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ABSTRACT
Classification requires building invariant represen-
tations relatively to groups of deformations that
preserve signal classes. Recursive interferometry
computes invariants with a cascade of complex
wavelet transforms and modulus operators. The
resulting representation is stable relatively to elas-
tic deformations and provides invariant representa-
tions of stationary processes. It maps signals to a
manifold which preserves signal discriminability.

1. INTRODUCTION

Signal classes are usually invariant to certain types
of deformations that may include translations, ro-
tations, scalings or any other group of operators.
Classification algorithms must then be invariant
relatively to these deformations. The invariance
often also applies to elastic deformations which
define much larger Lie groups. However, build-
ing invariants reduces the representation dimen-
sion, which may affect its ability to discriminate
different patterns. It is therefore necessary to con-
struct representations that balance invariance, sta-
bility and discriminability requirements.

The Fourier transform modulus is translation
invariant but the representation of high frequen-
cies is highly not invariant to elastic deformations.
Computer vision researchers have introduced his-
togram techniques to build local invariants by delo-
calizing high frequency information, which lead to
efficient local descriptors for classification, when
global invariants are not needed. Deep neural net-
works also also provide efficient data dependent
invariant representation [2, 3] in number of appli-
cations, but are not well understood.

This paper follows a harmonic analysis ap-
proach to invariant representations. Section 2 in-
troduces a recursive interference representation,
and analyzes the properties low frequency inter-
ferences computed with cascades of wavelet trans-
form modulus. Section 3 studies interference in-

variance and discriminability and Section 4 pro-
vides a fast filter bank implementation. The paper
concentrates on translation invariance but general-
ization to any other group can be found in [4].

2. RECURSIVE INTERFEROMETRY

Recursive interferometry maps signal high fre-
quencies to lower frequencies, with a cascade of
wavelet transforms and modulus operators, which
yields a progressively more invariant representa-
tion.

2.1 Wavelet Transform Modulus

A modulus operator applied on a wavelet tranform
is shown to compute low frequency interferences.
A wavelet transform filters a real multidimensional
signal f ∈L

2(Rd) with a family ofK−1 wavelets
{ψd}1≤d<K which are scaled by 2j :

∀x∈ Rd , Wj,k f (x) = f ⋆ψ j,k(x)

with
ψ j,k(x) = 2−d jψk(2

− jx) .

It is computed up to a coarse scale 2J where the re-
maining low frequencies are carried by a low-pass
filtering f ⋆ ψJ,0(x), whereψ0(x) is a real low fre-
quency scaling function. Let̂f (ω) be the Fourier
transform off with ω ∈ R

d. The modulus ofω ∈
R

d is written|ω|. SinceŴj,k f (ω) = f̂ (ω) ψ̂k(2 jω)

and f̂ (−ω) = f̂ ∗(ω), if for all ω ∈ Rd

(1−δ ) ≤ |ψ̂0(2
Jω)|2 + (1)

K−1

∑
k=1

∑
j≥J

(

|ψ̂k(2
jω)|2 + |ψ̂k(−2 jω)|2

)

/2≤ 1

then the wavelet transform is a complete contract-
ing mapping

‖ f‖2(1−δ )≤‖ f ⋆ψ0,J‖2+
K−1

∑
k=1

∑
j≥J

‖Wj,k f‖2≤‖ f‖2,



with ‖ f‖2 =
∫

| f (x)|2dx. We consider complex an-
alytic wavelets such that̂ψk(ω) = 0 if ψ̂k(−ω) 6= 0
for k ≥ 1. At low frequencies,ψ̂0(ω) covers the
domain|ω| ≤ π , with ψ̂0(2pπ) = 0 for p∈Z

d, and
ψ̂k(ω) for k ≥ 1 is mostly non-negligible inside a
1 octave frequency annulusπ ≤ |ω| ≤ 2π .

High frequency wavelet coefficients are
mapped to low frequencies with a complex modu-
lus which computes frequency interferences. The
Fourier transform ofM j,k f (x) = |Wj,k f (x)|2 is the

convolution ofŴj,k f (ω) with itself:

M̂ j,k f (ω) = (2π)−d
∫

Ŵj,k f (ξ )Ŵj,k f
∗
(ξ −ω)dξ .

