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parsity in Redundant Dictionaries =3

e Bases are minimum set to decompose signals.
e Natural languages use redundant dictionaries.

e Use of larger dictionaries incorporating more patterns to
represent complex signals f € RV

D = {¢p}ner with ||¢y] =1 and [T| =P > N.

e How to construct sparse representations in D ?

e What 1s the impact of redundancy on the mathematics
and applications ?
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@:—:_ Dictionary Approximation =
e Let D = {¢,}per be aredundant dictionary of P vectors.

e The best approximation of f from a sub-family {®,}pen isits
orthogonal projection in V, = Vect{¢,},ca

fa = Z alp| ¢p

pEA

e Stability: {¢,},en must be a Riez basis of V, :

there exists 0 < Apr < Bj such that

valp] eRY  Ax Y la[pll? <) alpépl® < Ba ) lalp]l* .

peEA peA peA




e The best M-term approximation support A

Lo=|f— fal>+T*[A].

o If D 1s an orthonormal basis then A = {p :

Mest M-Term Approximation =y

minimizes | f — fa| with |A|=M .

e A best M-term approximation minimizes a Lagrangian:

e In general, finding A 1s an NP-hard problem.




E&-“_Compression Applications

L

e Compute a best M-term approximation
fa= Za[p] ¢p with |A| =DM .
pEA
e Compression with uniform quantization

x =3 Qlalp)) 6,

peA

P
= log; (M) + pM

e Total bit budget: R
R ~ M log,(P/M)

If [If —fall® =O0(M™%) then D(R)= R “|log(P/R)

e Increasing P reduces D = ||f — fa|| but increases R.
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mavelets for Cartoon Images !:j

e Theorem: If f is uniformly C then an M-term wavelet
approximation gives

|f = full* = O ™)

e Theorem: If f is piecewise C with finite length contours then
|f = full* =0 ") so D(R)=R""|log(N/R)
e Result valid for all bounded variation functions.




mmets for Geometric Regularity !:j

Wavelet coefficients
inherit the geometric
regularity

(c) Zoom

1. Segmentation of R ( \ Regular square
. ] /N
wavelet coefficients. _1D . ¢ ] Edgesquare
‘ b
\ = Small Edge square
—_ . . Corner square
Wavelet Transform Quadtree

2. Gdeometrlc flow _ 3. 1D wavelet
1r11 © gehsqclllgres. transform along
along the direction the flow =

of regularity. bandlet transform




E@-‘_H_Bandlet Approximations =y

e A bandlet dictionary is a union of orthonormal bases.

e The best bandlet approximation (best geometry) which minimizes
Lo=|f—full*+T° M
can be computed with O(N log N) operations.

e Theorem If f is piecewise C“ with piecewise C“ contours

|f = full* =O(M™®) so D(R)=R""|log(P/R)|"




myication of Photo ID Compressioﬁ

Secure ID cards by storing digital photo on low memory

300 bytes

=

JPEG-2000 ™ Secure identification

Wavelets Bandlets Example : 2D barcodes




/\\/ Discovery of Marketing

Storage of a digital ID photo on low memory chips or 2D
barcodes

« National markets : |ID cards, visas, @ E

driving licenses, social insurance cards™™"

THALES

* Transport : passes —\‘r Grand European
IST Prize 2005

« Corporate : site access cAl e

« Events : trade shows, congresses, sport events @

Transmission over low bandwidth professional secure EIWsER

networks EADS E

NICE to have or MUST have ? just nice...




Xlets Beyond Wavelets

» Xlets take advantage of the image geometric regularity: bandlets,

curvelets, contourlets, edglets, wedglets...

e “Failure” to improve wavelet approximations for natural images.

- 1 h ‘T‘i\

e Can wavelet approximations be asymptotically improved ?
I don t think so for static natural images.




Denoising in Redundant Dictionaries =3

e Measure a signal plus a Gaussian white noise:
X[n| = fln]+Win| for 0<n <N .

 Orthogonal projection estimator in V, = Vect{¢,} e
selected 1n a dictionary:

XA = Za[p] Pp -

peEA
e Risk: E{[|f—Xal*} = If — fal® + B{|WalI*} .
o If A is fixed then E{||W,|*} = o?|A|.
e Oracle choice: find A which minimizes
E{Ilf = Xall’} = IIf = fal® + 0% |A




mnalized Estimation !:j

e Choosing A 1s a model selection problem.

e Theorem: For T > o/2log, P

~

A =arg rAnCiIFl(HX — Xpl|* +T7 !A!)

- v 121 — - _ 2 2 2
satisfies  B{|f Xz [*} =4 min(|lf — fal + 7| + o)

Noisy image Wavelet thresholding Bandlet thresholding

PSNR = 26.4db
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E@-“_Greedy Matching Pursuits

e Let D = {¢p}p€p be a dictionary of P> N vectors.

