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Abstract

Grouplet orthogonal bases and tight frames are constructed with association
fields that group points to take advantage of geometrical image regularities in
space or time. These association fields have a multiscale geometry that can incor-
porate multiple junctions. A fast grouplet transform is computed with orthogonal
multiscale hierarchical groupings. A grouplet transform applied to wavelet image
coefficients defines an orthogonal basis or a tight frame of grouping bandlets. Ap-
plications to noise removal and image zooming are shown.

1 Geometric Image Processing

Geometry is at the heart of perception and is required to improve state of the art
image processing algorithms. A drawing with few lines gives a powerful perception
of shapes and textures. Motion fields provide geometrical information necessary for
video processing. Understanding how to represent complex geometrical structures
and derive sparse representations is a key issue for image processing. Recent neuro-
physiological experiments have lead to interesting new models.

The “Gestalt” psychophysic school gives a unifying theory of geometric per-
ception through grouping processes. Neurophysiological studies have shown the
existence of “neural integration” processes that may be responsible for these vi-
sual geometric groupings. This neural integration seems to first connect simple
cells that implement a transformation similar to a wavelet transform in the V1
visual cortex. According to physiological models [16], a simple cell in V1 provides
a wavelet coefficient at a given retina location, with a fixed scale and orientation
selectivity that depends upon its position in a hypercolumnar structure [1]. These



cells also have non-linear behavior that have been interpreted as gain control feed-
back loops [11]. Experiments have shown the existence of “horizontal connections”
that bind simple cells depending upon the image geometry [25|. The relation bet-
ween horizontal connections and Gestalt grouping was done by Fields, Hayes and
Hesse [8] with “pop out” experiments on images of Gabor patches. They model
this horizontal connectivity through an association field between simple cells ha-
ving a similar orientation selectivity. These association fields seem to be part of a
hierarchical computational structure, with neurons in V2 integrating some geome-
tric information provided by V1 simple cells, through feed-forward and feed-back
connections. Some of these V2 neurons have been shown [16] to be sensitive to
higher level geometrical structures such as the illusory contours of Kanizsa tri-
angles [9]. Several ad-hoc models have been proposed [13] to explain the formation
of association fields and the neuronal integration that is performed in V2, but
physiological data are not precise enough to validate any precise model.

Wavelet transforms can adapt the processing resolution to the local image re-
gularity but they cannot take advantage of geometrical directional regularity. From
a mathematical point of view, building a hierarchical geometrical representation
over wavelet coefficients is a natural idea because wavelet coefficients inherit the
geometrical regularity of the image [15]. Several new bases have been elaborated to
take advantage of the anisotropic regularity of geometrical image structures. Cur-
velets [3], contourlets [6], bandlets [14], wedgelets [7] are examples among others.
Asymptotic results have been established for “cartoon-like” image models, defined
as piecewise regular with edges along piecewise regular curves. For such images,
these new bases provide more efficient asymptotic approximation, compression and
denoising results than wavelet bases. Numerical improvements have also been de-
monstrated on real images. However, these improvements are not as spectacular as
one may expect from the asymptotic theorems. This may be due to the relatively
small portion of regular geometrical curves in real images, whereas textures often
have a more complex geometry not efficiently represented by these bases.

For video compression and geometric image processing, more flexible directional
multiscale decompositions have been developed with lifting schemes. A lifting is
computed over embedded grids by associating each point to a neighbor point in a
direction of maximum regularity. For video, the association field is derived from
a computed motion between two images, and the lifting is calculated along a
“motion threads” defined by the associations of pixels from one image to the next
[23, 17]. In space, edge adaptive lifting schemes associate coefficients along the
local orientation of edges, often calculated with a gradient operators [10, 12| or
with block based optimisations [4]. Directional liftings have also been implemented
over wavelet coefficients [5]. Adaptive directional lifting schemes satisfy perfect
reconstruction properties, but they are not orthogonal and their stability is often



not controlled.

This paper introduces grouplet orthogonal bases and tight frames that build a
stable geometrical image representation with an orthogonal weighted Haar lifting.
In the spirit of the “Gestalt” psychophysic school, the geometry is constructed with
grouping processes which define multiscale association fields. Grouplet orthogonal
bases are constructed in Section 2 with these multiscale association fields. Section
2.2 describes more flexible grouplet tight frames that do not require embedded
grid structures, with causal association fields. Noise removal and super-resolution
image zooming algorithms are obtained by thresholding grouplet coefficients in
Section 2.3. Section 3 introduces a hierarchical geometrical image representation
by applying multiscale grouplet transforms over wavelet coefficients, which yields
grouping bandlet orthogonal bases and tight frames. Applications are also described
to remove noise from images and restore fine geometrical textures.

2 Multiscale Groupings with Association Fields

2.1 Orthogonal Grouplet Bases

An orthogonal multiscale grouping is implemented with a weighted Haar lifting
applied successively to points that are grouped by an association field. The Haar
transform is reviewed and then modified to define a grouplet transform.

Haar transform An average signal a[n] is initially set to be equal to the input
signal f[n] : a[n] = f[n] for 0 < n < N. Then, for a scale 27 that increases from 2!
to 27, and for all 0 < n < 277N, the Haar transform groups consecutive average
coefficients a[2n]| and a[2n + 1], and it computes a next scale average

_al2n] +a[2n + 1]

afn) = PRI (1

together with a normalized difference :
dj[n] = (a]2n + 1] — a[2n])V20-1). (2)

The resulting coefficient a[n] at a scale 27 is the average of the signal values f[p] for
p € [27n,27n+ 27 — 1] whereas the difference d;[n] is proportional to the difference
between the averages of f[p] on [2/n,2/n+2/"t—1] and on [2/n+2771 2/n+27 —1].
At the largest scale 27, the average coefficients are renormalized a;[n] = 27/ a[n]
to be an inner product between f and a vector of unit norm. The set of coefficients
{d;[n], as[n]}1<j<sn are inner products of f with vectors of a Haar orthonormal
basis.



Association Fields on Embedded Grids An orthogonal grouplet transform
modifies the Haar transform with an association field that groups together points
that are not necessarily neighbors. Let us consider a multidimensional signal f[n]
defined over a multidimensional sampling grid Gy. According to lifting transforms, a
sequence of embedded subgrids {G; }1<;<s with G; ;1 C G, is defined within G,. For
each scale 27, following the lifting strategy, each G; is divided into complementary
subgrids G;;, and C;jﬂ which are respectively called “average” and “difference”grids
at the scale 271, These subgrids do not intersect and G; = G411 U C;jﬂ. The
topology of “average” and “difference” subgrid decomposition of each average grid
G; can be freely chosen. Clearly all difference grids Gj are disjoint and

Go = U}Izléj ugs .

Each m € Q~j will be grouped with a point m € G; such that the neighborhood
values of a[m] “are similar” to the neighborhood values of a[m]. The difference of
positions is stored in an association field array : A;[m] = m —m. Since the grids G,
are embedded, when the scale 27 increases the distance between samples of these
grids increases. The association fields A; thus group points whose distance increase
with the scale 27.
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FiG. 1 - Column embedded grids subsample the columns of G;_1 to define the grid
G; (white points) and the complementary grid G; (black points). The association
field groupings are illustrated by arrows.

The topology of the subgrids G; can be adapted to the image geometrical
regularity and may even vary depending upon the scale 27. If the image geometrical
structures are elongated along a preferential direction, then one can subsample G;
along the perpendicular direction. For example, seismic images such as Fig. 3 have
a layered structure that is rather horizontal. The grouping should thus relate points
are not in the same column. To implement such groupings, G; is decomposed into
its even columns corresponding to G;;1 and its odd columns corresponding to
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Qj+1. This defines column embedded subgrids. Fig. 1 illustrates an association field
defined with column embedded subgrids. If the image has geometrically regular
structures that rather propagate vertically, then G; is decomposed into even and
odd rows corresponding respectively to G;; and C;j+1- This defines rows embedded
subgrids. When the image has no preferential direction, one may choose more
isotropic subgrids, such as quincunx subgrids.

