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Dictionary Learning .t

e PCA computes the orthonormal basis minimizing the
average linear approximation error over of a signal set.

e Can we compute a redundant dictionary of size P 0O N
which minimizes the average non-linear approximation
error over of a signal set ?

e NP-hard but greedy optimizations are possible.

e Are perception system learning redundant dictionaries
to decompose input signals ?




E&-“_Dictionary Update =

e We want to optimize a dictionary D = {¢,},cr tO
represent sparsely a training set of signals {fx}1<wk<r :

fe="> alk,pl¢p with |fr— fel <e€.

pel

 Alternate optimization of the matrix of sparse
decomposition coefficients A = {alk, p]}1<r<k per
and of the dictionary D = {¢,}per to minimize:

Z I fr =Y alk,p] ¢pl1°

pel
e Minimum:

{pr[ ]}pn:< ) b A {fk[ ]}k,n




. Greedy Optimization Algorithm -

e 1. Initialization: each ¢,|n] 1s a Gaussian white noise.

e 2. Sparse approximation: matching or basis pursuit
calculation of A = {a[k,p|}1<k<kxper satisfying

<e for 1<kE<K.

| £ = 3" alk.pl o,
pel’
e 3. Dictionary update to minimize the total error:

{gbp[ ]}pn:( ) PAY {fk[ ]}k,n

e 4. Dictionary normalization: set ||| = 1.
e 5. Stop if D = {¢,}per 1s marginally modified or go to 2.




. Dictionary from Natural Images !:j

e Optimized dictionary obtained with fixed size vectors
with a training set of natural images:
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e Similar to the impulse response of simple cells neurons
in the visual cortical area V1.

N
™
v . |
- I
N A
)




Image Denoising

e Training set: patches of the noisy image.
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The obtained dictionary after
10 iterations

e State of the art results: similar to Non-Local Mean.




%Denoising Color !:j

o Learning dictionary of color vectors: D = {¢,} er
Mairad, Elad, Shapiro

R

Original Noisy: 12.8db Estimated: 29.9db




E%;_,_H_Demoisaicing & Inpainting !:Ij

e Demoisaincing: color pixels distributed on a
subsampled Bayer grid in camera:

e Inpainting; missing pixels (in color images).

e Super-resolution recovery of color images using the
image sparsity in a learned dictionary of color vectors.




(d) Zoomed region




Image Inpainting =%

Mairad, Elad, Shapiro

Original Missing 80% of the pixels ~ Recovery




. .Conclusion to Dictionary Learning-¢

e Dictionaries can be adapted to training signal sets with
greedy algorithms.

e Efficient approach to build efficient signal models for
compression, estimation and pattern recognition, as long
as signals are highly compressible.




. Blind Source Separation =

e Separation of mixte signals from multiple channel
measurements:

- Audio separation of musical instruments in a stereo recording.

- Electro-cardiogram discrimination of the heart beat of a featus from
its mother.

e Blind source separation: recover S sources {/s}o<s<s
from K channel measurements with unknown mixtures

S—1
Yiln| = Zuk,s fsin] + Wiln| for 0 <k < K .
s=0

o [f K < §, 1t 1s a super-resolution inverse problem which
recovers S N coefficients from K .

e Sparse models versus Independent Component Analysis.




mmtichannel Decomposition =y

e Multichannel signal vectors:

Yn] = (Yaln))o<ker , @sn] = (ur.s[n])o<r<r -

e Multichannel mixing equation

Z fsln] s + Win
e Projection on a dlctlonary D = {¢p}per
S—1
Q—}a ¢p> — Z<fsa ¢p> Us + <W7 ¢p>
s=0

with <Y)v¢p> — (<Yka¢p>)0§k<K '




S—1

EE&;‘_S_parse Support Separation -

<?7 ¢p> — Z<f37 ¢p> Us + <W, ¢p>

M/N = 0.1

s=0

BN - 7
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<}77 ¢p> ~ <f87 ¢p> ﬁs —I_ <W7 ¢p> y SO

o If the source representation {(fs, ®p)}peris sparse, for
any p it 1s likely that [(fs, ¢p)| 1s large for at most one s:

<}77 ¢p>
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Audio Log Spectrogram !:j
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m_entification of Mixing Directions =4
e Mixing directions @,/|us|| are identified by voting:
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S—1

<?7 ¢p> — Z<f37 ¢p> Us + <W, ¢p>

s=0
o [f K < § there are less equations then unknown.

e For a given p there are few large |(fs, )]
e Sparse decomposition of (Y,¢,) in D = {#,}o<s<s
e Performed with an orthogonal matching pursuit:

~ S—1
Y, dp) = Z as[p] Us -
s=0

Source estimators: Fy = Z as|p| dp -
pel’

E%-C‘_Source Separation =




Source Separation Example =y
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m@clusion to Source Separatio

L

L

 Sparsity seems more effective then the concept of
independence for separating signals.

not just rely on their sparsity.

e Improvements requires refined signal models that do




zonclusion to Sparse Approximations .-

e Looking for sparse approximations is highly powerful
to build effective signal models and solve low-level
signal processing problems with fast algorithms:

- Compression

- Denoising

- Inverse problems: with or without super-resolution
- Compressive sensing

e Structured sparsity can further improve results: a
current research direction.

e Sparse approximations also apply to classification and
pattern recognition, for problems of limited complexity.




