of Ay(¢,w) decreases quickly which requires short time

windows. As the rate of modification of this bandwidth decreases, the windows increase in
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size. For ¢ close to 0 and 1 the amplitude of Ay(¢,w) has a rapid decay to zero which selects
short time windows.
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F1G. 8. Time-frequency tiling of the estimated best basis computed with 1000 realizations of the process.

The width and height of each rectangle indicates the time and frequency spread of the a cosine window ¢;7k.

The darkness is proportional to estimated variance Jf),k. The distribution of is very similar to the time-varying
spectrum Ag(t,w) of the process displayed at the bottom of figure 9.

From the estimated diagonal covariance operator D% we compute an estimated time-
varying spectrum Aq(t,w) with (54). The left image of Figure 9 is the estimated spectrum
Ao (t,w) obtained with the original local cosine windows having the same rising and decaying
profiles, as illustrated at the top of Figure 7. The right image of Figure 9 is the estimated
spectrum /~\O(t,w) computed after modifying the local cosine windows, as indicated at the
bottom of Figure 7. Both spectra have the same qualitative behavior as the original time-
varying spectrum Ag(t,w) given in Figure 8. The errors are mostly concentrated in the time
regions where the rising and decreasing profiles of the windows are located. The modified
windows that are smoother reduce this error.

In most applications we must estimate the covariance from very few realizations. In
speech processing, we only have 1 realization. The top of figure 10 shows the time-frequency
tiling of the best basis computed with only N = 1 realization of the process X (¢). The gray
level of the rectangles indicate the value of the estimated diagonal covariance coefficients
d;,k. In this case (55) proves that the expected estimation error is

E{|Ji,k - d;,k|2} = 2|d;i,k‘2'

This explains the considerable variation of cig;,k in time-frequency regions where Figure 8
shows that df;, « 1 approximately constant. Next section explains how to reduce this variations
with a time-frequency smoothing. The considerable variance on the covariance coefficient
estimators also induces a large variance on the estimator B of the best local cosine basis.
Compared to Figure 8 we see that the selected window sizes is not optimal.
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F1G. 9. The left image is the estimated time-varying power spectrum Ao(t, w) in the best local cosine basis.
The right image displays Ag(t,w) computed in the same best basis, with modified maximally smooth windows.

Table 1 gives the expected estimation errors of the covariance operator for different
numbers of realizations. Observe that

(56) E{||IT - D%|I7} = E{|IT — D°||3} + E{|ID* - D*|I3}.

This indicates that the error T — D% when approximating 7' by its diagonal restriction
in the estimated best basis B is uncorrelated with the error D — D% produces by the
estimation of the diagonal coefficients in the estimated best basis. As expected, E{||D% —
D%||2} is inversely proportional to the number of realizations N. The best basis diagonal
approximation E{||T — D%)|?} also decreases with N, which means that we do get more
reliable estimates of the true best basis when the number of realizations increases. This
value tends to ||7"— D?||? which is the error in the true best basis B*. However, beyond
these numerical results, we have no theoretical control on the convergence of the error in
the estimated best basis compared to the error in the true best basis, when the number of
realizations increases. For a number of realizations N < 20, E{||T — D%||?} is negligible
compared to E{||[D* — D%||?}. This means that the error introduced by approximating the
Karhunen-Loeve basis with the best local cosine basis is negligible compared to the error
due to the estimation of the diagonal coefficients.

We mentioned that a naive estimation T of T may be obtained by estimating all the
matrix coefficients in a basis arbitrarily chosen, say a discrete Dirac basis. This is equivalent
to compute the covariance function R(t,s) directly with the sample mean

N

(57) R(t,s) = % S XE(@)XE(s).

k=1

The resulting error E{||T — T||?} is proportional to ~ multiplied by the full covariance
matrix size M2, which is huge. The first column of table 1 gives E{||T — D%||?} for N
realizations. As expected, this error is much larger than the error E{||T — D%||?} obtained
in an estimated local cosine basis. Next sections explains how to further reduce this error

with an appropriate time-frequency smoothing of the estimated covariance coefficients.
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LN [ BT - DA TNE [ 2{D% - DAINTNE [ BT - DANITIE [ 2417 - DSZATIZ | E{IT - TIZITIE |