Although this paper mostly concentrates on geometrical structures of two-
dimensional images, association fields and their corresponding grouplet bases may
be defined in any dimension. For videos, G, is a three dimensional grid which
is a time sequence of two-dimensional image sampling grids. At each scale 27,
time embedded subgrids can decompose G; into even time images G, and odd
time images C;j+1- An association field A;[m] typically stores a time displacement
from m € QNJ- to the previous image point m € G;. Other space-time subsampling
grids may be chosen to potentially take advantage simultaneously of spatial and
time geometric regularities. However, in more than two dimensions, no embedded
subgrid scheme characterized by a subsampling matrix with reduction factor 2 can
have an isotropic behavior similar to a two-dimensional quincunx grid [24].

Orthogonal Grouplets A grouplet transform is a weighted multiscale Haar
transform. The average signal is also initialized to be the input signal a[n] = f[n]
for all n € Gy. A new array s[n| is created to store the support size of the averaging
kernel which computes a[n| from f. At the initialization, since a[n] = f[n] it results
that s[n] = 1.

For scales 27 that increase from 1 to 27, the successive groupings are performed
in a predefined order over all points in Qj. Let N; be the number of samples
of QNJ-. Let «; be an invertible mapping between 1 < n < N, and points m =
aj(n) € G;. For n going from 1 to Nj, each /i = a;(n) is associated to a point
m = m+ A;[m]. The grouplet transform computes a normalized difference between
associated averages :

s[m] s[rn]

;) = (alin) - alm)) 3)

sim] + s[m]
The new weighted average is

slm| a[m] + s[m| a[m]

: (4)

a= —

s[m] + s[m]

and the averaging size is updated by adding the averaging size of the two averaged
points

s = s[m] + s[m]. (5)



These values are stored “in place” at m € G; : a[m] = @ and s[m] = 5.

The flexibility of the grouping process can take advantage of various geometric
regularity including periodic patterns and junctions. At junction points, several
points may be grouped with a single one, with successive orthogonalizations, as
illustrated by Fig. 1.

At the largest scale 27 = 27, average coefficients are normalized by setting

Vm e Gy , azlm]=alm]+/s[m] . (6)

The grouplet transform associates to a signal f[n] of size N the family of N
grouplet coefficients {d;[m] , a[m|},<;<;meg, meg, The grouplet representation
includes not only these coefficients but also the N(1 —2~7) multiscale association

field coefficients {Aj [rh]} . For each m € G;, (3), (4) and (5) is compu-

1<]<Jmegj
ted with O(1) operations. Like in a Haar transform, the N grouplet coefficients

are thus computed with O(N) operations. The overall numerical complexity will
be dominated by the number of operations required to compute the N(1 —277)
association field coefficients which is typically larger.

Since a grouplet transform is linear, each difference coefficient can be written
as an inner product of f[n| with a difference grouplet vector g; ;[n] :

d;[m] = (f, gjm) Zf (7)

At the coarsest scale, each normalized average coefficient is also an inner product
with an average grouplet vector h,,[n] :

asm] = (f, hym) - (8)

The following theorem proves that average and difference grouplet vectors have
properties similar to Haar vectors.

Theorem 2.1. ~ (i) For any m € Gj, hyn[n] = 1/y/s[m] over its support
whose size is s[m].
~ (ii) For any scale 27 and m € G;, g;m[n] has 1 vanishing moment and takes
only two different values over its support.

Proof. A grouplet transform is implemented by iterating a cascade of elementary
operators specified by (3), (4) and (5). After applying k such unitary operators
in the order defined by the algorithm, each a[m] is the result of a linear operator
applied to f[n] and hence can be written a[m] = (hgm[n)], fn]). Let m = m +
A;[m] € Gj11 be the point grouped with m € G; 41 by the k + 1 unitary operator.
As a result of (4) we have

s[m)] ﬁkm[n] + s[m)] ﬁkm[n]
slm| + s[m] '

(9)

ﬁk+1,m[n] =



Let us first prove that the supports of hyjm[n] and hyx[n] do not intersect.
Observe that the support of ﬁk,m is the union of all points aggregated by the
association fields A; for [ < j. This grouping defines a tree over the support of
ﬁk,m whose root is m. Indeed, an association field A; groups a point in Ql to a
point in G, which thus belongs to a grid G, for some k > [ or to G,. Since the
grouping goes from a finer to a larger scale grid, there cannot be any cycle and
the root is the point m at the largest scale.

Similarly the support of ilk;,m has a tree structure rooted at m. We also know
that m and m do not belong to the support respectively of ﬁkm and ﬁkm Indeed,
m cannot belong to the support of Bkm since m is in a coarser grid than m, and
m cannot belong to the support of Bkm because m has not yet been grouped to a
coarser scale point by the aggregation process.

Since the supports of ﬁk,m and ;Lk,m are trees and none of their roots belong to
the other tree, necessarily these trees are disjoint which means that these supports
do not intersect.

Let us now prove by induction on k that fy,[n] = 1/s[m] over a support of
size s[m]. For k = 0 this property is valid since kg ,[n] = 6[n —m] and s[m] = 1.
Suppose that the induction hypothesis is valid for k. It implies that ﬁk,m = 1/s[m]
and hy, 5, = 1/s[m] over their support of size respectively s[m] and s[]. Since hy
and hy  have disjoint supports, it results from (9) that hy 1, = 1/(s[m] + s[in])
over its support of size s[m] + s[m]. The updating formula (5) with sjm| = §
thus verifies that the induction hypothesis is valid for k£ + 1. Incorporating the
normalization (6) at the coarsest scale finishes the proof of (i).

To prove (ii), as a result of (3) we can write

. - slm|s[m]

Gim = (Pim — i) (10)

s[m] + s[m] -
Since hy s = 1/s[m] and hy,, = 1/s[m] over their support of size respectively s[im]
and s[m], and their support are disjoint, it results that g; 5 takes only two different
values over its support. Moreover we verify that ) g¢;m[n] = 0 and hence that
gj» has 1 vanishing moment. [

Theorem 2.1 proves that the support of grouplet vectors have a tree structure
with a support size equal to s[m|. Junctions correspond to points where grouplet
supports have several “sons” defined by multiple groupings with a single junction
point. The following theorem proves that grouplets define an orthonormal basis.

Theorem 2.2. The grouplet family
{gj,rh[n] ; hJ,m[n]}

is an orthonormal basis of 12(Go).

1<j<J,meG;,meg



Proof.

Lemma 2.1. For any a,a,s > 0 and s > 0, we define

. VSsS§ . sa+Ssa
and a =

s=s5+

W
.

|
—
S
|

S
~—

w)| +

(11)

The operator that transforms (a\/s , av/3) into (d, AV/'3) is a unitary operator.

This lemma is proved by observing that the two rows of the 2 x 2 matrix of this
operator are (v/3,+/s)/v/s + 5 and (\/s, —\/3)/+/s + 3, which are two orthonormal
vectors. It is therefore a unitary operator.

Lemma 2.1 proves that the operator which transforms (a[m| \/s[m] , a[m]+/s[m])
into (@ /3, d;[m]) as defined by (3), (4) and (5) is a unitary operator. Let a;[m] =
a[m]y/s|m] be the normalized average array at the end of the loop over the in-
dex n that goes from 1 to N;, for a given j. The operator which transforms
{aj1[m]}meg,, into {a;[m],d;[m]},,cq, meg, is therefore a cascade of N; unitary
operators and is thus a unitary operator. At the initialization ag[m] = a[m]+/s[m| =

f[m] for all m € Gy. It results that iterating over the variable j defines a cascade
of unitary operators that transforms f[m] in to the grouplet coefficients

d;\m| , ajylm } )
{ il aslm] 1<j<JmeG; meg;

As a consequence, the grouplet vectors defined by (7) and (8) define an orthonormal
basis. [

Inverse Orthogonal Grouplet Transform Since grouplets define an ortho-
normal basis, the input signal can be reconstructed from its grouplet coefficients
with :

Il =" dilmlgmlnl + D asm]hymn] . (12)

j=1 meg; meGy

Similarly to the fast inverse Haar transform, the fast inverse grouplet transform
inverts each grouping operator in the reverse order of the forward transform, for a
scale 27 that decreases from 27 to 1.