(2)
This convolution measures the correlation between
frequencies that areω apart. In quantum physics,
where probabilities are calculated as the squared
modulus of complex wave functions, it is inter-
preted as interferences. AlthougĥWj,k f (ω) is
non-negligible inside a frequency annulus 2− jπ ≤
|ω| ≤ 2− j+1π , (2) shows that̂M j,k f (ω) is a corre-
lation measure which is mostly non-zero at lower-
frequencies|ω| ≤ 2− jπ .

To iterate this mapping and guarantee stabil-
ity, the squared complex modulus is replaced by a
modulus, which is contracting. It involves a square
root operator|Wj,k f (x)| =

√

M j,k f (x), which is
singular whenWj,k f (x) vanishes. Let us write

|Wj,k f (x)|2 = ‖Wj,k f‖2 w2(x)(1+ ε(x)),

wherew(x) which is constant over the support off
with ‖w‖ = 1. A series expansion of

√
1+ ε gives

|Wj,k f (x)|= ‖Wj,k f‖w(x)
(

1+
1
2

ε(x)+O(ε2(x)
)

.

The lower frequencies of|Wj,k f (x)| are domi-
nated by the squared modulus interferences term
ε(x) and theO(ε2(x)) higher order terms produce
higher frequency harmonics of low amplitude. As
a result,|Wj,k f (x)| has a Fourier tranform which
is also mostly located at the lower frequencies
|ω| ≤ 2− jπ .

2.2 Recursive Interference Tree

Recursive interferometry computes a progressively
lower frequency representation by iteratively cal-
culating complex wavelet transforms and modulus
operators, which produce “interferences of inter-
ferences”.

An interference tree up to a scale 2J is a set
of signalsĨ j f (x,α) located at the nodes of a tree,
where j ≤ J gives the depth of a node andα its hor-
izontal position in a left to right order. The wavelet
transform modulus off builds a first tree branch
with K −1 leaves per level, which carry 1st order
interferences at each scale

Ĩ j f (x,k) = | f ⋆ψ j,k(x)| for j ≤ J and 1≤ k < K

plus the low signal frequencies at the last level

ĨJ f (x,0) = f ⋆ψJ,0(x) .

Each of theK −1 leaves of depthsm< J are sub-
decomposed with a second wavelet transform and
modulus operator, which computes second order
interferences located at the leaves of a new tree of
depthJ.

The interference tree is progressively con-
structed by decomposing the signalsĨm f (x,α) at
the leaves of a previously calculated tree, with a
wavelet transform modulus up to a scale 2J, un-
til all the tree leaves are at the depthJ, as illus-
trated in Figure 1. The wavelet transform modulus
of Ĩm f (x,α) up to the levelJ defines a new tree
whose leaves are

Ĩ j f (x,αK j−m+k) = |Ĩm f (.,α)⋆ψ j,k(x)| for l < j ≤ J ,

and

ĨJ f (x,αKJ−m) = Ĩm f (.,α)⋆ψ0,J(x) .

The signalsĨ j f (x,α) are recursive interferences,
computed withp(α) wavelet transforms and mod-
ulus operators. The interference orderp(α) at a
nodeα is the number of non-zero digit ofα writ-
ten in baseK.

All tree signals Ĩ j f (x,α) are further filtered
with the low-pass filterψ0, j(x) to eliminate high
frequency harmonics resulting from the last mod-
ulus computation:

I j f (x,α) = Ĩ j f (.,α)⋆ψ0, j(x) .

If f (x) ∈ L
2[0,1]d has a period 1 along thed

directions, then interference signalsĨJ f (x,α) have
also a period 1. Sincêψ0(2pπ) = 0 for p∈ Z

d, at
the maximum scale 2J = 1, all I0 f (x,α) are con-
stant inx. The tree leaves stores a single value
I0 f (α) providing a delocalized information on the
whole support off .



