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. Sparse Approximation Processing .-

e Key idea: approximate signals f as a sparse
decomposition in a dictionary D = {¢, }per of
waveforms

f=) alplép+ea

peA

e The signal is characterized by fewer coefficients a[p] :

- Compression capabilites
- Fast algorithms and memory saving
- Estimation of fewer coefficients for:
* noise removal
e Inverse problems
e pattern recognition ???7?
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E&"‘“" A Sparse Tour

e [I. Sparsity in Redundant Dictionaries
e [II. Super-resolution for Inverse Problems

e [V. Compressive Sensing
e V. Dictionary Learning & Source Separation

e Contributors: many...

e Softwares: http.//www.wavelet-tour.com

e I. Linear versus Non-Linear Representations in Bases

e End: Grouping to Perceive in an Incompressible World
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E&-“_Sparse Linear Versus Non-Lin

e Linear representations are powerful but... limited:

- Approximations and sampling theorems
- Principal Component Analysis

e Non-linear approximation in bases:

- Wavelets and adaptive sampling

e Signal and 1mage compression

e [ .inear and non-linear noise removal




Linear Representation in a Basis n‘.

e Decomposition in an orthonormal basis B = {g,, } men

+00
= {f 9m) gm
m=0

o Approximation of f over the first N vectors: projection
on the space Uy = Vect{g, }o<men

N—1
fN :PUNf: Z<fagm>gm
m=0

e Error:
+00 T
f=dn=2 fgmdgm so |If = fnl* = D Uf.9m)
m=N m=N

e Depends on the decay of [(f,9m)| as m increases.




Uniform Sampling =

e f(1) 1s discretized with a filtering and uniform sampling:

f*ps(nT) = /f(U) ¢s(nT —u) du = (f(u), s(nT — u))

o It gives the decomposition coefficients of f(?) 1n a
Riesz basis {¢n(t) = ¢s(nT —t)}o<n<n of a space Uy

PUNf: fN — Z<f7¢n> ggn

n

o [f Uy = Vect{gm}0§m<N where B = {gm}mEN 1S an
orthonormal basis of the whole signal space then

+0o0
1= fnllP= D Kfgm)P
m=N

e Sampling theorems...




mproximation in a Fourier Basis_ =«

e Fourier basis {e"*™™'},,cz of L2[0,1]

+00
fy="2_ f@2mm)e?m™

m=—oco

1
with f(27rm):/0 fu) e ™Y dyy,

e Low frequency Fourier approximation:
N/2

fv@)y="2  f@wm)e=m™

m=—N/2




murier Approximation Error n'f

e The approximation error 1s

If =il = > 1f2rm)?

'm|>N/2

e It depends on the high-frequency decay of |f(27m)|
which depends on the uniform regularity of f.

sin(nt/T — n)
it/ T —n

e Nyquist sampling theorem: ¢én(t) =

o If / 1s s times differentiable in the sense of Sobolev then

|f = fnll® = o(N7™)




Vavelet Tour of Signal Processing, 3'4 ed. Top: Original S1gna1 f M1dd1e Signal fN approx1mated from N = 128 loy
rier coefficients, with || f — fNH/HfH =8.6310" 2
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mncipal Component Analysis

e Linear approximation in a basis {gm }o<m<p
N—-1

FN: Z<Fagm>gm

m=0

E{||F — Fx||*} = ) E{|(F.gm)I*}

m=N

e Find a best approximation basis from signal examples.
e Signals are realization of a random vector F[p] € R”

 Find the basis which minimizes the expected error:




Karhunen-Loeve Basis

L

-

e The covariance matrix Rg[n,m| = E{F[n| F[m|}

1s diagonal 1n an orthonormal basis (Karhunen-Loeve).

e Theorem: The approximation error

P
E{|F - Fx|’} = > E{|(F,9m)*}
m=N
1s minized by projecting F' on the N vectors of the
Karhunen-Loeve basis with largest eigenvalues

(variance).




E&"‘“" PCA Properties =y

e The Karhunen-Loeve basis is easy to compute

 But 1t does not always provide a good approximation.
e Example: random shift signals

Flp] = fl(n — X)mod P

are stationary

Rpn,m| = Rpn —m| = %f*f[n—m]

the Karhunen-Loeve basis 1s thus a Fourier basis,
which 1s not always effective...
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e How ?

meA
e Since

A={m :

E@-‘_&N_oniinear Approximation

e Adaptive sampling: put samples where they are needed.

far =) {f9m) gm with |[A] =M .

If = farll® =D [f gm)|?

meA

e The minimum error is obtained by thresholding:

[(fs gm)| > T (M)} .

e Sparse non-linear approximation in a basis B = {g,, }men




EE-&;_&N_on-Linear Approximation Error n‘-

o {{f,gm.)}r sorted with decreasing amplitude
s g )] < IS i) |-

e Sparse non-linear approximation:
M

far = {fs Gmi) G,
k=1
and N

k=M+1

If [(f,gm.)| =O(k™®) then [If— ful]*=0(M ).




