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Abstract

Projections in a foveal space at w approximate functions with a resolution that decreases proportionally
to the distance from u. Such spaces are defined by dilating a finite family of foveal wavelets, which are not
translated. Their general properties are studied and illustrated with spline functions. Orthogonal bases
are constructed with foveal wavelets of compact support and high regularity. Foveal wavelet coefficients
give pointwise characterization of non-oscillatory singularities. An algorithm to detect singularities and
choose foveal points is derived. Precise approximations of piecewise regular functions are obtained with

foveal approximations centered at singularity locations.

1 Introduction

The distribution of photoreceptors on the retina is not uniform. The visual acuity is greatest at the center
of the retina where the density of receptors is maximum. When moving apart from the center, the resolution
decreases nearly proportionally to the distance from the retina center [3, 13]. The high resolution visual
center is called the fovea. Active vision strategies compensate the non-uniformity of visual resolution with
eye saccades, which move successively the fovea over regions of a scene with a high information content.
This multiresolution sensor has the advantage of providing high resolution information at selected locations,
and a large field of view, with relatively little data. Several approaches have been proposed to model foveal
approximations, including the use of a logmap transform [15] or locally translated and dilated wavelets [1, 2].
This paper introduces the notion of foveal approximation spaces and constructs orthogonal bases to compute
approximations of signals that have isolated singularities. Singularities are detected and characterized from a
multiscale foveal energy measurement.

Foveal spaces are defined in Section 2 with a finite family of generating functions which are dilated. A foveal
space centered at a point u can approximate efficiently a function that has an isolated singularity at u if high

order polynomials belong to this space. Such foveal spaces can be constructed from a wavelet basis of L2(R)



by selecting only the wavelets that are in the cone of influence of ¢ = 0. However, to reproduce high order
polynomials, it requires to use a large number of generating functions. The remaining of the paper studies
foveal spaces constructed with only two generating functions. Section 3 shows that such foveal spaces include
wavelets with an arbitrary number of vanishing moments, and that one can build an orthogonal basis by dilat-
ing two foveal wavelets. Examples with polynomial splines are studied in Section 4. Section 5 is devoted to the
construction of pairs of foveal wavelets of compact support whose dilations reproduce polynomials and define
orthogonal bases of a foveal spaces. Minimum support wavelets are characterized in Section 5.1 and regular
orthogonal foveal wavelets of larger support are computed in Section 5.2. The detection and characterization
of singularities with such pairs of foveal wavelets is studied in Section 6.1. Foveal signal approximations are
calculated using foveal points at the detected singularity locations. Upper bounds of the approximation error

are computed in Section 6.2.

Notation: For any function 6 we write

o(t) = 0(t)sign(t) , 07 (1) =0(t) o0 , 07 (t) =0(t)1j0,400)

dko(t)
dt*

0;(t) =279/20(277t) and 6;,(t) =279200277(t —u)) .

= 6% (1)

We denote by h(w) = j:ioo h[j]e~%“ the Fourier series of a discrete sequence h[j].

2 Foveal Approximations

2.1 Definition and Examples

A foveal approximation of f € L2(R) has a resolution which decreases linearly with the distance to the
center located at some abscissa u. It is obtained by an orthogonal projection onto a foveal space V,. For
example, the piecewise constant foveal approximation space V, is the set of functions which are constant on
the intervals [u — 2971w — 29) and (u + 27, u + 2971] for any j € Z. The foveal approximation of f is the
orthogonal projection Py f which is equal to the average of f on any of these interval. One can also define a
piecewise linear foveal approximation space V, of all functions that are continuous and linear on the intervals
[u—2/t1 u—27) and (u+ 27, u+ 2/!]. Figure 1 shows an example of foveal approximations. The following

definition generalizes these examples.

Definition 1 A space Vo C L2(R) is a foveal approzimation at 0 if there exists a finite number M of gener-

ating functions {¢Y™ hi<m<m N L2(R) such that {zp;”}lSmSM,jez is a Riesz basis of Vo and
feEVo=> f 1[0’_4_00) €V, . (1)
A foveal space V,, at u is defined by

fHeV,e f(t+u) € Vg. (2)
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Figure 1: (a): Original function f(t). (b): Piecewise constant foveal approximation of f in the neighborhood

of t =0. (c): Piecewise linear foveal approximation.

The existence of a dyadic scaling invariant basis {1&;-”}15”6 M,jez implies the foveal space is invariant by
dyadic dilation:
VieZ , f(t)e Voo f(27t)eV,.

The property (1) also means that

F€Vo= f—f1lio400) = F1(—c0,0 € Vo - (3)

The space Vo may therefore be decomposed in two orthogonal subspaces V, and V{ of functions in Vg
having their support included respectively in (—oo, 0] and [0, +00). Clearly Vo = V, @ V§. The projection
of f in Vy thus defines independent approximations of the restrictions of f in the left and right sides of 0.
This extends to any point wu.

The piecewise constant foveal approximation is generated by translating a Haar wavelet:

1 iftelo,1/2)
P(t) =4 —1 ifte[1/2,1) . (4)
0 ift<Oort>1
The two wavelets 1 (t) = (¢t +1) and 1?(t) = +(t) have a support respectively equal to [-1,0] and [0, 1]. One
can easily verify that the family {%1 , @bjz- }jez is therefore an orthogonal basis of the foveal space of functions
in L2(R) that are constant on each interval [—2/+1 —27) and (27, 2/+1] for j € Z.

A piecewise linear foveal approximation is constructed with a linear hat function:

T ifte0,1)
Y(t) =4 2—z ifte[l,2) . (5)
0 ift<Oort>2
The resulting wavelets 1! (¢) = (¢t + 1) and ¢?(t) = 9(t) have a support respectively equal to [-2,0] and
[0,2]. One can verify that the space V¢ generated by the family {@bjl , zpf- }jez is the space of linear splines,
that are continuous and linear on each interval [-2/7! —29) and (27, 29*!] for j € Z. Section 4 devoted to
foveal splines proves that {1} , ¢7};cz is a Riesz basis of Vy.
Foveal approximations can be extended to multiple fovea, which means that f is approximated given an

increasing sequence of fovea points {un}nez, with u, < up41, which could also be finite. For this purpose, it



is useful to limit the maximum scale of a foveal approximation space. We write V,, y C V,, the space obtained
by limiting the maximum scale of generating functions to 27 and which is therefore generated by the Riesz

basis

{ur}
7 J1<m<M, —co<j<d
For each u,, we shall choose a maximum scale 2/ and define a multiple fovea approximation of f as the

orthogonal projection Py f in the space

V = @::Loovumh .

If all )™ have a support included in [- K, K] then all f € V,_; have a support included in [u— K27, u+ K27].
If

(6)

then functions in V,,, ;. and V,, s have disjoint support for n # m, so the spaces {V,, s, }nez are orthog-

. Up — Up—1 Upt+1 — U
2J"§m1n( n n n-+ n)

2K ’ 2K

onal.
Figure 2 gives examples of piecewise linear foveal approximation from multiple fovea, whose locations are
obtained with the singularity detection procedure of Section 6.1. In Figure 2b, the maximum scales J,, satisfy

(6) so that each singularity are separately approximated. In Figure 2c, the maximum scales are defined by

. Up — Up—-1 U 1—U . Up — Up—1 U 1—U
2m1n( n 2" , nt n)SQJ"§4m1n( n n nt n)

el et 7

in order to approximate f over its whole support, without holes between the successive singularities.
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Figure 2: (a): Original function f(t). (b): Piecewise linear foveal approximation from fovea u, located at
0.14,0.2,0.4,0.44,0.58,0.72,0.82,0.96 with maximum scales J, satisfying (6). (¢): The maximum scales J,
are defined by (7).

2.2 From Orthogonal Wavelets to Foveal Approximations

Foveal approximations with translated orthogonal wavelets have been studied in [2] and by Vetterli and Dragotti
[14] who aggregate these coeflicients to define footprints for singularities. In this section, we show that foveal
approximations spaces can indeed be constructed by selecting appropriate families of wavelets in a wavelet

orthonormal basis of L?(R).



We saw in (4) that a piecewise constant foveal approximation space is generated by a family of Haar
orthogonal wavelets. This example is generalized by considering any orthogonal wavelet basis of LZ(R). One
can construct wavelets ¢ having a compact support centered in 1/2: [1/2 — K, 1/2 4+ K], and such that if
Yjn(t) = 279/2¢(279t — n) then {t)jn}(j,n)ez2 is an orthonormal basis of L%(R) [11]. We denote by Co the
cone of influence of 0 defined as the set of indexes (j,n) of all wavelets v; , whose support include the point
t = 0. Clearly

Coz{(j,n) . je7 and —1/2—K§n§K—1/2} .

At each scale 27, there are M = 2|K — 1/2] + 2 such wavelets. Let mg = [3/2 + K|, we denote the M
generating wavelets

YT(E) =Yt —m+mg) forl<m< M,
so that {Yj,n}(jmeco = {¥] hicm<n, jez-

Proposition 1 The space Vo generated by the translated orthogonal wavelets {wjm}lgmg M,jez in the cone of

influence of 0 is a foveal space.

Proof: Clearly {¢)]" }1<m<m,jez is an orthogonal family, hence a Riesz basis of Vo. It remains to verify
the property (1). Let f € V. The function flp ;o) € L2(R) can be decomposed over the orthogonal basis
{¥jn}(jnyez2- I (4,n) ¢ Co then the support of 1), is either included in [0, +00) in which case

<f1[0,+oo)a ¢j,n) = (fv ¢j,n) =0

or the support of v;,, is included in (—o0, 0] in which case (f1g,1o0), ¥jn) = 0. S0 fljo,40) is orthogonal to
all 9;,, for (j,n) ¢ Co and hence can be decomposed over the wavelets {¢; » }j,n)ec, and thus belongs to V.
|

The following proposition proves that even-though f may be singular at u, if it is regular on the left and
right hand-side of u then f(t) — Py, f(¢) is small in the neighborhood of » and is uniformly regular if the
wavelet ¢ is regular. The uniform regularity is measured with uniform Holder exponents. We say that the
restriction of f to [a,b] is uniformly Holder o > 0 if there exists K > 0 such that for all u € [a, b] there exists

a polynomial g, (t) of degree m = |«a| with
Vi€ (a,b) , [f(t) —qu(®)| S K|t —ul®. ®)

Proposition 2 Let Vg be a foveal space constructed from translated orthogonal wavelets {'gbjm}lgmg M,jez Wwith
a mother wavelet v which has p vanishing moments. If the restrictions of f to (—oo,u] and to [u,+00) are

uniformly Héolder a < p then
|f(t) = Py, f(t)] = O(|t —u|*) . (9)
Moreover, if 1 is CP then f(t) — Py, f(t) is uniformly Hélder o on R.

Proof: The proof is done for u = 0 and is adapted for any u by translating all functions. Let r = f — Py, f.
Since f = Ej,n (fs ¢j,n> Yjn and Py, f = Z(j,n)ECo (f, wj,n> ¥j,n, we have

rt) = Y (fiin) Yin(t) -

(4,m)€Co



For all (j,n) € Cyp we have |n+ 1/2| < K so there exists v > 0 such that if (j,n) ¢ Co then |n+1/2| > K + 4.
Since the support of ; , is [2/(n +1/2 = K),2/(n+1/2+ K)] if (j,n) ¢ Co then 1, ,(t) = 0 either if || < 27y
or if [n+1/2—277¢| > K and there are at most [2K indices n for which 1; ,(t) # 0 at each scale 2/. Over its
support |1;,,(t)| < ||%|leo 277/2. Since the support of ¢} 5, is included either in (—o00,0] or in [0, +00) in which
f is uniformly Holder a, it has been proved [11] that there exists A > 0 such that |(f,1; )| < A2(@+1/2)i Tt

results that
(2K +1) Al
1 -2 aqya

rt)< Y (K +1) A2 )| 27972 <
i<logajtl/7)

which proves (9) for u = 0.

"

If 4 is CP then it has been proved [11] that r is uniformly Holder a on R if and only if there exists A > 0
such that for all (j,n) € Z2 |(r, ;)| < A2(e+1/2)i_ But this is indeed the case since |{r, 1 ,)| = 0if (j,n) € Co
and we saw that |(r, ;)| < A2(e+/2)Iif (§,n) ¢ Co, so r is uniformly Holder o over R. [ |

Daubechies [5] proved that if ¢ generates a wavelet orthonormal basis of L2 (R) and has p vanishing moments
then its support size satisfies K > p — 1/2 and minimum support wavelets satisfy K = p — 1/2. In this case
there are M = 2p generating functions, and for p = 1 it corresponds to the M = 2 Haar wavelets previously
studied. To obtain wavelets which are CP it is however necessary to increase much more the support size K and
hence the number M of generating functions. In the remaining of the paper, we study foveal approximations
constructed with only M = 2 generating functions and which have same approximation performance as foveal
approximations derived from compactly supported Daubechies wavelets which are CP and have p vanishing

moments.

