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Abstract

Dictionary learning algorithms or supervised deep con-
volution networks have considerably improved the effi-
ciency of predefined feature representations such as SIFT.
We introduce a deep scattering convolution network, with
complex wavelet filters over spatial and angular variables.
This representation brings an important improvement to re-
sults previously obtained with predefined features over ob-
Jject image databases such as Caltech and CIFAR. The re-
sulting accuracy is comparable to results obtained with un-
supervised deep learning and dictionary based representa-
tions. This shows that refining image representations by us-
ing geometric priors is a promising direction to improve im-
age classification and its understanding.

1. Introduction

Learning image representations has considerably en-
hanced image classification results compared to geomet-
ric features such as edge descriptors, or, SIFT and HOG
[19, 7] patch representations. Learning may thus seem to
be a more promising direction for improving image analysis
rather than refining geometric image analysis. This paper
aims at showing that understanding how to take advantage
of geometrical image properties can define image represen-
tations, providing competitive results with state of the art
unsupervised learning algorithms. It shows that refining ge-
ometric image understanding remains highly promising for
image classification.

Supervised deep neural network learning achieves state-
of-the-art results on many databases [ 1 |, 16]. However, sev-
eral works [30, 8] have shown that the Alex-net [11] trained
on ImageNet still performs very well on different databases
such as Caltech or PASCAL VOC. The output of this neu-
ral network can thus be considered as a “super SIFT” im-
age descriptor, which is used as an input to a linear SVM
classifier [30, 8]. It indicates that this deep network is cap-
turing important generic image properties, which are not
dependent upon the classes used for training. In the same

spirit, unsupervised deep learning [13] as well as unsuper-
vised bag of words [26] or dictionary learning with spatial
pyramid[ | 2] have improved classification results previously
obtained with engineered feature vectors such as SIFT or
HOG, on complex object recognition databases. However,
these unsupervised learning algorithms are tailored to each
databases. One may wonder whether their improved per-
formances result from an adaptation to the specific proper-
ties of each databases, or whether these unsupervised repre-
sentations capture refined geometric image properties com-
pared to SIFT or HOG features.

A scattering convolution network is constructed with
predefined complex wavelet filters, which are adapted to ge-
ometric image variabilities [22]. It provides a mathematical
and algorithmic framework to incorporate refined geomet-
ric image priors within the representation. Since images
are projections of 3D scenes under various view points, the
main source of geometric image variabilities comes from
rigid movements, and deformations resulting from perspec-
tive projections. An important issue is to build adaptive
invariants to these sources of variability, which preserve
essential information to discriminate different classes. A
translation invariant scattering network was studied in [5]
for digit image classification and texture recognition, but
which was not powerful enough to classify complex objects
as in Caltech or CIFAR. A translation and rotation invariant
deep scattering network was introduced in [25] to classify
textures with strong rotations and scalings. However, im-
posing rotation invariance is a prior which is too strong for
image object and scene classifications, which are typically
not fully rotation invariant.

Section 2 introduces a scattering representation which is
translation invariant, and which efficiently represents rota-
tion variability without imposing full rotation invariance. It
yields a representation which complements SIFT type co-
efficients, with coefficients incorporating interactions be-
tween scales and angles. This roto-translation scattering
representation is nearly complete in the sense that good
quality images can be recovered from roto-translation scat-
tering coefficients [4]. It is also stable to additive perturba-
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tions and small deformations, which guarantees to avoid the
type of instability observed in some deep networks [28]. In
this architecture, the loss of information only appears at the
final supervised classification stage, which computes invari-
ants adapted to the classification task. It includes an orthog-
onal least square supervised feature selection followed by a
linear or a Gaussian kernel SVM.

This scattering representation is tested in Section 4 over
Caltech and CIFAR data bases for object classification. It
yields results which are well above all other representa-
tion which do not incorporate any learning, based on SIFT
type features or with random weight deep networks. It also
gives competitive results with state of the art unsupervised
learning procedure adapted to each databases, which in-
dicates that these unsupervised learning algorithm do not
capture geometric transformations which are more power-
ful than rigid movements and small deformations. Compu-
tations can be reproduced with a software that is available
at http://'www.di.ens.fr/data/software.

