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Abstract

A foveated image is a non-uniform resolution image whose resolution is
highest at a point (fovea) but falls off away from the fovea. It can be obtained
from a uniform image through a space-variant smoothing process, where
the width of the smoothing function is small near the fovea and gradually
expanding as the distance from the fovea increases. We treat this process
as an integral operator and analyze its kernel. This kernel is dominated
by its diagonal in the wavelet bases and thus permits a fast algorithm for
foveating images. In addition, the transformed kernel takes a simple form
which can be easily computed using a look-up table. This is useful since in
applications, the fovea changes rapidly. We describe an application of our

approximation algorithm in image visualization over the Internet.

1 Introduction

Figure 1(a) is a uniform resolution image whereas Figure 1(b) is a foveated
image. A foveated image has non-uniform resolution. Its resolution is high-
est at the fovea but falls off as the distance from the fovea increases. We call
the process of going from a uniform image to a foveated image foveation.
A foveated image is obtained from a uniform resolution image through a
space-variant smoothing process where the width of the smoothing function
is small near the fovea but gradually increases towards the peripheral. In
one dimension, the foveation of a function f : R — R is determined by a

smoothing function g : R — R, and a weight function w : R — Rxo.
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The weight w depends upon three parameters and takes the form w(z) =

alr — | + B. We call a the rate as it determines how fast resolution falls

off, call v the fovea as it determines the point of highest resolution, and call



(a) Uniform resolution image. (b) Foveated image

Figure 1: Foveation.

B the foveal resolution as it determines the resolution at the fovea. Both
a and S are non-negative. The smoothing function g is normalized so that

>, 9(z)dr = 1. Figure 2 shows an example of a foveation with Gaussian
as the smoothing function. In general, we could replace the weight function
by any non-negative function. This generalization is useful when we are
interested in images with multiple foveae. Similar formulations of foveation
could be found in [9, 28].

The foveation operator can be treated as an integral operator

T @)= [ Kas@

where k(z,t) is the kernel of 7. Wavelets of high vanishing moments have
demonstrated their potential in approximating an integral operator [4], due
to their ability to build sparse representation for piecewise smooth functions.
In the foveation operator, the width of the function k(-,%y) on = grows as

the value of ¢y increases. Figure 3 is the contour plot of k(z,t). Note
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Figure 2: The dotted line is the original function f and the solid line is the corre-
sponding foveated function 7'f with weight function w(z) = (1/45)|z|. The fovea
is at the origin. This function is a scan-line from the test image “Lena” (Figure
12(a)). Observe that details are retained near the fovea but gradually disappear as

the distance from the fovea increases. The smoothing function g is the Gaussian.

that the kernel is smooth except at the origin. This paper shows that the
wavelet decomposition of this kernel is dominated by its diagonal, and gives

numerical results to support these findings.

Applications of foveation. Our visual system has a space-variant na-
ture where the resolution is high in the center (fovea) but falls off toward
the peripheral. This distribution of resolution provides a fast and simple
way of reducing information in the visual field, without sacrificing the size
of the visual field and the resolution around the center. As the biological
visual system is highly effective, this space-variant nature has inspired the
design of many computer vision systems. Under the framework of active

vision [1, 27, 25], Burt introduces smart sensing [5] which resembles the bio-
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Figure 3: The kernel plotted as an image (darker pixel corresponds to a larger
value) together with its contour plot. Observe that it is smooth except at the

origin.



logical foveated vision. During the smart sensing process, the fovea actively
and adaptively searches for interesting features; as a result, a sequence of
foveated images are analyzed. We could view smart sensing as a hill climbing
strategy which uses information across different scales.

The space-variant nature of our visual system suggests that if a viewer’s
gaze point is fixed at the fovea of a foveated image, the viewer could not
distinguish this foveated image from the original uniform image. Since a
foveated image carries much less information compared to the original uni-
form image, it can be encoded by fewer number of bytes. This observation
has been exploited by visualization systems where transmission of images
to the display device is a bottleneck, for example, in video conferencing
[2, 3, 11]. Foveation also plays a role in visualization systems where the im-
age rendering process is not fast enough to meet the real-time requirement,
for example in volume visualization [16] and flight simulation [31, 12].

All the applications mentioned rely on the observation that information
is reduced in a foveated image. Therefore, it is essential that the represen-
tations for foveated images capture this observation. To illustrate, in video
conferencing, a foveated image should be encoded with significantly fewer
bytes than the original uniform image. In most applications, the location
and shape of the fovea changes rapidly. Thus, a fast algorithm is required
to extract the foveated images from the original image.