1 50 49 0.14 0.6 139
5 4.9 4.8 0.08 0.40 33
10 1.9 1.8 0.08 0.4 18
20 0.81 0.75 0.09 0.37 10
40 0.36 0.32 0.09 0.41 6.2
80 0.15 0.12 0.09 0.35 3.7
160 0.11 0.06 0.08 0.38 2.3
320 0.08 0.03 0.07 0.35 1.5
640 0.07 0.02 0.06 0.31 0.94
TABLE 1

Estimation errors of the covariance operator for different numbers of realizations N. The first column gives
the total error in the estimated best local cosine basis. The second column is the error induced by the diagonal
coefficient estimation in the best basis. The third colum is the error when approximating 7' by its diagonal
restriction in the estimated best basis. The fourth column is the total error in the estimated best basis with a
time-frequency smoothing of the diagonal coefficients. This error is dramatically reduced. The last column gives
the error when estimating 7" with a full matrix in a discrete Dirac basis.

4.4. Time-Frequency Smoothing. The variance error E{||D* — D%||?} is the main
source of error and can often be reduced with a local averaging of the estimated diagonal
coefficients of D® This relies on an a priori assumption of smoothness of the diagonal
coefficients of D?, which is not always true for all locally stationary processes. We defined
locally stationary processes as those whose covariance operators have a fast off-diagonal
decay in an appropriate local cosine basis. However, we do not we do not impose a priori any
smoothness condition on the matrix coefficients along the diagonal. The same issue appears
when estimating the spectrum of stationary processes. These processes are diagonalized
in the Fourier basis. To reduce the variance of the spectrum estimation, most spectral
estimation algorithms perform some type of averaging of the Fourier coefficients along the
frequency axis. This averaging is justified only if the spectrum if smooth, which is not always
the case.

The frequency axis gives a natural topology for the spectrum of stationary processes.
For locally stationary processes, the natural topology is provided by the time-frequency
plane. Local cosine functions are neighbors either in time or in frequency. Time-frequency
smoothing kernels for the estimated “time-varying” spectrum /NXO(t, w) of non-stationary pro-
cesses have been studied by several researchers [5, 13, 14]. In our numerical experiments, we
perform a direct averaging of the estimated local cosine coefficients Ji,k- This short study
illustrates the result of such an averaging, without any theoretical analysis.

The coefficient Ji’k is an estimate of dik = F{| < X, qzﬁi’k > |?}. It is averaged with

other coefficients Jﬂ,k, in the same local cosine basis, depending upon the distance in time

and frequency of the two local cosine vectors d);;,k and qﬁﬂ,k,

(58) dy= Y w0 K] dy .
J'p' K
The weights wg,k[j’ ,p', k'] decrease when the distance between the time supports of of qﬁi,k

=

and ¢;’ w increases, or when the distance between the support of their Fourier transform
b

increases.
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If M is the total number of samples of the signal, qﬁi, , covers an interval of size [, = M277.

The distance between the centers of the time support of qﬁi,k and ¢§;,k, is thus
1 a1
At:MQ 7(p+§)—M27(p +§)

The distance between the domains where their Fourier transform energy is mostly located is

 (k+3 K+
~ T\ M2 T M2 )

A, = |£p,k - gp’,k’

The averaging weights are computed with a Gaussian kernel g(¢) that is dilated in time and

frequency proportionally to the time and frequency spread of qﬁ%j,v The time and frequency

scale factors are thus M2~/ and 2

A, ) (M2_j
M2’ 9\ o

A).

wzjj’k;[jlapla kl] = )\;’kj g(
The factor /\;;7,C normalizes the sum of the weights

> wylih K] =1,

3K

The variance of the Gaussian kernel g¢(¢) is a parameter that modifies the time-frequency
spread of this averaging. The smaller the number of realizations N, the larger the variance of
the estimators ch;,k and the more averaging is needed. This also depends upon the expected
time-frequency smoothness of the true coefficients dg,k. The bottom of Figure 10 displays

the amplitude of the smoothed coefficients (jﬁ) . computed from the estimated coefficients Ji, B
for N =1 realizations, shown at the top of Figure 10.