2. Roto-Translation Scattering Networks

Images have important geometric variability due to per-
spective projections of 3D scenes under various viewpoints.
It includes a combination of rigid movements and deforma-
tions. This section introduces a separable scattering trans-
form, which constructs a nearly complete representation,
based on elementary features, which linearizes important
geometric variability. This representation is used for object
classification. Scattering networks are particular classes of
convolution networks [22], whose filters are computed with
wavelets. They are introduced in the framework of convolu-
tion networks to better understand the specificities of their
architecture.

2.1. Convolution Network Cascade

A convolutional network is a multilayer architecture,
which cascades spatial convolutions and pooling operators,
which includes sub-samplings [15]. These networks com-
pute progressively more invariant image descriptors over
multiple layers indexed by 0 < 7 < J.

For j = 0, the network illustrated in Figure 1 takes in
input an image x of P pixels, with potentially (o = 3 color
frames. For j > 0, each layer x;(p, ¢) is a set of Q; im-
age frames, which correspond to different “feature types”
indexed by 1 < g < ;. Each feature image has P; pixels
indexed by p. It is computed from x;_; by applying a linear
operator F; to x;_1, followed by a non-linearity, which may
be a rectifier, a thresholding, a modulus or some other non-
linearities “pooling” functions [15]. Convolution networks
impose that for each fixed g, F; computes a convolution of
zj_1(p, ¢) along p, with a filter which depends upon ¢. The
operator F}; also linearly combines the ();_; image frames
of x;_, indexed by g. The output vector Fx;_; is then

transformed by a non-linear “pooling operator” which may
incorporate a rectifier, a modulus, a thresholding [15]. For
scattering transforms, Fx;_1 is a complex valued signal
and the non-linearity is a complex modulus, so we write:

zj = |Fj|zj1. 1)

Figure 1 illustrates this computational architecture intro-
duced by LeCun [15].

The operators |F);| progressively propagate « across the
network until the last layer ;. The cascade of convolu-
tions produce operators of progressively wider supports as
j increase. The depth j thus corresponds to a scale index
of the non-linear network features. A classifier is applied to
the output = ;. It may be a linear SVM, a RBF network, or
some other fully connected double layer classification net-
works [1 1, 15]. In our numerical experiments, we use a di-
mensionality reduction step followed by a Gaussian SVM.

The network architecture is specified by the dimensions
P; x Q; of each layer and by the non-linear pooling opera-
tor. This is a delicate step, which is usually done through an
ad-hoc engineering trial and error process. Given this archi-
tecture, one must then optimize each operators I; to achieve
a low classification error. Experiments have been performed
with random weights [24]. Better results are however ob-
tained with unsupervised training of the weights, using
auto-encoders [29]. When enough labeled examples are
available, even better results are obtained with supervised
training algorithms which back-propagates classification er-
rors [14]. The Alex-Net is an example of supervised deep
network trained with labeled images of the ImageNet data
basis [11].

2.2. Scattering Network

A scattering network is a convolutional network whose
architecture and filters are not learned, but are predefined
wavelets. These wavelets are adapted to the type of geomet-
ric invariants and linearization that need to be computed.
Image classification typically requires to build image fea-
tures which are locally invariant to translations and stable
to deformations. It should thus linearize small deformations
so that these deformations can be taken into account or re-
moved with a linear operator, which is adjusted by the final
supervised classifier.

Scattering networks compute inner-layer coefficients
zj(p, q), which are nearly invariant to translations of the
input image = by less than 27. Each image frame is sub-
sampled at intervals 27 ~1. The factor 2 oversampling avoids
aliasing phenomena. If x has P pixels then each network
layer z; has Q; frames of P; = P27%%2 pixels. The
size (; does not result from an ad-hoc decision but depends
upon the choice of geometric invariant as we shall see.

It has been proved mathematically that translation in-
variance and linearization of deformations is obtained with
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Figure 1. A convolution network computes a layer z; by applying a linear operator Fj to x;_1, followed by a non-linearity which we

choose to be a modulus.

wavelets [22]. They separate the image information along
multiple scales and orientations. Cascading wavelet trans-
forms and modulus non-linearities lead to translation invari-
ant scattering transforms [22], which have been applied to
digit and texture classifications [5]. Rotation invariant scat-
tering networks have been introduced by replacing wavelet
spatial convolutions by convolutions along the special Eu-
clidean group of rigid movements. It takes into account both
translations and rotations [25]. We introduce a simpler sep-
arable convolution, which still has the ability to build in-
variants over rigid movements, but which leaves the choice
of invariant to the final SVM classifier.