The averaging size array is recalculated at the coarsest scale 2/ from the asso-
ciation fields. We initialize s[m] = 1 for all m € G, and for j going from 1 to J
and for all m € G;

§=s[m]+ s[m] and s[m] =73 for m =m+ A;[m] .



At the coarsest scale, 27, the average coefficient normalization (6) is then inverted

Vm e Gy , alm] = : (13)

Each grouping transform is then inverted at each scale in their reverse order. For
Jj going from J to 1 and for n going from N; to 1 let 7 = «;(n) and m = m-+A;[m].
To invert the grouping transform, the averaging size is updated by inverting (5)

s = s[m] — s[m)] (14)

and the finer scale average coefficients are computed from the larger scale average
coefficient and the difference coefficient by inverting the unitary transform defined

by (3) and (4) : s

ol = ab] + &) — e (15)
i = a[m] — d;[i] ;[7;1] . (16)

These reconstructed values are stored “in place” a[m| = a and s[m] = 5. At the
end of this double loop over all groupings at all scales, this inversion reconstructs
the original signal a[m| = f[m] for all m € G,.

For each m € §; the reconstruction operations (14), (15) and (16) requires
O(1) operations. The N signal coefficients f[m] are thus recovered with O(N)
operations.

Multiscale Association Fields and Best Basis There are as many grouplet
orthonormal bases as possible groupings of signal samples. Computing multiscale
association fields is thus equivalent to choose a “best” grouplet basis to decompose a
particular image. The representation does not only include the grouplet coefficients
d;[m] but also the association fields A;[m|. For image compression applications, it
is necessary to code both the grouplet coefficients and the association fields, with
as few bits as possible. Few bits are needed to encode the difference coefficients
d;[m] if few of these coefficients are non-zero after quantization. This means that
each 7 € G, should be associated to a point m = 7 + A;[/] such that |a[m] —
a[m]| is small. The ability to code efficiently an association field depends upon its
regularity. If it is highly regular then it can be approximated with few coefficients
that can be encoded for example in a wavelet or polynomial spline basis. We thus
need to compute regular association fields that produce sparse grouplet coefficient
sequences.

Grouplet orthonoral bases have a flexible geometry but the resulting dictio-
nary is more complex than the “tree-structured” dictionaries used for wedglets |7|
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or bandlets [14]. As a consequence, optimizing the multiscale association fields to
minimize the distortion-rate of a grouplet signal compression is a more complex
problem, that is beyond the scope of this paper. A finer mathematical analysis
of grouplet dictionary properties for video processing can be found in [19]. We
describe below a simple block matching algorithm that is used in numerical expe-
riments.

Block matching algorithms are often used to compute displacements, for motion
estimation in video. For each m € C;j, the search for a best match is performed
in a neighborhood of m of points in G;, that we write (). A block matching
computes for all p € N;(m) the 1* or 12 distance between a block of points B(p) of
G; around p and the corresponding block around 7, and it finds the p = m which
minimizes this distance :

k
M = argminge . () Z ’a[n] —aln+m—p|]| withk=1lork=2  (17)
neB(p)

If each block B(p) has P points and the size of each neighborhood N;(m) has K
points then for a signal of size IV this block matching requires O(K P N) operations
to compute all association field coefficients. It is typically much larger than the
O(N) operations needed to compute the resulting grouplet coefficients.

When increasing the size P of B(p), the regularity of the association field
increases. However, the center point p becomes relatively less important in the
distance minimization, which typically increases the resulting best match difference
la[m] — a[m]|. Reducing the size K of the neighborhood N;(1m) reduces the range
of values of the association fields, but reducing the possible associations may also
increase the best match difference |a[m] — a[m]|. The choice of a block size and a
neighborhood size search is thus a trade-off between the sparsity of the grouplet
coefficients and the regularity or complexity of the multiscale association fields.

In the example of seismic images, G; is obtained by subsampling by a factor 27
the image columns. For each m € Qj, finding its best match amounts to finding
the orientation of the layer that goes through 7. The neighborhood search N;(m)
must thus correspond to enough possible orientations to choose an appropriate
one. One can restrict V(1) to an interval of points in the previous column of G;,
centered on the same row as 7, as illustrated in Fig. 2(a). The size of this interval
is typically proportional to 27 to provide a sufficiently wide angle range that is
independent of the scale. The neighborhood Nj(m) can also be extended beyond
the previous column and cover a set points of §; whose positions with respect to
m provides a sufficiently fine sampling of all possible orientations, as illustrated in
Fig. 2(b).

Fig. 3 shows the multiscale association fields computed with a block matching
with a neighborhood search restricted to the previous column, as in Fig. 2(a). The
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FIG. 2 — Possible matches for m € G; in a neighborhood N;(1n) C G; that is
an interval in the previous column in (a) and a wider set of points covering more
directions in (b).

block matching computes regular multiscale association fields with directions along
which the image is smoothly varying.

F1G. 3~ Grouping of an association field at scales 2, 2% and 23 computed by block
matching for a seismic image shown in transparency.

Fig. 4(b) shows orthogonal grouplet coefficients over J = 6 scales, computed
from the multiscale association fields displayed in Fig. 3. Black, gray and white
coefficients correspond to negative, zero and positive coefficients with the same
dynamic range as in the original seismic image in Fig. 4(a). There are mostly
gray coefficients which means that most “difference” coefficients of the multiscale
grouping orthogonal transform are nearly zero. Fig. 4(c) shows example of grouplet
vectors g; ., [n] for several scales 2/. These grouplet vectors have a support which is
elongated along the association field, with possible junctions and a tree structure.
Fig. 4(d) gives another example of orthogonal grouplet coefficients computed on
Lena’s hat, with J = 6 scales. The grouplet representation is clearly much more
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sparse than the original image.

Fic. 4 = (a,d) : Original images. (b,e) : Orthogonal grouplet coefficients over 6
scales, displayed with the same dynamic range as the original image. (¢) Examples
of grouplet vectors g; .

Matching Pursuit If the multiscale association field A;[m] is computed to-
gether with the grouplet decomposition the resulting algorithm is similar to an
orthogonal matching pursuit. In the algorithm previously described, for each scale
27 the iteration begins by a computation of the association field A;[m] for all
m e Q~j followed by a computation of all difference coefficients d;[m] for all m € g}.
A second possibility is to compute for each m = «;(n) the value of A;[/m], then
calculate d;[m] and update a[m] for m = m + A;[/m], before computing the next
association field value for =a;(n + 1). This reordering of calculations does not
change the overall computational complexity. This calculation is similar to a mat-
ching pursuit decomposition [20] where each vector is sequentially computed by
a greedy optimization which finds a best match. In this case, the pursuit is or-
thogonal with no further orthogonalization required. It is computed in a fine to
coarse order, with fine scale vectors first and coarse scale vectors afterward. This
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pursuit is performed in the dictionary of all possible grouplets corresponding to
all possible association fields.

2.2 Grouplet Tight Frames

Redundant grouplet tight frames can be constructed without an embedded sub-
grid structure. More flexible multiscale association fields are defined with a causa-
lity property which is sufficient to construct grouplets having an energy conserva-
tion as in the orthogonal case. These association fields have more flexibility as in
the models [8] of Fields, Hayes and Hesse [8] for horizontal connections between
simple cells in the visual cortex region V1. The redundancy of these grouplet tight
frames also improves noise removal with thresholding estimators.

Causal Multiscale Association Fields To avoid grouping a point m with m
and then group m with m, a causality is imposed on the association field, with a
partial ordering of all points in the signal sampling grid Gy. An association field
A; is said to be causal if it groups each m € Gy with a point m = m + A;[m| € G,
that is located before m in the sense of this partial ordering. If there is no point
before m then we set A;[m] = NULL.