We denote by Dé the diagonal operator in the basis B* whose diagonal coefficients are
the smoothed estimates ch;,k defined by (58). The next to last column of Table 1 displays the
expected error E{||T — D%||?}. It is much smaller than E{||T — D%||?}, which shows that
this smoothing decreases considerably the expected error when the number of realizations
is small. Donoho and von Sachs [2] have proposed a different adaptive regularization of the
best basis coefficients with a wavelet thresholding. They proved that for particular classes
of locally stationary processes, the resulting algorithm yields a consistent estimator of the
covariance.
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A. Proof of Theorem 2.2. We estimate the norm of the error U = T'— By when ap-
proximating 7" with a band operator Bk. Let us denote [, = max(l,, ;) and I, = min(l,, ).
In a local cosine basis, the matrix coefficients of U are zero inside the band of Bg

<Topk,bq5 > if[p—q| > K
(59) tp kg5 =< Ubps bgj >= or |[(k+ byt — (G + 3laly ' > K
0 otherwise

Since T is the covariance operator of a locally stationary process, the off-diagonal coefficients
have a fast decay in a local cosine basis and for any n > 2 there exists (),, such that

@n
I+ 1p—a*) (1 + [la(épr — &0 *)

Replacing &, 5 and &, ; by their expression (20) proves that for any n > 2 there exist constants
D,, such that

‘ < T¢p,ka¢q,j > | S

D,
I+ p— g™+ [(k+ $laly* = (G + $)lal ™)

(60) | <Tpp, g > | <

for all (p,q, k,7) € Z?> x N>. We use the following Schur lemma to derive an upper bound of
|U||s from the amplitude of its coefficients.

LEMMA A.1 (SCHUR). Let O be an operator whose matriz elements in an orthonormal
basis {¢n tnen are opm =< O¢p, o, >. If there are two sequences of positive numbers {wy, }
and {W,,} and a constant B such that

+o0
> " lonmtwm| < By,

m=0
and
400
2 |0p,mWn| < Bwpy,
n=0
then

10]]s < B.

To apply Schur lemma to U = T — B, for any n > 2 we define the two weight sequences

1 1
1+ max(K, |¢))* 1+max(K,j+ )"

Wq,j = Wq,5 =

If we can prove that for any n > 2, there exists a constant C), such that

C R
(61) Z |Up o, Wp,ke| < Tlgn_lwq,j
.k
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and

R C
(62) Z |Up k., W, | < szn,lwp,k-
q,J

then Schur lemma proves that

Ul = IT = Bicly < 1
Since this is valid for all n > 2, we derive the theorem result (24). By setting U = T we
prove (23) with essentially the same derivations.

The proof of (61) and (62) is identical since U is a symmetric operator. We concentrate
on the proof of (61) which uses upper bounds given by the following lemma.

LEMMA A.2. For any n > 2, there exist constants H,, and G,, such that for any K > 0
and q € Z

—+o00

(63) 3 1 1 H,

<
1+ |p—gq" 1+ max(|p|, K)» — 1+ max(|q|, K)"

p=—00
and
+oo
1 1 G, 1
(64) > < - .
= 1+ |p—g|"1+max(|p[, K)» = 1+ K" ' 1+ max(|g|, K)
lp—q|>K

The proof of this lemma is left to the reader. One must distinguish the case K < |¢| and
K > |q|. The sums over p must also be divided in two pieces where and 7 +max%|p|, SR
are respectively smaller.

To prove (61), we evaluate the sum ), |up kg wpk| by replacing the up,p,; by its
expression (59). The coefficients wu,q; are non-zero if [p — q| > K or |(k+ 3)ll," —
(j + $)ll;'| > K. The sum over p and k is divided in two sums I and IT corresponding to
p—¢/<Kandp—q|>K

1
1+|p—q|™

(65) Z |Up g, jWpe| = 1 + 11
Dk
For non-zero values upq; = | < T'dpk, ¢q; > |, we use an upper bound that is slightly
different from (60). For any n > 2, there exists E, > 0 such that V(p, ¢, k,j) € Z*> x N
E,
(66) | <Topr dg;>| <