Wavelet transforms can be computed with a cascade of
linear filtering and sub-sampling operators, which are called
multi-rate filter banks [21]. Although deep networks apply
non-linearities at each layer, they also include such linear
cascades. Indeed, rectifier or modulus non-linearities have
no impact over positive coefficients, produced by averag-
ing filters in the network. All non-linearities can thus be
removed from averaging filters output. Deep network com-
putations can therefore be factorized, as cascades of j — 1
averaging and sub-sampling operators, followed by a band-
pass filter and a non-linearity, for multiple values of j. If
the network includes a sub-sampling by a factor 2 at each
layer, then this is equivalent to a convolution with multi-
ple wavelets of scale 27, and a non-linearity. These cas-
cades are followed by new cascades of k& — 1 averaging op-
erators, for different k, followed by a band-pass filter and
a non-linearity, and so on. This is equivalent to convolu-
tions with a second set of wavelets of scale 277* and a
non-linearity. The scales depend upon the number of aver-
aging and sub-samplings along each network path, and thus
satisfy 1 < j+k < J.

In the following, we describe a second order scatter-
ing transform operator Sz, which performs at most two
wavelet convolutions. The network output x 7 is computed
with a first 2D spatial wavelet transform W; which per-
forms spatial wavelet image convolutions whose phase are
removed by a non-linear modulus. We then apply a sec-
ond wavelet transform W5, which is adapted to the desired

invariants, not only along translations but also along rota-
tions. This is done by computing separable 2D convolu-
tions with wavelets along space, and 1D convolutions with
wavelet along angle variables. The output is averaged by an
operator A ; which performs a spatial averaging at the scale
27:

Ty = S!]x = A.] |W2‘ |W1|{E .

Higher order scattering transforms are obtained by cascad-
ing more wavelet transforms, which can be adapted to other
group of transformations. However, this paper concentrates
on second order scattering along space and rotation vari-
able. This second order should not be confused with the
network depth J, which corresponds to the maximum spa-
tial invariance scale 27, and typically depends upon the im-
age size. Next two sections describe the implementations of
the two wavelet transforms W; and W5 and the averaging
operator A ;.

2.3. Spatial Wavelet Transform W

The first wavelet transform W separates the image com-
ponent along different scales and orientations, by filtering
the image x with a family of wavelet 1); 9. These wavelets
are obtained by dilating by 2’ a mother wavelet v(p), and
rotating its support with 7y along L angles 6:

Y i b

Wjo(p) = 27 (2 rp) for 0= — .

As in [5, 25], we choose a complex Morlet wavelet v

which is a Gaussian modulated by a complex exponen-

tial, to which is subtracted a Gaussian to set its average to

zero. Figure 2 shows the real and imaginary parts of Morlet

wavelets along L = 8 angles. The modulus computes the

envelop of complex wavelet coefficients, sub-sampled at in-

tervals 27~1. Coefficients at the scale 2/ are stored at the
depth j: ,

2} (p,0) = |z % y,0(2"p)] .
These coefficients are nearly invariant to a translation of =

smaller than 27. For 27 < 27, this invariance will be im-
proved by further propagating these coefficients up to layer
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Figure 2. Real and imaginary parts of Morlet wavelets at different
scales 27 for 1 < 7 < 4 and L = 8 orientations. Phase and
amplitude are respectively given by the color and the contrast.(best
viewed in color)

J, with a second wavelet transform described in the next
section.

Coefficients at the scale 27 correspond to deep network
coefficients of depth j because in a deep network they are
calculated by cascading 7 — 1 low-pass filters, and a final
band-pass filter. The cascade of low-pass filters defines a
pyramid of low-passed images = x ¢;, where ¢; is a scaled
low-pass filter:

¢i(p) =27 ¢(277p).