3 Only Two Generating Functions

Foveal approximations with only two generating functions are constructed from a single even window whose
left and right parts are dilated. Section 3.1 studies the properties of the resulting foveal approximation and
constructs wavelets in the foveal space which generate orthogonal bases. For discrete sequences, similar foveal

approximations can be defined, and Section 3.2 gives conditions to construct discrete orthogonal bases.

3.1 From Windows to Foveal Approximations

This section constructs foveal approximation spaces Vo = V(J{ ® V, with two generating functions whose
dilations define Riesz bases respectively of V; and V. These generating functions are obtained from a single
even window ¢(t) such that [@(t)dt # 0, with ¢~ = ¢1(_ g and ¢T = $1jg ). If the two families
{#; }jez and {¢j} jez are Riesz bases of the spaces V; and V{ that they generate then Vo = V{§ @ Vy is
a foveal approximation space in the sense of Definition 1. The main issue will be to build orthogonal foveal
wavelet bases of V. We begin with a theorem which gives a necessary and sufficient condition to obtain a

Riesz basis by dilating a single function.

Theorem 1 Let § € L%(R) and V be the closed space generated by {0;}jcz. Let hol[j] = (0, 6;). The family



{0;}jez is a Riesz basis of V if and only if

A= inf hg(w)>0 and B= sup ho(w) <+ . (10)

w€[—m,m) w€[—m,m)

The constant A and B are the Riesz bounds.

Proof: The Riesz basis property means that there exists A, B > 0 such that f € V if and only if it can be

written

+o0
f= > dib;
j=—o0
with
400 ) 400 )
A D P <IfIP<B Y Il - (11)
j=—o0 j=—o0

The Riesz bounds correspond to the maximum A and minimum B which satisfy (11). They are respectively
equal to the infimum and supremum of the spectrum of the Gram matrix G = {g;}(jez> of the family

{6;}jez, defined by g;; = (0, 6;) [5, 11]. A change of variable in the inner product integral proves that
(0, 60) = (0, 0-1) = helj = 1] .

The Gram matrix thus corresponds to a convolution operator whose spectrum is given by the Fourier series

hg(w). The Riesz bounds are therefore specified by (10). [ |
Let ho[j] = (¢, ¢;). Theorem 1 implies that {qu_ , qb;r }jez is a Riesz basis of the space Vy it generates if
and only if
A= L inf ho(w) >0 and B = 1 sup  ho(w) < +00 . (12)
2 wel—m,n] 2 wE[—m,m]

Indeed, the family {¢; , ¢} }jez is a Riesz basis of Vo if and only if {¢; };cz and {¢] };ez are Riesz bases of

V; and V§, but since ¢ is even
1
(@, 65 = (6%, 61) =5 (6, 65) -

If ¢ is bounded and integrable then one can verify |ho[j]] = O(2717/2) so ho(w) is bounded on [—m, 7] and
is C*. The existence of B is thus always guaranteed. We know that ho (w) > 0 because it is the spectrum
of the Gram matrix (positive, symmetric) of {¢;};cz. However, further conditions are required so that ho(w)

does not vanish. For example, if

1if e <1
d(t)=19 2 fl1<|t| <2
0 if |t >2

then a direct calculation shows that ﬁo(ﬂ) = 0 so ¢ does not define a Riesz basis. On the contrary, if

¢(t) = 1[_1,1] then
N 2
h(w)=——F+—>0
0( ) |1 _ \/ﬁefiw|2

so it yields a Riesz basis. One can verify that in this case V is the piece-wise constant foveal approximation,

(13)

also generated by Haar wavelets.



We now show that the foveal space V¢ includes regular wavelets with vanishing moments, that also generate
Riesz bases. For this purpose, we decompose Vj in two subspaces V§ and V§ of even and odd functions
respectively generated by {¢;}jcz and {¢; = ¢;’ — ¢; }jez. Clearly V§ and V§ are orthogonal and Vo =
V§ @ VY. Generally ¢(0) # 0 so ¢ is discontinuous at t = 0. To remove this discontinuity we define

v () = (6(t) - 9(21)) sign(t) = 6(t) — B(21) . (14)

It is an odd function and +" (0) = 0. If $(t) is C" with ¢(¥) (0) = 0 for k < n then 1" is also C". Let us denote
O(t) = ¢(t). The following proposition constructs even and odd wavelets with arbitrary number of vanishing

moments in the foveal space V.
Proposition 3 For any m > 0 we define by induction

() = ™ () — 2" ™ (2t) € Vo . (15)
IfO <1< m then [ty™(t)dt =0.

Proof: We prove that ¢™ has m vanishing moments, by induction on m. It is clearly verified for m = 0
and m = 1. Suppose now that )™ (t) has m vanishing moments, and let us prove that 1™ *2(t) has m + 2

vanishing moments. Let us compute

/ thap™¥2(t) dt = / th ™ (t) dt — 2™+t / th ™ (2t) dt .

For [ < m the induction hypothesis implies that two right integrals vanish so [ # ¢™+2(t)dt = 0. If | = m the
change of variable ¢ = 2t in the second integral on the right hand-side proves that [ t™¢™%2(¢)dt = 0. Since
¥° and ¢! are respectively even and odd, we derive from (15) that 1™ is even if m is even and is odd if m is
odd. It result that [¢™+!¢™+2(t)dt = 0 because ™2 and t™+! have an opposite parity. This proves that
¢)™*+2 has m + 2 vanishing moments, which finishes the induction proof. [ |

For any m > 0 the wavelet Y™ € V has m vanishing moments and its support is equal to the support of
¢. If m is even then it is an even function which has the same regularity as ¢ and if m is odd then it is an
odd function which has the same regularity as ¢!. To verify that one can construct a Riesz basis with such

foveal wavelets, the following proposition analyzes the properties of a change of basis in a foveal space.

Proposition 4 Let § € L%(R) and

—+oo

P = Z cljl8; with c[j] € 1*(Z) .

j=—00

If ho[j] = (8, 0;) and hy[j] = (¢, ¥;) then
his () = [e(@)I? ho(w) - (16)
Suppose that {0;}jcz is a Riesz basis of V. Then {¢;};cz is a Riesz basis of V if and only if

inf |é(w)| >0 and sup |&(w)| < +oo. (17)

w€[—m,m] wWE[—m,m)



Proof: Let us compute

+o0 +oo
holil =@, ) = () i, Y lll6i4r)
l=—00 I'=—00
+oo  +oo
= XY o
l=—o0l'=—

Since
01, 0k) = (0, Ok—1) = holk — ]
we derive that
hy[j] = ¢* &x hg[j]

with ¢[j] = ¢[—j]. Computing the Fourier transform of this equality gives (16).

Let us prove that the space W generated by {¢;};ez is equal to V. Clearly W C V since ¢ € V and
hence 1); € V. Conversely let us prove that § € W. Let ¢ ![j] € 12(Z) be such that ¢ }(w) = 1/é(w) with
é(w) satisfying (17). Then

+oo +oo +oo

Sty = Y M Y il
l=—0c0 l=—o0 j:—oo
= Z 0 Z eli' 1) = Z wjrexelf’] =6
j'=—o0 I=—o0 j'=—o0

because ¢! x¢[j'] = §[j']. So § € W and hence ; € W for any j € Z, which proves that V.C V. So W = V.
Theorem 1 proves that {1);};cz is a Riesz basis of W = V if and only if

inf ﬁw(w) >0 and sup iz,p(w) < 400 . (18)

we[—m,m] w€[—m,m]

Since {6;};cz is a Riesz basis of V, Theorem 1 proves that this property is valid for hg(w) and we derive from

(16) that (18) is satisfied if and only if (17) is verified. [ |
The following proposition applies this result to the foveal wavelets ¢ to prove that they generate Riesz

bases of the foveal space. We denote ™ (t) = 1™ (t) sign(t),
() =279 (277) and R[] = (™, 4") -

Proposition 5 Let V§ and V§ be the even and odd foveal spaces generated respectively by {$;};cz and
{¢;}jez. The wavelet family {¥7*}jez is a Riesz basis of V§ if m is even and of V§ if m is odd.

Proof: Since ¢™ = )™~2 — 2m=3/24)™=2 Theorem 4 proves in (16) that

>

ma2 (W) = hp (W) |1 — 2mH1/ 2072 (19)

Let us consider first the case of even foveal wavelets:
m—1
ham (W) = |1 —2F1/2emiw)2 (20)
=0
Since

m—1 m—1

m—1
0< H (1 _2l+1/2) S H |1+2l+1/2e71w H 2l+1/2
=0

1= =0



applying Theorem 4 proves that {13™} ez is a Riesz basis of V.
For odd foveal wavelets, observe first that ¢! = ¢ — 27'/2¢_; so (16) implies that

hy(w) = ho(w) |1 — 27 Y2e % (21)
We thus derive from (19) that
. . m—1
hom1(w) = ho(w) H [1 - 2H1/2e=iw )2 (22)
I=—1
Applying Theorem 4 proves that {1&]2-"‘“ }jez is a Riesz basis of V§. ]

Since Vo = V§ @ V§ is an orthogonal decomposition, this proposition implies that for any m > 0, each of

the foveal wavelet families
{07, ¥]'Yjez and {$]", PTH Y jez

are Riesz bases of V. A Riesz basis is an orthogonal basis if and only if the upper and lower Riesz bounds
are equal. Theorem 1 proves a foveal family {¢)]"};ez is orthogonal if and only if hum(w) is constant. Using
(20) and (22) one can derive a necessary and sufficient condition on ho. The following proposition considers

the particular cases m = 1 and m = 2.

Proposition 6 The following statements are equivalent:

(i) {¢]}jez is orthogonal.

(ii) {¥7}jez is orthogonal.

(iii) There exists C > 0 such that ho(w) = C |1 — 21/2e~w|~2,

(iv) There exists C > 0 such that
VieZ , ho[j]=cC27/% . (23)

Proof: The first two foveal wavelet families are orthogonal if and only if A (w) and hy(w) are constant.

We computed in (21)

~

hi(w) = ho(w) |1 = 271272 = 271 ho(w) |1 — 2'/%e ™2

we thus derive from (20) that Ay (w) = 27! hy(w). Both are constant if and only if ho(w) = C |1 — 21/2e¢ |2
for some constant C' > 0, which means that ho[j] = C' 27191/2. [
If any of the conditions of this proposition is satisfied then {wjl-}jez is an orthogonal basis of V§ and

{47} jez is an orthogonal basis of V§. Hence each of these three families

{w]l ) '(Zgl'}jEZ ) {¢11 ) w?'}jEZ ) {¢12 ) ”ﬁ?}jel

defines an orthogonal basis of V.
For a piecewise constant foveal approximation, ¢ = 1;_; ;; and ho[j] = 2'717/2 5o the foveal wavelets !

and v? define orthogonal bases of V. They are shown in Figure 3(a).