A number of representations of foveated images have been proposed. In
[15, 32], the visual field is partitioned into cells known as super-pixels. The
value of a super-pixel is obtained by averaging all pixels in the corresponding
cell. To construct a foveated image, the value of all pixels in a cell is replaced
by the value of the super-pixel. These methods are computationally fast but
lack flexibility in the sense that the visual field has to be repartitioned if
the location and shape of the fovea changes. Another method by Burt [5]

uses subband coding as a hierarchical representation of the original uniform



image, and the foveated image is extracted from various levels. The third
basic approach is based on the log-polar transformation [30, 28], where the
foveated image is obtained by first transforming the visual field under a log-
polar transformation, followed by a convolution and the inverse log-polar
transformation.

In this paper, we derived a wavelet-based method for approximating the
foveation operator (1). This method is computationally fast and can be
extended for various weight functions. Furthermore, it permits progressive

transmission (or progressive refinement) of images with multiple foveae.

Outline of this paper. Section 2 describes the relationship between the
foveation operator and the space-variant nature of our visual system. The
main results of this paper are in Section 3 which consists of a few subsec-
tions, starting with a brief introduction to wavelets in the first subsection.
The second subsection studies the operator using wavelet and show that
under the wavelet representation, the transformed kernel is dominated by
the diagonal entries. The supporting numerical results are shown in the
third subsection. In the fourth subsection, we give an approximation of the
diagonal entries (of the transformed kernel), which gives good numerically
approximation and provides insight on the roles of the wavelet. The last
subsection gives an approximation of the operator obtained by suppressing
small values in the transformed kernel. Section 4 generalizes foveation to two
dimensions. Finally, Section 5 describes applications of foveation in image

compression and image visualization over the Internet.

2 Logmap and Foveation Operator

Studies of the space-variant structure in the visual cortex could be traced

back to the papers [20, 14, 23], who suggest a well-defined map-like rep-



resentation of the visual field in the cortex. In the early 1940s, Talbot
and Marshall [29] demonstrated and confirmed this hypothesis. Subsequent
studies by Schwartz [24] show that the complex logmap is a good model for
this mapping. The logmap (or log-polar map) is characterized by two real
parameters k,a and maps the point (z,y) in the retinal plane to a point

(p,0) in the visual cortex plane where

p = kln(y/(Jz] +a)*+y?), and
0 . tan~! (xyﬂ) if >0, (2)
tan~1 (;_La) + 7 otherwise.

For engineering purposes, it is not necessary to adhere to the logmap (2).
Thus, we use the term “logmap” loosely and use it to refer to transformations
that have the log-polar favor. Other forms of logmap can be found in [22, 21].
Schwartz [26] has an overview of the biological background.

Our definitions of foveation operators and weight functions are motivated
by the logmap, which attempt to capture the situation in which convolution
is performed in the visual cortex plane. Consider a function f where f(t) =0
for t < 0. We could rewrite foveation as a convolution after a change of

variables. For z > 0,

@@ =[5 (SF)

T

e — &Y
_ u),,—y u
=, f(e")e g( o )de

(where €Y = z and e" = t)

where

f(u) = f(e"), and

Equation (3) suggests a method to compute foveation: apply the logmap

transform, followed by a convolution and the inverse logmap transform [28].
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To ensure that the computations are stable, it is important to show that
T is a bounded operator. Since the operator can be treated as a convolution
after a logmap transformation, one would expect this to be the case. We can
show the boundedness along this intuition. We state the following theorem

and give the proof in the Appendix.

Theorem 1 Let g be bounded and g € L*(R). The operator
o 1 t—x
@@ = [~ s (") @
—oo” |27\ ]
is bounded in L? and

171 < [ ot 1) + latu + D)) T2 < o

3 Wavelet and Foveation Operator

Recall that
(@) = [ keofod,

where k(z,t) = |z|1g((t — z)/|z|). If we take N sample points from f
uniformly, then computation of the foveated function amounts to a matrix
multiplication, which takes O(N?) arithmetic operations. For some integral
operators, by representing the kernel using a wavelet base, the magnitude
of most entries in the transformed kernel become small. Suppressing these
small entries gives a sparse matrix. Together with the fast wavelet transform,
this sparse matrix provides a fast approximation for the integral operator
which could take O(N) arithmetic operations. In this section, we show that

a fast approximation for the foveation operator can be similarly obtained.

