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mper-Resolution with Sparsity =y

e Dream: recover high-resolution data from low-
resolution noisy measurements:
- Medical imaging

- Satellite imaging
- Seismic exploration

- High Definition Television or Camera Phones

e Can we improve the signal resolution ?

e Sparsity as a tool to incorporate prior information.




Eﬁ-‘_&_ Inverse Problems

of dimension

e Measure a noisy and low resolution signal:
Y =Uf+W

with fe€ C" and dim(ImU)=Q < N .

e Inverse problems: compute an estimation
F=DY
and minimize the risk: (D, f) = E{||F — f||*}

~

e Super-resolution estimation: F' 1s computed in a space

Is 1t possible, how ?




Eﬂ_ﬁ"‘“" Regularized Inversion

-

To estimate f from Y =Uf + W 1vert U!

Pseudo inverse: U~ U f = f

Deconvolution: Uf = fxh with Van

) 3 hHw)
U f=fxh! with ‘\ | /\
W




E@'ﬂﬂ_ Regularization and Denoising _ =&

U-'Y =UUf+U"'W
Problems: U 'Uf e (NullU)* no super-resolution
U~ W] is huge if U! is not bounded.

Regularized inversion includes a noise reduction with a projection
in a space V : ~ ~_
P F=RUYY)eV

Optimizing R requires prior information.

No super-resolution : dim(V) < Q.




mgular Value Decompositions Ei'

e Basis of singular vectors {ex}i1<k<n diagonalizes U*U :
U*Uer, = \; ey

e Diagonal denoising over the singular basis:
F=RUY)=) rn(U 'Y er)ey .
k=0

Since (U™'Y,ex) = A\ 2 (Y, Uey)

B 1 . -~ <Y7 U6k>
1402 Ap

T'k

Linear filtering of deconvolution:

h
Y
RUYW)=U1Y «r Fw) 7<




enoising by Thresholding

Non linear projector adapted to the signal:

Threshold 7 = 3o where o is the noise variance.
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1T hresholding for Inverse Problems =y

e Remove noise from U~ 'Y =0 'Uf+U"'W
with a thresholding estimator.

« Optimal in a basis {®p}per providing a sparse
representation of f and which decorrelates the noise
coefficients (U'W, ¢,) .

e The dictionary vectors ¢, must be almost eigenvectors
of U*U , they must have a narrow spectrum:

bp=> (dprex)er with A2~ A2 for k € 5,
kES,
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. Sparse Spike Deconvolution :;-

Seismic data; = fxu+W with fn Z al\p
peEA
Z alp —n] + W|q|
peEA
uln] i(w)

) \\/\\

\ |f = ] |F l

Super-resolution inversion by detection of the sparse support
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Sparse Super-Resolution =&

e Prior information: f has a sparse approximation in a normalized
dictionary D = {¢,, } ,er of at least N vectors

f=> alpl¢p+en

pEA

with a small error ||e, ||.

It results that
Y:Uf—I—W:Za[p]Ugbp—l— (Uepn + W)

peEA
has a sparse approximation in the redundant dictionary

Dy = {U¢p}pel“

in the space ImU of dimension @ < NN




L
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Y; =

E&-“_Sparse Super-Resolution

o A sparse approximation of Y is computed in Dy = {U¢,}

Z alp| Ugp

peEA

pel’ pel

and A is the support of a.

e [t yields a signal estimator F = Z alp] ¢p

peEA

pel’

with a pursuit algorithm. A basis pursuit minimizes the Lagrangian:

Y = alplUgpll* + 1 ) lalp]]

using prior information which recovers ¢p from each U¢,, .




E&"‘“" Error and Exact Recovery =y

e From the sparse decompositionof Y =f+ W

Yz = Z alp| U,
peA
since [ = Z alp| ¢p + €a
peA
1F =Pl < || Y alple, = > alp) éy| + leall
pEA pEA

e Small error if A includes A andif {U qﬁp}pe i 1s a Riesz basis.

* Exact recovery in the redundant dictionary Dy = {U¢,, }pep

e Super-resolution: if A 1s not restricted to a space of dimension Q.




- Sparse Spike Deconvolution =
Seismic data: YV = fxu+ W with f[n] = Z alp] d|p — n]

¢pln] =08lp—n] , Udplgl =ulg—n], Fln] = da[p]d[n —n]




Eg-ﬁ;_ﬂ_(_iomparison of Pursuits -
1g] ISmi e eismic trace

sis Pursuit | Matching Pursuit Orth. Match. Pursuit
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 The signal approximation support A should small.

o Stability: {U¢,} ., must be a Riesz basis
[Ug¢,|| should not be too smal.

e Hence the ¢, must have a “spread spectrum” relatively
to U"U.

e Support recovery: the dictionary Dy = {U¢p} - must
be as incoherent as possible.

e Exact recovery criteria: ERC(A) < 1.