10



Generally, the foveal wavelets ¢! and 1? constructed with a window ¢ generate a Riesz basis that is not

orthogonal. Let us orthogonalize {1} }jcz and {7} ez by constructing two new wavelets:

+oo +oo
P'= " oY) and 7= ) cfi]v] . (24)
j=—o0 j=—oc0

Let hy,[j] = (™, 7]1;”) We showed in (16) that fim(w) = hm(w)|é(w)|?. The proof of Proposition 6 shows
that Ay (w) = 271 hy(w) so {¢}}jez and {12} ez are orthogonal if and only if there exists C' > 0 such that

N o
|é(w)* = @) (25)

The resulting families
{0} $hiez » 0], $liez and {4}, 03)jez
are then orthogonal bases of V. Choosing ¢(w) which satisfies (25) is a spectral factorization problem that is
further analyzed in the context of spline wavelets.
To approximate efficiently functions that are regular in the left and in the right neighborhood of 0 but
which may be singular at ¢ = 0 as in Proposition 2, we impose that polynomials belong to the foveal space

V. The following proposition gives a necessary and sufficient condition.

Proposition 7 Let Vg be a foveal space and {'gbjl , ¥'}jez be a foveal Riesz basis. For any polynomial q(t)
of degree p there exists b[j] such that

oo
VE>0 , q(t)= Y blilv5(0) (26)
j=—o0
if and only if
+oo
Vi>0 Z o(k+1/2)j P;(t) =apt’ withag #0 for 0<k<p . (27)
j=—o0

Proof Since ¢(t) can be decomposed in the monomial family {t¥}o<k<, clearly (26) is satisfied if (27)

holds. Conversely if (26) is satisfied then setting q(t) = t* yields

+o0
=" b2 ¢t (27)
j=—00
and writing t = 2t', we get
+o0 ) )
2k ek = N plj]2iP gt (279
j=—00
so eliminating t* from the last two equations gives

+oo
S (bl) — 27K 120 + 1)) 2792 ¢ (279 = 0

j=—o0

Since {¢} , ¥}}jez is a Riesz basis we derive that b[j] = 27%~'/2p[j + 1] for all j € Z and hence that
blj] = 2(k+1/2)7 p[0] which implies (27). |
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3.2 Discrete Foveal Approximations

Foveal approximations constructed with dilated windows are adapted to discrete sequences. Orthonormal
bases are constructed with discrete foveal wavelets. In discrete signals, the minimum scale is limited by the
sampling interval, that is normalized to 1, and a maximum scale must be introduced to limit computations
over a finite support. The discrete lattice n € Z is assimilated to a sampling of R at ¢ = n — 1/2. The origin

t = 0 is thus in the middle of n = 0 and n = 1. For any discrete signal 8[n] we write
6[n] = 6[n] sign(n +1/2) , 67 [n] =6[n] 1_oo,1/2(n) , T[] =6[n] 111/2 0)(n) -
Definition 2 A family of discrete foveal windows {¢;[n]}o<j<s satisfies for 0 < j < J:

* ¢j[n] = ¢;[1 —n]
e there exists K > 0 such that the support of ¢;[n] is [-K27 +1 , K27]

o there exists C > 0 such that 3.1 ¢;[n] = C 27/2

n=0

The family {¢;,¢j+}05j5 J 1s then linearly independent and thus defines a basis of a foveal space Vo ;. A
foveal space at m is defined by

f[n] € Vm’,] =3 f[n + m] € VO’J .

To verify that {¢], ¢ }o<j<s is linearly independent, observe first that {¢] }o<;<s and {¢] }o<j<s are
orthogonal. Clearly {(;5].’}095 s is linearly independent, because for any I > 0, ¢, does not belong to
Span{q&; }o<j<i since the support of ¢; is strictly larger than the supports of all ¢; for j < I. The same
applies to {¢] }o<j<-

Discrete foveal windows can be defined by discretizing a continuous time foveal window ¢(¢) of compact

support [—K, K]:
n+1

sifn) =29 [ g iyar. (28)

n

Clearly
+o0

+o0 400
S dyln) = 27902 [ $(2 Tty dt = 2972 / (1) dt .

n=-—o0 -

At any scale 27 > 1, the first foveal wavelet is defined like in (14) by
}ln) = gjln) = 271/2¢; 1 [n] . (29)

It is antisymmetric about —1/2
¥j[=n] = —4j[n - 1]
and hence has one vanishing moment

+00
> Wil =0.

n=—oo

The second foveal wavelet is defined as in (15) by

P =¢; — 212¢; . (30)

12



It is symmetric about —1/2
5[—n] = ¢jn — 1]

and has two vanishing moments

+oo +o0
Z ¢J2-[n]=0 and Z nw}[n]zo.

Let V§ ; and V§ ; be the spaces of even and odd signals generated respectively by {¢;}o<;j<s and {¢;}o<j<u-
These spaces are orthogonal and V§ ; & V@ ; = Vg ;. The following theorem is a discrete equivalent of

Proposition 6, which gives necessary and sufficient conditions to obtain orthonormal bases.

Theorem 2 Let Vo 5 be the space generated by foveal windows {¢; , q_ﬁj Yo<j<s. The following statements are

equivalent:
o {¢o, Vi hi<j<s s an orthogonal basis of V§ ;
. {1p]2 ., ®s}i<j<s is an orthogonal basis of V3§,

o there exists C > 0 such that
Vi,l>0 , (¢;, ¢)=C27 12 (31)

Proof: With the recursive equations (29) and (30) we verify directly that {@o , ¥} }1<j<s generates V5.
and {wf » ¢1}1<j<s generates Vi ;. Let us now prove that the orthogonality of {90 , ¢Jl-}1§j5 J is equivalent

to (31). Let us compute
(B0, ) = (o, ¢5) =2 *(¢o, 6 1) (32)
and
Wl 0)) = (s 65) =27 i, dima) =27 (G, d3) +27 N1, 1) - (33)

If (31) is satisfied then a direct calculation shows that (¢o, ©}) and (¢}, ¢}) are zero and hence that
{c;_So , 1/}11-}151-5 J is orthogonal. Conversely, let us suppose that these inner products are 0. We prove with an
induction on j that for all 0 <1< j

(¢, ¢) = C27 0702

For j = 0 and hence | = 0 this is trivial for C' = (¢¢, ¢o). Suppose that it is true for all ] < j =n—1, we
are going to verify it for all 0 <[ < j = n. This is proved by another induction on [. For [ = 0, applying the
induction hypothesis on (32) yields

<¢0 ) d)n) = 2_1/2<¢0 ) ¢n—1) = 2—71,/2 <¢0 ) ¢0)

which verifies the property for j = n. Suppose now that it is valid for [ = p — 1. The vanishing inner product

(33) implies that

<¢p7 ¢n) = 2_1/2<¢p7 ¢n71> + 2_1/2<¢p71 ] ¢n) - 2_1<¢p71 ) ¢n71> -

Applying our induction hypothesis for [/ < j =n —1 and for I = p— 1 and j = n proves that (¢p, ¢n) =
C 2-(n=P)/2 which verifies the hypothesis for I = p and j = n and finishes the induction proof.

13



To prove that the orthogonality of {zpf , ®7}1<j<J is equivalent to (31) we compute

W7, 03) = (b1, ¢5) — 2%, di1) = 221, &5) +2(d11, hj1) (34)

and
(b, 07) = (b1, &) —2"%(ds, $j1) - (35)

If (31) is satisfied then these inner product are zero which proves that {¢Jz , ®7}1<j<J is orthogonal. Conversely,

if this family is orthogonal we prove that for j <1< J
<¢] ) ¢l> = C27(l7j)/2 )

with a double induction on j and [, but in this case for j decreasing from J to 0. For j = J and hence [ = J
this is verified for C = (¢, ¢s). Suppose that it is true for all [ > j = n, we are going to verify it for all
J > 1> j =n—1. This is proved by another induction on I. For [ = J, by applying the induction hypothesis
on (35) we get

(b1, 05)27 2 = (¢, n) =2"7 (1, dn_1)

which verifies the property. Suppose now that it is valid for [ = p. The vanishing inner product (33) implies
that

(Gp-1, bn1) =27 gn, $p) + 270, dp1) + 27 bu1, Bp) -
Applying our induction hypothesis for I > j = n and for I = p and j = n proves that (¢, _1 , ¢pn_1) = C 2("P)/2,
which verifies the hypothesis for l = p — 1 and j = n — 1 and finishes the proof. [ |
Since V§ ; and Vg ; are orthogonal complements in Vg s, if (31) is satisfied then each of the following
three families
{do, ¥}, 0, Uih<j<s » {¥F, du, ¥, dshi<j<u (36)
and

{0, ¥j , V3, drhicicu (37)

is an orthogonal basis of Vg ;.
If (31) is not satisfied then we can orthogonalize {¢o , ¥} }1<j<s and {97 , ds}1<j<s with a Gram-Schmidt

orthogonalization. Suppose that we begin with the second one: 1&% =4? and for any 1 < j < J

Il 2 02y
¢§:¢?_2M¢f

el U
with ;
~ ~2 ~
TESTEDY <¢J~’72¢2l> Up -
= 2l

The resulting family {@2 , $J}15j§J is an orthogonal basis of V§ ; and 1/;]2 has 2 vanishing moments for any
j < J. The support of 1532 is equal to the support of ¢ and hence to [-K2/ 4+ 1, K27], and the support of by
is equal to the support of ¢; and hence to [-K27 + 1, K27]. Similarly, let for any 1 < j < .J
(wlaéo)* j_1< 1’71;1) 5
J bo — Z J l 1

Wl — gyl X732 7 R EEREES .
Vi =V T T e
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The resulting family {¢q , '&Jl.}lgjg J is an orthogonal basis of V§ ; and the support of 1511 is equal to the
support of ¢} and hence to [-K2/ 4+ 1, K2/]. From these orthogonal basis of V§,, and V§ ; we can construct

three orthogonal bases of Vo ; as in (36) and (37).

4 Foveal Splines

Foveal approximations with two generating functions are constructed with polynomial splines. It generalizes

the piecewise constant foveal approximations. We denote ¢° = 1;_1,1) and define for any p > 0:

#i= [ (¢ - 0 @) st do 59)

The following properties are easily verified by induction on p. The window ¢? is a polynomial spline of degree
p whose support is equal [—1,1]. Moreover, its derivative ¢?'(t) = 0 if || < 277 so ¢P(t) is constant on
[-27P,27P]. If t < 277 then ¢?'(t) > 0 and if ¢+ > 277 then ¢?'(t) < 0, so ¢”(t) does not change sign, and
#P(t) > 0 because ¢°(t) > 0.

The first foveal wavelet is

PP () = ¢P(t) — 4P (2t) . (39)

The support of ¢1? is [-1,27P~1JU[27P~1, 1], and ¢! P(¢) > 0 for t > 0 whereas 91 (t) < 0 for ¢t < 0. Inserting
(38) gives .
po=- [ i@ (40)
—0oQ

and

2t
PP (t) = sign(t) ) PPN (z) da . (41)

For any m > 2, the foveal wavelet ¢)™? with m vanishing moments, calculated with (15), has a support
included in [—1,1]. Figure 3 gives examples of such foveal wavelets for p = 0,1,2. The following theorem

proves that ¢P defines a Riesz basis of a polynomial spline space which is specified.

Theorem 3 For any p > 1, the spline window family {#% , &f}jez is a Riesz basis of the space V5 C L*(R) of
functions that are CP~! on R — {0} and equal to a polynomial of degree p on [—27+1, —27) and on (27, 2911],

for any j € Z.

Proof Let hoy[j] = (47, ¢%) and hyp[j] = (7, ¢]1-’p). We saw in (12) that {¢ , é?}jez is a Riesz basis
of the space V¥ it generates if fzo,p(w) is bounded and is strictly positive. It is equivalent to show this property
on hy ,(w) because (21) proves that hy ,(w) = hg p(w) |1 — 27 /2e~% 2.

Since the support of ¢'? is [-1, =277~} U [27P~1, 1], the sequence h1 ,[j] has a support included in [—p, p]
50 h1 p(w) is bounded and is C>. Suppose that inf, hi ,(w) = 0. Since hP(w) is continuous and 27 periodic,
there must exist & such that A?(¢) = 0. We first prove that it implies that f = Z;’iw eidé w;’p = 0 by showing
that [|f(t)|?dt = 0, and then show that it leads to a contradiction. Since f(t) = —f(—t) it is sufficient to
restrict ourself to ¢ > 0. Suppose that there exists k € Z such that f22:+1 |f(t)|?dt = C > 0. Since the support
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¢p ¢1,p 1/,2719

2 2 2
1 1 1
p=0 0J LAA— 0 0
-1 -1 -1
2 0 1 2 0 1 2 0 1
2 2 2
1 1 1
p=1 0/////\\\\\ 0 0
-1 -1 -1
2 0 1 2 0 1 2 0 1
2 2 2
1 1 1
p=2 0 0 0
-1 -1 -1
2 0 1 2 0 1 2 0 1

Figure 3: Foveal spline wavelets of order p, for p =0,1,2

of PP is [-1,—27P~ U [27P7L, 1] for t € [27, 27P] we have f(t) = E;:—z e'¢ 4 P(t) and hence

l 3 2 ol—p l—p—1 ok+1
3 eiieglr| > / ()2 dt = z / 23k | F(2k4)[2 dt
j=—1 27!

