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Abstract—A wavelet scattering network computes a translation invariant image representation which is stable to deformations and

preserves high-frequency information for classification. It cascades wavelet transform convolutions with nonlinear modulus and

averaging operators. The first network layer outputs SIFT-type descriptors, whereas the next layers provide complementary invariant

information that improves classification. The mathematical analysis of wavelet scattering networks explains important properties of

deep convolution networks for classification. A scattering representation of stationary processes incorporates higher order moments

and can thus discriminate textures having the same Fourier power spectrum. State-of-the-art classification results are obtained for

handwritten digits and texture discrimination, with a Gaussian kernel SVM and a generative PCA classifier.

Index Terms—Classification, convolution networks, deformations, invariants, wavelets

Ç

1 INTRODUCTION

A major difficulty of image classification comes from the
considerable variability within image classes and the

inability of euclidean distances to measure image simila-
rities. Part of this variability is due to rigid translations,
rotations, or scaling. This variability is often uninformative
for classification and should thus be eliminated. In the
framework of kernel classifiers [32], the distance between
two signals x and x0 is defined as a euclidean distance
k�x� �x0k applied to a representation �x of each x.
Variability due to rigid transformations is removed if � is
invariant to these transformations.

Nonrigid deformations also induce important variability
within object classes [17], [3]. For instance, in handwritten
digit recognition, one must take into account digit deforma-
tions due to different writing styles [3]. However, a full
deformation invariance would reduce discrimination since
a digit can be deformed into a different digit, for example, a
one into a seven. The representation must therefore not be
deformation invariant. It should linearize small deforma-
tions, to handle them effectively with linear classifiers.
Linearization means that the representation is Lipschitz
continuous to deformations. When an image x is slightly
deformed into x0, then k�x� �x0k must be bounded by the
size of the deformation, as defined in Section 2.

Translation invariant representations can be constructed
with registration algorithms [33], autocorrelations, or with
the Fourier transform modulus. However, Section 2.1
explains that these invariants are not stable to deformations
and hence not adapted to image classification. Trying to
avoid Fourier transform instabilities suggests replacing

sinusoidal waves by localized waveforms such as wavelets.
However, wavelet transforms are not invariant but covar-
iant to translations. Building invariant representations from
wavelet coefficients requires introducing nonlinear opera-
tors, which leads to a convolution network architecture.

Deep convolutional networks have the ability to build
large-scale invariants which seem to be stable to deforma-
tions [20]. They have been applied to a wide range of image
classification tasks. Despite the successes of this neural
network architecture, the properties and optimal config-
urations of these networks are not well understood because
of cascaded nonlinearities. Why use multiple layers? How
many layers? How do we optimize filters and pooling
nonlinearities? How many internal and output neurons?
These questions are mostly answered through numerical
experimentations that require significant expertise.

We address these questions from a mathematical and
algorithmic perspective by concentrating on a particular
class of deep convolutional networks, defined by the
scattering transforms introduced in [24] and [25]. A scatter-
ing transform computes a translation invariant representa-
tion by cascading wavelet transforms and modulus pooling
operators, which average the amplitude of iterated wavelet
coefficients. It is Lipschitz continuous to deformations, while
preserving the signal energy [25]. Scattering networks are
described in Section 2 and their properties are explained in
Section 3. These properties guide the optimization of the
network architecture to retain important information while
avoiding useless computations.

An expected scattering representation of stationary
processes is introduced for texture discrimination. As
opposed to the Fourier power spectrum, it gives informa-
tion on higher order moments and can thus discriminate
non-Gaussian textures having the same power spectrum.
Scattering coefficients provide consistent estimators of
expected scattering representations.

Classification applications are studied in Section 4.
Classifiers are implemented with a Gaussian kernel SVM
and a generative classifier which selects affine space models
computed with a PCA. State-of-the-art results are obtained
for handwritten digit recognition on MNIST and USPS
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databases, and for texture discrimination. These are
problems where translation invariance, stationarity, and
deformation stability play a crucial role. Software is
available at www.di.ens.fr/data/scattering.

2 TOWARD A CONVOLUTION NETWORK

Small deformations are nearly linearized by a representation
if the representation is Lipschitz continuous to the action of
deformations. Section 2.1 explains why high frequencies are
sources of instabilities, which prevent standard invariants to
be Lipschitz continuous. Section 2.2 introduces a wavelet-
based scattering transform, which is translation invariant
and Lipschitz relative to deformations. Section 2.3 describes
its convolution network architecture.

