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ABSTRACT variance and discriminability and Section 4 pro-

Classification requires building invariant represenvides a fast filter bank implementation. The paper
tations relatively to groups of deformations thatconcentrates on translation invariance but general-
preserve signal classes. Recursive interferometfgation to any other group can be found in [4].

computes invariants with a cascade of complex
wavelet transforms and modulus operators. The 2. RECURSIVE INTERFEROMETRY

resulting representation is stable relatively to elaspecyrsive interferometry maps signal high fre-

tic deformations and provides invariant representggyencies to lower frequencies, with a cascade of
tions of stationary processes. It maps signals to gayelet transforms and modulus operators, which
manifold which preserves signal discriminability. yie|ds a progressively more invariant representa-

tion.
1. INTRODUCTION

Signal classes are usually invariant to certain typeg! Wavelet Transform Modulus

of deformations that may include translations, roA modulus operator applied on a wavelet tranform

tations, scalings or any other group of operatorss shown to compute low frequency interferences.

Classification algorithms must then be invariantA wavelet transform filters a real multidimensional

relatively to these deformations. The invariancesignalf € L?(RY) with a family ofK — 1 wavelets

often also applies to elastic deformations which g, }1-4-k Which are scaled by'2

define much larger Lie groups. However, build-

ing invariants reduces the representation dimen- vxe R, Wik f(x) = fxx(X)

sion, which may affect its ability to discriminate .

different patterns. It is therefore necessary to con"-"Ith di .

- : : i =279y (279x) .

struct representations that balance invariance, sta- (%) = 27y

bility and discriminability requirements. It is computed up to a coarse scafewhere the re-
The Fourier transform modulus is translationmaining low frequencies are carried by a low-pass

invariant but the representation of high frequenfiltering f x (5 0(X), whereyp(x) is a real low fre-

cies is highly not invariant to elastic dEfOFmatiOI’\S.quency scaling function. Lei't\(a)) be the Fourier

Computer vision researchers have introduced hisransform off with w € RY. The modulus ofv €

togram tephnlques to buﬂd local invariants by deloRd g written|co). Since\ﬁjﬁ(w) = f(w) G2 w)

calizing high frequency information, which lead to df(—w) — F* it for all R

efficient local descriptors for classification, when®" (-w) = f*(w), ifforall we

global invariants are not needed. Deep neural ”et(l— 3) < |Bo(Pw)? + @)

works also also provide efficient data dependent |, ~

invariant representation [2, 3] in number of appli- ( o2 o) 2)

cations, but are not well understood. Z JZJ @)l £ [h(-Zw)f)/2<1
This paper follows a harmonic analysis ap- -

proach to invariant representations. Section 2 irthen the wavelet transform is a complete contract-

troduces a recursive interference representatiofflg mapping

and analyzes the properties low frequency inter- K1

ferences computed with cascades of wavelet trang+ 2.1 _ 2 £112 2

form modulus. Section 3 studies interference inﬁTH (1=0) < [fxtoal*+ le W F= < I



with || f||2= J|f(x)[*dx We consider complexan-  An interference tree up to a scalé 8 a set

alytic wavelets such thai(w) = 0 if fi(—w) #0  of signalsl; f(x,a) located at the nodes of a tree,

for k > 1. At low frequencieslh(w) covers the wherej < Jgives the depth of a node andts hor-

domain|w| < 11, with @ix(2pm) = 0 for pc Z4, and  izontal position in a left to right order. The wavelet

(k(w) for k > 1 is mostly non-negligible inside a transform modulus of builds a first tree branch

1 octave frequency annulus< |w| < 27T with K — 1 leaves per level, which carry 1st order
High frequency wavelet -coefficients areinterferences at each scale

mapped to low frequencies with a complex modu- _

lus which computes frequency interferences. Thd;f(x,k) = |fxjk(x)| for j <Jand 1<k <K

Fourier transform oM« f (x) = |W, « f(x)|? is the

convolution of\m(w) with itself: plus the low signal frequencies at the last level
J7 -

M of (@) = (271) /vv,-,kf(f)w,,kf (&~ w)dé.
2) Each of theK — 1 leaves of depths < J are sub-

This convolution measures the correlation betweef€composed with a second wavelet transform and
frequencies that are apart. In quantum physics modulus operator, which computes second order

where probabilities are calculated as the Squaré’c?ten‘erences located at the leaves of a new tree of
modulus of complex wave functions, it is inter- @€PthJ.