(1+|p— g +2m) (14 |(k + 3)lalyt = (G + )it )’
where p < 1 is the constant that appears in definition 1. We thus derive that
E, 1

I <yt
- Z|pp—q|5K 1+ |p— g|"t?# 1 + max(|p|, K)"
p 1+ |(k+ 3l — (G + )l 1 + max(k + 5, K)"

[(k+$)lalp L -G+ $)alg > K
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and

FE 1
II <yt =
S 2 U T = g T max(p), K

S 1t [(k+ Plaly " = (G + Plaly ' 1+ max(k + 5, K)"

To compute an upper bound for I, observe that

&= 1 1
<
; L+ [(k+ 3)laly' — (5 + 3)lal " 1 + max(k + 5, K)»  —
b+ $laly =+ 5)aly > K
— 1+ [(k+3) — (G + LI 1+ max(k + 3, Ki,l,~")"

. -1 —
[(k+3) =G+ $)iplg > Kiplg—1

Applying (64) gives

P 1+ [(k+ %)lulzjl -G+ %)lalq_l|” 1+ max(k + %, K)y» —
I+ $)lalp =G+ $)alg N> K

G 1
1+ (Klpl, )" 1+ max((5 + 3)ll7 0 Kyl )"

We thus derive that

I f E, 1 G, 1
- framd L+ [p— g™t 1 + max(|p|, K)" 1+ (Kl,l,')* 1 1+ max((j + )00 Klpla™ )™
p—q|<K

In definition 1, condition (21) guarantees the existence of A > 0 such that |p — ¢*** >

1,21, ~*" A~?", Since ,l,”" < 1 and l,,la_llplq_1 < 1, we derive the existence of R,, such that

i R 1 1 1
I< Z i .
2 1+ p—qr1+max([pl, K)" 1+ K" 1+ max(j + 5, K)"

|p—q|<K
We now use (63) to evaluate the sum over p and prove that there exists D} such that

D) 1 1 D\ N
I'< 2 "~ Ivn g5
1 +max(K, [q[)"1+ K" '1+max(K,j+3)» 1+Kr=1 ™

With a similar approach, the reader can also verify that there exists D? such that

D? 1 1 D?
II S - 1 = Wy, j-
1+ K" ' 1+ max(K, |g))" 1 + max(K,j+ ;)" 1+K' %

~

Inserting these two upper bounds in (65) completes the proof of (61).
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B. Proof of Theorem 2.3. Theorem 2.3 is proved by constructing a local cosine basis
in which the covariance operator T has matrix coefficients that satisfy the off-diagonal decay
condition (22) of definition 1. The first part of the proof specifies this local cosine basis and
proves that the windows lengths satisfy the slow variation condition (21) of definition 1. The
second part proves (22).

Each window of a local cosine basis covers an interval [a,, a,4+1]. The size [, of any such
interval is set to [(a,) or l(a,41), which is the scale of variation of the symbol A;(¢,w) of T
in this interval. We choose ay = 0 and if p > 0

(p+1 = Qp + l(ap)a

whereas if p < 0

ap = api1 — Uap41)-
The rising and decaying intervals are stretched to their maximum

min(lp, lp—1)

(67) p = 9

The rising and decaying profiles are specified by dilating a C* function §(t) such that

0 ift<—1
ﬁ(t)_{ 1 ift>1,

with
B (t) + B*(—t) = 1.
The window g,(t) is defined by

t— .
(68) gpt)=< 1 t ifa,+n, <t <api — Mpt1
ﬁ(%) i 4> apy1 — Tpa
The following lemma proves that the length [, satisfies the slow variation condition (21) in
definition 1.
LEMMA B.1. There exists A > 0 such that for any p # q
max(ly, l,)

69 12 < Alp — q|*,
(69) min(ly, {,) ~ p—d
where [ s related to the constant o < % in hypothesis (29) of the theorem by

¢ <1

(70) p=T

35



Proof of lemma B.1 To prove (69), we verify that there exists C' > 0 such that for any k£ € N

max (lp, lp+r)

71 -
(71) min(lp, lpk)

<C(k+1)#

which implies (69) for A = C2*. We suppose without loss of generality that [, , > [,.
Property (71) is proved by induction on £.