Each zx ¢, is computed by convolving x % ¢; 1 with a low-
pass filter h followed by a sub-sampling. It is stored as an
image indexed by ¢ = 0 in the layer j:

2 (p,0) = xx¢;(p) = hx(xxdj—1)(2p) . ()

Applying a modulus has no effect because these coefficients
are positive. The wavelet coefficients x x 1; ¢ are computed
by applying a complex band-pass filter gy followed by a
sub-sampling. In this case, the modulus has a strong impact
by eliminating the complex phase. It is stored as an image
indexed by ¢ = 6 in the layer j:

zj(p,0) =z xvj0(p)| = lgo * (% D) (D). (3)

The wavelet transform W7 is thus implemented in a deep
network calculated with a cascade of low-pass and band-
pass filtering, followed by sub-samplings, illustrated in Fig-
ure 3. Wavelet coefficients are computed at scales 21 < 97
and the lowest frequency image information is carried by
the remaining averaged image x x ¢ ;. The convolution cas-
cades (2) and (3) with & and gy can also be computed di-
rectly as convolutions with ¢; and v; 9, using FFT’s. For
the sake of simplicity, we follow this second approach and
thus specify directly the ¢ and v as opposed to the inter-
mediate filters A and gg. We use a Morlet wavelet ¢ and
a Gaussian filter ¢, further specified in [5]. The resulting
wavelet transform W7 is a contractive linear operator, which
is nearly an isometry.

2.4. Roto-Translation Wavelet Transform W,

Wavelet coefficients |z % 1, 9| are translation invariant
only up to the scale 2. Increasing this invariance up to
27 means further propagating these coefficients up to the
last network layer J. This is be done by applying a second
wavelet transform W, which is now defined. This second
wavelet transform also recombines the output of wavelet fil-
ters along different angles. It thus also measures the angular
variability of wavelet responses, as corner detectors.

At a depth j;, there are le = L wavelet image frames
indexed by the angle § = ¢n/L for 1 < ¢ < L:

.13}1 (p7 0) = |$*1/)j179(2j1_1p)|'

These coefficients are propagated to larger scales 27 by
computing convolutions and modulus with a new set of spa-
tial wavelets 1/, ¢(p) at larger scales 27 > 271,

As in deep convolution network architectures, we also
recombine the information in these image frames indexed
by the angle 6 in (3). To understand how to do so, let
us compute the wavelet coefficients of a rotated image
Zo(p) = z(rop) by an angle a:

To*Pj,.0(0) = T x Vi 0-a(rap) -

It rotates the spatial coordinates p but also “translates” by «
the angle parameter 6.

Our goal is not to build a rotation invariant representa-
tion but a representation which linearizes variabilites along
rotation angles. These totation variabilities can thus be dis-
criminated or removed by a linear classifiers at the output.
We thus do not use a rotation invariant scattering represen-
tation as in [25]. To build a representation which is stable
to rotations, and to deformations along rotations, we com-
pute a wavelet transform along the angle parameter 6. It
means performing convolutions along 6, with angular one-
dimensional wavelets 1, (8) = 27%¢(27%6). The result-
ing wavelet transform W5 computes separable convolutions
along both the 2D spatial variable p and the angle variable
0, with a 3D separable complex wavelet defined by:

V;.8.k(D,0) = 1;.5(p) V1. (0) .

It is a separable product of a spatial wavelet v; 3(p) of
scale 27 and an angular wavelet v, () of scale 2% for
1 <k < K <log, L. If 1), (6) are one-dimensional Morlet
wavelets, then the resulting separable wavelet transform W5
is a stable and invertible operator, which nearly preserves
the signal norm.

The wavelet transform modulus for j > 77 is computed
with a three-dimensional separable convolution along the
spatial and angular variables (p, #), and it performs a sub-
sampling along both variables. It has a spatial scale 2/ and
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Figure 3. A wavelet modulus || computes averages and modulus wavelet image frames at each layer le-, by cascading filtering, sub-

sampling and modulus operators.

is thus stored at the layer j, via an index ¢ which encodes 6,
B, j1 and the angular scale 2k,

3 (p,q) = |25, x ¥ (27 0,27 N0) . @)
It propagates x;l towards network layers of depth j > 71,
up to j = J. This 3D separable wavelet transform is ei-
ther computed with a cascade of filtering across the deep
network layers, or directly with 3D convolutions calculated
with FFT's.