. —— : The interference tree is progressively con-
preted as interferences. Althoudhf(w) is : OF
non-negligible inside a frequency annulus & < structed by decomposing the signajd (x, a) at

) g ) the leaves of a previously calculated tree, with a
jw| <2717, (2) shows thaM i« f(w) is a corre-  wavelet transform modulus up to a scalt @n-
lation measure which is mostly non-zero at lowertj| g the tree leaves are at the depthas illus-
frequenciesw| < 27'm. trated in Figure 1. The wavelet transform modulus

_ To iterate this mapping and guarantee stabilof i, f(x a) up to the leveld defines a new tree
ity, the squared complex modulus is replaced by @§hose leaves are

modulus, which is contracting. It involves a square
root operator|W, f(x)| = /M;xf(x), which is [;f(x,aKI™™+K) = [inf(.,a)x@;x(X)|forl <j<J,
singular wherW; , f (x) vanishes. Let us write
and
W, i F(X) 2 = |[W i F||2WA(X) (1+ (X)), . .
Wik F 01" = [[Wik 7w (x) (14 £(x)) 00 K™ = Fof () % Yoo
wherew(x) which is constant over the support bf
with [|w|| = 1. A series expansion af1+ ¢ gives The signalsi; f(x,a) are recursive interferences,
1 computed withp(a) wavelet transforms and mod-
2 ulus operators. The interference ordo) at a
WiaF O] = (Wi wix) <1+ 28()()—1_0(‘E (X)> ’ nodeapis the number of non-zero digcittI{cnf)writ-
ten in base. .
All tree signalsl;f(x,a) are further filtered
h the low-pass filtenj, ;(x) to eliminate high
guency harmonics resulting from the last mod-
ulus computation:

The lower frequencies ofWf(x)| are domi-
nated by the squared modulus interferences terpit
£(x) and theO(g2(x)) higher order terms produce fre
higher frequency harmonics of low amplitude. As
a result,|W; f(x)| has a Fourier tranform which
is also mostly located at the lower frequencies L (xa) = (., a) % o (X) -
lw| <27

If f(x) € L2[0,1]¢ has a period 1 along the
directions, then interference signaj$ (x, a) have
Recursive interferometry computes a progressivelglso a period 1. Sincg(2pm) = 0 for p € Z9, at
lower frequency representation by iteratively calthe maximum scale’2= 1, all Iof (x,a) are con-
culating complex wavelet transforms and modulustant inx. The tree leaves stores a single value
operators, which produce “interferences of interlof(a) providing a delocalized information on the
ferences”. whole support off.

2.2 Recursivelnterference Tree



and
15D f —I5f —7.01; || <C| f] (2—2J||T||go+ (4)

logN HDTHw) :

The error terms depends the maximum transla-
tion amplitude|| 7||.. relatively to the scale®2and
on the size of the elastic deformation measured by
II|01|||». The residual error is reduced by an order
of magnitude with a linearization of the deforma-
tion in (4). If we neglect the error, then at each

Figure 1:A recursive interference tree computes aﬁrsbositionx the deformatiorr(x) can be estimated
wavelet transform modulus (in black), and iterativelyby solving a system of linear equations
computes wavelet transform modulus of its leaves (2nd

order in green and 3rd order in red), until all leaves ar& @, LD f(x, a) =15 (x,a) —1(x) . Ol f(x,a) ~ 0.

at the maxium depth. This system has no solution if the error is not neg-
ligible in (4) because either the elastic deformation
3. INVARIANCE AND amplitude|1| is too large or the scale’ s too
DISCRIMINABILITY small.

L . . If fis 1 periodic then the translation error term
The classification ability of recursive mterferom-z—J”T”w disappears at the maximum scafe-21,

etry relies on its invariance and discriminability g, is fully invariant to rigid translations. Com-
properties that are reviewed. The norm of interpyting an invariant representation relatively to a

ference signals at a depjfis group is a form of quotient of the signal space by
)2 = Z (., a)| this group, One must ensure that the resulting di-
) < I mensionality reduction is not too strong to preserve

) 5 5 ) the discriminability between signals in the trans-
with [|I;f(.,a)[|" = [[l;f(x,a)["dx Aninterfer-  t5rmed space.
ence tree is computed with a succession of wavelet Suppose that the support ‘6(00) is included

transforms and modulus operators and a final low:, [~N7,Nm¢ so thatf belongs to a spac¥y of

pass filtering, which are all contracting operatorsyimensionN®. The Fourier transform modulus is

o\ 1/2
) <l—awitha> 0.