For k = 0 (71) is clearly valid for C > 1. Suppose that (71) is true for all n < k, with
k > 0. We want to prove that

(72) Ly < CLy(k + 1),

We only consider the case where p > 0, the other one being identical. The window length is
then specified by l;4, = I(ax+p) and hence

k—1
zmp:z(%+§jgﬂ).
j=0

Hypothesis (29) of the theorem implies that

k-1 «
lkp < l(ap) + (Z lp+j>
j=0

Applying the induction hypothesis for 7 < k gives

k-1 @
hip < @+(0@§:u+1w>

§=0
(k + 1)(u+1)a
(p+1a

< L+C%
The hypothesis (30) also supposes that
inf (1) = n >0,
so I, = l(ap) > n. We thus obtain

,,704710&
(k+ 1)

The constant p in (70) satisfies (u+1)a = p . We choose the constant C' big enough so that

bep < lp(1 + (k + )W),

aflcfa
1+~ <,
(1 +1)°

which verifies the induction hypothesis (72). This finishes the proof of (71). O
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In this second part of the proof of theorem 2.3, we verify that the matrix coefficients of
the operator T satisfy the off-diagonal decay imposed by definition 1 for locally stationary
processes

Qn
(T +[p—q") (1 + [max(ly, l) (§pr — Ei) ")

Instead of working with cosine modulated windows, we introduce

(73) | <Tpp, 0qj > | <

1
Vi

The local cosine basis vectors can be written

(74) Up(t) = —=gp(t)e ",

0.k o i0pk

(75) bpi(t) = Wwp,k(t) + W@bp,—k(t)a

with 6, = & ra,. If we can prove that for any n > 2 there exists @} such that for all
(p.k,q.4) € Z*

Ql
(14 Ip— g[*)(1 + [max(lp, lg) (§pr = €a3)")’

we then easily derive (73) by inserting (75) in (76). We now concentrate on proving (76).
Let us recall that

(76) | < Tpr g5 > | <

1 [t A :
Tf(t) = 2—/ At w) f(w)e™dw.
T J-x
Hence,
1 too ,
(77) | < Ty g, Vg > | = 5 ‘/ i Yy (w)A1(t, w)e"*’tw;j(t)dtdw .

Let hy(t) = gp(t + ap) be the window whose support is translated back in the neighborhood
of t = 0. Inserting (74) in (77) gives

(7(8§: TYpk, ¢’q,j > ‘ =

+oo ) o
/ / hy(w + & k)e ™™ Ay (t, w)e™ e®ei'hy(t — a,)dtdw

1
2w/l
The change of variables w' = w + &, and t' =t — q, yields

‘ < Td)p;k’wq:j > | =
+oc
// (W) hg( )AL (' 4 ag, " — & i)™t e (@) =t ik —80i) Gty

1
e i,

Let us define

Fp,q,k,j(ta w) = ﬁp(w)hq(t)eitwAl (t+ Qgq, W — gp,k)-
37



The upper-bound (76) is obtained with an integration by parts in (79) which separates
['pg.k,j(t,w) and the remaining complex exponentials.

| < Ty > | =/ T ) o ) T
< e > = L O Ly gk, (T w tdw
P 2/l —00 ' Ptk lap — ag|™ [Epk — Eqil™
(80) < ! ! / / +o°\a"amr (t,w)|dtdw
- w 5 7k7' ’ N

2m/lplg |ap — ag|™&pk — &g 5l" -0 ! PO

Let us denote
lo = max(ly,l,) and I, = min(ly,[,).
We prove later in lemma B.2 that there exists A, ,, such that for all p,q, k, j
+o0
(B // |07 0T g 0,3 (8, )| dbdw < Apmla™ 1y~

Since Iy < 1,1, < l,, inserting (81) in (80) shows that

A l 1 1
82 < TPy by > | < 20 [ 2 7 A
(82) | < T, Y0 > | 2 N by [ap—aq|™ |l (Ep e — Eqyj) |
and hence
A l nty 1 1
(83) | < Tpk g > | < 522 ™ a
P> T4 2m rte |a—a | 1o (€ — &g