Figure 1:A recursive interference tree computes a first
wavelet transform modulus (in black), and iteratively
computes wavelet transform modulus of its leaves (2nd
order in green and 3rd order in red), until all leaves are
at the maxium depth.

3. INVARIANCE AND
DISCRIMINABILITY

The classification ability of recursive interferom-
etry relies on its invariance and discriminability
properties that are reviewed. The norm of inter-
ference signals at a depthj is

‖I j f‖2 = ∑
α
‖I j f (.,α)‖2

with ‖I j f (.,α)‖2 =
∫ |I j f (x,α)|2dx. An interfer-

ence tree is computed with a succession of wavelet
transforms and modulus operators and a final low-
pass filtering, which are all contracting operators.
The resulting transform is therefore also contract-
ing:

‖IJ f‖ ≤ ‖ f‖ .

Let Dτ f (x) = f (x−τ(x)) be an elastic transla-
tion with τ(x) = (τm(x))m≤q ∈ R

d for x = (xp)p≤q.
We consider invertible deformations which satisfy:

|∇τ(x)|=
(

d

∑
p,m=1

∣

∣

∣

∣

∂τm(x)
∂xp

∣

∣

∣

∣

2
)1/2

< 1−awith a> 0.

The following theorem [4] proves that at large
scales, a recursive interferometric transform is
nearly invariant to such deformations. We write
‖τ‖∞ = supx |τ(x)| the maximum deformation am-
plitude, andτ .∇ f = ∑p τp ∂ f/∂xp.

Theorem 1 If the support off̂ is in [−Nπ,Nπ]d

then there exists C that does not depend on f with:

‖IJDτ f − IJ f‖ ≤C‖ f‖
(

2−J‖τ‖∞ + logN‖∇τ‖∞

)

(3)

and

‖IJDτ f − IJ f − τ .∇IJ f‖ ≤C‖ f‖
(

2−2J‖τ‖2
∞ + (4)

logN‖∇τ‖∞

)

.

The error terms depends the maximum transla-
tion amplitude‖τ‖∞ relatively to the scale 2J and
on the size of the elastic deformation measured by
‖|∇τ|‖∞. The residual error is reduced by an order
of magnitude with a linearization of the deforma-
tion in (4). If we neglect the error, then at each
positionx the deformationτ(x) can be estimated
by solving a system of linear equations

∀α, IJDτ f (x,α)−IJ f (x,α)−τ(x) .∇IJ f (x,α)≈0.

This system has no solution if the error is not neg-
ligible in (4) because either the elastic deformation
amplitude|∇τ| is too large or the scale 2J is too
small.

If f is 1 periodic then the translation error term
2−J‖τ‖∞ disappears at the maximum scale 2J = 1,
andI0 is fully invariant to rigid translations. Com-
puting an invariant representation relatively to a
group is a form of quotient of the signal space by
this group, One must ensure that the resulting di-
mensionality reduction is not too strong to preserve
the discriminability between signals in the trans-
formed space.

Suppose that the support off̂ (ω) is included
in [−Nπ,Nπ]d so that f belongs to a spaceVN of
dimensionNd. The Fourier transform modulus is
a translation invariant transformation, which maps
VN over a half space of dimensionNd/2. How-
ever, the Fourier transform modulus is not stable
relatively to elastic deformations. The operatorI0

mapsVN over a more complex non-linear mani-
fold. Some properties of this manifold are stud-
ied in [4], in the particular case wherêψk(ω) are
indicator functions of non-overlapping frequency
bands. It proves that the manifold has a dimen-
sion larger thenNd/2, which means that theI0 can
be inverted over certain balls of dimensionNd/2 in
VN. Continuity relatively to elastic deformations
comes with a much larger dimensionality reduc-
tion then with a Fourier modulus but the manifold
dimensionality remains large.