.The_ resulting transform is therefore also contracty yranslation invariant transformation, which maps
Ing- V\ over a half space of dimensidd®/2. How-
Il <1 ever, the Fourier transform modulus is not stable
LetD, f(x) = f(x— 1(X)) be an elastic transla- relatively to elastic deformations. The operalgr
tion with T(X) = (Tm(X))m<q € R? for x= (X)p<q- MapsVy over a more complex non-linear mani-
We consider invertible deformations which satisfyfold. Some properties of this manifold are stud-
ied in [4], in the particular case wherf(w) are
4 191m(X) indicator functions of non-overlapping frequency
OTXI={ > =3 bands. It proves that the manifold has a dimen-
pm=1 P sion larger theiNY/2, which means that thig can
The following theorem [4] proves that at largebe inverted over certain balls of dimensiNf? in
scales, a recursive interferometric transform iVn. Continuity relatively to elastic deformations
nearly invariant to such deformations. We writecomes with a much larger dimensionality reduc-
7]| = sup,|T(x)| the maximum deformation am- tion then with a Fourier modulus but the manifold
plitude, andr. Of =y, 7,0 f /9xp. dimensionality remains large.
P Figure 2 gives a simple classification example
Theorem 1 If the support off is in [-N7;,N70?  jjjustrating the translation invariance and discrim-
then there exists C that does not depend on f withapility over deformable templates. Deformable
. templates [1] are obtained by applying deforma-
15D f — 15[ <C| ]| (2 IT[|e +logN HDTH«J> tion operators on deterministic signals. We con-
(3) sider two classe%; and %, whose elements are



realizations of two random procesdas= f;(x— (@) (b)

11(X)) and Fy(x) = fo(x — 12(X)). The template
signals f; and f, are deformed with two elastic i .
random deformationgy(x) and 1,(x)_satisfying s
ITi(¥)|<a<land(x)|<a<1. Leth=FK+W 0 )
be a noisy realization df with an additive Gaus-
sian white nois&V. Figures 2(a,b) show two real- % = = = @ = = v w w w0 @ @ e
®(f) = f and in Figure 2(d) for a Fourier modulus
®(f) = |f|. In these two cases, the intra class
these distances.
Figure 2(e) gives the distribution of
Gaussian. The distance is larger across classe
(i #i") then within classes & i’), so both classes

izations ofF, andF,. ©) (d) (€)
distance fori = i’ is of the same order as the

|®(F) — ®(F)||? for d(f) = Iof. Recursive in-

can be discriminated by thresholding the distance |

-0.15 -02
5000

3000 4000 5000
03] 03 N
025| 025| /
015) 015) ;
o1] o1] B
005| 05| \ i
O o2 o om om ow o 005 01 015 02

The  probability distributions of - k
distances across classes wheg i’. Indeed, if
terferences are computed with a one-dimensiona -

|P(R) —d(F)||2 is shown in Figure 2(c) for

(
®(f) = f then the signal representation is not - e
invariant to translation andp(f) = |f| is not o o
stable relatively to elastic deformations. Both .
classes can therefore not be discriminated with -
Gabor wavelety(x) = 8(x)€%*, where 8 is a

on recursive interferences. Figure 2:(a,b): noisy signal§; andr. (c,d,e): distri-
butions of||®(F) — ®(F)|| for i =i’ (full blue curves),
3.1 Stationary Processes I nterferences andi # i’ (dashed red curves) fab(f) = f in (a),

Not all signal classes may be obtained as defofP(f) =f| in (b) and®(f) = lof in (). (f.g): realiza-
mations of a deterministic template signal. In partions of two white noises, andF,. (hi,j): distributions
ticular, realizations of a stationary texture are noP! [|®(F) —®(F)ll asin (c.d.e).
elastic deformations of a single signal. Recursive
interferences map the realizations of a stationaryhe variances?, of |F x ; (x)| satisfies
process to a small ball in the transformed space. o
Discriminating the realizations of two stationary o B e,
processes is thus possible through the Euclidean o2, 02,
distance of their interference representation. 3 3