. Conditions for Super-resolution .-

L




m;h_ Image Inpainting !:j

Uflgl = flgl for ¢ € Q with |2 =Q < N

Super-resolution in a wavelet dictionary Dy = {U¢,} peT

Original

Support of () Super-resolution

. e et e




Image Inpainting

Wavelet and local cosinedictionary Dy = {U bp }

Linear estimation
.-I'll._ Y 1.1'. =
F it .-_-._ H ._.I. L o

flg] for ¢ € Q with |Q=Q < N

pel’

Super-resolution
.-:I.lrll-_ i '-|r1|:|- i
LELIFT R | 1-;||:. r.'_ .




Original

Linear Back Prop. Haar super-resl.




Super-Resolution Zooming !:j

* Need to increase numerically acquired image resolution:
- Conversion to HDTV of SDTV, Internet and Mobile videos...

Size increase:

60 images of 720 x 576 pixels = 320 E

« Spatial deinterlacing and up-scaling
. up to 8 times more-pixels
PAL/NTSC /325 ;

x 20
e Frame rate conversion

e twice more i

'CD screens

HD LCD screens

7.5G




* Image subsampling : U f = f[n/s] 1s a linear projector.

 Linear inversion without noise: linear interpolation

 Prior information: geometric regularity.
 Super-resolution by interpolations in the directions of regularity

* Sparse super-resolution marginally improves linear interpolations.




-

High Low
Resolution Resolution
Image Image
Cubic spline
Contourlet . Interpolation
SuperResolution 28.47 db
28.59 db




b I . .
pi —pi 0 pi -pi 0 pi

Original Subsampled Linear Interp.  Direct. Interp.

Super-resolution 1s not possible for horizontal and vertical edges.
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Adaptive Directional Interpolations.-

e Linear Tikhonov estimation: F, o = IpY

minimizes |RglpY || subject to UlpY =Y

where Ry is a linear directional regularity operator.

e Adaptive directional interpolation adapt locally @ by testing
locally the directional regularity with gradient operators.

e General class of mixing linear operators in a frame {®p } per

F = ZIG Za(ﬁ,p) <Y7 ¢P> ¢P

0cO pel’

e Problem: how to optimize the a(6,p) ?




m_avelet Block Interpolation ﬂj

Wavelet transform on 1 scale, j =1

(k) = / F(x)277 6527 (x — n)) da

Low frequencies are linearly interpolated (no aliasing).
Adaptive directional interpolation of fine scale wavelets.




e To a wavelet block decomposition

Y=Y ) 6,9 Ps,,Y+Y,
0 q

with Pp, Y =

> (YVor Ut

(n,k)EBQ,q
we associate an interpolation estimation

— ZIQ <Z 6((9, Q) Yqﬁ) + Ir(Yr)
0 q

e How to optimize the €(0,q) ?




Adaptive Tikhonov Estimation =y

e To compute

Y=Y ) 6,9 Ps,,Y+Y,
0 q

where €(0, q) is sparse and €(0,q) =~ 1 if |Relo P, Y| is
small: Lagrangian minimization

L=Y =) e6,9) Pp,,YIIP+ A ) |e(6,0) |RoloPp, Y|

9,q 07q
e Standard 1 minimization. Can be solved with a greedy pursuit.

e [f there 1s only one ¢(0,q) # 0 then £ 1s minimized by

|RoIoPs, Y|
e(f,q) = max (1 — A - ,0) and
|PB, Y ?

1P, Y €(6.9)?

L=|V|[* ~e(6.q) with e(6.q) :




Wavelet Block Spaces

-

Wavelet
transform

Blocks of oriented bars

]
% Block projection
% pursuit




Mr-Resolution Block Interpolatiogﬂj

~| - -

transform
IV: inverse wavelet | III:block inverse transforms
transform directional interpolations

II:block space
pursuit




Comparison with Cubic Splines

Block pursuit
on wavelet coefficients

Block Interpolations
over wavelet coefficients

Cubic spline interpolations




Comparison with Cubic Splines !:j

Block pursuit
on wavelet coefficients

Block Interpolations  SNR =29.24 db . SNR =28.58 db
: Cubic spline interpolations
over wavelet coefficients




m}_&_ Examples of Zooming

-

Original Image

Cubic Spline
Interpolation

SNR =22.35db

Bandlet

Super-Resolution

SNR =24.14 db




Super-Resolution Zooming !:j

* Need to increase numerically acquired image resolution:
- Conversion to HDTV of SDTV, Internet and Mobile videos...

« Spatial deinterlacing and up-scaling
e up to 8 times more pixels

e Frame rate conversion | \
e twice more images for LCD screens X SSSdds £

Offres. non cumulables avec d'autre OYffeess oo G G s v aladie
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E&-“_Brd. Concluion

e Super-resolution is possible for signals that are sparse in a

structured sparse representations.

e What if it was possible to choose the operator U ?

compressed sensing...

dictionary D = {¢p} peT Which has a spread spectrum and
which is transformed in an incoherent dictionary Dy = {U ¢, }

pel’

e Super-resolution is typically not possible for any class of signals

e Need to incoporate as much prior informaiton as possible: use of




