

Sparsity in Redundant Dictionaries

- Bases are minimum set to decompose signals.
- Natural languages use redundant dictionaries.
- Use of larger dictionaries incorporating more patterns to represent complex signals $f \in \mathbf{R}^N$

 $\mathcal{D} = \{\phi_p\}_{p \in \Gamma} \text{ with } \|\phi_p\| = 1 \text{ and } |\Gamma| = P > N.$

- How to construct sparse representations in D?
- What is the impact of redundancy on the mathematics and applications ?

Dictionary Approximation Let D = {φ_p}_{p∈Γ} be a redundant dictionary of P vectors. The best approximation of f from a sub-family {φ_p}_{p∈Λ} is its orthogonal projection in V_Λ = Vect{φ_p}_{p∈Λ}

$$f_{\Lambda} = \sum_{p \in \Lambda} a[p] \, \phi_p$$

• Stability: $\{\phi_p\}_{p\in\Lambda}$ must be a Riez basis of \mathbf{V}_{Λ} :

there exists $0 < A_{\Lambda} \leq B_{\Lambda}$ such that

$$\forall a[p] \in \mathbf{R}^{\Lambda} \quad , \quad A_{\Lambda} \sum_{p \in \Lambda} |a[p]|^2 \le \|\sum_{p \in \Lambda} a[p] \phi_p\|^2 \le B_{\Lambda} \sum_{p \in \Lambda} |a[p]|^2 \; .$$

• The best M-term approximation support Λ

minimizes $||f - f_{\Lambda}||$ with $|\Lambda| = M$.

• A best M-term approximation minimizes a Lagrangian:

 $\mathcal{L}_0 = \|f - f_\Lambda\|^2 + T^2 |\Lambda| .$

- If \mathcal{D} is an orthonormal basis then $\Lambda = \{p : |\langle f, \phi_p \rangle| \ge T\}$
- In general, finding Λ is an NP-hard problem.

• Compute a best M-term approximation

$$f_{\Lambda} = \sum_{p \in \Lambda} a[p] \phi_p \text{ with } |\Lambda| = M.$$

• Compression with uniform quantization

• Total bit budget:

$$\begin{aligned}
\tilde{f}_{\Lambda} &= \sum_{p \in \Lambda} Q(a[p]) \phi_p \\
R &= \log_2 \left(\frac{P}{M}\right) + \mu M \\
R &\sim M \log_2(P/M)
\end{aligned}$$

• Increasing *P* reduces $D = ||f - \tilde{f}_{\Lambda}||$ but increases *R*. If $||f - f_{\Lambda}||^2 = O(M^{-\alpha})$ then $D(R) = R^{-\alpha} |\log(P/R)|^{-\alpha}$.

Wavelets for Cartoon Images

• **Theorem:** If f is uniformly \mathbf{C}^{α} then an M-term wavelet approximation gives

$$||f - f_M||^2 = O(M^{-\alpha})$$

- Theorem: If f is piecewise \mathbf{C}^{α} with finite length contours then $\|f - f_M\|^2 = O(M^{-1})$ so $D(R) = R^{-1} |\log(N/R)|$
- Result valid for all bounded variation functions.

Bandlets for Geometric Regularity

 $\langle f, \psi_{in}^V$

(b) Wavelet Transform

Wavelet coefficients inherit the geometric regularity

1. Segmentation of wavelet coefficients.

2. Geometric flow in edge squares along the direction of regularity.

Wavelet Transform

3. 1D wavelet transform along the flow = bandlet transform

Quadtree

 $\langle f, \psi_{i}^{H}$

Regular square

Edge square

Corner square

Small Edge square

(c) Zoom

Ĵb

Bandlet Approximations

- A bandlet dictionary is a union of orthonormal bases.
- The best bandlet approximation (best geometry) which minimizes $\mathcal{L}_0 = \|f f_M\|^2 + T^2 M$

can be computed with $O(N \log N)$ operations.

• Theorem If f is piecewise \mathbf{C}^{α} with piecewise \mathbf{C}^{α} contours $\|f - f_M\|^2 = O(M^{-\alpha})$ so $D(R) = R^{-\alpha} |\log(P/R)|^{\alpha}$

Xlets Beyond Wavelets

- Xlets take advantage of the image geometric regularity: *bandlets*, curvelets, contourlets, edglets, wedglets...
- "Failure" to improve wavelet approximations for natural images.

• Can wavelet approximations be asymptotically improved ? *I don't think so for static natural images.*

Denoising in Redundant Dictionaries

• Measure a signal plus a Gaussian white noise:

 $X[n] = f[n] + W[n] \quad \text{for} \quad 0 \le n < N \ .$

• Orthogonal projection estimator in $\mathbf{V}_{\Lambda} = \operatorname{Vect}\{\phi_p\}_{p \in \Lambda}$ selected in a dictionary:

$$X_{\Lambda} = \sum_{p \in \Lambda} a[p] \phi_p \; .$$

- Risk: $E\{\|f X_{\Lambda}\|^2\} = \|f f_{\Lambda}\|^2 + E\{\|W_{\Lambda}\|^2\}$.
- If Λ is fixed then $E\{||W_{\Lambda}||^2\} = \sigma^2 |\Lambda|$.
- Oracle choice: find Λ which minimizes

$$E\{\|f - X_{\Lambda}\|^{2}\} = \|f - f_{\Lambda}\|^{2} + \sigma^{2} |\Lambda|$$

Wavelet thresholding

PSNR = 25.3 db

PSNR = 26.4db

Greedy Matching Pursuits

- Let $\mathcal{D} = \{\phi_p\}_{p \in \Gamma}$ be a dictionary of P > N vectors.
- A best M-term approximation minimizes the Lagrangian:

$$\mathcal{L}_0 = \|f - f_\Lambda\|^2 + T^2 |\Lambda|$$

- Finding Λ is in general an NP complete problem.
- Greedy choice of the approximation vectors.
- The approximation of f over $\phi_{p_0} \in \mathcal{D}$ yields