Figure 2 gives a simple classification example
illustrating the translation invariance and discrim-
iability over deformable templates. Deformable
templates [1] are obtained by applying deforma-
tion operators on deterministic signals. We con-
sider two classesC1 and C2 whose elements are



realizations of two random processesF1 = f1(x−
τ1(x)) and F2(x) = f2(x− τ2(x)). The template
signals f1 and f2 are deformed with two elastic
random deformationsτ1(x) and τ2(x) satisfying
|τ ′

1(x)| ≤ a< 1 and|τ ′
2(x)| ≤ a< 1. LetF̃i = Fi +W

be a noisy realization ofFi with an additive Gaus-
sian white noiseW. Figures 2(a,b) show two real-
izations ofF̃1 andF̃2.

The probability distributions of
‖Φ(F̃i)−Φ(F̃i′)‖2 is shown in Figure 2(c) for
Φ( f ) = f and in Figure 2(d) for a Fourier modulus
Φ( f ) = | f̂ |. In these two cases, the intra class
distance fori = i ′ is of the same order as the
distances across classes wheni 6= i ′. Indeed, if
Φ( f ) = f then the signal representation is not
invariant to translation andΦ( f ) = | f̂ | is not
stable relatively to elastic deformations. Both
classes can therefore not be discriminated with
these distances.

Figure 2(e) gives the distribution of
‖Φ(F̃i)−Φ(F̃i′)‖2 for Φ( f ) = I0 f . Recursive in-
terferences are computed with a one-dimensional
Gabor waveletψ(x) = θ(x)eiξx, where θ is a
Gaussian. The distance is larger across classes
(i 6= i ′) then within classes (i = i ′), so both classes
can be discriminated by thresholding the distance
on recursive interferences.

3.1 Stationary Processes Interferences

Not all signal classes may be obtained as defor-
mations of a deterministic template signal. In par-
ticular, realizations of a stationary texture are not
elastic deformations of a single signal. Recursive
interferences map the realizations of a stationary
process to a small ball in the transformed space.
Discriminating the realizations of two stationary
processes is thus possible through the Euclidean
distance of their interference representation.

If F is a zero-mean stationary process then
IJF(x,α) remains stationary inx. Indeed, it
is computed with a cascade of wavelet trans-
forms which are convolutions and modulus oper-
ators, which both preserve stationarity. Letσ 2 =
E{|F(x)−E{F(x)}|2}. Wavelet signalsF ⋆ψ j,k(x)
are stationary processes, and (1) implies that their
varianceσ 2

j,k satisfy

(1−δ )σ 2 ≤ ∑
j,k

σ 2
j,k ≤ σ 2 .

However, the modulus operator reduce these vari-
ances because of the complex phase suppression.
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Figure 2:(a,b): noisy signals̃F1 andF̃2. (c,d,e): distri-
butions of‖Φ(F̃i)−Φ(F̃i′)‖ for i = i′ (full blue curves),
and i 6= i′ (dashed red curves) forΦ( f ) = f in (a),
Φ( f ) = | f̂ | in (b) andΦ( f ) = I0 f in (c). (f,g): realiza-
tions of two white noisesF1 andF2. (h,i,j): distributions
of ‖Φ(Fi)−Φ(Fi′)‖ as in (c,d,e).

The variancẽσ 2
j,k of |F ⋆ψ j,k(x)| satisfies

σ̃ 2
j,k

σ 2
j,k

= 1−
m2

j,k

σ 2
j,k

wheremj,k is the mean of|F ⋆ ψ j,k(x)| and hence
the first order moment ofF ⋆ψ j,k(x).

If F is a Gaussian process theñσ 2
j,k/σ 2

j,k =
1− π/4. If the correlation ofF decreases suffi-
ciently quickly then one can show thatI jF(x,α)
remains nearly Gaussian for eachα. If I jF(x,α)
are interferences of orderp(α), obtained with a
succession ofp wavelet convolutions and modu-
lus operators, then the varianceσ 2

α . of I jF(x,α)
decreases likeσ 2(1−π/4)p. If σ 2

j,k = O(σ 2), one
can derive [4] that

E{‖I0F −E{I0F}‖2}
E{‖F‖2} = O(N−β ) with β > 0 ,



where as‖E{I0F}‖2 ∼E{‖F‖2}. It shows thatI0F
remains in a ball whose spread is much smaller
then its distance to 0. Realizations of two station-
ary processes are discriminated by measuring the
distance of their interference transform.

