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      Sparse  Approximation Processing

•Key idea: approximate signals f  as a sparse 
decomposition in a dictionary                          of 
waveforms 

•The signal is characterized by fewer coefficients        :
– Compression capabilites
– Fast algorithms and memory saving
– Estimation of fewer coefficients for:

• noise removal
•inverse problems
•pattern recognition ????

D = {φp}p∈Γ

f =
∑

p∈Λ

a[p]φp + εΛ

a[p]



       A  Sparse Tour

• I. Linear versus Non-Linear Representations in Bases
• II. Sparsity in Redundant Dictionaries
• III. Super-resolution for Inverse Problems
• IV. Compressive Sensing
•V. Dictionary Learning & Source Separation

•End: Grouping to Perceive in an Incompressible World

•Contributors: many... 

•Softwares: http://www.wavelet-tour.com



    Sparse Linear Versus Non-Linear

•  Linear representations are powerful but... limited:
– Approximations and sampling theorems
– Principal Component Analysis

•Non-linear approximation in bases:
– Wavelets and adaptive sampling

•Signal and image compression

•Linear and non-linear noise removal



Linear Representation in a Basis

•Decomposition in an orthonormal basis

•Approximation of  f  over the first N vectors: projection 
on the space 

•Error:

•Depends on the decay of                as  m  increases.

B = {gm}m∈N

UN = Vect{gm}0≤m<N

f =
+∞∑

m=0

〈f, gm〉 gm

f − fN =
+∞∑

m=N

〈f, gm〉 gm so ‖f − fN‖2 =
+∞∑

m=N

|〈f, gm〉|2

|〈f, gm〉|

fN = PUN f =
N−1∑

m=0

〈f, gm〉 gm



       Uniform Sampling

• f(t) is discretized with a filtering and uniform sampling:

• It gives the decomposition coefficients of   f(t)  in a 
Riesz basis                                             of a space

• If                                        where                         is an 
orthonormal basis of the whole signal space then

•Sampling theorems... 

f ∗ φs(nT ) =
∫

f(u) φs(nT − u) du = 〈f(u), φs(nT − u)〉

UN{φn(t) = φs(nT − t)}0≤n<N

B = {gm}m∈NUN = Vect{gm}0≤m<N

PUN f = fN =
∑

n

〈f, φn〉 φ̃n

‖f − fN‖2 =
+∞∑

m=N

|〈f, gm〉|2



 Approximation in a Fourier Basis

•Fourier basis                       of 

•Low frequency Fourier approximation:

{ei2πmt}m∈Z L2[0, 1]

f(t) =
+∞∑

m=−∞
f̂(2πm) ei2πmt

with f̂(2πm) =
∫ 1

0
f(u) e−i2πmu du

fN (t) =
N/2∑

m=−N/2

f̂(2πm) ei2πmt



  Fourier Approximation Error

•The approximation error is

• It depends on the high-frequency decay of                
which depends on the uniform regularity of  f .

•Nyquist sampling theorem: 

• If f  is s times differentiable in the sense of Sobolev then

|f̂(2πm)|

‖f − fN‖2 =
∑

|m|>N/2

|f̂(2πm)|2

‖f − fN‖2 = o(N−2s)

φn(t) =
sin(πt/T − n)

πt/T − n



Example of Fourier Approximation
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Fig. 9.1. A Wavelet Tour of Signal Processing, 3rd ed. Top: Original signal f . Middle: Signal fN approximated from N = 128 lower
frequency Fourier coefficients, with ‖f − fN‖/‖f‖ = 8.63 10−2. Bottom: Signal fN approximated from larger scale Daubechies 4 wavelet

coefficients, with N = 128 and ‖f − fN‖/‖f‖ = 8.58 10−2.



Principal Component Analysis

•Find a best approximation basis from signal examples.
•Signals are realization of a random vector
•Linear approximation in a basis 

•Find the basis which minimizes the expected error:

F [p] ∈ RP

{gm}0≤m<P

FN =
N−1∑

m=0

〈F, gm〉 gm

E{‖F − FN‖2} =
P∑

m=N

E{|〈F, gm〉|2}



      Karhunen-Loeve Basis

•The covariance matrix                                                             
is diagonal in an orthonormal basis (Karhunen-Loeve).