For j < J, we still need to propagate the second order
coefficients m? up to the largest spatial scale 27. This could
be done by applying a third wavelet transform W3 which
could also enforce more complex geometric invariants by
recombining information across angles and scales. In this
implementation, we directly apply a linear averaging w?*qﬁ J
at the scale 27. It averages each image frame of :v? with a
spatial convolution with ¢ 7 (p) = 2727 ¢(27/p).

The last layer x ; of this scattering network is an aggre-
gation of the image x, of first order wavelet modulus images
a}, and of second order coefficients % at all scales 27 < 27,
all of them averaged at the scale 2”:

1 2
xJ:SJx:{w*¢J,xj*¢J7.Tj*¢J}1<A<J.
<<

First order coefficients le * ¢ are very similar to SIFT
[19] feature vectors. They provide information on average
energy distributions across scales and orientations over a
neighborhood of size 27. A scattering representations can
thus be interpreted as an “augmented” SIFT representation
with second order coefficients x? * ¢y providing informa-
tion on interactions between scales and angles in multi-scale
neighborhoods.

This deep scattering is computed by cascading the modu-
lus |W7| of a first 2D spatial wavelet transform, followed by
the modulus |W3| of a second 3D separable wavelet trans-
form along space and angles, followed by the averaging
A JZ =Z%* gf) J.

SJLU:AJ|W2||W1|LL‘.

Since W, and W5 and A ; are contractive operators it guar-
antees that Sy is also contractive and hence stable to addi-
tive perturbations. Moreover, since the wavelet transforms

W1 and W5 and A are Lipschitz stable relatively to de-
formations [22], S; is also Lipschitz and hence linearizes
small deformations. This guaranties to avoid the instabili-
ties observed on deep networks such as Alex-net [28] where
a small image perturbation can considerably modify the net-
work output and hence the classification.

For images of P pixels, each network layer z; has @;
image frames of P; = P 27212 pixels. For a gray level
image such that Qg = 1, the resulting number of frames are
respectively Q1 = 9, Q2 = 145, Q3 = 409, Q4 = 801,
Q5 =1321,Q6 = 1969,and Q; = 1+ Lj + L%j(j — 1) =
6452 when j > 1. Color images are represented by the
three Y,U,V color bands, and each color band is decom-
posed independently. It thus multiplies the number of image
frames ; by 3 for all 0 < j < J. At the output layer .J, the
factor 2 spatial oversampling is removed so P; = P 2727,
This last layer is thus an aggregation of 3P2~27 order 0 co-
efficients in 2 x ¢ 7, plus 3P2727 L.J order 1 coefficients in
the 2} % ¢, and 3P272/L?J(J — 1) order 2 coefficients
in the x? % ¢ arrays. For CalTech images of P = 2562
pixels, decomposed with J = 6 scales and L = 8 angles,
there are 48 order 0 coefficients, 2 103 order 1 coefficients,
and 92 103 order 2 coefficients.

Good quality images can be reconstructed from scatter-
ing coefficients as long as the number of scattering coeffi-
cients is larger than the number of image pixels [4]. De-
spite the invariance to translation, the roto-translation scat-
tering representation is thus nearly complete as long as
27271272 > 1. If L = 8 then it is valid for J > 5.

3. Supervised Feature Selection

The scattering representation has a number of coeffi-
cients which is of the same order as the original image.
It provides a nearly complete signal representation, which
allows one to build a very rich set of geometric invariants
with linear projection operators. The choice of these lin-
ear projection operators is done at the supervised classifica-
tion stage with an SVM. Scattering coefficients are strongly
correlated. Results are improved by reducing the variance
of the representation, with a supervised feature selection,
which considerably reduces the number of scattering coef-
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ficients before computing an SVM classifier. This is imple-
mented with a supervised orthogonal least square regression
[6, 1], which greedily selects coefficients with a regression
algorithm.

A logarithm non-linearity is applied to scattering coef-
ficients in order to separate low frequency multiplicative
components due to the variations of illuminations. These
low-frequency modulations add a constant to the logarithm
of scattering coefficients which can then be removed with
an appropriate linear projector by the final classifier. Also,
it linearizes exponential decay of the scattering coefficients
across scales.