Figures 2(f,g) show the realizations of two dif-
ferent white noise processesF1 andF2. Their sup-
ports are defined by two Bernouilli distributions
Prob{(Fi(n)) = 0} = pi and Prob{(Fi(n)) 6= 0} =
1− pi, with p1 = 2p2. Over its support, each
Fi(n) is a Gaussian white noise. ForΦ( f ) = f
andΦ( f ) = | f̂ |, Figures 2(h,i) show that the dis-
tribution of‖Φ(Fi)−Φ(Fj)‖ are similar within the
same classi = i ′ and and across classesi 6= i ′, when
Φ( f ) = f andΦ( f ) = | f̂ |. On the opposit, intra
class and across class distances are well separated
by an interference representationΦ( f ) = I0 f .

4. FAST ALGORITHM WITH MODULUS
FILTER BANK

This section describes a fast filter bank algorithm
which computes the recursive interference trans-
form of a multidimensional discrete signalf [n] of
size N, with n = (n1, ...,nd). The computational
structure involves a cascade of convolutions and
modulus operators as in deep neural architectures
[2, 3] but involves no learning.

We considerf [n] as a signal obtained by sam-
pling a 1 period functionf (x) at intervals 2L =
N−1. Each Ĩ j f (x,α) has a frequency support
mostly concentrated at frequencies|ω| ≤ 2− jπ but
may go beyond, and it is thus uniformly sampled
at intervals 2j−1. We write Ĩ j f [n,α] = Ĩ j f (2 jn,α).

The discrete wavelet transform off is com-
puted at scales 2j < 2L = N−1. The root of the
tree is at the levelL and ĨL f [n,0] = f [n]. The
finest scale wavelet transform off [n] is computed
without subsampling, using discrete wavelet filters
ψ1,k[n] = 2−1 ψk(2−1n):

ĨL+1 f [n,0] = f ⋆ψ1,0[n]

and

ĨL+1 f [n,k] = | f ⋆ψ1,k[n]| for 0 < k < K.

These signals are nearly oversampled by a factor 2
relatively to their frequency spread.

The filtering algorithm continues recursively
by computing theK children of each̃I j f [n,α], with
one low-pass filter andK − 1 complex band-pass
filters, which are subsampled by a factor 2. If

α 6= 0modK and is thus a band-pass filter output
then the wavelet transform is calculated with over-
sampled wavelets filtersψ2,k[n] = 2−2 ψk(2−2n):

Ĩ j+1 f [n,αK] = Ĩ j f [.,α]⋆ψ2,0[2n]

and

Ĩ j+1 f [n,αK+k] = |Ĩ j f [.,α]⋆ψ2,k[2n]| for 0< k< K.

If α = 0modK and is thus a low-pass filter output
then sincẽI j f [n,α] was already obtained through a
convolution withψ j,0, the next wavelet scale is cal-
culated with the filtersgk[n] whose transfer func-
tion ĝk(ω) satisfies:

ψ̂k(2ω) = ĝk(ω/2)ψ̂0(ω) .

Children are then computed with

Ĩ j+1 f [n,αK] = Ĩ j f [.,α]⋆g0[2n]

and

Ĩ j+1 f [n,αK+k] = |Ĩ j f [.,α]⋆gk[2n]| for 0< k< K.

The oversampling factor 2 is finally removed
by filtering Ĩ j f [n,α] with the low-pass filterψ1,0[n]
and by subsampling the output

I j [n,α] = Ĩ j f [.,α]⋆ψ1,0[2n] .

At each level j of the tree, there areK j−L in-
dices α and each signalI j f [n,α] has 2−d j sam-
ples, so there is a total of 2−d j K j−L coefficients,
with 2L = N−1. If d = 1 and K = 2 there are
N coefficients. The filter bank algorithm is im-
plemented withO(N log2N) operations. IfK > 2
then the 2−d j K j−L coefficients are computed with
O(2−dJKJ−L) operations, which makesO(Nlog2(K))
at the bottom of the tree.
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