2.1 Fourier and Registration Invariants

A representation �x is invariant to global translations
xcðuÞ ¼ xðu� cÞ by c ¼ ðc1; c2Þ 2 IR2 if

�xc ¼ �x: ð1Þ

A canonical invariant [17], [33] �xðuÞ ¼ xðu� aðxÞÞ regis-
ters x with an anchor point aðxÞ, which is translated when x
is translated: aðxcÞ ¼ aðxÞ þ c. It is therefore invariant:
�xc ¼ �x. For example, the anchor point may be a filtered
maximum aðxÞ ¼ arg maxujx ? hðuÞj for some filter hðuÞ.

The Fourier transform modulus is another example of
translation invariant representation. Let x̂ð!Þ be the Fourier
transform of xðuÞ. Since bxcð!Þ ¼ e�ic:! x̂ð!Þ, it results that
j bxcj ¼ jx̂j does not depend upon c. The autocorrelation
RxðvÞ ¼

R
xðuÞxðu� vÞdu is also translation invariant:

Rx ¼ Rxc.
To be stable to additive noise x0ðuÞ ¼ xðuÞ þ �ðuÞ, we

need a Lipschitz continuity condition which supposes that
there exists C > 0 such that for all x and x0:

k�x0 � �xk � C kx0 � xk;

where kxk2 ¼
R
jxðuÞj2 du. The Plancherel formula proves

that the Fourier modulus �x ¼ jx̂j satisfies this property
with C ¼ 2�.

To be stable to deformation variabilities, � must also be
Lipschitz continuous to deformations. A small deformation of x
can be written x�ðuÞ ¼ xðu� �ðuÞÞ, where �ðuÞ is a non-
constant displacement field that deforms the image. The
deformation gradient tensor r�ðuÞ is a matrix whose norm
jr�ðuÞj measures the deformation amplitude at u and
supu jr�ðuÞj is the global deformation amplitude. A small
deformation is invertible if jr�ðuÞj < 1 [1]. Lipschitz
continuity relative to deformations is obtained if there
exists C > 0 such that for all � and x:

k�x� � �xk � C kxk sup
u
jr�ðuÞj: ð2Þ

This property implies global translation invariance because
if �ðuÞ ¼ c, then r�ðuÞ ¼ 0, but it is much stronger.

If � is Lipschitz continuous to deformations � , then the
Radon-Nykod�ym property proves that the map that
transforms � into �x� is almost everywhere differentiable
in the sense of Gâteaux [22]. It means that for small
deformations, �x� �x� is closely approximated by a
bounded linear operator of � , which is the Gâteaux

derivative. Deformations are thus linearized by �, which
enables linear classifiers to effectively handle deformation
variabilities in the representation space.

A Fourier modulus is translation invariant and stable to
additive noise but unstable to small deformations at high
frequencies. Indeed, j jx̂ð!Þj � j bx� ð!Þj j can be arbitrarily
large at a high frequency !, even for small deformations,
and in particular for a small dilation �ðuÞ ¼ �u. As a result,
�x ¼ jx̂j does not satisfy the deformation continuity
condition (2) [25]. The autocorrelation �x ¼ Rx satisfiescRxð!Þ ¼ jx̂ð!Þj2. The Plancherel formula thus proves that it
has the same instabilities as a Fourier transform:

kRx�Rx�k ¼ ð2�Þ�1kjx̂j2 � jx̂� j2k:

Besides deformation instabilities, the Fourier modulus
and the autocorrelation lose too much information. For
example, a Dirac �ðuÞ and a linear chirp eiu

2
are two signals

having Fourier transforms whose moduli are equal and
constant. Very different signals may not be discriminated
from their Fourier modulus.

A registration invariant �xðuÞ ¼ xðu� aðxÞÞ carries more
information than a Fourier modulus, and characterizes x up
to a global absolute position information [33]. However, it
has the same high-frequency instability as a Fourier
transform. Indeed, for any choice of anchor point aðxÞ,
applying the Plancherel formula proves that

kxðu� aðxÞÞ � x0ðu� aðx0ÞÞk � ð2�Þ�1 kjx̂ð!Þj � jx̂0ð!Þjk:

If x0 ¼ x� , the Fourier transform instability at high frequen-
cies implies that �xðuÞ ¼ xðu� aðxÞÞ is also unstable with
respect to deformations.