•Theorem: The approximation error                                                  

is minized by projecting F on the N vectors of the 
Karhunen-Loeve basis with largest eigenvalues 
(variance).

RF [n, m] = E{F [n]F [m]}

E{‖F − FN‖2} =
P∑

m=N

E{|〈F, gm〉|2}



            PCA  Properties 

•The Karhunen-Loeve basis is easy to compute

•But it does not always provide a good approximation.
•Example: random shift signals

  are stationary

 the Karhunen-Loeve basis is thus a Fourier basis,
which is not always effective...

F [p] = f [(n−X) mod P ]

RF [n, m] = RF [n−m] =
1
P

f ! f̃ [n−m]



  Non-Linear Approximation

•  Adaptive sampling: put samples where they are needed.
•How ? 
•Sparse non-linear approximation in a basis

•Since

•The minimum error is obtained by thresholding:

B = {gm}m∈N

fM =
∑

m∈Λ

〈f, gm〉 gm with |Λ| = M .

‖f − fM‖2 =
∑

m∈/Λ

|〈f, gm〉|2

Λ = {m : |〈f, gm〉| > T (M)} .



  Non-Linear Approximation Error

•                    sorted with decreasing amplitude

•Sparse non-linear approximation:

and

{〈f, gmk〉}k

|〈f, gmk+1〉| ≤ |〈f, gmk〉|.

fM =
M∑

k=1

〈f, gmk〉 gmk

‖f − fM‖2 =
N∑

k=M+1

|〈f, gmk〉|2 .

If |〈f, gmk〉| = O(k−α) then ‖f − fM‖2 = O(M1−2α) .



    Wavelet Bases

•Wavelet orthonormal basis of 

•  Fast algorithm in O(N) to compute N wavelet 
coefficients

•                   is large where f  is irregular.

L2[0, 1]
{

ψj,n(t) =
1√
2j

ψ
( t− 2jn

2j

)}

j<0,2jn∈[0,1]
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Fig. 7.5. A Wavelet Tour of Signal Processing, 3rd ed. Battle-Lemarié cubic spline wavelet ψ and its Fourier transform modulus.

〈f, ψj,n〉
|〈f, ψj,n〉|



    Wavelet   Coefficients

•  
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Non-Linear Wavelet Approximation
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Non− linear :
‖f − fM‖2 = 5.1 10−3

Linear :
‖f − fM‖2 = 8.5 10−2



  Wavelet Bases of Images

•Wavelet basis of                :L2[0, 1]2
{

1
2j

ψk
(x− 2jn

2j

)}

1≤k≤3,j<0
2jn∈[0,1]2

Wavelet coefficients
k = 1, 2, 3
j = −1,−2,−3,−4
2jn ∈ [0, 1]2



   Wavelet Image Approximations

Original
Image

Linear
Approximation

Non-linear
Approximation

M = N/16 largest
 wavelet coeffs.



f ∗ hf

       Good but Not Optimal

The number
of large wavelet
coefficient is
proportional to 
the length of the 
contour.

Need less adapted
triangles if the 
contour geometry
is regular. 



  Sparse Signal Compression

•Signal                   decomposed in a basis

•Coefficients approximated by a uniform quantifier:

•Restored signal from quantized coefficients:

•  

f [n] ∈ RN B = {gm}0≤m<N

f =
N−1∑

m=0

〈f, gm〉 gm

Q(x) = n ∆ if x ∈ [(n− 1/2)∆, (n + 1/2)∆)

f̃ =
N−1∑

m=0

Q(〈f, gm〉) gm



     Bit Budget 

•Need R bits for a binary entropy coding of

includes only M non-zero coefficients
{Q(〈f, gm〉}0≤m<N

Q(〈f, gm〉) = 0 if |〈f, gm〉| ≤ ∆/2 .

m ∈ Λ



    Distortion-Rate

• Compression distortion:

• Bit budget: 

•Compression depends on non-linear approximation.