One can also verify that 21/2 f(2t) = e% f(t) so

2
1 ok+1
D eyt > (2 -p) /2 [f@)?dt = (2 -p)C . (42)

j=—1

Moreover, since ﬁl,p(f) =0, for any | € Z

l
Z old £¢ P Z e”5¢ Py Z Z e—iG—d' §h1p[J—J]

j=—o0 j'=—lj=—c0
and hence )
l 1
e 1, e o
Z e@JE¢j Pl — _ Z Z e~ ii—i )£h1,p[.7 —j'.
j=-1 J'==1]j]>1

Since hi,p[k] = 0 for |k| > p, we derive that

2

1
3" eyl < 2p* sup |hy )]
JEZ

j==1
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which contradicts (42) for [ sufficiently large. It results that that [ |f(t)|?dt = 0 and since f(t) is continuous

forp>0
+oo
VEER , f(t)= Y €FyiP()=0. (43)
j=—o0
We differentiate this identity using (41) which shows that
d 1,p t . _ _
P ign(r) (20 @) — 0 0)

It results that

df(t) = ij€ 9—j —'/2¢1’p(2_jt) i€ 9—1/2 = ij€ 9—3 ,,1,p—1
WZZGJQJQJ TZ(GQ —1)ZGJ2J¢] (t)

j=—o0 j=—oc0

Further derivatives give

dPF(t L x ,
) _ [[(eear+1/z_1) 3 eii€amriho) =0,
k=1 j=—00
which is wrong since ¢! = 111/2,1) — 1[—1,—1/2)- It results that there does not exists £ such that Bl,p(g) =0
and hence that {¢?, ¢"};cz and {1/1]1-’p, @Zjl-”’}jez are Riesz bases of V5.

Let us now prove that V§ is equal to the space W, of finite energy functions that are polynomial of
degree p on [—2971 | —27] and on [27, 297! and are CP~! on R — {0}. Since y"? € W, clearly Vi C W,
Conversely, now prove that W, C V{. Let us decompose W, = W, @ Wl and V{§ = V{~ © V{ , where
W, and VB~ are composed of functions whose support are included in (—o0,0], where as W;r and VI~ are
composed of functions whose support are included in [0, +00). We are first going to prove by induction on
p that W C VE~. For p = 0 this result is clear. Suppose now that it is true for p — 1 and let us consider
f €W, . Forn € Z,let g,(t) be the polynomial of degree p such that g,(t) = f(t) for t € [-27 "+, —27"].

Let us define
f@) ift<-2""

fat) =13 qu(t) ifte[-277,0) - (44)
0 ift>0

The function f,, is CP~" over R — {0} and hence remains in W . Let us show that for any e > 0 there exists

n > 0 such that ||f — f»|| < e. One can prove that there exists C(p) such that for all polynomials ¢(t) of degree

pand all A € R

A 2A
| uwra<ce [l (45)
0
To verify this result, we use an orthonormal basis {e;(t)}1<i<p of polynomials of degree p defined over [1,2].

Observe that {A~1/2e;(A1#)}1<i<, is an orthonormal basis of polynomials of degree p on [A, 2A], so
p
Vt€[0,24] q(t) =) a; ATV e (A7)
i=0
with |a;|? < ZA lq(t)|? dt for 0 < i < p. With a change of variable, we show that
A 1
2 . 2 2 |2
[ uora < (s [le? a) o+ ma o (40

2A
< o) [l
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Since f has a finite energy, there exists n such that

0 \ 2
R E ==t (47)
Moreover (44) implies that
0 0
_ 2 2 2
1=l <2 [ @Pa+z [ 150P (48)

and applying (45) to A = 27" gshows that
0 0 9=m 27"
[ nra= [ woPasco) [ woPa= [P
—n 2-n 9—n+1 2—n+1
We thus derive from (47) and (48) that ||f — fnl| <e.
The function f(¢) is a polynomial spline of degree p — 1 which is C?~2 on (—o0,0]. To prove that it has a
finite energy we use the fact that there exists K (p) such that for all polynomials ¢(t) of degree p and all A € R

A A
/ ()P dt < K(p) A~ / lg(t)? dt (49)
0 0

This is shown with the same approach as for (45) by decomposing ¢(t) on an orthonormal basis {A~/2¢;(A™'#) }1<i<p
where {e;(t) }1<i<p is an orthonormal basis of polynomials of degree p on [0,1]. Calculating ¢'(¢) leads to (49)

with an argument similar to (46). Applying this result to A = 27" and ¢(t) = fn(t — mA) for any m € Z
implies that

0 0
[ nerasxez [ inora.

So f, has a finite energy and hence f;, € W__;. The induction hypothesis implies that f;, € V§~ and hence

can be written

+oo
e =3 nlil (s 6 -4 0) - (50)

j=—o0
Since f], has a finite energy and is a polynomial on any [m2~", (m + 1)27"] for m € Z, we easily verify that

lim¢, oo f',,(t) = 0. Integrating (50) using (40) gives

400
fa®) ==Y w2 (870 - 87 ) -
j=—o0
Since f, has a finite energy it results that f, € VE~. But ||f — f,|| < € and this result can be obtained for
any € > 0, so we derive that f € V{§~ which verifies our induction hypothesis and hence that W, C V{~.
Similarly we prove that W} C V™ and hence that W, C V§. ]
For p = 1, this theorem proves that {¢; , qz@} }jez is a Riesz basis of the linear spline space V§ introduced
in Section 2.1. By decomposing the linear hat function () in (5), and applying Proposition 4 one can also
verify that linear hats also generate a Riesz basis of V§.
For p # 0, the foveal polynomial spline wavelets 1P and 1)?P are not orthogonal. We apply the orthogonal-
ization procedure of Section 3.1, which yields orthogonal foveal wavelets of compact support whose properties
are studied. For m = 1,2, the new foveal wavelets are defined by

+oo

g =N eljly?, (51)

j=—00
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and according to (25) they generate an orthogonal basis if and only if |é(w)|™2 = C~! 51:, (w). Since the
support of ¢ is [-1, -2 P U277 1,1]

hipli] = ("7, 97y =0 if [j| > p.

Since ﬁl,p(w) is a positive trigonometric polynomial, a lemma by Riesz shows that it can be written

hl,p =C H 1—ripe ﬂw|2ml = p(eiw)

=1
where each 7, for 1 < I < g is a root of multiplicity m; of the trigonometric polynomial ﬁl,p(w) and

Ti41,p| < |rip| < 1for 1 <1 <gq. Theorem 3 proves that 1 p(w) > 0 so necessarily |r;,| # 1 for 1 <1 <gq.
+1,p P P P

Let us choose

U = 1
2= e, e )

=1

The inverse Fourier transform of é(w) can be written:

p—1
Vi<0 , dil=)Y alil(ny)™ and Vi>0 c[j]=0, (53)

where ¢[] is a polynomial in j of degree m; — 1.

Since 97 and 1*P have a support included in [—1,1] and ¢[j] = 0 for j < 0, we derive from (51) that
the support of ¢*? and 9)*? is also included in [~1,1]. When j goes to —oo the leading term in |c[4]| is
lg1[4]] Ir1,p| 7 because |rq,p,| = max; |r; | < 1. Since ¢i[j] is a polynomial of degree m; — 1 and the support of

YPbP s [—1,—27P71 U [27P71 1], we derive from (51) that for j <0
vt € 27,270 9P ()] = 0@ 2 ™ | )
and hence that for |t| <1
§17(0)] = O(llogy t™ i) with 8, = ~logy il — 5 (54)

This exponent [, can not be improved in the sense that one can find 0 < v < 1 such that ['P(y7)| >
C |j|™ 1498 for j < 0. Since 1)*P(t) is constant for |t| < 27P~! similarly we verify from (51) and (53) that

2P (1) = §*7(0)] = O(|log ™~ [t] ) .

Section 6 shows that the approximation performance of foveal wavelet bases depend upon this exponent S,.

The following proposition gives an analytical expression of iLl,p(w) to compute the roots r; , and hence .

Proposition 8 For a polynomial spline ' = 1P of degree p

p 2k _ o— p
A (2 o
=927 (p+1) 1/2 iw 271/2 —iw _ gly 55
hi,p(w) kzo k+p+1 H 2 ( € ) (55)

1=0
1%k

Proof: The first step of the proof shows that ¢!'? satisfies the monomial decomposition formula (27) with

_ _ 2k(k:+1)/2 H(k) H(p— k)
U = Gkp = K (p— k)

for 0<k<p (56)
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where H(I) = []*_,(1 —2™) for I > 1 and H(0) = 1. To obtain this expression, we prove by induction on p

n=1
that
400 )
vi> 0, Y 2 gl(t) = ay p th (57)
j=—00
with
2k —1

ag.p = Qkp—1,p—1 T . (58)

Property (57) clearly holds for p = 0 and hence k = 0. Suppose that it is valid for p— 1 and all 0 < k < p—1.
For k£ = 0 observe that:

!
VE> 0, Y9t = ¢P(27't) — ¢7(2')

j=—1

$0 ;r:ioo ¢]1-’p(2_jt) =ag,, = ¢P(0). For 1 < k < p we apply the induction hypothesis:
+oo
Vz >0 Z 2k P (270) = ap oy &
j=—o00

Integrating x between ¢t and 2t gives for ¢ > 0 with (41):

400 k+1
) . (2 -1)
Vi>0 , E 9ik+1) b (9=dgy = L1127 7) 1 htl
2z & PP ( ) E+1

and hence ay11,, = agp—1(28*1 — 1)/(k + 1), which verifies (58). Using recursively this induction relation, we

obtain P
Ak,p = G0,p—k H 2 l_l . (59)
It now remains to compute -
wn =80 = [ vy (60)

By integrating by parts and by inserting (41) we verify that

Vk,1>0 /+ootk¢1’l(t)dt = /+ootk—+1(gbl”_l(t)dt—2¢1’l_1(2t))dt
=07 e o k+1

_ 1—92k-1 /+Oo o1 wl,lfl(t) dt
E+1  J,
Since ¢1’0 = 1[—1,—1/2]U[1/2,1]7 it results that
+o0 k+q 1_9-l ptoo k+q+1 1 —9-1
/ thyptaydt = ] ; / g omydt = [ : (61)
0 I=k+1 0 I=k+1
For k = 0, inserting this in (60) together with (59) gives (56).
To compute ﬁl,p(w) let us now integrate 1P (t) against both sides of the equation
400 ]
S 2 glo(y) = gy it
j=—00
With (61) we obtain
V4 ) +o00
S 2D =, [ E e de
Jj=-» 0
kD2 H(k+p+1)H(p—k

k+p+Dlp— k)
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The Fourier series of hy ,[j] is i1 ,(w) = Q,(e™) with

Qp(2) = D hiplilz! = Qp(z™)

Jj=-p

and (62) shows that Qp(2k+1/2) = by,p for —p < k < p. The polynomial Q,(z) can therefore be decomposed

as a sum of symmetric Lagrange interpolation polynomials

P
Qp(z) = Z br,p I_’k,p(z)
k=0

where Ly, ,(2) satisfies Ly ,(2) = Lg p(271) and Ly, ,(2¥+1/2) = §[k — p] and is thus given by

Ek,p(z)

H117=0 (z _ 2l+1/2) (zfl _ 2l+1/2)

1%k

1#£k

= [TB, (2k+1/2 — 21+1/2) (2—k=1/2 _ 2l+1/2) ~

(63)

(64)

Inserting the expression (62) of by, in this formula and simplifying the algebraic expression yields (55) by

setting z = e™.

p

1

2

3

4

5

6

7

8

9

10

Py

1.497

.8646

.5929

.4439

3513

.2890

.2445

2114

.1859

.1657

Table 1: Decay exponent 3, for orthogonal polynomial spline foveal wavelets of order p.

The roots of ﬂl,p(w) have been computed for 1 < p < 10 using (55). All roots are simple so |7 (t)| =

O([t|P) for |t| < 1 and Table 1 gives the corresponding values of 3, in (54). Observe that 3, < 1 for 2 < p < 10.

The orthogonalized wavelets ¥)'? and ¢2? in Figure 4 are calculated from the analytical expression of é(w) in

(52) by computing its inverse Fourier transform to get ¢[j] which is inserted in (51).

Figure 4: Orthogonal foveal spline wavelets of order p = 1 and p = 2.

Phr(t) P> (t)

2
1
0
-1

-1 0 1 2T 0 1
2
1
0
-1

1 0 1 2 0 1
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5 Design of Orthogonal Foveal Wavelets

This section optimizes the construction of orthogonal foveal wavelets for foveal approximations derived from
a single window ¢. Section 5.1 constructs foveal wavelets ¢! whose dilations define an orthogonal family
that reproduces polynomials of degree p and which have a minimum support. These minimum support foveal
wavelets are not continuous. Section 5.2 constructs orthogonal foveal wavelets of larger support but which are

also regular. These foveal wavelets are used in Section 6.2 to approximate signals having isolated singularities.