A causal multiscale association field must also associate points whose distance
increase with the scale 27, to reach long range groupings for large scales. For a
given pseudo distance d(z,y) defined over points in R?, we impose that for any
scale 27 if m + A;[m] = m then 2771 < d(m,m) < 27. A pseudo distance satisfies
the symmetry and triangular inequality of a distance but one can have d(z,y) =0
with = # y. We say that a causal association field is strictly multiscale if for any
scale 27 and any m = A;[m| we have d(m,m) = 2/~1.

The partial ordering and the pseudo distance can be adapted to the type of
geometrical regularity that must be captured by the grouping. For motion in a
video frame sequence, at each scale 27 a time causal strictly multiscale association
field can associate an image point m to a point m located in a previous image
at distance of 2/~! frames before. This association can be interpreted as a displa-
cement over 2/~! time steps. In this case, the partial ordering of image points is
defined by the corresponding time frame location and the pseudo distance by the
number of time steps between frames.

For spatial geometric grouping, a grouplet partial ordering can be defined with
respect to a preferential direction of angle 6. A point z = (21, z3) € R? is said to
be before T = (1, T2) € R? with respect to a partial ordering of angle 6 if

21c080 + T98infh < Ty cosl + Tosinb. (18)
This type of ordering constructs grouplets whose support are elongated in the

direction of 6 as opposed to its perpendicular direction. It is particularly well
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adapted to perform a grouplet transform of wavelet coefficients calculated with a
wavelet having an orientation selectivity around 6 + /2 as we shall see in Section
3.2. One can choose a causal pseudo-distance of angle 6 defined by

dg(x,y) = |r1cosl + 29800 — y; cos @ — Yy sin 0]

which is the distance of the projection of x and y on the line of angle # going
through (0,0). One can also use a Euclidean distance.

Other grouplet partial ordering may be defined from a distance to a center
point ¢ = (¢, ¢2) € R%. A point © = (21, x5) € R? is before & = (71, T2) € R? with
respect to c if

(.171 — 61)2 + (.172 — 62)2 < (571 — 61)2 + (572 — 62)2 . (19)

This partial ordering is natural when there exists a singular point that plays a
particular role. This is the case in the retina where the density of photoreceptors
increases as a function of the distance to the fovea.

F1G. 5 — An association field A; is computed by propagating A;_1 over two points
and by performing a local optimization.

Many procedures may be used to compute causal association fields. The follo-
wing algorithm guides the computation of large scale association fields from finer
scale association fields, to reduce the numerical complexity. At a scale 27, for each
m € Gy the associated point m € G, is computed by propagating the association
field at the finer scale 2/~ ! over two points, and then by performing a local block
matching optimization. The propagation of A;_; over two points from m yields

T/fL = Thl + Aj_l[ml] with Thl =m + Aj_l[fn] .

Let A(m) be neighborhood of m in Gy. A block matching computes for all p €
N (m) located before m the distance between a block of P points B(p) of Gy around
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p and the corresponding block around m, and it finds the p = m which minimizes
this distance :

k
m = argmin pex(m) g ‘a[n] —an+m—p|]| withk=1lork=2  (20)
p before m

n€B(p)

We set A;[m] = m — m. This process is illustrated by Fig. 5. The association field
A; is thus derived from A;_; plus an adjustment whose amplitude depends upon
the size K of the neighborhoods N (m), which is typically small. This adjustment
is necessary to avoid accumulations of errors when following long range geometric
structures. To compute the finest scale association field A;, we initialize Ay[m] = 0
for all m € Gy. For a signal of size N, this block matching compute the J N values
of the J association fields A; with O(J N K P) operations. If the multiscale asso-
ciation field adjustment is suppressed then all association fields are derived from
the finest scale association field A; and the computational complexity becomes
ONKP+JN).

Fig. 6 shows a strictly multiscale causal association field over two scales calcu-
lated on a zoom of Lena’s hat. A partial ordering of angle # = 0 is used, which
means that coefficients are ordered columns by columns. A pseudo distance of
angle # = 0, measuring the horizontal distance, is used by the grouping. At a scale
27, the grouping is performed between points whose columns have a distance of
27~

Tight Frame Grouplet Transform A grouplet frame transforms a signal f[n]
into multiscale difference coefficients and coarse scale average coefficients defined
on the original signal grid Gy. Similarly to orthogonal grouplet coefficients, these
coefficients are computed with successive grouping transformations according to
multiscale association fields. All points of Gy are visited in an order coherent with
the grouplet partial ordering.

Suppose that Gy includes N samples. One can define an ordering function «(n)
that is compatible with the grouplet partial ordering. It is an invertible mapping
that associates to any integer 1 < n < N a point a(n) € Gy such that if m = a(n)
is before p = a(u) with respect to the grouplet partial ordering, then n < w.

In a video time sequence, for a time partial ordering an ordering function sorts
all image pixels in the time order, and within each image the pixels can be sorted
in any spatial order. In a rectangular image with M; columns and M, rows, for
a partial ordering of angle 0 (horizontal), an ordering function can be defined by
(mq, mg) = a(msy + myMs), and for a partial ordering of angle 7/2 (vertical) the
ordering function can be (my, my) = a(my + moMy).

For j = 0 and all m € Gy, the grouplet frame transform initializes a[m] = f[m]
with an averaging size sm| = 1. For j going from 1 to J, and for all n going from
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F1G. 6 — Left and right columns display strictly multiscale causal association fields
and the corresponding tight frame grouplet coefficients, at scales 2! and 22. Coef-
ficients are shown on the same dynamic range as the original image.

1 to N, let m = a(n). If A;[m] # NULL then for m = m + A;[m] the grouping
defines a new averaging size

5= s[m] + s[m], (21)

a difference coefficient

d;[m] = (a[m] — a[m]) N (22)
and a new weighted average
. slm| a[m] —i; s[m)] a[m]‘ (23)



These values are stored “in place” : a[m| =@ and s[m] = 5. If A;[m] = NULL then
we perform a transform as if the associated point was 0 and set d;[m] = a[m]/s[m].

At the coarsest scale 27, as in the orthogonal grouplet transform, the average
coefficients are normalized

Vm e Gy , as[m] =alm]+/s[m] . (24)

A redundant grouplet transform is thus an operator GG that associates to a signal

fIn] of size N a family of J+1 grouplet coefficient arrays {dj [m], a J[m]}
1<j<J;meGo

together with J multi-scale association field arrays {A4;[m]}1<j<smeg,. For a signal
of size N, (21), (22) and (23) compute the (J + 1) N grouplet coefficients with
O(N J) operations.

Fig. 6 shows the grouplet tight frame coefficients of a textured image computed
from a multiscale association field at scales 2! and 22. Most multiscale difference
coefficients have a much smaller dynamic range than the original image coefficients.

Each d;[m] and a;[m], for 1 < j < J and m € Gy, is calculated with a linear
operator and can thus be written as an inner product with a grouplet vector :

di[m] = (f, gjm) and aj[m] = (f, hjm) -

The family of grouplets {g;m}1<j<smegy U {Psmfmeg, is entirely specified by the
causal association fields {4;}1<;<s. The following theorem characterizes the sup-
port of these grouplets and Theorem 2.4 proves that this family defines a tight
frame.

Theorem 2.3. For any m € Gy, gjm[n] has 1 vanishing moment. If the causal
association fields are strictly multiscale then
— (i) hym[n] = 1/\/s[m] over its support whose size is s[m|. Support points
are before m at a distance strictly smaller than 27.
— (1) g;m|[n] takes a constant positive value on support points before n and a
constant negative value on support points after n. The distance between m
and all support points is smaller than 2971,

Proof. If for any n € Gy, f[n] = ¢ then one can derive from (21) and (23) that
a[m| = ¢ for all m € Gy. It results from (22) that for all m and j, d;[m| = 0 and
hence that g;,, has 1 vanishing moment.

