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      Dictionary Learning

•  PCA computes the orthonormal basis minimizing the 
average linear approximation error over of a signal set.

•Can we compute a redundant dictionary of size            
which minimizes the average non-linear approximation 
error over of a signal set ?

•NP-hard but greedy optimizations are possible.

•Are perception system learning redundant dictionaries 
to decompose input signals ?

P ! N



    Dictionary Update

•We want to optimize a dictionary                       to 
represent sparsely a training set of signals                   :

•Alternate optimization of the matrix of sparse 
decomposition coefficients                                          
and of the dictionary                      to minimize:

•Minimum:

{fk}1≤k≤K

D = {φp}p∈Γ

f̃k =
∑

p∈Γ

a[k, p]φp with ‖fk − f̃k‖ ≤ ε .

D = {φp}p∈Γ

K−1∑

k=0

‖fk −
∑

p∈Γ

a[k, p]φp‖2

A = {a[k, p]}1≤k≤K,p∈Γ

{φp[n]}p,n = (A∗A)−1 A∗ {fk[n]}k,n



    Greedy Optimization Algorithm

•1. Initialization: each            is a Gaussian white noise.

•2. Sparse approximation: matching or basis pursuit 
calculation of                                       satisfying 

•3. Dictionary update to minimize the total error: 

•4. Dictionary normalization: set  
•5. Stop if                      is marginally modified or go to 2.

φp[n]

A = {a[k, p]}1≤k≤K,p∈Γ

∥∥∥fk −
∑

p∈Γ

a[k, p]φp

∥∥∥ ≤ ε for 1 ≤ k ≤ K .

{φp[n]}p,n = (A∗A)−1 A∗ {fk[n]}k,n

‖φp‖ = 1.

D = {φp}p∈Γ



    Dictionary from Natural Images

•Optimized dictionary obtained with fixed size vectors 
with a training set of natural images:

•Similar to the impulse response of simple cells neurons 
in the visual cortical area V1.



Source 

Result 30.829dB 

Noisy image  

Initial dictionary (overcomplete 
DCT) 64!256 

• Training set: patches of the noisy image.

• State of the art results: similar to Non-Local Mean.

The obtained dictionary after  
10 iterations 

     Image Denoising

Elad & Aharon



     Denoising Color

•Learning dictionary of color vectors: 

Original Noisy: 12.8db Estimated: 29.9db

Mairad, Elad, Shapiro
D = {φp}p∈Γ



     Demoisaicing & Inpainting

•Demoisaincing: color pixels distributed on a 
subsampled Bayer grid in camera:

• Inpainting; missing pixels (in color images).

•Super-resolution recovery of color images using the 
image sparsity in a learned dictionary of color vectors.



    Color Demosaicing

Mairad, Elad, Shapiro



       Image Inpainting

Missing 80% of the pixelsOriginal Recovery

Mairad, Elad, Shapiro



  Conclusion to Dictionary Learning

•Dictionaries can be adapted to training signal sets with 
greedy algorithms.

•Efficient approach to build efficient signal models for 
compression, estimation and pattern recognition, as long 
as signals are highly compressible.



    Blind Source Separation

•Separation of mixte signals from multiple channel 
measurements: 
– Audio separation of musical instruments in a stereo recording.
– Electro-cardiogram discrimination of the heart beat of a featus from 

its mother.

•Blind source separation: recover S sources                
from K channel measurements with unknown mixtures

• If K < S, it is a super-resolution inverse problem which 
recovers S N coefficients from K N.

•Sparse models versus Independent Component Analysis.

{fs}0≤s<S

Yk[n] =
S−1∑

s=0

uk,s fs[n] + Wk[n] for 0 ≤ k < K .



   Multichannel Decomposition

•Multichannel signal vectors: 

•Multichannel mixing equation:

•Projection on a dictionary 

!Y [n] = (Yk[n])0≤k<K , !us[n] = (uk,s[n])0≤k<K .

D = {φp}p∈Γ

!Y [n] =
S−1∑

s=0

fs[n] !us + !W [n] .

〈!Y , φp〉 =
S−1∑

s=0

〈fs, φp〉 !us + 〈 !W, φp〉

with 〈!Y , φp〉 = (〈Yk, φp〉)0≤k<K .



   Sparse Support Separation

• If  the  source representation                     is sparse, for 
any p it is likely that               is large for at most one s:

{〈fs, φp〉}p∈Γ

〈!Y , φp〉 =
S−1∑

s=0

〈fs, φp〉 !us + 〈 !W, φp〉

|〈fs, φp〉|

〈!Y , φp〉 ≈ 〈fs, φp〉 !us + 〈W,φp〉 , so
〈!Y , φp〉

‖〈!Y , φp〉‖
= !us + !ε .
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     Audio Log Spectrogram
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•Mixing directions                 are identified by voting:!us/‖!us‖

2000 4000 6000 8000

−2

−3

−1

0

1

2

3

0 2000 4000 6000 8000

−2

−3

−1

0

1

2

3

0 2000 4000 6000 8000

−2

−3

−1

0

1

2

3

0

2000 4000 6000 8000

−2

−3

−1

0

1

2

3

0 2000 4000 6000 8000

−2

−3

−1

0

1

2

3

0

−4 −2 0 2 4 6−6

−4

−2

0

2

4

6

−4 −2 0 2 4 6−6

−4

−2

0

2

4

6

f2 f3

Y1 Y2

Sources

Multichannel
Measures

〈!Y , φp〉 time samples 〈!Y , φp〉 spectrogoram

0 1 2 30

0.04

0.08

0.12

0.16

Anglehistogram

 Identification of Mixing Directions

f1



    Source Separation

• If K < S there are less equations then unknown.

•For a given p there are few large
•Sparse decomposition of               in  
•Performed with an orthogonal matching pursuit: 

〈!Y , φp〉 =
S−1∑

s=0

〈fs, φp〉 !us + 〈 !W, φp〉

|〈fs, φp〉|
〈!Y , φp〉 D = {!us}0≤s<S

〈!Y , φp〉 =
S−1∑

s=0

ãs[p] !us .

Source estimators: F̃s =
∑

p∈Γ

ãs[p]φp .
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   Source Separation Example
f1

F̃1 F̃2
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 Conclusion to Source Separation 

•Sparsity seems more effective then the concept of 
independence for separating signals. 

• Improvements requires refined signal models that do 
not just rely on their sparsity.



Conclusion to Sparse Approximations

•Looking for sparse approximations is highly powerful 
to build effective signal models and solve low-level 
signal processing problems with fast algorithms:
– Compression
– Denoising
– Inverse problems: with or without super-resolution
– Compressive sensing

•Structured sparsity can further improve results: a 
current research direction.

•Sparse approximations also apply to classification and 
pattern recognition, for problems of limited complexity.