3.1 Wavelet Bases

Wavelet bases have important applications in mathematics and signal pro-

cessing due to their ability to build sparse representations for large classes of



functions. The first orthonormal wavelet bases were introduced by Strémberg
and Meyer [19]. A multi-resolution interpretation of wavelet bases provides
a general framework for constructing wavelets [17]. It also leads to a fast
discrete algorithm that takes O(N) arithmetic operations to compute N
wavelet coefficients [18]. Daubechies [10] discovered wavelets with compact

support. An orthonormal wavelet base of L2[0, 1] is a family of functions

{¢£o,n}ogn<2lo U {¢j,n}jgzg,ogn<2ﬂ-

Each 1;,, is a dilated and translated copy of the mother wavelet v,
Yim(t) = V2 iy (277t —n),
and each ¢y, ,, is a dilated and translated copy of the scaling function ¢,
bton(t) = V2 l0p (270 — ).
The subspace V; at scale £ is the subspace generated by

{¢€o,n}ogn<2£o U {¢j,n}e<jgeo,0§n<21 :

Boundary wavelets are modified to keep the support inside [0, 1].

The subspaces at different scales Vy, C Vpy—1 C Vgy—o C ... form a
multi-resolution ladder: each V; is coarser than V;_;. The approximation of
a function f at scale £ is

Yo fibtmdbtont Do D FWin)Pine
0<n<2fo £<j<lo 0<n<2I
The wavelet coefficients {(f,%jm)};m of a function f are small in the finer
scale (smaller j) and in the neighborhood where f is smooth. Thus, in finer
scale, the above approximation contains more local “details.” By truncating
the small coefficients, we have an adaptive sparse representation of f.
In two dimensions, the ladder is constructed using three mother wavelets,

UM Y and U9, where

d

Timn(®9) = Pim(T)Pin(y),
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‘ij,m,n(xay) = Yjm(x)pjn(y), and

U n(®,9) = jm(@)in(y),

with the scaling function

Bjimn (2, Y) = Gjm () jn(y)-

The wavelet coefficients for {\Iff,m’n}, k € {h,v,d}, are sensitive to the local
orientation of edges in the images and are interpreted as the horizontal,
vertical, and diagonal components respectively. Figure 4 shows an example
of a wavelet transform. Note that most of the coefficients are small except

in the neighborhood of an edge. Also note how the local orientation of an

edge affects the coefficients in different components.

3.2 Analytic Bounds

Consider a foveation operator T with a weight function w(z) = a|z|, and a

smoothing function g whose support is in [-a~!, o~ !]. Let

Oimpin = (TVjm:Vrn) @
- /_oo /—oo ij’m(t)qpk’”(l')ﬁg (%) dtdz.

The matrix {6, xn} can be viewed as the wavelet transform of the kernel
along the t-axis followed by wavelet transform along the z-axis.

It is easy to verify the following property.

Property 2 (Self-Similarity)

9j5m7k;n = ej—é,m,k—é,n folr any e E Z

Intuitively, this property tells us that the amount of information stored in a
foveated image is the same across different scales.
The next two theorems show the decays in the matrix {6, . n}. These

results are derived by exploiting the number of vanishing moments 1 has

10



Figure 4: (a) Original image I. (b) Magnitude of coefficient for {|(I, O¥ = )};.mn.
The bottom right square contains the diagonal coefficients for {¥§,  }mn, the
upper right square contains the vertical coefficients for {Ug,, , }mn and the bot-

tom left square contains the horizontal coefficients for {¥§ , . }mn. Coefficients in

higher scales (smaller j) are recursively arranged in the upper left square.
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and by using the fact that both 1 and g have compact support. We state
the theorems and explain their implications on the decay. Their proofs are

rather technical and we describe them in the Appendix.

Theorem 3 Suppose the support of both 1 and g is compact and contained
in [—a~t, a7, ¥ is CP, and 1 has p vanishing moments; then we have the

following.

(a) There is a constant J such that for any j,k,n and m,
10jmpn| < J2TEIZ,

(b) For |n| >2a™" and |m| > 207", if 0 km # 0, then
Clm| > 2¥I|n| > C|ml,

where C is a constant.

(c) There is a constant E such that for any j,m,k,n, when either |n| >

207t or |m| > 207, we have

10 mpml < E 2~ k=illp+1/2)

Using the fact that both 1 and g have compact support, we have part
(a) and (b) in Theorem 3. Part (a) tells us that 0}, , is small if |k — 7| is
large while part (b) states that for 6, 1 » to be non-zero, m is on the order
of 26=in. Together, they imply a decay off the diagonal. The third part (c)
gives a sharper bound than part (a); however it is only applicable for large
|m| or large |n|. Note that the decay in (c) depends on the regularity and

the vanishing moments of the wavelet.