2.2 Scattering Wavelets

A wavelet transform computes convolutions with dilated
and rotated wavelets. Wavelets are localized waveforms
and are thus stable to deformations, as opposed to Fourier
sinusoidal waves. However, convolutions are translation
covariant, not invariant. A scattering transform builds
nonlinear invariants from wavelet coefficients, with mod-
ulus and averaging pooling functions.

Let G be a group of rotations r of angles 2k�=K for
0 � k < K. Two-dimensional directional wavelets are ob-
tained by rotating a single band-pass filter  by r 2 G and
dilating it by 2j for j 2 Z:

 �ðuÞ ¼ 2�2j ð2�jr�1uÞ with � ¼ 2�jr: ð3Þ

If the Fourier transform  ̂ð!Þ is centered at a frequency �,
then  ̂2�jrð!Þ ¼  ̂ð2jr�1!Þ has a support centered at 2�jr�
and a bandwidth proportional to 2�j. The index � ¼ 2�jr
gives the frequency location of  � and its amplitude is
j�j ¼ 2�j.

The wavelet transform of x is fx ?  �ðuÞg�. It is a
redundant transform with no orthogonality property.
Section 3.1 explains that it is stable and invertible if the
wavelet filters  ̂�ð!Þ cover the whole frequency plane. On
discrete images, to avoid aliasing, we only capture
frequencies in the circle j!j � � inscribed in the image
frequency square. Most camera images have negligible
energy outside this frequency circle.
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Let u:u0 and juj denote the inner product and norm in
IR2. A Morlet wavelet  is an example of complex wavelet
given by

 ðuÞ ¼ � ðeiu:	 � 
Þ e�juj
2=ð2�2Þ;

where 
 � 1 is adjusted so that
R
 ðuÞ du ¼ 0. Its real and

imaginary parts are nearly quadrature phase filters. Fig. 1
shows the Morlet wavelet with � ¼ 0:85 and 	 ¼ 3�=4, used
in all classification experiments.

A wavelet transform commutes with translations, and is
therefore not translation invariant. To build a translation
invariant representation, it is necessary to introduce a
nonlinearity. If Q is a linear or nonlinear operator that
commutes with translations, then

R
QxðuÞ du is translation

invariant. Applying this to Qx ¼ x ?  � gives a trivial
invariant

R
x ?  �ðuÞ du ¼ 0 for all x because

R
 �ðuÞ du ¼ 0.

If Qx ¼Mðx ?  �Þ and M is linear and commutes with
translations, then the integral still vanishes. This shows that
computing invariants requires a nonlinear pooling
operator M, but which one?

To guarantee that
R
Mðx ?  �ÞðuÞ du is stable to defor-

mations, we want M to commute with the action of any
diffeomorphism. Additionally, to preserve stability to
additive noise we also want M to be nonexpansive:
kMy�Mzk � ky� zk. If M is a nonexpansive operator
that commutes with the action of diffeomorphisms, then
one can prove [7] that M is necessarily a pointwise
operator. It means that MyðuÞ is a function of the value
yðuÞ only. If, moreover, we want invariants which also
preserve the signal energy, we shall choose a modulus
operator over complex signals y ¼ yr þ i yi:

MyðuÞ ¼ jyðuÞj ¼ ðjyrðuÞj2 þ jyiðuÞj2Þ1=2: ð4Þ

The resulting translation invariant coefficients are then
L1ðIR2Þ norms:

kx ?  �k1 ¼
Z
jx ?  �ðuÞj du:

The L1ðIR2Þ norms fkx ?  �k1g� form a crude signal
representation which measures the sparsity of wavelet
coefficients. The loss of information does not come from the
modulus that removes the complex phase of x ?  �ðuÞ.
Indeed, one can prove [37] that x can be reconstructed from
the modulus of its wavelet coefficients fjx ?  �ðuÞjg�, up to
a multiplicative constant. The information loss comes from
the integration of jx ?  �ðuÞj, which removes all nonzero
frequencies. These nonzero frequencies are recovered by
calculating the wavelet coefficients fjx ?  �1

j ?  �2
ðuÞg�2

of

jx ?  �1
j. Their L1ðIR2Þ norms define a much larger family of

invariants, for all �1 and �2:

kjx ?  �1
j ?  �2

k1 ¼
Z
kx ?  �1

ðuÞj ?  �2
j du:

More translation invariant coefficients can be computed
by further iterating on the wavelet transform and modulus
operators. Let U ½��x ¼ jx ?  �j. Any sequence p ¼ ð�1;

�2; . . . ; �mÞ defines a path, along which is computed an
ordered product of nonlinear and noncommuting operators:

U ½p�x ¼ U½�m� � � � U ½�2� U ½�1�x
¼ jkx ?  �1

j ?  �2
j � � � j ?  �m j;

with U ½;�x ¼ x. A scattering transform along the path p is
defined as an integral, normalized by the response of a Dirac:

SxðpÞ ¼ ��1
p

Z
U ½p�xðuÞ du with �p ¼

Z
U ½p��ðuÞ du:

Each scattering coefficient SxðpÞ is invariant to a translation
of x. We shall see that this transform has many similarities
with the Fourier transform modulus, which is also
translation invariant. However, a scattering is Lipschitz
continuous to deformations, as opposed to the Fourier
transform modulus.