Let us now suppose that the causal association field is strictly multiscale, which
means that if A;[m] = m then d(m,m) = 27-'. After applying k grouping opera-
tors, each a[m] is the result of a linear operator applied to f[n] and hence can be
written a[m] = (hgm, f). Let m = 7 + A;[/m] € G;41 be the point grouped with
m e C;jﬂ by the k + 1 unitary operator. As a result of (23) we have

s|m] hgm[n] + s[m] ﬁkm[n]
slm| + s[m] '

ﬁkJrl,m[n] = (25)
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Let us first prove that the supports of fy, ,[n] and Ay ;1] do not intersect. Each
ﬁ;ﬁm has a tree structure rooted at m because of the causality of the association
field. Indeed each point of its support is related by the causal association field
that groups each point to a unique parent that is before. The root m is thus
before all other support points. Since the association field is strictly multiscale, The
maximum distance between a support point and m is bounded by adding distance
between consecutive points that are grouped. At a scale 2! < j the distance is 2!~!
because the association field is strictly multiscale, and the maximum distance is
thus smaller than $77_, 2= < 27,

When grouping a grouplet at m with a grouplet at m, we show that the cor-
responding trees of ﬁkm and Bkm are disjoint by proving that m and m do not
belong respectively to the support of ﬁkm and iLk,m- Clearly m cannot belong to
the tree support of ;Lk,m rooted at m because m is before m. To prove that m does
not belong to the support of Ay, observe that d(m,m) = 2/~! and that all points
in the support of ﬁkm[n] is at a distance of m strictly smaller than 2/-1,

Since the supports of Bkm and ﬁkm are trees and none of their roots belong to
the other tree, necessarily these trees are disjoint which means that these supports
do not intersect.

By induction on k, as in the proof of Theorem 2.1, we prove that hy,,[n] =
1/+/s[m] over its support whose size is s[m]. We already verified that at a scale
27 support points are before m at a distance strictly smaller than 27.

To prove (ii), since d;[m] = (gj.m, f), as a result of (22) we can write

s[mls[m]

G = (P — o) (26)

s[m] + s[m]
Since hy,m = 1/s[m] and hy,,, = 1/s[m] over their support of size respectively s[r]
and s[m], and their support are disjoint, it results that g, takes only two different
values over its support. Since m is before 7 and d(m, m) = 277!, using (26) and
the support properties of hy z; and hy,, we derive (ii). O

Inverse Grouplet Tight Frame Transform An inverse grouplet frame reco-
vers a signal f from its grouplet coefficients {d;[m| , a;[m]}meg,1<j<s and the
association fields {A;[m]}eg,. Since the representation is redundant, the grouplet
transform has an infinite number of left inverses. For noise removal by thresholding,
the best inverse is the pseudo-inverse that implements a dual frame reconstruction.
We describe a left-inverse that is then proved to be the pseudo-inverse.

The support-size array is recalculated at the coarsest scale 27 from the asso-
ciation fields. It is initialized to s[m| = 1 for all m € G, and for j going from 1 to
J and for all m € G,

m=m+ A;[m], §=s[m|]+s[m| and s[m]=75.
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The average coefficient normalization (24) is then inverted

VYm e Gy , a[m] = : (27)

Each grouping operator is then inverted in the reverse order it was calculated.
For j decreasing from J to 1 and for n going from N to 1, let m = a(n). The scale
support is updated

§ = s[m] — s[m] (28)

If A;[mn] = NULL then a[n] is not modified. Otherwise, let m = m + A;[m]. The
finer scale average coefficients are computed by inverting the grouping transform
(22) and (23). A causal reconstruction recovers the average value at m from a
coefficient located before :

V3

s[m] s[m]

a_ = alm] + d;[m] (29)
An anti-causal reconstruction recovers the average value at m from a coefficient
located after :

ay = alm| — d;[m] : (30)

5 s[m]
A left inverse averages causal and anti-causal reconstructions. The anti-causal re-
construction is stored in place at m a[m] = a; and the causal reconstruction at
m is averaged with the previously stored anti-causal reconstruction. Theorem 2.4
proves that the pseudo-inverse is implemented with equal averaging weights on
causal and anticausal reconstructions :
a_ + alm]
2

The averaging size is then updated s[m] = s.

At the end of the loop over all j and n, this left inverse reconstructs a[m] = f[m)]
for all m € Gy. If f has N samples, this reconstruction is performed with O(J N)
operations. Theorem 2.4 proves that this left inverse is the pseudo inverse of the
grouplet tight frame transform.

a= and alm]=a . (31)

Theorem 2.4. For any causal multiscale association fields

Vie(Go) . |If]?= 22j2|fgjm|2+ ST b (32)

meGo meGo

30 {gjm » himbi<j<imego 15 a tight frame of 12(Gy).
The left inverse with equal averaging weigths on causal and anti-causal reconstruc-
tions in (31) is the pseudo-inverse.
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Proof. Let aj[m] = a|m]y/s[m| be the normalized average array at the end of
the loop over the index n that goes from 1 to N, for a given j. We first prove the
following Lemma.

Lemma 2.2. For any j > 1

2> lagalmll® = Y laml® + Y dy[m]f. (33)

meGp meGo meGo

To prove this lemma, observe that the grouplet operator can be decomposed as
a product of isometric operators. At a fixed scale 27, the grouplet transform begins
with a duplication operator that transforms a;_1[m| into a pair of signals

(a[m]y/sm] = aj_1[m] , dim] = a;j_1[m]) for all m,m € Gy.

Then the grouplet iteration over n from 1 to NV transforms {a[m]+/s[m], d[m]}m.meg,
with a cascade of unitary operators. For each n, if A[m| = NULL then the ope-
rator is the identity. If A[m] # NULL then Lemma 2.1 proves that the opera-
tor which transforms (a[m] \/s[m],d[in] = a[mm]+/s[m]) into (@ V', d[m] = d;[m])
as defined by (21), (22) and (23) is indeed a unitary operator. It results that
{alm]+/s[m], d[m]}m.meg, is transformed from its initial values {a;_1[m], aj_1[m] } m.meg,
into the final values {a;[m], d;[m]}meg, meg, by a cascade of unitary operators,
which is therefore a unitary operator. It implies that norm of these pairs of signals
is conserved which proves (33).

Since ao[n] = f[n], (f, gjm) = d;jm] and (f, hy.,) = as[m], the theorem energy
conservation (32) is proved with a substitution on (33) for j going from 1 to J.

The grouplet transform is obtained with a loop over operators at increasing
scales 27. A left inverse is obtained with a product of the left inverse of each
elementary operator in the reverse order. The pseudo inverse is the product of
the pseudo-inverses of each elementary operator. We saw that at each scale 27
the grouplet transform begins with a duplication operator followed by a cascade
of unitary operators. The inverse of each unitary operator is also unitary and is
therefore the pseudo inverse. The duplication operator transforms an array x[m]
into a pair (z[m],xz[m]) for all m € G,. Its pseudo-inverse is the averaging that
transforms a pair of arrays (z[m],y[m]) into (z[m] 4+ y[m])/2 for all m € G,.
For each j, the inverse grouplet algorithm is equivalent to this cascade of inverse
unitary operators followed by this averaging. Instead of computing the averaging
at the end of the loop over n as in the proof, the reconstruction algorithm computes
immediately the averaging (31) for each pair of coefficients. The result is the same
because the coefficient a[m] will not be modified anymore by the continuing cascade
of inverse operators, which is guaranteed by the causality of the association fields.

The averaging is computed immediately because it requires less memory storage.
O
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General frame theory [18| proves that the pseudo-inverse implements a recons-
truction within the dual frame. Theorem 2.4 proves that grouplets define a tight
frame and hence that the dual frame is equal to the original frame. The pseudo-
inverse algorithm thus computes

fin =325 3 dlml gyl + 55 3 aslmlhomlal . (34

meGo meGo

2.3 Noise Removal and Image Zooming

A signal contaminated f[n] by a Gaussian white noise W[n] can be estimated
by thresholding the coefficients of X[n] = f[n] + W[n] in an orthogonal basis
or in a frame. With grouplets, this amounts to a conditional averaging of signal
coefficients which have been grouped by the multiscale association fields. Image
zooming by geometric interpolation and regularization is a second application that
is described. Missing pixels are estimated with adaptive interpolation in directions
in which the image is regular.