To finish the upper bound computation, we show that there exists C' > 0 such that

lap — ag

(84) — 2 Cla—p/"™
If p < g then
|ag —ap| _ quzl lptk
la —~ '

Whether I, =, or I, = [,, we derive from (69) that

g—p—1

|ag — ay| 1y g —p'™"
% — %l > q Alg >4+ 2780
o~ +,;1 = T AL
which proves (84).
Inserting (84) in (83) gives
Apm 1" 1 1

< Tw , ,'(/J ’. > S 1 -
| < T Vo > | < 5 O "2 P = g™ [l (Epk — €ag)
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Property (69) shows that

IN

Alp — q/*,

o~ | s~
<> IS

and hence

ApmArts 1 1
2mC™  |p — gD [l (G — &g

| < Twp,ka¢q,j > | S

If m is large enough so that

1

SJu>n

m(l—u)—(n-l—2

then

1

ApmAmts 1 1
2nC™  |p — g |la(Epk — €)™

By integrating directly (79), one can also prove that there exists B > 0 such that

| < T¢p7k5¢q,j > ‘ <

| < Ttpk, pi > | < B.
We thus derive that for any n > 0 there exists @Q;, such that

Qn 1

< Tpg, g > | <
| ok Yag > | < L4+ p—q" 14+ |la(&pr — &)™

Next lemma finishes the theorem proof by verifying (81).
LEMMA B.2. There exists Ay m such that for all p,q,k,j

+oo
(85) // 10700 L g, (8, w) | dtdw < An,mlamlbf("*l).

Proof of lemma B.2 By definition

Fp,q,k,j(ta w) = ilp(w)hq(t)eitw/\l (t+ Qgq, W — fp,k)-

We expand 8797, 4.4 ,(t,w) into a sum of partial derivatives of f,(w)hg(t)e™ and of A (t+
aq,w + &y k), and we prove that for any integers ¢ > 0 and d > 0 there exists D, 4 such that

MU hy (w)hy(t)e™]| dtdw < Dgglg™l, ™"V,

—+o0
(86) // 0700 AL (t + ag,w + &)

Property (28) guarantees that for any integers ¢ > 0 and d > 0

|6585A1(t +ag,w + fp,k)| < Bcd I(t+ aq)d_
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Since 7, = %, the support of h,(t) is included in [—%‘1, %] Hypothesis (29) of the

theorem proves that over this support

30{
1t +a,) — Uag)| < At < AT,

with o < 3. Since Iy = [(aq) > infier I(t) =7,

L+ ag) < o1+ Al ) < 1,01+ A=)

so there exists C,q such that
(87) |0F05A(t + agyw + &) | < Cea lg .

This proves that

+00 R ]
/ / 050 (¢ + gy + Epe)| |00y () g (£)™] | dtdes

+o0
cutt | |

To derive (86), we verify that for any j and [ there exists D,; such that
+00

/1.
By expanding the partial derivatives 3! dl,[h,(w)hy(t)e™], we derive this last property from

the next lemma. The details of this verification are left to the reader.
LEMMA B.3. For all k > 0 and m > 0, there exist a constant E,,  such that

VAN

A= hy (w)hy(t)e™] | didw.

&8 [hy(w)hg(t)e™]| dtdw < Djy 14,797,

+oo
(8) / |3y ()| dE < B 157

o0

and a constant F,  such that

“+00
(89) / |w|*0 by (w) |dw < Fre 1775

(e 9]

Proof of lemma B.3: Let us denote h;(t) = hy(lyt). Since the support of hy(t) is included in
[—%, %], the support of A3 (t) is included in [—3, 3]. With the change of variable ¢' = i we
obtain

o [

Since h}(t) = g(l,(t + ap)), we derive from the expression (68) that for any m > 0

(o) O A3(6) < (mino ) sup 137500
€l )

Ll ol = [ o iar =, [ are e

L )

P

1 1
2 2
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We proved in (69) that

p < A and p

S <4
min(ly, 1, 1) min(ly, l,41)

— bl

SO

min(lp—1, lp, lp+1) > Iy

min(npanp+1) = D) = 2A.