. Wavelet Bases

e Wavelet orthonormal basis of  1,2]p, 1]

e R)

1

j<0,2ine(0,1]

]
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e Fast algorithm in O(N) to compute N wavelet
coefficients (f,¥;n)

o |(f ;)| islarge where f is irregular.
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Non — linear :

I~ ful? =5110"°
Linear :

|f = full* = 85107

f(t)

lon-Linear Wavelet Approximation =
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mavelet Bases of Images !:j

e Wavelet basis of L2[0,1)2: J 1 x(%= 27n
27 v

27 ) 1<k<3,j<0

2J nel0,1]2

Wavelet coeflicients
k=123

- j=-1,-2,-3,-4

= 2n € [0,1)?




Wavelet Image Approximations !:ﬁ

I Non-linear

Original Approximation
Image
)
. g el s
Linear ;’hi I, M =N/16 largest
Approximatio N A wavelet coeffs.




Good but Not Optimal

-

contour.

Need less

1s regular.

The number

of large wavelet
coefficient 1s
proportional to
the length of the

triangles 1f the
contour geometry

adapted




E&-‘_&S_mrse Signal Compression =y

e Signal f[n] € R" decomposed in a basis B = {g,, }o<men

N-—1
f=> {f 9m) gm
m=0

 Coefficients approximated by a uniform quantifier:

Qlx)=nA if x€[(n—1/2)A,(n+1/2)A)

e Restored signal from quantized coefficients:

N-—-1

f=_ QUf gm))gm

m=0




Bit Budget

e Need R bits for a binary entropy coding of
{Q(<f7 gm>}0§m<N

includes only M non-zero coefficients m € A

Q((f,9m)) =0 if [(f,gm)| <A/2.




mDistortion-Rate -

e Compression distortion:

DR) = f — FIP = 3 {F: gm) — QU g}

— |<fagm>’2+ Z ‘<fagm> _Q(<fagm>)‘2

[(frgm) | <A/2 [{frgm)|=2A/2

AQ
D(R) < ||f = ful® + M=,

N
R = log, (M) + uM

R ~ M log,(N/M)

e Bit budget:

e Compression depends on non-linear approximation.




Compression with JPEG-2000

Non-zero
wavelet
coefficients

0.2 bit/pixel ST 0.05 bit/pixel




Eﬁﬁ-ﬂyoise Removal

e Measure a signal plus noise

X[n| = fln] +Win| for 0<n< N .
e Deterministic signal model: f € ©
e Estimator: =D X
e Risk: r(D, f) = E{||F - fII’}
e Maximum risk: r(©,D) = supr(D, f)

fee

e Minimax risk: 7min(0©) = i%fr(@, D)
e How to construct nearly minimax estimators ?




. Diagonal Estimator in a Basis _ =&

e Decompose X =f + Win a basis B = {g }o<m<n

N-—1
X =) (X,gm)y
m=0

e Diagonal attenuation of each coefficient
N—1
F=DX = Zam<X,gm>gm with a,, <1 .

m=0

e Riskif Wis a Gaussmn white noise of Vanance o

Z‘fagm 1_am +Z(72’a’m|2

m=1

e Linear if am does not depend upon X
 How efficient are non-linear diagonal estimators ?




am =1 tor 0<m< M and a,, =0 for M <m.

e The risk depends upon the linear approximation error:

N-—-1
r(D,f) = > Wfigm)?+ Mo
m=M

= |f = full* + Mo~

e M 1is adjusted so that

|f = full® ~ Mo®

Linear Estimators =




Egﬁ;_nl_.inear in a Fourier Basis -

o In a discrete Fourier basis: {gm[n] = N™1/2ei2mmn/Ny o~

F=DX=Xx*h with hlm] = an, .
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E&-“_Ijon-unear Oracle Estimation :;-

e The risk of a diagonal estimation 1s:

Z‘fgm 1_am "|_Z 2|am’2

with a,, € {0,1} .
e To minimize the risk, an oracle will choose:

am =1 if [{f,gm)| >0 and a,, =0 otherwise .

The minimum risk depends upon the non-linear
approximation error:
ro(f) = >, [figm)?+ Mo
[(frgm) <o
= |f = full* + Mo*.




Mhresholding Estimation

A thresholding estimator D defined by

(1 (X, g >T
Ay (X, gm)) = { 0 otherwise

1s nearly as good as an oracle estimator.

Theorem: If T = o /2log. N then

(D, f) < (2log, N +1) (02 + ro(f)) |
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Wavelet Thresholding =
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Mavelet Image Thresholding !:j

Original

- 1S ) Noisy
image /' S 1

' image X

Translat.
Invariant

Thesh. -
estim. DX

Wavelet
coeft.
above T




_1st Conclusion =y

e Sparse representation provide efficient compression and
denoising estimators with simple diagonal operators.

e Linear approximation are sparse for “uniformly regular
signals”. Linear estimators are then nearly optimal.

e Non-linear approximations can adapt to more complex
regularity:.

e Wavelet are nearly optimal for piecewise regular one-
dimensional signals. Good but not optimal for images.