5.1 Orthogonal Foveal Wavelets of Minimum Support

Let ¢! be such that {wjl-}jez is orthogonal and reproduces polynomials of degree p. It is said to have a
minimum support if there is a minimum number of scales 27 such that the support of ¢Jl. intersects the support
of 9t If the support of ¢! is included in [-Cs, —C1] U [C}, Cs] then there are at most [log,(C2/C1)] scales 27
for which the support of ¢Jl- intersects the support of ¢!. The number of intersections is invariant by dilation.
Let o5 (t) = s~'/24)' (s~ 't). For any s > 0, the family {zp;’s}jez is orthogonal and reproduces polynomials
of degree p if and only if {w} }jez is orthogonal and reproduces polynomials of degree p. Moreover, ¢! has a
minimum support if and only if »* has a minimum support. The support of ¢! is thus defined up to a scaling
factor, which we normalize by supposing that it is equal to [—1,1]. The fact that 1! reproduces a constant is
given by:
+o0
VE>0 Y 427t =ao -
j=—o0

The amplitude of 1! is renormalized by setting ag = 1.

The following theorem computes minimum support foveal wavelets using the inverse M ' = (w; x)o<j,k<p

of the Vandermonde matrix M = (2%9)o<y, j<p, whose coefficients are calculated from Lagrange interpolation

polynomials
P
H (x —2™)
n=2 p )
Lpi(z) = =7 =Y wjal (65)
H (2k _ 2”) j=0

33
w1
E3X=}

Theorem 4 A foveal wavelet 1! has a support in [—1,—27°|U[27% 1], generates an orthogonal family {¢]1 Yiez

and satisfies
—+oo

VE>0 Y 2R N2t = aptt with ax #0 for 0<k<p (66)

j=—oc0
only if b > p+ 1. There exists a foveal wavelet of minimum support [—1,—27P~11 U [27P~1 1] with ap = 1 if
and only if for L<k<p

}p: i PSS I k. e R, 2+
a a a —
’“lzl Yhrl+1 ey 0
I = 1—27t L
1-277 L2
+ ;:1 W pa(277) (67)
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and ' is defined on its support by

P
vee 279277 @) =) 2wt for 0<j<p. (68)

=0
Proof If the support of ¢! is included in [—1, —27°]U[27%, 1] with b < p+ 1 then we easily verify that (66)

is equivalent to
P

vte[1/2,1] , > 2K ¢'(27t) = apt® for 0<k<p. (69)
j=0

The solution of this linear system is computed from the inverse M~! = (wjx)o<jk<p Of the Vandermonde

matrix M = (ij)oﬁk,jﬁp
P
Vte[1/2,1] , $1277t) = ij,l at . (70)
1=0

We derive from (65) that w;,, # 0 for any 0 < j < p so ¥!(¢) is a non-zero polynomial of degree p on each
interval [27971 ) 279] for 0 < j < p, which proves that b > p + 1.

Suppose now that ¢! has a support in [-1,—=27?"']U[27?~!,1]. The family {¢]};ez is orthogonal if and
only if hy[j] = (¢!, ¢j) = 0 for 0 < |j| < p. This is expressed as an equivalent condition on the moments of
Y. Since ¢! is odd, we derive from (66) that

p +o0
% S o2 ] = a / #pL(8) dt (71)

Jj=-p 0

If {1} }jez is orthogonal then hy[j] = 0 for j # 0 so

2, [ T gy dt = e (72)
0

Since ag = 1 we get
+oo

ak / o th ol (t) dt = Yr(t)dt for 1 <k <p. (73)
0 0

Conversely if (73) and (66) are satisfied let us show that {1} }jez is orthogonal. Since h1[j] = hi[—j] we derive
from (71) and (73) that

: Z halj) (U127 4 97/ = /0 Tmar (74)

j=—p
We proved in (62) and (63) that this system of equation characterizes uniquely the coefficients hq[j] for
0 < |§] < p, that can be calculated using coefficients of symmetric Lagrange interpolation polynomials (64). It
results that h1[0] = [;7°° 4 (¢) dt and hs[j] = 0 for |j| < p and hence that {4} }jez is orthogonal. Since ag = 1
we have jioo 1(277t) = 1 and integrating this equation against ¢! (¢) proves that ||[¢!]|> = 0+°° PL(t)dt.

The orthogonality condition (73) is rewritten by decomposing the integral over intervals [277~1 2]
+o0o p 1 ) )
/ thl(t) dt = Z/ 2 Ik gkl (9-7¢) dt
0 el
Inserting (70) gives

+oo o P () P 1_9—k—i-1
t t)dt = 277 i —_
|t DS i S (75)
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But (65) shows that Y-%_; 277" +Dw;, = L,,(27¥") and we can also verify that L, (2" ') = 2—2" 7. Inserting
(75) in (73) gives the system of equations (67). Since (73) is equivalent to the orthogonality of {¢}};ez, this
finishes the proof. [ ]

The equations (67) can be considered as a system of p polynomial equations of degree 2 in the p unknown
{ar}1<k<p.- To each real solution corresponds a unique wavelet 1! specified by (68), whose support and
amplitude are normalized. The generalized Bézout theorem proves that the system (67) has at most 27
solutions. However we are interested in real solutions and we are not guaranteed a priori that there exists
such a solution. For p = 1 this system is reduced to a single equation of degree 2 which has 2 real solutions.
For larger p, a common approach to compute solutions consists in computing a Grébner basis of the system.
However, the computation of a Grobner basis may be quite expensive.

The system (67) can be evaluated fast: it is sparse, and all equations share the same right-hand side. To
solve this system, we used the algorithm of Giusti, Lecerf and Salvy [7], which is able to take advantage of
this feature to lower the complexity of the computations, without appealing to Grobner basis computations.
It is based on several theoretical papers by the TERA group [6], and implemented Magma in the Kronecker
package [8]. The solutions calculated by Schost [12] with this software are given in Table 2 for p < 5, and the
corresponding functions 1! are shown in Figure 5. To compute ¢ from ¢! observe that ¢(t) = ;;OS P (27t)
because ! (t) = ¢(t) — 2¢(2t). Since E;’iw Y1 (29t) = ap = 1, for a minimum support wavelet of degree p
having a support in [—1,—27P 1 U [27P "1 1] it results that

1 if |t < 27P
$(t) = YPgpt(2it) if [t] € [277,1]
0 if ¢ >1

and we derive the second wavelet ¥?(t) = ¢(t) — 2¢(2t). Figure 5 shows several examples of functions ¢ and
2 having a minimum support. The solutions have also been calculated for p = 6,7, 8 and there are 2P~ real
solutions in each of these cases.

The solutions of the system for p — 1 and for p equations may a priori be completely different but Table 2
shows that for a degree p — 1 and a degree p, the corresponding systems (67) may have similar solutions. In
particular, some solutions (ak,p—1)1<k<p—1 Of a system of size p— 1 and some solutions (ax,p)1<kr<p Of a system
of size p satisfy ay,p = arp—1 for 1 < k < p—1. As a result, corresponding foveal wavelets 1! (¢) shown in
Figure 5 have nearly the same graph. These similarities come from the fact that the coeflicients of the system

(67) converge to constant values when p is large. Indeed, a direct calculation using (65) shows that

Hp+k+1)
HQ)H(k)H(p—-1)

(1 _ 2fkflfl)Lp’l(27kfl) — (_1)l Zfl(lfl)/2

with H(I) = [T (1 —=27")for I >1and H(0) =1. As a result

n=

im (1—2 %1 )L, ") = (-1 ter__t

p—+oo H()H(k) * (76)

When increasing the order of the system (67) from p — 1 to p the coefficients of the first p — 1 equations are
slightly modified and there is one more equation corresponding to k = p. This gives a strategy to obtain

a solution (ag,p)i<k<p Of the system of p equation by approximating it with a solution (akp—1)i1<k<p—1 Of
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Table 2: Real solutions {aj }1<k<p of the system (67) calculated for 1 < p <5.

p |k ak p|k ak
1 1.38929754034 1 1.45260930654
1 2.46784531681 2 2.04269295137
2|1 1.42156733273 3 2.76270880317
2 1.95703524452 4 3.59526088078
1 4.00184272521 5 4.51880240215
2 16.87872416048 511 2.11595720318
3|1 1.43896043716 2 4.52698150687
2 2.00492714857 3 10.30310423277
3 2.68901769737 4 29.56144211827
3|1 2.40826558195 5 2659.03726215417
2 6.34326400942 511 3.46565528688
3 24.84883380353 2 10.82788594645
311 3.67398277565 3 23.92860560391
2 12.75294954651 4 31.16824359368
3 31.26189394313 5 30.23989336339
311 6.14883219776 511 3.60652678031
2 40.34826199541 2 14.62460997988
3 288.88675880998 3 82.74687046438
4|1 1.44799978962 4 675.97404696759
2 2.02991856780 5 257.40941193917
3 2.73773545364 5|1 5.04827983337
4 3.55410449056 2 23.99657736388
4|1 3.53110143673 3 89.23811202948
2 11.38960166084 4 256.27576397792
3 25.91105763966 5 17794.31718866944
4 33.32116128073 5|1 5.25348163808
411 3.68246985711 2 32.41081283406
2 15.53391326869 3 308.59192628344
3 99.52366453588 4 5558.08558140915
4 | 1226.74836883958 5 | 151469.60567457325
4|1 8.98009426273 5|1 12.53382883579
2 87.15871029071 2 171.80290584747
3 941.93301433661 3 2672.80231927319
4 | 11501.26012264996 4 | 48184.47702691261
5 | 1013636.87007247459
511 8.60450125654
2 77.52198330520
3 716.69414671157
4 5860.19330933748
5 1722.58764049202
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Figure 5: Minimum support wavelet ¢! calculated for 1 < p < 5 with (68) from the solutions {ay}1<x<p given

in Table 2, in the same order.
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Figure 6: Examples of foveal windows ¢ and foveal wavelets 1)? corresponding to a minimum support foveal

wavelet !, selected for 1 < p < 4 from the solutions shown in Figure 5.
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the system of p — 1 equations and computing the closest exact solution with a local search. The solution is
initialized to Zx,p = ag,p—1 for 1 <k < p—1and z,,, is computed from these values as a solution of the second

degree equation corresponding to the last equation for &k = p of the system (67):

—_9-p-1

1—2p -1 e 1
Tp,p Z Tip —— 77 Lpa(277 o+ Tp,p

T L,o(27P Y=
p+l+1 p+1 pol )

TR S .
1—27P" +le,p T L),

The vector (z;,)1<i<p is then used as an initial point of a Newton search to find an exact solution of the
system. This Newton search converges only if the initial point is sufficiently close to a the solution of the
system. This is the case in number cases. Using this technique, a solution for the system of degree p = 20
has been computed by propagating progressively the solution of the system whose values (ax,p,)1<i<p are given
first in Table 2 for 1 < p < 5, and for which a1, ~ 1.4. It seems that the system (67) has solutions for any
p > 0 since some solutions such as this first solution does propagate with little perturbations when p increases,

but this is only a conjecture.