 $f = \langle f, \phi_{p_0} \rangle + Rf$

$$||f||^2 = |\langle f, \phi_{p_0} \rangle|^2 + ||Rf||^2$$

• To minimize the residual error we choose

$$\phi_{p_0} = \arg \max_{\phi_p \in \mathcal{D}} |\langle f, \phi_p \rangle|$$

Matching Pursuit Iterations

- Initialize $R^0 f = f$
- For each m > 0

$$\phi_{p_m} = \arg \max_{\phi_p \in \mathcal{D}} |\langle R^m f, \phi_p \rangle|$$
$$R^m f = \langle R^m f, \phi_{p_m} \rangle + R^{m+1} f$$

$$||R^m f||^2 = |\langle R^m f, \phi_{p_m} \rangle|^2 + ||R^{m+1} f||^2$$

• It results: $f = \sum_{m=0}^{M-1} \langle R^m f, \phi_{p_m} \rangle + R^M f$ $\|f\|^2 = \sum_{m=0}^{M-1} |\langle R^m f, \phi_{p_m} \rangle|^2 + \|R^M f\|^2$

• Dictionary of time-frequency atoms:

$$\mathcal{D} = \left\{ \phi_p(t) = \frac{1}{\sqrt{2^j}} w(\frac{t-u}{2^j}) e^{i\xi t} \right\}_{(j,u,\xi)\in\Gamma}$$

Time-Frequency Decompositions

• It includes Dirac and Fourier bases, wavelets and window Fourier atoms.

Orthogonal Matching Pursuit

- Initialize $R^0 f = f$
- For each m > 0 orthogonalize the projections:

$$\phi_{p_m} = \arg \max_{\phi_p \in \mathcal{D}} |\langle R^m f, \phi_p \rangle|$$

$$u_m = \phi_{p_m} - \sum_{l=0}^{m-1} \frac{\langle \phi_{p_m}, u_l \rangle}{\|u_l\|^2} u_l .$$

$$R^{m+1}f = \frac{\langle R^m f, u_m \rangle}{\|u_m\|^2} + R^{m+1}f$$

• After N iterations, it gives decomposition in an orthogonal basis:

$$f = \sum_{m=0}^{N-1} \frac{\langle R^m f, u_m \rangle}{\|u_m\|^2}.$$

Matching versus Basis Pursuit

• Greediness is not optimal.

Computation of 11 Minimization

• Many iterative algorithms to minimize

$$\mathcal{L}_1(a) = \frac{1}{2} \|f - \sum_{p \in \Gamma} a[p] \phi_p \|^2 + T \|a\|_1$$

• Simplest one: iterative thresholding.

Initialisation $b = \Phi f = \{\langle f, \phi_p \rangle\}_{p \in \Gamma}$ and $a_0 = 0$. For k > 0

Gradient step: $\tilde{a}_k = a_k + \gamma (b - \Phi \Phi^* a_k)$

Soft thresholding: $a_{k+1} = \tilde{a}_k \max\left(1 - \frac{\gamma T}{|\tilde{a}_k|}, 0\right).$

• Suppose that the signal is sparse

$$f = \sum_{p \in \Lambda} a[p] \phi_p = \sum_{p \in \Lambda} \langle f, \phi_p \rangle \, \tilde{\phi}_p \in \mathbf{V}_{\Lambda}.$$

can we recover Λ with pursuit algorithms ?

• With matching pursuits, need that

$$C(R^m f, \Lambda^c) = \frac{\max_{q \in \Lambda^c} |\langle R^m f, \phi_q \rangle|}{\max_{p \in \Lambda} |\langle R^m f, \phi_p \rangle|} < 1 .$$

• Exact Recovery Criteria

$$ERC(\Lambda) = \sup_{h \in \mathbf{V}_{\Lambda}} C(h, \Lambda^{c}) = \max_{q \in \Lambda^{c}} \sum_{p \in \Lambda} |\langle \tilde{\phi}_{p}, \phi_{q} \rangle| .$$

• Theorem: The approximation support Λ of $f \in V_{\Lambda}$ is exactly recovered by an orthogonal matching pursuit or a basis pursuit if

 $ERC(\Lambda) < 1.$

• Theorem (stability): If f is not exactly sparse, an orthogonal matching pursuit \tilde{f}_M with $M = |\Lambda|$ iterations satisfies:

$$\|f - \tilde{f}_M\| \le \left(1 + \frac{|\Lambda|}{A_{\Lambda} (1 - ERC(\Lambda))^2}\right) \|f - f_{\Lambda}\|.$$

• Similar result for a basis pursuit.

Dictionary Coherence

• Dictionary mutual coherence

$$\mu(\mathcal{D}) = \sup_{(p,q)\in\Gamma^2} |\langle \phi_p, \phi_q \rangle|$$

• Dirac-Fourier dictionary: $\mu(\mathcal{D}) = N^{-1/2}$.

• Theorem:

$$ERC(\Lambda) < 1$$
 if $|\Lambda| < \frac{1}{2} \left(1 + \frac{1}{\mu(\mathcal{D})} \right)$

• Exact recovery is possible for sufficiently sparse signals in incoherent dictionaries.

2nd. Conclusion

- Redundant dictionaries can improve approximation, compression, denoising.
- Finding optimal approximation is NP complete but can be approximated with matching or basis pursuits.
- May be used for pattern recognition but problems of instabilities.
- The stability depends upon the dictionary coherence.
- Major applications to inverse problems, superresolution and compress sensing.