In the following, we denote by @'z = {¢}z},, the loga-
rithm of scattering coefficients at a scale 2. We are given
a set of training images {x;}; with their class label. The
orthogonal least square selects a set of features adapted to
each class C' with a linear regression of the one-versus-all
indicator function

1 if = belongs to class C
fc (iL’) = .

0 otherwise
It iteratively selects a feature in the dictionary and updates
the dictionary. Let %z = {¢%x}, be the dictionary at the
kt" iteration. We select a feature (j)’;kw, and we update the
dictionary by decorrelating all dictionary vectors, relatively
to this selected vector, over the training set {z; };:

A O
i
Each vector is then normalized

ot = (1A @R)

The k" feature gb’;k:r is selected so that the linear regres-
sion of fo(z) on {¢, T}i<r<k has a minimum mean-
square error, computed on the training set. This is equiv-
alent to finding ¢§k in ®* which maximizes the correlation
> fola:) o).

The orthogonal least square regression thus selects and
computes K scattering features {¢,,, = }r<x for each class
C, which are linearly transformed into K decorrelated and
normalized features {qﬁ’;k:c} k<k . For a total of n¢ classes,
the union of all these feature defines a dictionary of size
M = K nc. They are linear combinations of the original
log scattering coefficients {¢,x},. This dimension reduc-
tion can thus be interpreted as a last fully connected network
layer, which outputs a vector of size M. The parameter M
governs the bias versus variance trade-off. It can be adjusted
from the decay of the regression error of each fo or fixed
a priori. In classification experiments, M is about 30 times
smaller than the size of the original scattering dictionary.

The selected features are then provided to a Gaussian
SVM classifier. The variance of the Gaussian kernel is set to
the average norm of the scattering vectors, calculated from
the training set. This large variance performs a relatively
small localization in the feature space, but it reduces classi-
fication errors as shown in Table 1.

4. Image Classification Results

We compare the performance of a scattering network
with state-of-the-art algorithms on CIFAR and Caltech
datasets, which include complex object classes, at different
or fixed resolutions.

Images of each databases are rescaled to become square
images of 22¢ pixels. The scattering transform depends
upon few parameters which are fixed a priori. The maxi-
mum scale of the scattering transform is set to 2/ = 2972,
Scattering coefficients are thus averaged over spatial do-
mains covering 1/4 of the image width, and coefficients
sampled over a spatial grid of 4 x 4 points, a final down-
sampling being performed without degrading classification
accuracies. This preserves some coarse localization infor-
mation. Coefficients are computed with Morlet wavelets
having L = 8 orientations. The wavelet transform along
these L = 8 angles are computed at a maximum scale
2K = [,/2, which corresponds to a maximum angular vari-
ation of 7/2. Indeed these object recognition problems do
not involve larger rotation variability. The resulting scat-
tering representation is nearly complete as previously ex-
plained. It is computed independently along the 3 color
channels YUV. We apply a logarithm to separate illumi-
nation components. The classifier is implemented by first
reducing the dimensionality, to M = 2000 feature vec-
tors on CIFAR-10 for instance, with an orthogonal least
square regression, and applying a Gaussian SVM. We use
the same architecture and same hyperparameters for each
dataset, apart from the number M of selected coefficients,
which increases proportionally to the size of the scattering
representation, which depends upon the image size.

Caltech-101 and Caltech-256 are two color image
databases, with respectively 101 and 256 classes. They
have 30 images per class for training and the rest is used
for testing. Caltech images are rescaled to square images
of P = 22¢ = 2562 pixels. Average per class classifica-
tion results are reported with an averaging over 5 random
splits. We removed the clutter class both from our training
and testing set.

CIFAR are more challenging color image databases due
to its high class variabilities, with 60000 tiny colors im-
ages of P = 22¢ = 322 pixels. CIFAR-10 has 10 classes
with 5000 training images per class, whereas CIFAR-100
has 100 classes with 500 training images per class.

Table 1 gives the classification accuracy for different
scattering configurations, on the datasets CIFAR-10 and
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Scattering \ Caltech-101 \ CIFAR-10 ‘

Trans., order 1 59.8 72.6
Trans., order 2 70.0 80.3
Trans., order 2 + OLS 75.4 81.6
Roto-Trans., order 2 74.5 81.5
Roto-Trans, order 2 + OLS 79.9 82.3

Table 1. Classification accuracy with 5 scattering configurations.
First a translation scattering up to order 1, then up to order 2, then
withan Orthogonal Least Square (OLS) feature reduction. Then a
roto-translation scattering up to order 2, then with an OLS feature
reduction.