Theorem 4 Suppose the support of both ¢ and g is compact and contained

in [—a~t,a™1], and v is CP and has p vanishing moments; if g is uniformly

12



Lipschitz p < p, then for any |n| > 2a~%,|m| > 2! and any j, k, there is

a constant F' such that
0;mpnl < F 2U=k)p41/2) || =(p41) - gpgd

|0j,m,lc,n| < in(jik)ﬁ‘mli(p_kl)'

Theorem 4 suggests a relatively slower decay away from the fovea. It
gives a bound that decays as |m/| or |n| increase and relates the rate of decay
to the regularity of the smoothing function g.

In sum, the matrix {6, %} decays in two directions: off the diagonal,
{0 m,k;n} decays as |k — j| and |m — n| increases; while along the diagonal,

{0j;m,j,m} decays as |m| increases.

3.3 Numerical Results

Let us compute, numerically, the matrix {6, x»}. Figure 5 illustrates such
a matrix computed using the Daubechies wavelet with four vanishing mo-
ments [10]. The smoothing function is the Gaussian and the weight function
is w(z) = |z|/30. A quick visual inspection suggests that the matrix is
dominated by the diagonal entries 6, jm Where j,m € Z. In addition, the
diagonal entries decay relatively slower away from the fovea. This decay
along the diagonal is easily observed in the cross-section plot shown in Fig-
ure 6. Another observation from Figure 6 is the self similarity across the

scales, that is, 6, jn = Ok n k., for any n, j, and k.

3.4 Approximating the Diagonal

Although the analytic bounds are sufficient to show the decays in the trans-
formed kernel, the predicted decays are still far from the numerical results
observed. Here, we give an approximation of the diagonal {6}, ;,} which,

besides being a good approximation, also gives more insights on the roles of

1 and g.

13



Hﬁ T n=0

Figure 5: Computed numerical value of the matrix {€,,,x,}. The entries are
grouped into blocks where each block consists of entries with the same first and
third index. For example, the block in the top-right corner consists of entries of
the form 603 ,,, 6., Where —32 < m < 32 and —4 < n < 4. The intensity of each pixel
corresponds to the value of the corresponding entry; a darker pixel has a larger

value.
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Figure 6: The cross-section of Figure 5 along the diagonal 0; ,, ; m. Note the decays

and the self-similarity across different scales.

By the compact support of 1,

n+A proo
00,n,0,n = / /_ ¢0,n ($)¢O,n (t)gm (t) dt d.’L‘,

n—A
where g, (t):=(c|z|)"'g ((a|z])~'(t — z)), and A is a constant. For large

positive n, hp(- — z) is a good approximation of g,, where

hn(t) := %g (%) .

Using this approximation, we have a much simpler form:

o= [ Z / Z o ()b (t — )0 n (1) dt da (5)

Figure 7 shows that the absolute error is below 0.02.
Equation (5) can be further simplified. By interchanging the integrals
(which is possible by Fubini’s theorem) and treating the first two terms as

a convolution, it can be rewritten as:

Cn = /_o:o (T/JO,n * hn) (t)T/JO,n (t) dt.

15
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Figure 7: The absolute error in approximation {6}, , jo.n} using (5). This graph is
computed by evaluating the numerical difference between approximation (5) and

the results in Figure 6.
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By applying Parseval’s formula and the convolution theorem, we have

~ 2
‘ dw.

o
el = [ Gltamw) [f(w)

—0oQ0
Since 71 has compact support, 1/3 is at least p times continuously differen-
tiable. Together with the fact that ¢ has p vanishing moments, we have
$*)(0) = 0 for k < p. Thus, |¢(w)| < Cw? for some constant C, and

(o]
el < €[ la(@nyw) ¥ du

—0o0

o0
— C%(an) %! / 1(w)| w? duw.

-0

Furthermore, as g is at least 2p times continuously differentiable, we have

. 2
| 1) i < o,
—00

and this gives |c,| = O((an)~2P~1). This bound is tighter than the bounds
given by Theorem 4.
Similarly, the following is a good approximation of (T'¢, ¢).

oo -~ o~ 2
én ::/ hn(w) ‘gb(w)‘ dw.
—0oQ
Since |$(0)| = 1, we expect a slower decay:

w A
en < E/ Vi, ()| duw
—0oQ
E o0

- = . _ -1
= = law)ldw = Bi(am) ™,

where F and F; are some constants.

The effect of this slower decay appears in two dimensional foveation, and we

will revisit this in Section 3.5.