We thus derive from (91) that there exists a constant By, independent from [, such that
(92) 5N (1)] < B

Coming back to (90), we obtain

oo

which proves (88).

To prove the second equation (89), observe that the Fourier transform of (it)*0;"h5(t) is
(—iw)mﬁfﬁ; (w). Since the modulus of the Fourier transform is bounded by the L*(R) norm
of the function, we see from (92) that

k 3 2
t dt
om0 2 < z;mBm/ tFdt = 17 By,

lp

lp -1

+0oo

oty < [

—00

\t\k|8tmh;(t)|dt:/l HF O RS ()t < By

The same property applied to m’ = m + 2 proves that

- . E,
jw| ™05y (w)] < min( wZQ’k,Em,k)-

We derive the existence of F}, ; such that

+o0 R
(94) / [ OhS (@)l dw < Fon.

o0

Since hy(t) = hy(Ipt)

| &

hy(w)| = }m<n

o~
S|

We finally prove (89) with the change of variable w’ in (94). O

C. Proof of Theorem 2.4. To prove that the process X(¢) is locally stationary, we
must construct a local cosine basis in which the decomposition coefficients of T = LL! satisfy
the off-diagonal decay condition (22) of definition 1.

The proof of theorem 2.3 does not use explicitly the fact that the covariance operator
is symmetric. Since the symbol A(f,w) of L satisfies the same hypothesis as the symbol
A1 (t,w) of T, appendix B gives a procedure to construct a local cosine basis {¢,x} whose
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window length satisfy condition (21) of definition 1, and such that for any n > 2 there exist
@, with

Qn 1
p—q|" 1+ \max(lp, lq)(fp,k - gq,j)|n.

(95) |b 7k;qaj| = ‘ < L¢p;’¢7¢q;j > | S 1 +

The matrix coefficients of T = LLT are

+o0o 400

(96) <Tpp, P >= Upkg,j = Z pr,k,r,qu,jmv'

r=—o0 v=0

Let us prove that these coefficients satisfy a decay property similar to (95).
Since &, x = m(k + 3)I;!, inserting (95) in (96) gives

“+o00
1 1
(97) ‘a'p,k,q,j| S |Qn‘2 Z 1+|p_r|n1+‘q_r|n x I
with
;o +oo 1 1
- Z1+\ (U 1) (k + 2l — (@ + DGO 1+ [max(ly, 1)((G + Dl — 0+ DG
v=0 maxitp, tr 2/%p v 2/%r ‘ |maX q» T)((]+2)q (U+2)r )|
—+00
< Z 1 1
T+ kDL - 0+ PTG+ DL - (0t )]

With the change of variable v/ = v+ — (j + 3)l,;" by setting K = 0 in (63) we derive that

H,

98 I < .
(%8) S THRE DL — G+ DLL

We also proved in lemma B.1 that the properties of [(¢) imply the existence of 0 < u < 1
such that

max(lp, ly)
— BV < Alp — g|*.
min(ly,l,) ~ P4
Hence
1 1 A%

<
[p —r|em|g —rlem = (max(lp,lr) max(lq,lr))"’

min(lp,lr) min(lg,lr)

We can thus derive the existence of D,, such that

&3 1 1 1

<D, .
N Z L+ [p—r|t=0m 1+ g —r[0=mm 14 Iy, ((k + 57— (G + 3)I7HI"

T=—00

|ap,k,q,j

with

max(ly, [) max(lq,lr)l > max(l,I,)
min(l,, l,) min(ly, 1) " P
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Since

+o00

1 1 H,
> < e
L+|p—rfm1l+lg=rf™ " 1+|g—p/™

r=—00

for m = (1 — p)n we derive the existence of C,, such that

1 1
<C, : :
=+ lg = pltmem L+ fmax(ly, 1) (B + 5)l5t = (5 + )1

‘ap,k,q,j

Since this is valid for any n > 2, it implies that for any n > 2 there exists B,, such that

< il ! 7
1+[p—gq"1+ |maX(lp’ lq)(fp,k - 5q,j)|

This proves that the operator T satisfies all the conditions of the local stationarity definition
1.

|ap,k,q,j
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