D(R) = ‖f − f̃‖2 =
N−1∑

m=9

|〈f, gm〉 − Q(〈f, gm〉)|2

=
∑

|〈f,gm〉|<∆/2

|〈f, gm〉|2 +
∑

|〈f,gm〉|≥∆/2

|〈f, gm〉 − Q(〈f, gm〉)|2

D(R) ≤ ‖f − fM‖2 + M
∆2

4
.

R = log2

(
N

M

)
+ µ M

R ∼ M log2(N/M)



    Compression with JPEG-2000

Non-zero
wavelet 
coefficients

0.2 bit/pixel 0.05 bit/pixel



    Noise Removal

•Measure a signal plus noise

•Deterministic signal model:

•Estimator:
•Risk:
•Maximum risk: 

•Minimax risk:
•How to construct nearly minimax estimators ?  

X[n] = f [n] + W [n] for 0 ≤ n < N .

f ∈ Θ

F̃ = D X

r(D, f) = E{‖F̃ − f‖2}
r(Θ, D) = sup

f∈Θ
r(D, f)

rmin(Θ) = inf
D

r(Θ, D)



    Diagonal Estimator in a Basis

•Decompose X = f + W in a basis

•Diagonal attenuation of each coefficient

•Risk if W is a Gaussian white noise of variance

•Linear if       does not depend upon X 
•How efficient are non-linear diagonal estimators ? 

B = {gm}0≤m<N

X =
N−1∑

m=0

〈X, gm〉 gm

F̃ = DX =
N−1∑

m=0

am 〈X, gm〉 gm with am ≤ 1 .

σ2

r(D, f) =
N∑

m=1

|〈f, gm〉|2(1 − am)2 +
N∑

m=1

σ2 |am|2.

am



     Linear Estimators

•The risk depends upon the linear approximation error:

•M  is adjusted so that 

am = 1 for 0 ≤ m < M and am = 0 for M ≤ m .

r(D, f) =
N−1∑

m=M

|〈f, gm〉|2 + M σ2

= ‖f − fM‖2 + M σ2

‖f − fM‖2 ∼ Mσ2



  Linear in a Fourier Basis

• In a discrete Fourier basis: 

F̃ = DX = X ! h with ĥ[m] = am .

{gm[n] = N−1/2 ei2πmn/N}0≤m<N
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   Non-Linear Oracle Estimation

•The risk of a diagonal estimation is:

•To minimize the risk, an oracle will choose:

The minimum risk depends upon the non-linear 
approximation error:

r(D, f) =
N∑

m=1

|〈f, gm〉|2(1− am)2 +
N∑

m=1

σ2 |am|2

with am ∈ {0, 1} .

am = 1 if |〈f, gm〉| ≥ σ and am = 0 otherwise .

ro(f) =
∑

|〈f,gm〉|≤σ

|〈f, gm〉|2 + Mσ2

= ‖f − fM‖2 + Mσ2.



   Thresholding Estimation 

A thresholding estimator D  defined by

is nearly as good as an oracle estimator.

Theorem: If                              then  T = σ
√

2 loge N

am(〈X, gm〉) =
{

1 if |〈X, gm〉| ≥ T
0 otherwise

r(D, f) ≤ (2 loge N + 1)
(
σ2 + ro(f)

)
.



     Wavelet Thresholding
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   Wavelet Image Thresholding

Original
image f

Thesh.
estim. DX

Noisy
image X

Wavelet
coeff.
above T

Translat.
Invariant



   1st Conclusion

•Sparse representation provide efficient compression and 
denoising estimators with simple diagonal operators.

•Linear approximation are sparse for “uniformly regular 
signals”. Linear estimators are then nearly optimal.

•Non-linear approximations can adapt to more complex 
regularity.

•Wavelet are nearly optimal for piecewise regular one-
dimensional signals. Good but not optimal for images.