Caltech-101. First order scattering coefficients are compa-
rable to SIFT [5], but are calculated over larger neighbor-
hoods. Second order scattering coefficients computed with
translated wavelets (no filtering along rotations) reduces the
error by 10%, which shows the importance of this com-
plementary information. Incorporating a wavelet filtering
along rotations as in Section 2, leads to a further improve-
ment of 4.5% on Caltech-101 and 1.2% on CIFAR-10. Ro-
tations produce larger pixel displacements on higher reso-
lution images. It may explain why improving sensitivity to
rotations plays a more important role on Caltech images,
which are larger. Adding a feature reduction by orthogonal
least square reduces the error by 5.4% on Caltech-101 and
0.7% on CIFAR-10. The orthogonal least square has a big-
ger impact on Caltech-101 because there are less training
examples per class, so reducing the variance of the estima-
tion has a bigger effect.

Tables 2,3.,4,5 report the classification accuracy of a sec-
ond order roto-translation scattering algorithm with an or-
thogonal least square feature selection, for CIFAR and Cal-
tech databases. It is compared to state of the art algorithms,
divided in four categories. ‘“Prior” feature algorithms ap-
ply a linear or an RBF type classifier to a predefined set of
features, which are not computed from training data. Scat-
tering, SIFT and HOG vectors, or deep networks with ran-
dom weights belong to this Prior class. “Unsup. Deep”
algorithms correspond to unsupervised convolutional deep
learning algorithms, whose filters are optimized with non-
labeled training data, before applying a linear classifier or
a Gaussian kernel SVM. “Unsup. Dict.” algorithms trans-
form SIFT type feature vectors or normalized pixel patches,
with one, two or three successive sparse dictionaries com-
puted by unsupervised learning. It may then be followed
by a max-pooling operator over a pyramid structure [12].
To normalize unsupervised learning experiments, we only
consider results obtained without data augmentation. “Su-
pervised” algorithms compute feature or kernel represen-
tations, which are optimized with supervised learning over
labeled training data. In this case, the training may be per-
formed on a different databasis such as ImageNet, or may

include a data augmentation by increasing the dataset with
affine transformations and deformations. Supervised deep
convolution networks or supervised kernel learning are ex-
amples of such algorithms.

Scattering gives better classification results than all prior
feature classification on Caltech-101, as shown by Table
2. Convolutional network with random filters on mono-
CIFAR-10 (gray level CIFAR-10) have an accuracy of
53.2% in [24]. Color information improves classification
results by at most 10% on all algorithms, so it remains well
below scattering accuracy. No result is reported on CIFAR-
100 using predefined “prior” feature classifiers. Tables 2
and 4 shows that scattering networks performs at least as
well as unsupervised deep convolutional architectures with-
out data augmentation on Caltech-101 and CIFAR-10. To
our knowledge, no result with unsupervised deep convolu-
tional network learning have been reported on Caltech-256.

State-of-the-art unsupervised classification results for
Caltech, without data augmentation, are obtained with a
Multipath-SC algorithm [2], which has 3 unsupervised en-
coding layers. Similar results are obtained with Spatial Lo-
cal Coding descriptors [23] with a first layer of nearly SIFT
descriptors followed by an unsupervised coding and multi-
scale pyramidal pooling. Caltech-101 is an easier data ba-
sis because it has a bias across classes, which is typically
used by classifiers. This bias is removed from Caltech 256
which explains why classifiers have a lower accuracy. The
unsupervised classification algorithm reporting state of the
art results on CIFAR are different from the one on Caltech,
which shows that these figures must be analyzed with pre-
caution. The scattering classifier gives comparable with all
unsupervised algorithms on CIFAR-10 and CIFAR-100.

Let us emphasize that we are using the same scattering
representation, besides image size adaptation, for Caltech
and CIFAR databases. RFL [10] is the only unsupervised
learning algorithm which reports close to state of the art re-
sults, both on Caltech and CIFAR data bases. RFL does not
perform as well as a scattering on Caltech and CIFAR-100,
and slightly better on CIFAR-10. This illustrates the diffi-
culty to have a single algorithm which works efficiently on
very different databases. We reported the result on CIFAR-
100 from [10] via [20].