Orthogonal Grouplets The efficiency of denoising with a thresholding estima-
tor in a basis depends upon the sparsity of the signal within the basis. Grouplets
define orthogonal bases and the optimization of the association fields amounts to
finding a “best” basis. Ideally one would like to find the “best” basis in which the
estimation by thresholding produces a minimum risk. Estimating such a best basis
is beyond the scope of this paper but is studied for video denoising in [19].

The grouplet denoising approach described in the following gives numerical
illustrations of grouplet properties, with no optimality result. The association field
is computed on the noisy image X [n] with the block matching optimization (17).
For a Gaussian white noise W[n] of variance o2, the blocks are square windows
of width proportional to ¢ so that the averaging regularization compensates the
noise variance. The orthogonal grouplet coefficients of X [n] below a threshold T°
are set to zero and a signal estimate F[n] is reconstructed :

Fin =YY pr((X, g1m)) gmnl + > pr((X, hym)) humln],  (35)

j=1 meg; meGy

with pp(x) =0 if |x| < T and pr(z) = = otherwise. In our numerical experiments
T = po with p = 3.

Fig. 7(b) shows a noisy seismic image contaminated by an additive Gaussian
white noise. The PSNR is 26db. Fig. 7(c) shows the resulting grouplet coefficients
calculated from the multiscale association fields obtained with block matchings.
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Fig. 7(d) shows the coefficients above threshold and the reconstructed seismic
image in Fig. 7(e) has a PSNR of 27.3db. Setting a coefficient to zero is equiva-
lent to average the image over the corresponding grouplet support. This grouplet
thresholding thus performs an adaptive multiscale averaging of the signal along
the directions of the multiscale association fields. The reconstructed signal has less
noise but the discontinuities of the grouplets create blocking artifacts that appear
in Fig. 7(e).

() (e) (f)

FiG. 7 - (a) : Original image. (b) : Noisy seismic image (PSNR = 26db). (c) :
Orthogonal noisy grouplet coefficients. (d) : Thresholded noisy grouplet coefficients.
(e) : Image reconstructed from thresholded orthogonal grouplet coefficients (PSNR
= 27.8db). (f) : Image reconstructed from thresholded tight frame grouplet coeffi-
cients (PSNR = 29.5db).

Grouplets Tight Frames Denoising by thresholding on a grouplet tight frame
improves the estimation. The denoising estimator thresholds the frame grouplet
coefficients and reconstructs a signal with a left inverse. To minimize the expected
risk with a Gaussian white noise, it is necessary to use the pseudo-inverse, in which
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Fi1G. 8 — (a) : Lena hat. (b) : Noisy image (PSNR = 27.8db). (c¢) : Orthogonal
grouplet denoising (PSNR = 28.7db). (d) : Tight frame grouplet denoising (PSNR
~ 30.9db).

case the estimator is defined by

Fin) =3 57 3 oo, g3m) sl + 57 37 pr(0X b)) sl (36)

meGo meGo

With a pseudo-inverse, a tight frame thresholding is similar to averaging threshol-
ding estimators in several orthonormal bases, which explains why it reduces the
risk compared to a thresholding estimator in a single basis.

A multiscale association field is calculated from the noisy seismic image in Fig.
7(b) with a block matching algorithm. The resulting grouplet tight frame coeffi-
cients are also thresholded with 7' = 3 0. Fig. 7(f) shows the resulting estimation
obtained by applying an inverse grouplet transform with a PSNR of 29.5db. As
expected, the risk is much smaller than with a grouplet orthogonal basis and the
blocking artifacts produced by the orthogonal basis are reduced in the tight frame
estimation. Fig. 8 gives another example of image denoising on a grey-level image.
Grouplet tight frame denoising yields again a PSNR that is 2db above an orthogo-
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nal grouplet denoising. Although the tight frame redundancy reduces the artifacts,
the reconstructed image still has irregularities due to the grouplet non-regularity.
This motivates applying a grouplet transform not on the image but on a wavelet
transform of the image, to inherit the regularity of wavelets as explained by Section
3.

When computing the association field with a block matching, a grouplet tight
frame denoising has similarities with a non local mean denoising algorithm [2].
A non local mean denoising averages a noisy signal sample with other non local
“neighbors” defined as image points having a block neighborhood which is suffi-
ciently close to the block neighborhood of the original noisy signal sample. Thre-
sholding a grouplet transform performs a similar averaging since points are also
grouped, potentially with a block matching, however the grouping is performed
with multiscale procedure and the averaging decision depends upon a different
thresholding criteria that involves a normalized inner product.

Image Zooming Image zooming requires to compute intermediate pixels to
enlarge the image size. Images are most often sampled at a sampling rate that
is below the Nyquist rate. Since the sampling density is not sufficient, missing
samples cannot be computed with a linear interpolation operator. However, in
presence of anisotropic geometric regularity one can compute precise approxima-
tions of missing samples by interpolating the image in the direction in which it is
regular. Many algorithms have been developed to implement such directional inter-
polations, including variational approaches [21]. The following zooming algorithm
performs directional interpolations and regularizations according to a multiscale
association field with a thresholding in a grouplet frame.

For zooming, signal values are computed on a larger grid for all m € G knowing
noisy values X [n] = f[n|+W/|n] on a subgrid n € Gy. At each scale 27, to compute
an association field A;[m] on the full grid Gy, missing samples X [m] for m € G —Go
are estimated with a standard linear interpolation operator. This interpolation is
not precise because of the aliasing, and the interpolation error can be interpreted
as another source of noise. The multiscale association field is calculated from these
interpolated noisy data with a block matching over sufficiently large blocks to be
nearly insensitive to the noise. The tight frame grouplet transform is also modified
to take into account missing samples. The zooming and denoising algorithm descri-
bed below decompose the noisy image in a grouplet tight frame using a multiscale
association field defined over the full grid Gy. The resulting grouplet coefficients
are thresholded and an inverse transform over the full grid G, restores a higher
resolution signal over G.

The averaging size array is initialized to take into account missing data. We
set sfm] = 1 if m € Gy. For missing samples m € Gy — Gy, we set s[m] = 0 and
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X[m] = NULL.

Let N be the total number of samples in Gy and 27 be the maximum scale. For j
going from 1 to J and for n going from 1 to IV, let 7 = a(n). The grouplet compu-
tation is identical to the previously described tight frame transform computation
when the association field groups existing sample points. When the grouping in-
cludes a missing sample the Calculation is modified accordingly. If A;[m] = NULL
then d;[m mly/s[m]. If Aj[m]# NULL let m = m+ A;[m]. If s[im] = 0, which
we means that 1t is a mlssmg pomt then we set d;[m] = 0. If s[m] # 0 then as in
(22) and (23), we set § = s[m] + s[m],

s|m]s|[m| and 5 — t

Vs s
These values are stored “in place” : a[m] = @ and s[m] = 3.
At the coarsest scale 27, the average coefficients are also normalized

d;lm] = (a[m] — alm])

Vm € Gy , as[m] =a[m]/s[m] . (37)

A zooming process includes a denoising step implemented by a thresholding
that sets to zero all grouplet coefficients below a threshold 7' .

The inverse tight frame transform performs an averaging of associated points
when the corresponding grouplet coefficient is equal to zero. This transform is
modified to compute values for missing samples. There are two reasons why a
difference grouplet coefficient d;[m] may be zero. Either it was set to zero by a
thresholding or it was originally zero because the data was missing. In both case,
an averaging is calculated. This amounts to compute missing values by averaging
them in the direction of the multiscale association flow, while regularizing these
averages with the grouplet thresholding.