5.2 Regular Orthogonal Foveal Wavelets

Foveal wavelets of minimum support are discontinuous piecewise polynomial functions. To construct more
regular foveal wavelets, it is necessary to extend the support size. We construct orthogonal foveal wavelets ¢!
whose support are included in [—1, —27P=2] U [1,27P~2], which reproduce polynomials of degree p, and which
have an arbitrary degree of regularity. The following theorem generalizes Theorem 4 by constructing larger
support orthogonal foveal wavelets which are piecewise polynomials plus an orthogonal perturbation which

guarantees that the wavelets are regular. For the interval T = [1/2,1] we denote

1
Il = 2 .
3 gI—/ f®)g(t)dt and |f|} = /1/2|f<t>| dt

Theorem 5 Let ¢! be a foveal wavelet having a support included in [—1,—27P=2] U [27P=2,1]. The family
{wjl }jez is orthogonal and satisfies

+oo
VE>0 D 2M gl (279t = aptt with ay #£0 for 0<k<p (77)
j=—0o0
and a9 = 1 if and only if there ezists a polynomial q(t) of degree at most p whose moments (q,t*), on

=[1/2,1] satisfy for 1 <k <p

Z e LI P (78)
U ri+1 P k+1 T P°

P
(q,t%), (2—(p+1)(k+1> — 32tk Lp,j(2p+1)) -

J=0

p —I1—1 p
1-2 :
> @) 1= 27 (g, ), (2700 - Y27 L ()
=1 j=0

28



and 1)(t) with p+ 1 vanishing moments on I = [1/2,1] such that

p
> wouar(g,t'), = (=1)? 20072 (|lg|[3 + |lnf3) - (79)
=0

The resulting ¢ is defined for 0 < j < p by

p
vte 27971, 279) ¢l(t) = Z 29t wi apt' — L, ;(2°1) (q(2jt) + n(2jt)) (80)
=0
and
Vt € 27772 27P7Y) l(t) = q(2PTME) + n(2P M) . (81)

The wavelet ¢ is uniformly Hélder k + 1 with k € N if and only if n(t) is uniformly Hélder k + 1 on [1/2,1]
and for 0 <n <k

q(1/2) | d'n(1/2)

= 2
dtn dtn 0 (82)

p

I dnq(l) | dm(1)
—(=1)Pope+l)/2 (Z A7) &= A7) _ )
;“’0*’ D (S +=am) = 0 (83)
Proof: For any 0 < j < p+ 1 we can write

vte[1/2,1) , 1277t = ¢;(t) + (1) (84)

where ¢;(t) is a polynomial of degree at most p and 7;(t) is orthogonal to any polynomial of degree p on
I =[1/2,1], which means that it has p + 1 vanishing moments. We write gp+1(t) = ¢(t) and np4+1(t) = n(¢).
Since ¢! has a support included in [—1, —2"P~2]U[2~ P2, 1], the equality (77) restricted to [1/2, 1] and projected

on the space of polynomials of degree p and on its orthogonal complement yields the following two conditions:

P
Vie[1/2,1) , > 28 g;(t) = ap th —2HPTD g(t) for0<k <p (85)
j=0
and ,
Vie[1/2,1) , Y 2Mn,(t) = —2¥PH () for0<k<p. (86)
j=0
Inverting these linear systems with the inverse M~' = (wj)o<jk<p Of the Vandermonde matrix M =
(2kj)05k,j5p giVQS
P P
g;(t) = ij,l art — q(t) ij’l 2l(p+1) (87)
=0 =0
and )
ni (1) = —n(t) Y w;a 2P (88)
1=0

Since w;; = wy j, we derive from (65) that 7 w;; 2/®TY) = L, ;(2P*!). Inserting (87) and (88) in in (84)
proves that (80) and (81) are equivalent to (77).

Since ¢! has a support included in [-1,—2"7"?]U[277?,1], the orthogonality of {1)}};cz is equivalent to
impose that hi[j]=0for 1 <j < p+1. For j = p+ 1, using the orthogonality of 5(¢) and 1 (t) with respect
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to polynomials of degree p on [1/2,1], as well as (87) and (88), this condition becomes

+oo 1
0= [ w@eEeriyd = / D () 0 (27718 dt
1

0 /2
_ / w(®) <)dt+/ no(t) n(t) dt
1/2 1/2
- / (2 woyart — L <2p+1)q(t)> g(t) dt — Lpo(2+) / ()| dt .
1=0 1/2

This equality can thus be written

p
> woaai (g, ;= Lyo@*) (Ilallf + Inll3) -
=0

With (65), we verify that L, (2°*!) = (=1)? 22(P+1/2 from which we get (79).
Knowing that hi[p+ 1] = 0 and ag = 1 the orthogonality of {1} cz is equivalent to hi[j] = (¢!, ¢}) =0
for 0 < |j| < p, and like in (73) we prove that it is the case if and only if
+o0 +oo
a /0 tuwa= [ voa. (89)
Decomposing the left integral over intervals [277~1 277] yields

p+1

+
/ thl(t) dt = Z/ 2 Ik gkl (9-7¢) dt
0 2-1
Inserting (80) and (81) gives

+o0o
/ th ol (t) dt =
0

22 i(k+1) Z"’Jvl a 1;;:1 'l gy [ a=rne _ 22 J1) I, (gr )
Since >-F_ 277w, = L,;(27F71) and L,0(27") = 2 — 277, inserting this equation in the system (89)
gives the system (78), which is therefore equivalent to the orthogonality of the {1/)11 }iez.

Since ! (t) = q(2PT1t) + n(2PT1t) over (27P=2,27P~1) and ¢(t) is a polynomial, it is uniformly Holder
k + 1 on this interval if and only if n(t) is uniformly Holder k + 1 on [1/2,1]. It result from (80) that %! is
uniformly Hélder k + 1 on each interval (277—1,277) for 0 < j < p + 1. Given this property, one can verify
that a necessary and sufficient condition to guarantee that 1! is uniformly Holder k + 1 on its support is that

¢! is CF at the junction points 277 for 1 < j < p+ 1. The conditions (82) and (83) can be rewritten

m,/,1 m,/,1
lim dw(t):limdw(t)zo for0<n<k.
tsa-p=2  (t" =1 din
t>0—P—2 t<1

Since 9!(t) = 0 for t < 277=2 and for ¢ > 1 these conditions are equivalent to imposing that ' (t) is C* at
t =272 and at t = 1. Let us show that this is sufficient to insure that 1! is C*¥ at any 277 for 0 < j < p+1.

As a consequence of (77) we have for 0 <k <p

14
Vi€ [3/8,3/4] Y 28 1 (277t) = ay tF — 27 Ryt (21) — 28t (27P Ny
7=0
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Since M = (2¥7)<y j<, is invertible, we can write 1! (279¢) as a linear combination of 1! (2t) and ¢! (27P~'¢).
But ¢! (t) is C* at t = 27P~2 and t = 1, so ' (t) is also C*F at 2771 for any 0 < j < p. [ ]

If 9! has a minimum support [—1, —27P~!]U[27P~!, 1] and has a normalized amplitude so that ap = 1 then
Theorem 4 proves that it is entirely characterized by the moment parameters {ax}1<kr<p. Theorem 5 shows
that increasing the support introduce new degrees of freedom that depend upon ! (¢) on [277~2,27 P 1] which
is decomposed in a polynomial part ¢(¢) and an orthogonal complement 7(¢). The p equations (78) specify the
p moments {{g, t*), }1<k<p of ¢ as a function of the p + 1 variables {(g, 1), , ax }1<k<p- The polynomial g(t)
of degree p is thus entirely defined by these p + 1 variables, and the condition (79) can therefore be rewritten
as a non-linear equation that relates ||n||; to these p + 1 variables. Finally, (82) and (83) imposes boundary
conditions on the derivatives of 7(t) to obtain a regular wavelet ¢'. Since g(t) is a polynomial of degree p, if
k > p then for p < n < k these conditions are reduced to

d"n(1/2) _ d"n(1)

an - am O

The main difficulty is to find values for the p + 1 variables {(g, 1), , ar }1<k<p so that there exists 5(¢) which
satisfy all these conditions. The following proposition derives such values from the minimum support wavelets

of Theorem 4 and constructs regular orthogonal foveal wavelets.

Proposition 9 Let ¢! be an orthogonal foveal wavelet whose support is in [—1,—27P~Y U [27P~1 1], which
reproduces polynomials of degree p with constants {ar}1<k<p, for p < 100. There exist orthogonal foveal
wavelets ' of support in [—1,—27P~2]U[27P~2 1], which are C* and which reproduce polynomials of degree

p with the same constants {ax}1<r<p-

Proof: We first show that there exists n(¢) with p + 1 vanishing moments which satisfies (79), (82) and
(83) for k = oo if

P
A= (1P 2772 N P a(g, 1) — llgll7 > 0. (90)
=0

A family of solutions n(t) is explicitly constructed. We first adjust the boundaries of by defining for any
1/8 > v > 0 a C*> window g,(¢) such that

1 iftef1/2,1/2+1]
g,(t) =< 0 ifte[l/2+2y,1—29]
1 iftel—n,1]

and which is monotonous in the transition bands [1/2 4+ «,1/2 + 2v] and [1 — 2v,1 — «]. The function

—g4(t) q(t) ifte[1/2,1]

~(t) =
a0 94(t) (2*121”:0 wo, @ tl—q(t)) if t € [3/2,1]

is C* and satisfies (82) and (83). To cancel the first p+ 1 moments of 7y, we use a C* function 8 of support
in [0, 1] with fol 6(t) dt # 0. The k** order derivative #*) has k vanishing moments on [0, 1]. Observe that the

p + 2 functions

o (t) = k) (4(p+2)(t—g—vlj_2))) for 0<k<p+1
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have disjoint supports in [5/8,7/8]. Let us define

e =100~ 2D 6) tor0 <k <p-t.

Clearly np,, has p 4+ 1 vanishing moments while still satisfying (82) and (83). Since lim, g ||70,4|lr = 0 we
verify that lim.,_,q ||7p,+||r = 0 and hence that there exists y > 0 such that ||n, [ < A. The function

A~ np Iz
lpp+1llr

n(t) = npy — Gp+1(t)

satisfies ||n]lr = A and thus (79), it has p + 1 vanishing moments and verifies the boundary conditions (82)
and (83) for k = co.

Let us now consider a solution {ay}1<k<p of the system (67) of Theorem 4 and which therefore specifies a
minimum support foveal wavelet. It remains to prove that there exists (g, 1), such that (90) is satisfied, where
the moments (g, t*) for 0 < k < p are defined by the system (78). Inserting the equations (67) in this system

yields an equivalent set of equations:

P p
ak(g, 1), | 27 PHDIHD Y 7o d D L s0r4) | = (g, 1), |27 PFY =T 0 L,0 ) ) L (00
7=0 7=0
To prove that there exists (g, 1); such that (90) is satisfied, observe that ||q||? is quadratic functional of its
moments {(g, t*) }o<k<p and it results from (91) that there exists A > 0 such that ||¢||? = X[{g, 1);|*. Inserting
this in (90) together with (91) gives an equivalent condition

A:é.p(q’]-)_[_)‘|<q71)1|2>0 (92)
with (p+1) , ' -
—(p+1) _ —j (9P
Ep — (_ )p 9 p(p+1)/2 Z Wo.l 2 Zézo 2 ' Lp,] (2 ) ) (93)
P 9= (p+1)(k+1) — ijo 2-i(k+1) [, ;(2v+1)
If &, # 0 then (92) is satisfied for (g, 1), = n&, with 1/ > X. This is verified numerically for p < 100. [ |

This proposition constructs C* orthogonal foveal wavelets that reproduce polynomials, by adding a small
perturbation to the minimum support wavelet, which cancels the discontinuities of its derivatives at the points
277 for 0 < j < p. Such a small perturbation exists if the constant £, in (93) is non-zero. This was verified
numerically for p < 100 but we conjecture that this is true for any p # 0. Although all derivatives are
continuous, they may have relatively brutal variations at the transition points 277. To construct orthogonal

foveal wavelets whose derivatives vary more smoothly, in the following, we minimize a Sobolev semi-norm of

Sk(¥') = /+°°

—00

degree k > 0:
2

RO (94)

dtk

To remove a singularity that is Holder a < p + 1 and obtain a residual which is Holder p + 1, besides the
reproduction of polynomials of degree p, Theorem 8 requires ¢! to be uniformly Hélder p + 1. Let F, be the
set of all foveal wavelets ¢! having a support in [~1,—27P=2] U [27P~2 1], which are uniformly Hélder p + 1,
which reproduce polynomials of degree p and yield an orthogonal family {1p]1 }jez- Theorem 5 characterizes in
(80) and (81) any such wavelets with a polynomial ¢(¢) and a perturbation 7(¢). The polynomial ¢(¢) is itself
defined by the p + 1 parameters {(g, 1);, ar}1<k<p through the system (78). To compute a wavelet ' in F,

32



which minimizes the Sobolev semi-norm of degree k = p + 1, the following proposition gives a parameterized

expression of 7(t).