The best classification results are obtained by supervised
deep convolutional networks [16, 9, 30]. They improve
non-supervised accuracy by about 10% on CIFAR-10 or
Caltech-101, 20% on Caltech-256, but 5% on CIFAR-100.
The improvement on CIFAR-100 is smaller than on CIFAR-
10 because there is only 500 samples per classes for su-
pervised training, as opposed to 5000. The Caltech data
bases does not have enough training sample to train a su-
pervised deep network. We thus report classification results
obtained by the supervised Alex-network trained on Ima-
geNet, to which is applied a linear SVM classifier which
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’ Method \ Type \ Accuracy ‘
RotoTrans. Scat. Prior 79.9
Random Filters [15] | Prior 62.9
CDBN [17] Unsup. Deep | 65.4
M-HMPJ[2] Unsup. Dict | 82.5
SLC [23] Unsup. Dict | 81.0
Ask the locals [3] Unsup. Dict | 77.3
RFL [10] Unsup. Dict | 75.3
CNN [9] Supervised 91.4

Table 2. Results for different types of representations on Caltech-
101.

’ Method \ Type \ Accuracy ‘
RotoTrans. Scat. Prior 43.6
M-HMP [2] Unsup. Dict | 50.7
SLC [23] Unsup. Dict | 46.6
Ask the locals [3] | Unsup. Dict | 41.7
CNN [30] Supervised | 70.6

Table 3. Results for different types of representations on Caltech-
256.

’ Method \ Type \ Accuracy ‘
RotoTrans. Scat. Prior 82.3
RFL [10] Unsup. Dict | 83.1
NOMP [18] Unsup. Dict | 82.9
LIFT [27] Unsup. Deep | 82.2
CNN [16] Supervised 91.8

Table 4. Results for different types of representations on CIFAR-
10.

’ Method \ Type \ Accuracy ‘
RotoTrans. Scat. Prior 56.8
RFL [10] Unsup. Dict | 54.2
NOMP [18] Unsup. Dict | 60.8
CNN [16] Supervised | 65.4

Table 5. Results for different types of representations on CIFAR-
100.

is trained on Caltech [8]. Although this deep network was
not trained on Caltech, it still achieves the state of the art
on this databases. Experiments show that if the training
and testing image datasets are different, a supervised deep
network provides a feature vector having a lower accuracy
for classification, but this accuracy is not dramatically re-
duced. It indicates that supervised deep classifiers are learn-
ing generic image representations which are likely to cap-
ture more complex geometric properties than unsupervised
algorithms or a roto-translation scattering transform.

A scattering transform is computed with convolutions
along groups of transformations which create important im-

age variability. This paper concentrates on translations and
rotations, but it can be extended to any other group. Improv-
ing results requires to consider other source of variabilities
and invariants, for example across color channels or across
scales, which are not recombined in this architecture. Su-
pervised deep neural networks do apply non-linear transfor-
mations across color bands and scales. Computing wavelet
and scattering transforms on arbitrary Lie groups or finite
groups is not difficult [22]. What is harder is to identify the
important group of variability for improving classification.
It seems that supervised deep network classifiers are able to
identify them.

5. Conclusion

This work shows that feature vectors for image classi-
fication can be constructed from geometric image proper-
ties as opposed to learning. A roto-translation scattering
transform constructs a feature vector providing joint infor-
mation along multiple scales and multiple angles. For com-
plex object classification problems as in Caltech and CIFAR
databases, it considerably improves the performance of all
existing prior image descriptors, and it yields comparable
results with state of the art unsupervised deep learning, and
dictionary learning algorithms.

Scattering networks do not have instability properties
as the ones observed for Alex-net [28], because it applies
contractive wavelet operators which are stable to deforma-
tions. However, deep neural networks with supervised train-
ing provide a clear improvement of average classification
accuracy, compared to unsupervised learning and to this
roto-translation scattering transform. This may indicate that
they capture refined but important geometric image proper-
ties. Understanding the nature of these properties is an open
challenge to further improve the performances of scattering
representations.
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