The inverse grouplet transform is essentially the same as the pseudo-inverse,
while taking into account potentially missing data. The support-size array is re-
calculated at the coarsest scale 27. At the finest scale sjm] = 1 if m € G, and
sim] =0if m € Gy — Go. Then for j going from 1 to .J and for all . € G, and
m = m + Aj[m], we set 5 = s[m] + s[m| and s[m] = 5. The normalization (37)
is then inverted : alm| = a;[m]/\/s[m] for m € Gy. Each grouping operation is
then inverted for j going from J to 1. For n going from N to 1 and m = «a(n), if
A;lm] # NULL let m = m + A;[m] and

5 = s[m] — s[m]. (38)
If s[m] = 0 and a[m] = NULL then we set a[m]| = a[m]. If s|m] = 0 and a[m] #
NULL and § # 0 then we set @ = (a[m] + a[m])/2 and a[m] = @. If s[m] # 0 and
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§ =0 then s[m| =0 . Otherwise if s[m] # 0 and 5 # 0 then

_ s[m]
a, =alm|—d 39
] = ) 2 39
ay = alm im Vs
s = dlm + 5] (40

The first average is stored “in place”, a[m] = @, and s[m] = 5. The second recons-
tructed average is calculated as in (31)

F1G. 9~ (a) : Subsampled noisy seismic image. (b) : Regularized zoom, with twice
more columns, computed by thresholding tight frame grouplet coefficients.

Fig. 9(b) shows an example of zooming calculated from an aliased seismic noisy
image in Fig. 9(a). The zoom increases the number of columns by a factor 2. Both
images are shown at the same size. Despite the presence of noise, the regularization
and direction interpolation performed by the grouplet thresholding restores in Fig.
9(b) geometric structures that are barely visible in Fig. 9(a).

3 Grouping Bandlets

Instead of applying a grouplet transform directly on the original image, one may
rather apply this transform on a wavelet transform of the image, which already
provides a sparse representation. Indeed wavelet coefficients are obtained through
a convolution with a dilated wavelet and hence inherit the geometric regularity of
the original image. Transforming these wavelet coefficients along directions where
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they are geometrically regular can thus further improve the sparsity of wavelet re-
presentation. This is the central idea of bandlet constructions. Several approaches
have already been proposed to construct bandlet orthonormal bases by applying
an orthogonal transform on wavelet coefficients |14, 22|. Applying a grouplet trans-
form over wavelet coefficients is a different approach that yields grouping bandlet
coefficients. This construction has a hierarchical structure that could be compared
to association field models of horizontal connections between V1 simple cells [§]
Section 3.1 begins by defining orthogonal grouping bandlet bases from orthogo-
nal wavelet bases. Section 3.2 introduces tight frame grouping bandlets construc-
ted over steering pyramid wavelets and separable tight frame wavelets. [t compares
noise removal by thresholding in a bandlet tight frame and in a wavelet tight frame.

3.1 Orthogonal Grouping Bandlet Bases

Orthogonal grouping bandlet bases are constructed by applying an orthogonal
grouplet transform on orthogonal wavelet coefficients. Separable orthogonal wave-
let bases of L*([0, 1]?) are obtained by dilating and translating three separable wa-
velets {1*}1<x<3 that have vanishing moments. For x = (z;,25) and n = (ny, ny),
the resulting wavelet basis of L*([0, 1)) can be written

B = {ub.(x) =270 e - m)} (41)

1<0,2In€[0,1]2,k=1,2,3"
modulo modifications of the wavelet at the boundaries of [0, 1]2. Inner products
with these translated wavelets can be written as a convolution product

Wl fln] = (foof,) = f 7 (2'n) with 4 (2) = 27" ¢*(=27") . (42)

Each wavelet, transform image W f[n] is thus obtained by filtering the image with
a dilated wavelet 1F(z), which is a band-pass filter along the vertical direction for
k =1, along the horizontal direction for £ = 2 and along both directions for £ = 3.

An orthogonal grouplet transform of each wavelet transform image W} f[n] is
defined by computing multiscale association fields. For the first direction & = 1,
wavelet coefficients ;! f[n] have a large amplitude near sharp vertical variations,
which may belong to edges that can be parametrized horizontally. This appears
at all scales 2! in Fig. 10(b). To group wavelet coefficients that are in different
columns, the grouplet transform is constructed with column embedded subgrids
that correspond to a subsampling of the columns of the wavelet coefficient images
W f[n], as explained in Section 2.1. Multiscale association fields computed over
these grids define orthogonal grouplet bases, where the grouplet vectors are elon-
gated across columns and can thus take advantage of geometric regularity across
columns. This orthogonal grouplet decomposition is performed for all scales 27 for
1<j<.J
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(b) (c)

Fi1G. 10 — (a) : Original image. (b) : Orthogonal wavelet coefficients. (c) : Ortho-
gonal grouping bandlet coefficients.

For the second direction & = 2, large wavelet coefficients correspond to sharp
transitions horizontally that belong to structures spread across several rows. The
orthogonal grouplet transform is thus defined with row embedded subgrids that
correspond to a subsampling of the rows of the wavelet coefficient images W2 f[n].
The resulting grouplet vectors are elongated vertically across rows.

For the third direction k& = 3, the wavelets ’JJ;’ perform a high pass filtering
along vertical and horizontal directions. Large coefficients thus belong to geometric
structures that are spread across several rows and columns. A grouplet transform
can thus take advantage of this geometric regularity by defining column embedded
subgrids or row embedded subgrids. Fig. 10(c) shows grouping bandlet coefficients
obtained with grouplet transforms using different multiscale association fields for
each wavelet image W}* f[n]. Bandlet coefficients are displayed with the same dyna-
mic range as the corresponding original wavelet coefficients. The number of large
amplitude coefficients is reduced. Although grouplet coefficients are more sparse
than wavelet coefficients in Fig. 10, it does not mean that the representation is
more efficient for image coding. Indeed, a compression algorithm also needs to
encode the multiscale association fields.

The cascade of a wavelet orthonormal transform followed by grouplet trans-
forms defines an orthonormal transform that we call a “bandlet transform”. A
bandlet orthonormal basis of L2[0, 1]? is a family of functions

k
{ l,j,m(‘r)} 5 . .
meg;,1<5<J,1<0,1<k<3

which is the result of applying a grouplet orthonormal transform on a wavelet
orthonormal basis (41). These bandlets can be written

O () = D Gl U1, (@) (43)

n
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where {gf,ln[n],hf}in[n] }im is the grouplet basis corresponding to the multiscale
association fields computed over orthogonal wavelet coefficients for the direction k
and scale 2'.

(a) (b)

Fi1G. 11 - (a) : Examples of orthogonal grouplets. (b) : Orthogonal grouping band-
lets corresponding to the grouplets in (a).

Grouplets have no regularity but grouping bandlets in (43) have the same
regularity as the wavelets 1/*(x). The support of bff ;m(7) has a width proportional
to 2! around the grouplet gf,ln and a length typically proportional to 27. Fig. 11
gives examples of grouplets and the corresponding bandlets.

3.2 Tight Frames of Grouping Bandlets and Denoising

To remove noise in images, thresholding translation invariant wavelet frame
coefficients yields better estimators than thresholding orthogonal wavelet coeffi-
cients. Grouplet tight frames also yields better estimators by using a more flexible
model of association fields than grouplet orthogonal bases. Applying grouplet tight
frames to wavelet tight frame defines a tight frame of bandlet functions.

A separable wavelet frame is constructed by oversampling an orthogonal or a
biorthogonal wavelet transform. From three separable orthogonal or biorthogonal
wavelets 1% (z) for k = 1,2, 3, the oversampled is defined by :

Wfkn] = fxF(n) with ¢f(z) =27 pF(=27) for k =1,2,3. (44)

Fig. 12 gives an example at scales 2! = 21, 22,

A wavelet thresholding removes a Gaussian white noise of variance o2 from
a noisy image X by setting to zero all dyadic wavelet coefficient W} X[n] whose
amplitude is below a threshold 7" = po, and by applying the inverse wavelet
transform. In images of 512 by 512 pixels, p is typically equal to 3. When the
image is regular or if the edges or textures are too weak, the thresholding sets all
coefficients to zero which averages the noisy coefficients. The two zooms in Fig.
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F1G. 12 — Top : original image. (a,b,c) : dyadic wavelet transform at scale 2! = 2
along the 3 orientations. (d,e,f) : dyadic wavelet transform at scale 2" = 4.