Proposition 10 Let ' € F, be a foveal wavelet corresponding to {{g, 1);, ar}1<k<p and a perturbation n(t).
For any n(t) which minimizes Spy1(¢") there exist A > 0, (w)o<i<p and (di)o<i<p such that

2p+2

P
Y wt+ Y et (95)
=0 =1

with 77772 = (—1)P*1 X\ for 1 <1< 2p+ 2. Moreover

p+1 2

1
S = | L2 L@ ) [

2p+2

E dl TIJ+1 rit

dt . (96)

Proof: Dividing the Sobolev integral (94) over the dyadic intervals [27771 277] and inserting (80) and
(81) together with the fact that 1! is odd gives

S = [

p+1

1
dt—ZZQ I L, (2P /1/2

2

P+t (
@y (¢ it . (97)

dPtin(t)
dtIJ+1

dipt+1

() |

Minimizing Sp4+1(¢') is thus equivalent to minimizing f11/2 W‘ dt. Theorem 5 imposes that 7(t) has

p + 1 vanishing moments

1
/ n)tdt =0 for 0<I<p (98)
1/2

that it satisfies the boundary conditions (82) and (83) as well as (79):

1 p 1 1
[ =3 uga [ goda- [ apa=c. (99)
1/2 1/2 1/2

=0
If {(g,1);, ar}1<k<p and hence g(t) correspond to ¢' € F, then the right hand-side of (99) is positive. A

solution of the minimization of Sp1 (') together with all these constraints is a saddle point of the Lagrangian
1

dr+in(t)|” 1
ﬁ(na)\,{)\l}oglgp) =/1/2 Wé)‘ dt+)\(C—/1/2 |2dt) ZA,/ )tdt,

where A is a positive Lagrange multiplier. A saddle point satisfies

d?P+2q(t

with the boundary conditions (82) and (83), where A and the \; are Lagrange multipliers associated to the
constraints (98) and (99). The solution 7(t) can therefore be written as in (95). Inserting this in (97) yields
(96). [ |

Let us now explain how to reduce the global minimization of S,11(1!) over F, to an optimization of the
p+ 1 parameters {{g, 1);, ar}1<k<p. This optimization is performed under the constraint that the Lagrange
multiplier A of 5(t) takes a prescribed value, which specifies the roots r; in (95). Since 7 has p + 1 vanishing

moments

1
(n,t’),=/ nt)ttdt =0 for 0<I<p.
1/2
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Together with the boundary conditions (82) and (83), we get a system of 3(p+ 1) linear equations, from which
we compute the 3(p + 1) constants {u;}o<i<p and {d;}1<i<2p+2 of 7(t) as a function of our p + 1 parameters
{{g, 1);, ar}1<k<p- The condition (79) on 7(t) can now be rewritten as a rational equation that relates these
p + 1 parameters. The Sobolev semi-norm S,1(x!) in (96) is also a rational function of these parameters.
The minimization of S,11(¢)') under the constraint (79) can therefore be written as the solution of a system
of polynomial equations. The real solutions of this system are computed and we keep the one that minimizes
Sp+1(1"). This minimum is a function of the initial parameter A > 0. A global minimum is obtained by finding
the A which yields the smallest minimum. The overall computation, thus involves a loop over the parameter A
and for each X a calculation of the solutions of a system of p + 1 polynomial equations. All calculations have
been performed by LePennec and Schost [12] with the package Kronecker in Magma [8].

For p = 1, for each \, the minimization of S(1)!) is obtained through a system of 2 equations of degrees
up to 7 with 2 unknown that yields 32 solutions. Among these solutions the one that minimizes S2(¢!) is
selected, and a minimization is then performed over X\. For p = 1, the resulting ¢! is shown in Figure 7 with
the corresponding ¢ and 12. Observe that ¢ is positive, which is a useful property used by Theorem 6 for
the characterization pointwise Holder exponent from the asymptotic decay of foveal coefficients at fine scales.
For p = 2, for a fixed A the minimization of S3(¢') yields a system of 3 equations of degrees up to 12 with 3
unknown, which can have up to 232 real solutions. The calculation of these solutions is computationally highly
intensive [12]. Figure 7 shows first a solution corresponding to the one obtained with p = 1, which also leads to
a positive ¢(t). For p = 2, there exists another foveal wavelet shown at the bottom of Figure 7, whose Sobolev
semi-norm S3(y') is smaller. However, the resulting ¢ changes sign. The parameters {(g, 1);, ar}1<k<p

corresponding to all these foveal wavelets are in Table 3.

(g, 1); a1 a2
1 -.030988103 1.59496125911351161726
2 | -0.0099565418 | 4.1928848382905952295497 | 17.586488446503838048
2 | 0.00613082569 | 1.6588558551518189845313 | 2.6682731679354740948

p
p
p

Table 3: Parameters {(g, 1);, ax }1<k<p corresponding to the optimized foveal wavelets shown in Figure 7.

6 Singularities

Foveal wavelets are particularly well adapted to detect singularities of non-oscillatory functions. When cen-
tering the foveal wavelets ¢! and 2 on an isolated singularity, Section 6.1 shows that the foveal wavelet
coefficients can characterize its Holder regularity. A procedure is derived to detect non-oscillatory singularities
from discrete signals. Section 6.2 proves that if the pair of foveal wavelets reproduce polynomials of sufficiently
high order then transition singularities are reconstructed from foveal coefficients with a small residual error,

like in Proposition 2 for translated Daubechies wavelets.
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Figure 7: Foveal wavelets that yield an orthogonal basis and reproduce polynomials of degree p, calculated by

minimizing the Sobolev semi-norm S, 1 (¢").
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6.1 Detection and Characterization of Holder Exponents

A function f is pointwise Holder o > 0 at w, if there exist K > 0 and a polynomial ¢,(t) of degree m = |«]
such that
VEER , [f(t) —qu(t)| < K[t —ul”. (101)

If 0 < a <1 then ¢, (t) = f(u) so (101) becomes
VieR , [f(t) - f(u)| <Kt —ul*.

We say that f is singular at v if it is not Holder 1 at w.

It is well known that wavelet coefficients can characterize the pointwise Holder regularity of a function f.
Let 1)(t) be a wavelet with one vanishing moment and ;,,(t) = 279/2¢)(277(t — u)). If f is Holder a < 1 at u
then [11]

(£, ju)| = O2IFTH/2) . (102)

This necessary condition is however not sufficient. In general, to control the Holder regularity of f at u, one
must control the amplitude of wavelet coefficients |(f, ;)| for v in a whole neighborhood of u. However, for
a pair of foveal wavelets constructed with a positive window, if f is not oscillatory in the neighborhood of
u, the following theorem proves that it is sufficient to control the amplitude of wavelet coefficients at v = u,

which simplifies considerably the detection of singularities.

Theorem 6 Let ' and 12 be foveal wavelets constructed from a continuous and compactly supported foveal
window ¢ > 0 with ¢(0) > 0. Suppose there exists € > 0 such that f is monotonous on [u—€,u) and (u,u+ €,
and that f is bounded. If there exists 0 < a <1 such that

I(f, ]1’“)| — 0(2j(a+1/2)) and |(f, ¢J2,,u)| - 0(21(a+1/2)) (103)
then f is Hélder o at u.

Proof Since f(t) is monotonous in a left and right neighborhood of u, the following limits exist:

lim f(t) = f(u ) and lim f(t) = f(u*) .

t—u

t<u t>u

Let us first prove that f(#) is continuous at ¢t = u by verifying that f(u~) = f(ut) < +00. We know that
+oo 1 +oo
/ P (t)dt = = o(t) dt .
0 —0o0

Since ¢ has a compact support, 1! (t) = ¢(t) — ¢(2t) also has a compact support and using the monotonicity

of f on each side of u we get

im0 = LT [ g

Since [(f,¢},)| = O(29(@+1/2)) it results that f(u™) = f(u~). We now verify that f(ut) = f(u™) < +oo.
Since ¥?(t) = ¢(t) — 2¢(2t), for any | < J

J
S22 (1) = 270427 (¢ — ) — 27 g2 (b - w)
j=l
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and hence

J
Si2F g2y =
;29 oz = |

+oo +oo

2779277 (t — w)) f(t) dt — / 2727 (E —w)) (1) dt - (104)

—00 — 00

Since |(f,%?,)] = 0(2/(®+1/2)) with a > 0, the left hand-side sum converges when I goes to —oo and hence

fm [ 2t gt —w)) £ty de = LD ES00) ;L FO) ™ gy dt < 4o |

l—=—00 J_ _

so f(ut) = f(u™) = f(u) < +o0.
We now prove that f is Holder a at u. Letting I go to —oo in (104) together with |(f, %7 ,)| = O(2i(e+1/2)

proves that N N
‘ [T ese e - s - s ¢(t)dt‘=0<2a=’)

and hence
/ +: (¢~ ) (F(0) - Su) de| = O2+) (105)
For any [ < J
izﬁ/?w}-,u(t) = 52 (- w)) — Bt~ w)
o

J ) “+o0 B +oo -
D202 (f,4) ) = / F@&) 27 (t — u)) dt — / F&) 2t —w))dt .
=l oo

— 00

Since ¢ has a compact support and f(¢) is continuous at u we get

J ] +o0
Y 2Pk = [ 108 -

j=—o0

Since fj—:: (279 (t —u)) dt = 0 and |{f,} )] = O(27(®F1/?)) we derive that

’ J7u

+oo
‘ [ 00 - sy de - dt‘ — (207 . (106)

Putting together (105) and (106), and the fact that ¢ > 0 and that f is monotonous in the left and right

neighborhoods of u, we derive that for 27 sufficiently small

/j $(277(t —u)) [£(t) = f(u)|dt = O21*T1)) (107)

and
—+oo

¢(277 (t —w) [f(t) — f(w)|dt = O(2(+D) . (108)

u

Since ¢(¢) is continuous and ¢(0) > 0, there exists v > 0 and 8 > 0 such that ¢(t) > § for |t| < 7. Hence

[0 - swlde = o) (109)

and

/”+72 |£(8) = f(w)] dt = O(2FD) . (110)
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The function f is Holder « at wu if there exists K > 0 such that |f(t) — f(u)| < K|t — u|*. Suppose that it
is not the case, say in a right neighborhood of u. Since f is monotonous in a right neighborhood of u, then

for any K > 0 there exists a sequence of integers {jp }nen with lim,_, ;o jn = —00 such that

|f(u+927) = fu)| > K (y27)* .

For t € [u + 2% , u + 427»*1], the monotonicity implies that

[f(t) = f)] > [ f(u+72") = f(u)]

hence )
u_;’_,-yzjn +1

ufry2in+1 _
[ uo-swlaz [ 150 - fw)lde> K (2

u+y2in
But since this can be obtained for any K > 0, it contradicts (110). The same applies in the left neighborhood

of u. So there exists a neighborhood of w for which |f(t) — f(u)| < K|t — u|®. Since f is bounded this can be
extended for any ¢ € R for K sufficiently large, so f is Holder a at u. ]

We say that f is non-oscillating if it is monotonous in a left and right neighborhood of any u € R. Together
with the necessary condition (102), this theorem proves that the Holder regularity of a non-oscillating f at u
is characterized by the decay of its two foveal wavelet coefficients at u. The condition (103) is necessary and
sufficient to prove that f is Holder @ < 1 at u. Singularities can thus be detected by computing |{f, ¢Jl.’u)|
together with [(f,4? )|, and measuring their decay across scales for all u € R.

Non-oscillating singularities can be detected by computing at each location u a foveal energy defined by:

J

ew) = Jim —1 S 2 (I + [ vRP) |

Jj=l+1
where 27 is a fixed maximum scale. The following proposition gives a necessary and a sufficient condition on

this energy to detect a singularity at u

Proposition 11 Let ¢! and 1? be foveal wavelets constructed from a continuous and compactly supported

foveal window ¢ > 0 with ¢(0) > 0.
o If f is Holder 1 at u then e(u) < +00.
e Suppose that f is non-oscillating. If f is not Holder alpha < 1 at u then e(u) = +00.

Proof: The necessary condition (102) proves that if f is Holder 1 at u then |(f,9%,)| = O(2%9/2) for
k=1,2s0 e(u) < oo. Conversely if f is non-oscillating and is not H6lder @ < 1 at u then (103) proves that
we do not have |(f, 9% )| = O(2(>+1/2)7) for k = 1,2. Tt results that e(u) = +oo. [ ]

For discrete signals measured at a finite resolution 27!, foveal wavelet coefficient can only be calculated up
to the finest scale 2/*! and the resulting energy is thus defined by:

J

ew=5—; > 29 (I u} )P+ [FvlP) - (111)

j=l+1
Since this sum is finite, the amplitude of e(u) remains finite at singularity locations. Similarly to the wavelet

maxima approach introduced in [9], potential singularities are detected by finding the local maxima of e(u). As
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opposed to the wavelet maxima algorithm described in [9], we do not need to detect and follow local maxima
across scales because the singularity behavior at u is characterized directly by the overall foveal energy e(u).

At any local maxima location, the Holder regularity of f is estimated by computing

a5(u) = 3 Togy (1L 0L12 + (£, 03P - (112)

If f is non-oscillating, Theorem 6 proves that f is Hélder o at w if and only if a;j(u) = O((a + 1/2)j).
The Holder regularity at u is thus calculated with a linear regression of a;(u) as a function of j. Figure
8 gives an example of signal and the corresponding foveal energy e(u). There are 8 local maxima located
at 0.14,0.2,0.4,0.44,0.58,0.72,0.82 and 0.96. Figure 8c shows that at v = 0.58 and u = 0.72 we have
a;j(u) & (a+1/2) j+ B with @ = 0 at v = 0.72 which indicates that the signal is discontinuous at the location,
and a =1/2 at u = 0.58.