If F is a zero-mean stationary process themherem, is the mean ofF x ¢ «(x)| and hence
I;F(x,a) remains stationary irx. Indeed, it the first order moment df « (J; i (X).
is computed with a cascade of wavelet trans- If F is a Gaussian process thér, /o7, =
forms which are convolutions and modulus operq — /4. If the correlation ofF decreases suffi-
ators, which both preserve stationarity. lat = ciently quickly then one can show thgF (x, )
E{|F(x) —E{F(x)}|*}. Waveletsignal& «;x(X)  remains nearly Gaussian for eagh If I;F(x, a)
are stationary processes, and (1) implies that thedire interferences of ordes(a), obtained with a

varianceo?, satisfy succession op wavelet convolutions and modu-
, , , lus operators, then the variancg. of |;F(x,a)
(1-9)o° < ZO-Lk <o°. decreases like® (1— m/4)P. If o7, = O(0?), one
J‘,

can derive [4] that

However, the modulus operator reduce these vari-E{||loF — E{loF }||?} B\ e
ances because of the complex phase suppression.  E{[[F[2} =O(N"") with f>0,




where ag|E{IoF }||> ~ E{||F||?}. It shows thatoF o # O0modK and is thus a band-pass filter output
remains in a ball whose spread is much smallethen the wavelet transform is calculated with over-
then its distance to 0. Realizations of two stationsampled wavelets filterg,[n] = 272 Y4 (22n):
ary processes are discriminated by measuring the ~ ~
distance of their interference transform. laf[n, aK] = 1], o] x z0[2n]
Figures 2(f,g) show the realizations of two dif- gng
ferent white noise processesandF,. Their sup- . ~
ports are defined by two Bernouilli distributions!j+1f[n, aK+k =[l;f[., a]x,[2n]| for 0 <k <K.
Prob{ (F(n)) = 0} = pi and Prof(Fi(n)) # 0} = |t 4 — omodK and is thus a low-pass filter output
1 - pi, with py = 2p,. Over its support, each e sincd; f[n, a] was already obtained through a
Fi(n) is a Gaussian white noise. Far(f) =T  conyolution withy; o, the next wavelet scale is cal-
and®(f) = |f|, Figures 2(h,i) show that the dis- cyjated with the filtersy[n] whose transfer func-
tribution of || ®(F) — ®(F;)|| are similar within the  tjon Gk(w) satisfies:
same class= i’ and and across classeg i, when R
®(f) = f andd(f) = |f|. On the opposit, intra I (20) = Gk(w/2) Pro(w) -
class and across class distances are well separatefiiqren are then computed with
by an interference representati®f) = Iof. . .
I f[n,aK] =1;f[.,a] xgo[2n]
4, FAST ALGORITHM WITH MODULUS
FILTER BANK

This section describes a fast filter bank algorithn{”lf[
which computes the recursive interference trans- The oversampling factor 2 is finally removed
form of a multidimensional discrete signgin] of by filtering; f [n, a] with the low-pass filtery; o[n]
sizeN, with n= (m,...,ny). The computational and by subsampling the output

structure involves a cascade of convolutions and ~

modulus operators as in deep neural architectures lin,a] =1;f[.. af x ol2n] .

[2, 3] but involves no learning. ' At each levelj of the tree, there ar& it in-

~ We considerf[n] as a signal obtained by sam-dicesa and each signal, f[n,a] has 2% sam-
pling a 1 period functionf (x) at intervals 2 = pjeg 5o there is a total of 91Ki~t coefficients,
N-'. Eachl;f(x,a) has a frequency support yith 2t — N1 If d = 1 andK = 2 there are
mostly concentrated at frequencies < 27/rrbut N coefficients. The filter bank algorithm is im-
may go beyond, and it is thus uniformly sampledyiemented withO(Nlog,N) operations. 1K > 2
atintervals 2°*. We writel; f[n,a] = 1;f(2!n,a).  then the 29iKi~* coefficients are computed with

The discrete wavelet transform dfis com- o-dJ K3-L) operations, which makeg(N'°%(K))

puted at scalesi2< 2- = N~%. The root of the t'the bottom of the tree.
tree is at the leveL and I f[n,0] = f[n]. The

and
n,aK 4k =|ij f[.,a]xg[2n]| for 0 < k < K.

finest scale wavelet transform éfn] is computed REEERENCES
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