3.5 Approximation of Foveation

Given the N = 2% uniform samples of a function f, we want to compute T'f.

Since the kernel (with respect to a wavelet 1) is dominated by the diagonal,

17



suppressing all entries off the diagonal, we have the following approximation
of Tf.

b 29—1

Tf ~ <f7 ¢€0,0>¢K0,0 + Z Z ej,n,j,ndj [n]'lpj,na (6)

j=1n=0

where each dj[n]:=(f,%;,). In the above approximation, we ignore the
boundary effect and approximate (T'¢y, 0, Pe,0) by 1. The wavelet coeffi-
cient {d;[n]};n, can be computed from the uniform sample of f using the
linear time fast wavelet transform. Conversely, the double summation can
be computed in linear time using the fast inverse wavelet transform. Thus,
given a function represented by its uniform sample points, we can compute
its foveated image in linear time, provided that the diagonal {0;, ;,} is
precomputed. Let us call the precomputed diagonal {6}, .} the mask.

The mask could be precomputed directly from its definition or from the
approximation (5). Figure 8 shows the computed mask which is plotted
as functions of n for different j. Note that it contradicts self-similarity
(Property 2). This is due to the error induced in sampling the kernel and
f. (In Figure 6, the values are computed in high resolution; thus the self-
similarity property is retained). In coarser scale, the kernel for j > 3 are
well approximated by j = 3. In Figure 8, the diagonal {6, ;»} for j > 3 is
not shown as it overlaps with the entries at 7 = 3.

Figure 9(a) is an approximation of a foveated function using (6). The

error of this approximation is shown in Figure 10(c).

Look-up table. The above approximation assumes that the weight func-
tion takes the form w(z) = «|z|. For weight functions with non-zero fovea
~v and foveal resolution S, we can similarly show the decays in the corre-
sponding transformed kernel. Thus, similar approximation can be extended
to this class of weight functions.

In most applications, the parameters «, 7y, and 8 change rapidly. Thus,

18



Figure 8:

100

The entries 0, ;, computed numerically. The samples are taken uni-

formly at a unit spacing.

it is important to compute the corresponding diagonal {6, , .} efficiently.

A fast and simple approximation can be achieved by a “look-up” procedure

which uses a table L of size Lgj,e. The entries in L are the diagonal with

respect to a weight function

where g is some small constant. Typically, a good choice of g is (Lgize)

wo(x) = aolzl,

-1

The mask corresponding to different weight functions are looked up from

this table. Let us define {Ozf} to be the diagonal corresponding to the

foveation whose weight function is w(z) = «a|z| + B. To approximate

aaaﬂ

I

the look-up procedure returns L[k] where

bim | 2-(nl +2798)

If (k > Lgize), then the value zero is returned.

In particular, if 8 = 0 but o # ap, then the look-up amounts to a dilation

of the table by a factor of a. If « = ag but 8 # 0, then the look-up amounts

19



to a translation. When + is non-zero, we could approximate the diagonal by
shifting the look-up table. This look-up procedure can be justified by using

a similar trick in deriving (5).

A simplified approximation. An interesting simplification is by fur-
ther approximating each diagonal entry 6; ,, ; ,, by it’s rounded value ROUND p (6, 5, j n),
where
ROUND p () 1 ifz>D, and )
0 otherwise,
for some constant D. Call this simplified mask the 0-1 mask.

This method of using a 0-1 mask to produce a foveated image is essen-
tially the technique of Burt [5]. In a certain sense, we give a justification of
this technique by arguing that it is indeed an approximation of the foveation
operator. Figure 9(b) shows the approximation of a foveated function using
a 0-1 mask and Figure 10 compares the error in using the diagonal and a
0-1 mask.

The advantages of the 0-1 mask are simplicity and computational speedup
in the reconstruction process. An example is volume rendering [6], where
the projection of the volume data onto a plane is computed by performing

a texture mapping operation for each non-zero coefficient.

4 Generalization to two dimension

Most applications of foveation are for two dimensional images. Given a two
dimensional image I, its foveation is determined by a smoothing function g

and a weight function w.

(T'T) (2,y) :=(I, guy)- (8)

Each g,, is the translated and dilated version of the smoothing g. Its

center is translated to (z,y) and its width is dilated by a factor of w(z,y).

20
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Figure 9: (a) The darker line is the foveated f as in Figure 2. The lighter line is
an approximation computed using only the diagonal in the operation matrix. (b)

Same as (a) except that each diagonal entry is rounded to 0 or 1.
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Figure 10: The solid and dotted line is the error in Figure 9(a) and 9(b) respec-
tively. The error in (b) is clearly larger than that in (a).