60 0.06 2
0.04 1

40
0.02 0

20
0 -1

0 ‘ -0.0
0 0.5 1 9% 05 1 : 5 5 8
(a) (b) (c)

Figure 8: (a): Original signal. (b): Foveal energy e(u) calculated with the foveal wavelets derived from ¢ > 0

shown in Figure 7 (p = 1). (c): Variations of a;(u) defined in (112) as a function of j, at u = 0.58 and u = 0.72.

When f has oscillations that have an accumulation point then (103) is not a sufficient condition. For
example, f(t) = sin(1/t) has such an accumulation point at u = 0. One can then verify that although f is

discontinuous at v = 0, if ! and 9? are differentiable then
(9]l = OQITYD) and [(f,47,)] = OICH/?)) .

The analysis of the Holder regularity of oscillating functions with wavelets can be found in [10], but let us

mention that our definition of non-oscillation is stronger that the one of Jaffard and Meyer [10].

6.2 Reconstruction of Singularities

Transition singularities occur at points u between regions where f is regular. This section studies the precision
of a foveal approximation and gives conditions on the foveal wavelets to obtain a uniformly regular approx-
imation error. Uniformly regular functions are well approximated with linear projectors in standard bases
such as Fourier or wavelet bases. One can thus define a double layer approximation of f which first recovers
the singular parts with foveal wavelets and then represents efficiently the foveal approximation error with a

standard linear approximation scheme.
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Suppose that f is regular on the left and right of u but not at w where it is can be discontinuous. To
characterize the singularity at u, we introduce a definition of left and right Holder regularity at a point. A
function f is said to be Holder a on the left and on the right of u if there exists two polynomials g, (t) and

gt (t) of degree m < |a| and a constant K such that
Vi<u , [f(0)—az(t)] < K|t—ul® (113)

and

Ve>uo, |f(8) - g ()] < K Jt—ul*. (114)

The following theorem proves that if polynomials of sufficiently high degree are reproduced by foveal wavelets

then the singularity is reconstructed by projecting f in the foveal space at u.

Theorem 7 Let {¢p} , 11 }.cz be an orthogonal basis of a foveal space Vo with
7 J

“+oo
VE>0 Y 29927t = apth withap £0 for 0<k<p. (115)

j=—00

Suppose that |1 (t)| = O([t|®) for |t| < 1 and | (t)] = O(|t|=P~1) for |t| > 1. If f is Hélder a on the left and
on the right of u with a <p+1 and a < 3 then

VEER . |f(t) - Py, f(t) = O(t —ul) . (116)

Proof: The translated family {1/}11.7; 'ijl"t}jez is an orthonormal basis of V,, so

+oo
Po.f= 3 ((f,0h) v+ uihupt) -

Jj=—o0
Since f is left and right Holder « at u, there exists two polynomials g, (t) and ¢ (¢) of degree m < |a] such
that

Vi<u , f()=q;®)+e() and Vesu , f(t) =g (t)+et(t)
with
Vi<u e, ()| < K|t—u|* and Vt>u |ef(t)| < K|t —ul|*. (117)
If ¢(t) is a polynomial of degree m < 3 then we derive from (115) that it can be decomposed into
+oc
a®) = Y (e lleha® +a* e )
j=—00

and from the orthogonality of {w}f , P} ez we get

+oo
a= 3 (o, vl vin + @, vihwlt) - (118)
j=—00
Fort <u N
Py, f(t)= > (f,vl) v .
j=—00
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Inserting (f, ¢1.’;) = (q, , zpl.,;) + (e , wjl-’;) in this equation together with (118) yields

—+oo
Vi<u , Py, f(t)=q, () + D> (e, i) ¢in () (119)
j=—0o0
SO +oo
Vi<u , |Pv, f(t)—f(t)]=le, (t) - Z (€q » Vi) U5 u(B)] -
j=-—00

Since e, (t)| < K |t — u|®, with a change of variable we get

x> ¥j)]

IN

K /|t—u|°‘ 2-3/2 [yl= (279 (¢ — )| dt
< K'olet1/2i

We know that there exist Cy,Cy > 0 such that |1 ()| < C; and | (t)| < Cs |t|?, and since a <

+o0 [log, [t—ul] ' '
o e vl viL@®] <) K'20et/Dic 9l
j=—00 j=—00

+oo

+ Z K'2(at1/2)i ¢, 2—1’/2|2—j (t —u)|?
j=[logs [t—ul]
K" |t —ul|*. (120)

IA

So | Py, f(t) — f(t)| = O(Jt — u|*) for ¢t < u. Similarly we prove that |Py, f(t) — f(t)| = O(|t —u|®) for t > w.
|

This theorem gives conditions so that the projection of f over a foveal space V,, reconstructs the singularity
at u, up to a small residual error that depends upon the regularity of f on a left and a right neighborhood of
u. The error bound (116) is the same as the one obtained in Proposition 2 with foveal spaces constructed with
translated orthogonal wavelets, but Theorem 7 does not require any uniform regularity condition as opposed
to Proposition 2 and the approximation is performed with only two generating foveal wavelets.

Figure 9 shows the residue obtained with different foveal wavelets centered at u = 0, when approximating
a signal that is C* for ¢ < 0 and for ¢ > 0 but whose derivatives are discontinuous at ¢ = 0. For spline foveal
wavelets of degree p > 1, Table 1 shows that 8 < p + 1. To guarantee that |f(t) — Py, f(t)| = O(]t — u|®),
Theorem 7 requires that a < 8. If p = 1 then Table 1 shows that 8 = 1.497 and if p = 2 then 8 = .8645. In
the example of Figure 9, the residue in the neighborhood of u = 0 is indeed smaller for p = 1 than for p = 2.

Section 5.1 constructs foveal wavelets ¢! which generate orthogonal bases, reproduce high order polynomials
and have a compact support included in [-Cs, —C;]U[Cy, Cy] with Cz > C; > 0. These foveal wavelets thus
satisfy the decay conditions of Theorem 7 for any 8 > 0. Their approximation capabilities is then only limited
by the degree p of the polynomials they reproduce. If f is Holder & = p+1 on the left and on the right of u then
|£(t) — Py, f(t)] = O(|t — u|P*!). For the optimized foveal wavelets shown in Figure 7 with p = 1, the residue
obtained in Figure 9 is indeed smaller than for linear and quadratic polynomial spline foveal wavelets. As
expected, the amplitude of this residue in the neighborhood of u = 0 is further reduced for the two optimized
foveal wavelets that reproduce polynomials of degree p = 2, shown in Figure 7.

Figure 10 displays the reconstruction of a signal from multiple foveal points, using the optimized foveal

wavelets in Figure 7 and maximum foveal scales given by (7). Since ¢ > 0, singularities are detected from the
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Figure 9: Foveal approximations Py, f and the corresponding residue f — Py, f computed with different foveal
wavelets. (a,b): with foveal polynomial splines of order p, respectively equal to 1 and 2. (c,d): with the
optimized foveal wavelets in Figure 7 having a positive ¢, for p respectively equal to 1 and 2. (e): with the

optimized foveal wavelets for p = 2, shown at the bottom of Figure 7.
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Figure 10: (a): Original signal. (b): Foveal energy e(u) calculated with the optimized foveal wavelets
in Figure 7 for p = 1. (c): Foveal approximation Py f computed from the detected foveal points at
0.14,0.2,0.4,0.44,0.58,0.72,0.82,0.96. (d): Residue f — Py f. (e) Foveal approximation Py f computed from
the same detected foveal points with the optimized foveal wavelets at the bottom of Figure 7, for p = 2. (f)

Residue f — Py f.
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local maxima of the foveal energy e(u) defined in (111) and displayed in Figure 8b. The resulting approximation
reconstructs precisely all singularities. One can observe that the residue has a smaller amplitude and is more
regular for p = 2 than for p = 1.

If ! is a regular function then the following theorem proves that the residue f — Py, f is uniformly regular.
In Figure 9, one can indeed verify that the regularity of the residues depend upon the regularity of the foveal

wavelets used to compute them.

Theorem 8 Let {1&117 , ¥1*}jez be an orthogonal basis of a foveal space Vo with

—+oo
VE>0 Y 289l (279t) = apth withay £0 for 0<k<p. (121)

j=—o0
Suppose that ' has a support included in [—Cq,—C1] U [C1,Cs] for Cy > Cy > 0 and that it is uniformly

Hilder p+1. If the restrictions of f to (—oo,u] and [u, +00) are uniformly Holder o < p+1 thenr = f— Py f

s uniformly Holder o on R.

Proof: Theorem 7 proves that |r(t)| = O(|t — u|®). To prove that r is uniformly Holder a on R, one can
verify that it is therefore sufficient to prove that its restrictions to (—oo,u] and [u, +00) are uniformly Holder

a. For t < u, as in the proof of Theorem 7 we write f(t) = ¢  (t) + €, (t), and r = €, — Py, €, with

+oo
Py,e,(t) = Y (e, ¥in) 27979 (27(t —u))
j=—00
and there exists A > 0 such that
e » Vja)| < A0/ (122)

Since f is uniformly Hélder « on (—oo,u] and ¢~ (t) is a polynomial necessarily €;; = f — ¢~ is also uniformly
Holder a on (—o0,u]. We prove that r is uniformly Holder o on (—o0, u] by verifying that Py e, is uniformly
Holder a on (—o0, u).

For any v < u we want to approximate Py e, by a polynomial g,(t) for ¢ in the neighborhood of v. Since

¢t is uniformly Holder «, at any v; = 277 (v — u) there exists a polynomial ¢, of degree m = |a] such that
[ (#) — o, ()] < K [t —v;]* . (123)

Since the support of ¢! is [-Ca, —C1] U [C1,Ca] clearly q,,(t) # 0 only if C; < |vj| < C> and hence if
Cytlu —v| <29 < C;|lu—v|. Let us define the polynomial

+oo

©l) = Y (e vl 2 e, (27— w)

j=—o00
logy(C3 ' lu—v|)

- > (w2 e, (27— w) (124)

§=10g5(C  fu—v)

Let us evaluate I(t) = | Py, €, (t) — gu(t)|- If |t — v| > |u —v|/2 then |t — v| > |t — u|/3. We saw in (120) that

[Py, e, (H)] < K"[t —ul™ . (125)
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Since [¢'(t)| is bounded by a constant C, we derive from (123) that |gy, (t)| < C + K|t — v;|®. Inserting this
in (124) proves that there exists C' and K' such that

lgu(t)| < C' Ju—v|* + K' |t —0|* . (126)

If |t — vl > |u—v|/2 then |t —v| > |t — u|/3 so (125) and (126) imply that there exists K2 such that
I(t) < K|t — v|™. Suppose now that |t —v| > |u —v|/2 and let us evaluate

+oo
1) = | 3 (e ') 2792 (817 @7 —w) — g, (277 (t )
j=—o00
The terms of the series are zero for j < I; = Cy' min(ju —v|, [t —u|) and j > l; = C7' max(ju —v|, |t —ul).

Applying (123) together with (122) gives

log,(l2)
@< > A2YK([279(t—u) —v;|* .
j=logs(l1)

Since |t —v| < |u — v|/2 we have |[u —v|/2 < |t — u| < 3|u —v|/2 s0 l3/l; < 3C>2/C; and hence
[(#)| < AK [t —v[* logy(3C/Ch) -

It results that Py e, is uniformly Holder o on (—o0,u], and hence r(t) is uniformly Hélder o on (—o0,u]. We
prove similarly that r(t) is uniformly Hoélder a on [u, +00) and therefore that it is uniformly Holder o on R.
|
This theorem proves that the residual error of a foveal approximation is a uniformly regular function. If f
includes several singularities, a foveal approximation is computed as a projection in a space that is a sum of
foveal spaces corresponding the singularity locations, as explained in Section 2.1. If f is uniformly Hoélder o
between the singularities then we derive from Theorem 8 that the residue is uniformly Holder . This residue
may have a large amplitude far away from the signal singularities but since it is uniformly regular, it can
be efficiently approximated with a linear scheme in a Fourier or a wavelet basis [4]. This suggests using a
double layer approximation scheme, with foveal wavelets to reconstruct singularities, and any standard linear
approximation procedure to approximate the regular residue. Orthogonal foveal wavelets can therefore be used
both to detect singularities and to reconstruct a precise signal approximation from these singularities, where
as the residue is represented by a standard linear approximation procedure.
Acknowledgments: I am very grateful to Erwan LePennec and Eric Schost who implemented all numerical

calculations in Matlab, Mapple and Magma, and made the figures.
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