Lo=|f— fall> +T7%[A]
e Finding A 1s 1n general an NP complete problem.

e Greedy choice of the approximation vectors.

e The approximation of f over @p, € D yields

f=1f¢po) + RS
|F1I7 = I, épo)I* + IIRFI

e To minimize the residual error we choose

Pp, = arg max [(f, dp)]

e A best M-term approximation minimizes the Lagrangian:




matching Pursuit Iterations

L

-

o Initialize ROf = f
e For each m > 0

Pp,, = arg max (R™f, dp)|

R"f = (R™f,6,,) + ™' f

|B™FII* = (B™ £, ép,,)|* + | R™ T fII°

e [t results: M—1
f=3 (R"f )+ R
0

M-—-1
AP =) KR™f, ép, 01> + IR fII7
m=0




mme'ﬁequency Decompositions_=s

e Dictionary of time-frequency atoms:

1 t—u

(——) e’? }
v Y (ru,€)€T

D= {0,(0) -

e [t includes Dirac and Fourier bases, wavelets and
window Fourier atoms.

w

o, (t)]
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EK-.F'\;,‘-‘_L_ Speech Signals

4000

0 — t
0 1

Applications: denoising, compression (video),
pattern recognition, but instabilities.




E@-‘_n_(_)rthogonal Matching Pursuit =y

o Initialize ROf = f

e For each m > 0 orthogonalize the projections:

Pp,, = arg max (R™f, dp)|

Rm—l—lf _ <

o After N 1terations, it gives decomposition 1n an
orthogonal basis:
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m-;_ﬂ_Matching versus Basis Pursuit _ =

e Greediness 1s not optimal.
Time-Frequency Coefficients

Matching Pursuit

Orthogonal Matching Pursuit

40t
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EE-.F'\;{‘_L_ Basis Pursuit

Find a sparse representation f = Z a|p| ¢,

pel 1/q
by minimizing an 19 norm : |al|, = <Z a[n]q> |

nel’
1 norm : number of non-zero afn]

Not convex for g < 1.

I' norm : |al; = Z lan]| .

nel’
19 balls
qg=0 g=0.5 g=1 g=1.5 q=2




E@-“_Basis Pursuit Approximation =y

e A basis pursuit computes a sparse approximation
f = Z alp| ¢p
pel

solution of a convex optimization problem:

G =arg min |lal|; subject to [|f —» alpl¢ll <.
aceRF pel

e Lagrangian formulation: find ¢ which minimizes

1
La() = 51 =S alp) 6y + T lall

pel
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E%"_S_Qmputation of |1 Minimization Ei'

e Many iterative algorithms to minimize

1
Li() = 51 =S alp) 6y + T all

pel
e Simplest one: 1terative thresholding.

Initialisation b = ®f = {(f, ®p)}per and a9 =0
For k>0

Gradient step: ar = ax +v(b — ® D" ay)

Soft thresholding: ari1 = ax max(l ——.,0].

~




Eﬂ_&"‘“" Exact Recovery

e Suppose that the signal 1s sparse
f Z Z f ¢p> pr S VA
peEA pEA
can we recover A with pursuit algorithms ?
e With matching pursuits, need that

maxgepe |[(R™ f, ¢q)|

<1.
maXpeA ’<Rmf7 ¢p>’

C(R™f,A°) =

e Exact Recovery Criteria

ERC(A) = sup C(h,A°) = max 3 (G, é4)] -

heV \ qeN




ERC Recovery =

e Theorem: The approximation support A of f € Va i1s
exactly recovered by an orthogonal matching pursuit or
a basis pursuit 1f

FERC(A) < 1.

e Theorem (stability): If /1s not exactly sparse, an
orthogonal matching pursuit faz with M = |A| iterations
satisfies:

~ A
T Y (E—

A (1 — ERC(M))?

) 1f = fall -

e Stmilar result for a basis pursuit.




E@-‘_H_Dictionary Coherence =

 Dictionary mutual coherence

(D) = sup (¢, ¢q)]

(p,q)€l™
e Dirac-Fourier dictionary: u(D)=N""2.
e Theorem:
1 1
E A<l if A<=z |1+ —==
ROW) <1t A< (14 5 )

e Exact recovery 1s possible for sufficiently sparse signals
in incoherent dictionaries.




2nd. Conclusion =

e Redundant dictionaries can improve approximation,
compression, denoising.

e Finding optimal approximation 1s NP complete but can
be approximated with matching or basis pursuits.

e May be used for pattern recognition but problems of
instabilities.

 The stability depends upon the dictionary coherence.

e Major applications to inverse problems, super-
resolution and compress sensing.