In addition, each g, , is normalized under 1-norm. Specifically,

1 s—cr t—y
gw,y(S,t) = w(a:,y)zg (w(a:,y)’ w(a:,y)) '

In two dimensions, the weight function takes the form w(z,y) = «o||(z,y) —
(71,72)]l2 + B, where a, v = (y1,72) and 8 are the rate, fovea, and foveal
resolution respectively. Figure 12(b) is the foveated image of Figure 12(a).

Similar to the one-dimensional case, in two dimensions, we transform
the kernel using a wavelet. By choosing a compactly supported smoothing
function and a wavelet, it is easy (but tedious) to show an off-diagonal decay
in the transformed kernel. Along the diagonal, for a separable smoothing
function and suitable wavelet, we can show a decay away from the fovea.
We omit the details.

To see the different roles of the three mother wavelets ¥* where k €
{h,v,d}, let us consider an approximation. Let {c;c [m,n]} be the diagonal

entries:
cf [m,n] = <T\IJk ok >

0,m,n> ~0,m,n

22



= / dy/ dzr ‘I'g,m,n(%y)/ dt/ ds \Illg,m,n(sat)gw(w,y)(sat)'
—00 —00 —00 —00

Note that the support of ¥* is in the domain [m — A,m + A] x [n —
A,n + A], where A is some constant. For large m or n, we can approxi-
mate w(z,y) by the constant w(m,n). Thus, if ¢ is separable, the function
Gu(z,n)(8)Gw(m,y) (t) is a good approximation of g, ;) (s,). This simpler
form gives the following approximation.
cjlw(m,n)] - bjlw(m,n)], ifk=v,
cEm,n] = bi[w(m,n)] - ¢;lw(m,n)], if k=h,

cjlw(m,n)] - ¢j[w(m,n)], otherwise,

where

Cj[r] = <¢j,r>T(¢j,r)>a

bilr] = (¢jr: T (bjr)), and = [|(m,n)]l2.

Recall that in Section 3.4, (¢;.m, T (¢;,m)) decays much slower than (1} y, T (¥j.m))-
Thus the vertical component has a slower decay compared to the diagonal
component.

Figure 11(a) shows the contour plot of {cf[m,n]}. This two-dimensional
contour plot is the diagonal entries of the four-dimensional transformed ker-
nel. Figure 11(b) is the rounded version of Figure 11(a) using equation (7).
A faster decay is observed in the diagonal component.

For an image I, its foveation can be approximated by

<I’ ‘1)150,0,0> + Z C;? [m’ n](L w?,m,n)‘yﬁm,n' (9)

k!m”n”j

The wavelet coefficient {(Z, ‘Iff,mm)} can be obtained from the uniform sam-
ple of I using the linear time fast wavelet transform. Conversely, the sum-
mation in (9) can be computed in linear time using the fast inverse wavelet

transform.
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Figure 11: (a)The contour plot {cf[m, n]}. Note that the vertical component and
diagonal component are different. (b) The simplified 0-1 Mask. The dark regions
contain coefficients of value 1. The constant for the rounding function ROUND,

is D=0.4.

Figure 12(c) is an approximation of Figure 12(b) obtained using (9)
whereas Figure 12(d) is the approximation using the rounded 0-1 mask.
The visual effect of using the 0-1 mask is an enhancement of the Gibbs phe-
nomena along edges. This can be observed in Figure 12, especially along

the edge of the “mirror.”

5 Applications

Image Compression. Suppose we have prior knowledge of the viewer’s
point of interest in an image, we could achieve a higher compression rate
by compressing the foveated image instead of the uniform image. The com-
pressed foveated image is obtained by applying the existing compression
scheme on the coefficients obtained by our approximation method.

To illustrate the compression rate, both Figure 12 (c) and (d) are re-
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() (d)

Figure 12: (a) Original image. (b) Foveation with foveal at her right eye and with

rate « = 1/(80 pixels). (c) Computed using the mask as shown in Figure 11(a).
(d) Computed using the 0-1 mask as shown in Figure 11(b).
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constructed after the wavelet coefficients are quantized (that is rounded).
After quantization, the number of non-zero coefficients required for (c) and
(d) reduces to 7471 and 7460 respectively, which are both about 2.8 percent
of the total number of coefficients required for the original image. Note
that the performance of a compression scheme at high bit rate is essentially

proportional to the number of non-zero coefficients [18].