14 and 15 show that it removes fine textures such as the fine strip hat texture
or hairs, while randomly leaving isolated fine structures corresponding to wavelet
coefficients above threshold. This wavelet denoising is improved by a grouplet
transform over wavelet coefficients, that takes advantage of the geometric regularity
of edges and textures.

Grouplet tight frame coefficients are defined from strictly causal multiscale as-
sociation fields, that relate wavelet coefficients W} f[n] for a fixed direction and
scale. These causal association fields are defined with a partial ordering and a
pseudo-distance that depends on the preferential direction of the wavelet. For
example, if the wavelet is band-pass vertically then it extracts image structures
that are rather horizontal. Hence, for £ = 1, at each scale these association fields
are computed with a 0 angle partial ordering (horizontal direction) and a 0 angle
partial distance, to obtain horizontal groupings. In this case, at a scale 27, the
association field groups points from any given column to a point in the column
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2 =4

%2 =2

Fi1G. 13 — Left and right columns display multiscale causal association fields at
different scales 27, calculated on wavelet coefficients. The resulting grouping bandlet
coefficients are shown below, on the same dynamic range as wavelet coefficients.

located before at a distance 2/~!. For k = 2 which corresponds to wavelets extrac-
ting vertical structures, groupings are performed with a 7/2 angle partial ordering
(vertical direction), and a 7/2 angle pseudo distance. At a scale 27, the grouping
is thus performed across rows at a distance 2/~!. For k = 3, the groupings can be
performed horizontally or vertically. In the numerical computations shown here,
groupings are computed horizontally for £ = 3.

Fig. 13 shows strictly multiscale causal association fields computed on wavelet
coefficients at a scale 22 in the horizontal orientation, with a block matching.
Large amplitude wavelet coefficients correspond to sharp transitions that have a
nearly horizontal orientation. The amplitude of the corresponding grouping bandlet
coefficients in Fig. 13 is much smaller, because grouplets take advantage of the
geometric regularity of wavelet coefficients.

For noise removal, bandlet coefficients below a threshold 7' = p/o with p/ = 4
are set to zero. Observe that p is larger than the parameter ;1 = 3 chosen for wave-
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lets, in order to compensate for the partial “noise fitting” that may be produced by
the association fields computed on noisy coefficients with a block matching. Fig.
14 and 15 compare the denoising results of a translation invariant wavelet thre-
sholding and of the grouping bandlet tight frame thresholding. Grouping bandlets
restore fine textures on Lena’s hat or on its hairs because the elongation of these
bandlets along these geometrical structures better compresses the signal and yields
coefficients above threshold which restore these geometrical structures. On Lena, a
grouping bandlet thresholding estimation improves a wavelet thresholding estima-
tion by more than 1db. However, the multiscale association field must be computed
and regularized carefully to avoid creating geometric bandlet artifacts in regular
image regions. Optimizing the multiscale association fields to minimize the grou-
ping bandlet estimation risk is an open problem that is beyond the scope of this

paper.

(d)

Fic. 14 — (a) : Original image. (b) : Noisy image. (¢) : Translation invariant
wavelet thresholding. (d) : Grouping bandlet tight frame thresholding.
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(b)

(d)

Fic. 15 = (a) : Original image. (b) : Noisy image. (¢) : Translation invariant
wavelet thresholding. (d) : Grouping bandlet tight frame thresholding.

Références

1]

2]

3]
4]

[5]

P. C. Bressloff and J. D. Cowan. The functional geometry of local and horizon-
tal connections in a model of v1. J Physiol Paris, 97(2-3) :221-236, Mar-May
2003.

A. Buades, B. Coll, and J. M. Morel. A review of image denoising methods,
with a new one. SIAM Multiscale Modeling and Simulation, 4(2) :490-530,
2005.

E. Candés and D. Donoho. Curvelets : A surprisingly effective nonadaptive
representation of objects with edges. Vanderbilt University Press, 1999.

C. L. Chang and B. Girod. Direction-adaptive discrete wavelet transform via
directional lifting and bandeletization. In Proc. IEEE International Confe-
rence on Image Processing, October 2006.

V. Chappelier and C. Guillemot. Oriented 1d wavelet transform on a quincunx
pyramid for image compression. Proc. IEEFE Int. Conf. on Image Processing,
September 2005.

33



(6]

17l
18]

[9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
18]
[19]
[20]

21]

M. N. Do and M. Vetterli. The contourlet transform : an efficient directional
multiresolution image representation. IEEE Transactions Image on Proces-
sing, To appear, 2005.

D. Donoho. Wedgelets : Nearly-minimax estimation of edges. Ann. Statist,
27 :353-382, 1999.

D. J. Field, A. Hayes, and R. F. Hess. Contour integration by the human visual
system : evidence for a local "association field". Vision Research, 33(2) :173-
193, 1993.

Kanizsa G. Organization in Vision : Essays on Visual Percpetion. Praeger,

1979.

O. N. Gerek and A. E. Cetin. Adaptive polyphase subband decomposition
structures for image compression. IEEE Trans. on Image Processing, pages
1649-1660, October 2000.

D J Heeger, E P Simoncelli, and J A Movshon. Computational models of
cortical visual processing. Proc National Academy of Science, 93 :623-627,
1996.

H. Heijmans, B. Pesquet-Popescu, and G. Piella. Building nonredundant
adaptive wavelets by update lifting. Applied Computational Harmonic Ana-
lysis, (18) :252-281, May 2005.

R. F. Hess, A. Hayes, and D. J. Field. Contour integration and cortical
processing. J Physiol Paris, 97(2-3) :105-119, Mar-May 2003.

E. Le Pennec and S. Mallat. Sparse Geometrical Image Approximation with
Bandelets. IEEE Transaction on Image Processing, 14(4) :423-438, 2004.

E. Le Pennec and S. Mallat. Bandelet Image Approximation and Compression.
STIAM Multiscale Modeling and Simulation, 4(3) :992-1039, 2005.

Tai Sing Lee. Computations in the early visual cortex. J Physiol Paris,
97(2-3) :121-139, Mar-May 2003.

L. Luo, F. Wu, S. Li, and Z. Zhuang. Advanced lifiting-based motion-threading
technique for the 3d wavelet video coding. Proceedings of the SPIE, 5150, 2003.

S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego,
1999.

S. Mallat and G. Yu. Video denoising with grouping bandlets. In Technical
Report 2008 : CMAP, Ecole Polytechnique, 2008.

S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries.
IEEE Transactions on Signal Processing, 41(12) :3397-3415, 1993.

S. Masnou. Disocclusion : a variational approach using level lines. [FEFE
Trans. On Image Processing, 11(2) :68-76, 2002.

34



[22]

23]

[24]

[25]

G. Peyré and S. Mallat. Surface compression with geometric bandelets. ACM
Transactions on Graphics, (SIGGRAPH’05), 24(3), Aug. 2005.

A. Secker and D. Taubman. Lifting-based invertible motion adaptive trans-
form (limat) framework for highly scalable video compression. IEEE Tran-
sactions on Image Processing, 12(12) :1530-1542, December 2003.

D. V. Ville, T. Blu, and M. Unser. On the multidimensional extension of the
quincunx subsampling matrix. IEEE Signal Processing Letters, 12(2) :112—
115.

Bosking W, Zhang Y., Schoenfield B., and Fitzpatrick D. Orientation se-
lectivity and the arrangement of horizontal connections in tree shrew striate
cortex. Journal of Neuroscience, 17(6) :2112-2127, 1997.

35