Image Visualization. A number of previous works [15, 32] have indi-
cated the potential of foveation in image visualization across the computer
network. This idea could be enhanced by including progressive transmis-
sions of a multi-foveated image (an image with more than one fovea) and
allowing the viewer to interactively select the foveae [8, 13].

First, let us give a generalization of weight function to more than one
fovea. We can obtain new weight function by combining several weight
functions. Given two weight functions, their blended weight function w is

defined as
’UI(:L', y) = min{wl ($, y)a w2 (33, y)}

We call a weight function blended from several single-fovea weight func-
tions a multi-fovea weight function. The foveated images with these weight
functions may contain more than one fovea.

In our application of image visualization, a very large image is stored in
the server and the viewer is connected to the server through the computer
network. Both the server and viewer keep a multi-fovea weight function wy,
which changes as the time ¢ increases. The task of the server is to provide
the viewer the multi-foveated image with weight function w;. The viewer
could interactively modify w; by blending w; with another multi-fovea weight
function w'. Note that this application is directed to images of very large
size (possibly 5000 by 5000 pixels), and the viewer is only interested in a

small and highly selective region of interests.
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To send a multi-foveated image, the server computes its approximation
using methods described in Section 3.5. Recall that this amounts to the pair-
wise multiplications between entries in the mask and the wavelet coefficients
(of the original image). The coefficients of the approximated multi-foveated
image are then quantized to some fixed precision. Next, these quantized
coefficients are treated as bytes and sent across the network. The server
keeps a history of what had been sent; thus it is not necessary to send all
the bytes. Instead, the server could just send the additional bytes required
for the multi-foveated image. This process iterates until the viewer stops
the transmission.

A simplified version of this scheme is implemented in [7].

6 Conclusion

The idea of using wavelets in foveation has been investigated in many pre-
vious works. Non-wavelet method based on log-polar transformations and
superpixel geometry have also been studied. Our novel approach amounts
to first defining a mathematical foveation operator, and then giving a prac-
tical wavelet-based approximation to this operator. Our method is simple
and flexible for multiple foveae, and is provably accurate (relative to the
mathematical operator). It also permits progressive transmission of multi-
foveated image. We have demonstrated the utility of our approach in two

applications, namely visualization and image compression.
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A Boundedness of T

Proof.(of Theorem 1)
This proof is based on the intuition that foveation is equivalent to a

convolution after a change of domain. Let

f+@) = f() 1[0,00) (t), and
f—(t) = f(_t) 1[0,00)(t)a

where

1 ift>0
1[0,00)(t) =

0 otherwise.
Let K; : L2(R*) — L%(R), for i = 1,2,3, and 4 be the operators

(L) dt :
K.f(z) = L (L) dt ifz>0 (10)

0, otherwise,

—
<3
~
=

|—=

where

ki(u) = g(u—1)1[c)(u),

ko(u) = g(—u—1)1 ) (u),
k3(u) = g(u+1)1jc)(u), and
ki(u) = g(—u+1)1j,c)(u)

Observe that

7f(0) - | oof(t)ﬁg (ﬁ - ﬂ) a [” f(—t)%g (ﬁ - %) dt
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If x > 0, then

Ti@) = [ i0ge(5-1)a+ [T r-oL

= Kifi(z) + Kof-(2);
otherwise,
Tf(z) = / ft)—g (— + 1> dt+/
0 —T -z 0
= K3fi(—2) + Kyf-(—2).
We can combine the above as follow:
Tf(z) = Kifi(z)+ Kof-(z)+ Ksf+(—
Lemma 5 shows that each K; is bounded.

1% < [ ki) %

Putting the above inequality into (11), we have

1
—t)—g (—i + 1> dt
—Z x

z) + Kuf (-x).  (11)

ITAL < (I + ol + s ]+ ) 1]
> < [Tle- i °°|<u—1>|f
+/ u+1)|\/—a+/0 (—u+1)|7_
= [Clste- 0 [ e D
Q.E.D.

Lemma 5 Let L2(R") :={f € L%(R) : supp(f) C [0,

bounded, then the operator K, where

K@= [ w5k (3)

z

18 bounded and

K< [ k)] 22 < .
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Proof. Rewrite K as a convolution after a change of variable (logmap trans-

formation):

K@ = [Tror(1)2
Kf(e¥) = /OO f(e")k (e"7Y) e¥de”

(substituting t = €* and = = €Y)

o0
= e_y/2/ /2 f (e*) eY/2E (e7Y) du.

—0o0

Let us define the change of variable operator I' : L2(Rt) — L%(R),
Pf(u) = /2 f (%)
Note that
Kf(e") = e 2 (Tf*[TK)Y) (v),
where V is the flip-operator, that is, h¥(z) = h(—z). Now, we have

V2K f(e¥) = (Tf%[Tk]Y) (y)

= TKf(y) (Cf % [TK]Y) (). (12)

Let k:=[T'k]Y and C be the convolution operator defined by:
Cg(x):= (g *%) (z).
Inserting into (12) gives

TKf(y) = CTf(y)
=K = I 'CrL.

Note that I' is a unitary operator, thus we have

1K = [IC]]-

33



Since C' is a convolution with E,

ol < [ [Bw) du

o0
= [ e ()] du

—0oQ

AL

Hence

0 dz
K1 < [ @) FZ < 20K oo + K < o0

Q.E.D.

B Decay in the kernel

To prove Theorems 3 and 4, we use the following lemma [19] which relates
the magnitude of |(f, ;)| with the local regularity of f and the scale j.

The local regularity of a function is measured by its Lipschitz regularity.

Definition

1. A function f is pointwise Lipschitz 6 > 0 at v, if there exist Q > 0,

and a polynomial p, of degree m = |§] such that for all t € R,
() —po(t)] < Qlt—v|’. (13)

2. A function f is uniformly Lipschitz § over [a,b] if it satisfies (18) at

v € [a,b], with a constant Q that is independent of v.

Lemma 6 Suppose ¥ has q vanishing moments, ¥ is C? and has compact
support, and f is uniformly Lipschitz 6 < q over an interval [a,b], then there

exist B > 0 such that for all v,

[(fjn)| < B2OTL/2I,
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Proof. (of Theorem 3) Parts (a) and (b) can be easily verified using
the fact that both g and v have compact support. For (c), we will only show
10.m .| < B25=D@FL/2)  Gince either |n| > 207! or [m| > 27!, if nm < 0

then 6y kn = 0. If n > 0 and m > 0, then

omsn= [ [ Vea@ion@)as) g (

Otherwise, if n < 0 and m < 0, then

tomin= [ [ dra@bom®(-0a) g (L22) dra.

— QT

t—=x

) dtdzx.
oz

We only consider the first case (n > 0 and m > 0) since the second case is
similar.

t—=x

Gin = [ [ venl@rom @y (1

—/ Y (T /¢0mt$a 9<t

(by substituting ¢’ = tz 1)

) dtdz,

) it de. (14)

If n > 2a~ !, then Yrn(z) =0 for < ¢, where c is some positive constant.
Using this fact, (14) can be rewritten as

/ Vi (T /¢omt:va g(t )dtd

Otherwise, we have m > 2o~ !. Since 1) has compact support, 1o ,,(t'z) = 0

whenever ¢’ and z have different sign. Therefore, (14) can again be rewritten

as the above.

-1

Since supp(g) C [~a~!, a7!], we have

supp(g(a (- —1))) € [0,2],

2 [t—1\ [®
Oo,mkm = /Oa 1 (T)/ Dk ()0, () da dt
—0o0

- /02 a_ltpg (%) /_o:o ¢k,n($) (t_pdﬂo,m(tﬂv)) dz dt.
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Since 1, is CP, then so is the function 7P, (- t). Together with Lemma
6,

o0
‘/ ¢k7n($)t_p¢o,m(t$)) dz| < Elzk(iﬂﬂ/?),
— 00

for some constant F;. Therefore

t—1 2
< —1gp . k(0+1/2) g4 — E,9k@+1/2)
00,m.km| < 021352{‘(1 t g( - )‘} /0 E2 dt = By

By self-similarity, we have the result.

Q.E.D.

Proof.(of Theorem 4)
We will only show [0 m k| < F 20=#)(0+1/2)|n|=(0+1) | The other case is
similar.

Rewriting 6} ,,0,n,, we have

imon = [ toa@laz D [ pim(®) (laaly (o 1) ) deda,
—o0 —o0 azrT

Since g is uniformly Lipschitz p, then so is (ax)?g(-/(az) — 1). Together

with Lemma 6,

o0 .
0j,m,o0;n < / ‘on’n(q;)(ax)—(p+1)F12](p+l/2)‘dx
—00
—1
= RPTD /n+a Yon|az| =P dz.
n—a~! ’

Since |n| > 2271,

IN

10,m,0,n|

AP afn o) [ fyo (e do

F22j(p+1/2)|n|—(p+1)_

IN

By self-similarity, we have

10, m | < FITROT) 0 =(o11),

Q.E.D.
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