For classification, it is often better to compute localized
descriptors that are invariant to translations smaller than a
predefined scale 2J while keeping the spatial variability at
scales larger than 2J . This is obtained by localizing the
scattering integral with a scaled spatial window 
2J ðuÞ ¼
2�2J
ð2�JuÞ. It defines a windowed scattering transform in
the neighborhood of u:

S½p�xðuÞ ¼ U ½p�x ? 
2J ðuÞ ¼
Z
U½p�xðvÞ
2J ðu� vÞ dv;

and hence

S½p�xðuÞ ¼ jkx ?  �1
j ?  �2

j � � � j ?  �m j ? 
2J ðuÞ;

with S½;�x ¼ x ? 
2J . For each path p, S½p�xðuÞ is a function
of the window position u, which can be subsampled at
intervals proportional to the window size 2J . The averaging
by 
2J implies that if xcðuÞ ¼ xðu� cÞwith jcj � 2J , then the
windowed scattering is nearly translation invariant:
S½p�x � S½p�xc. Stability relatively to deformations is re-
viewed in Section 3.1.

2.3 Scattering Convolution Network

If p ¼ ð�1; . . . ; �mÞ is a path of length m, then S½p�xðuÞ is
called a windowed scattering coefficient of order m. It
is computed at the layer m of a convolution network that is
specified. For large scale invariants, several layers are
necessary to avoid losing crucial information.

For appropriate wavelets, first-order coefficients S½�1�x
are equivalent to SIFT coefficients [23]. Indeed, SIFT
computes the local sum of image gradient amplitudes
among image gradients having nearly the same direction in
a histogram having eight different direction bins. The
DAISY approximation [34] shows that these coefficients are
well approximated by S½�1�x ¼ jx ?  �1

j ? 
2J ðuÞ, where  �1

are partial derivatives of a Gaussian computed at the finest
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Fig. 1. Complex Morlet wavelet. (a) Real part of  ðuÞ. (b) Imaginary part
of  ðuÞ. (c) Fourier modulus j ̂ð!Þj.



image scale, along eight different rotations. The averaging
filter 
2J is a scaled Gaussian.

Partial derivative wavelets are well adapted to detecting
edges or sharp transitions but do not have enough
frequency and directional resolution to discriminate com-
plex directional structures. For texture analysis, many
researchers [21], [31] have been using averaged wavelet
coefficient amplitudes jx ?  �j ? 
2J ðuÞ, calculated with a
complex wavelet  having a better frequency and direc-
tional resolution.

A scattering transform computes higher order coeffi-
cients by further iterating on wavelet transforms and
modulus operators. Wavelet coefficients are computed up
to a maximum scale 2J and the lower frequencies are
filtered by 
2J ðuÞ ¼ 2�2J
ð2�JuÞ. For a Morlet wavelet  , the
averaging filter 
 is chosen to be a Gaussian. Since images
are real-valued signals, it is sufficient to consider “positive”
rotations r 2 Gþ with angles in ½0; �Þ:

WxðuÞ ¼ fx ? 
2J ðuÞ; x ?  �ðuÞg�2P ; ð5Þ

with an index set P ¼ f� ¼ 2�jr : r 2 Gþ; j � Jg. Let us
emphasize that 2J and 2j are spatial scale variables, whereas
� ¼ 2�jr is a frequency index giving the location of the
frequency support of  ̂�ð!Þ.

A wavelet modulus propagator keeps the low-fre-
quency averaging and computes the modulus of complex
wavelet coefficients:

eWxðuÞ ¼ fx ? 
2J ðuÞ; jx ?  �ðuÞjg�2P : ð6Þ

Iterating on eW defines a convolution network illustrated
in Fig. 2.

The network nodes of the layerm correspond to the setPm
of all paths p ¼ ð�1; . . . ; �mÞ of length m. This mth layer
stores the propagated signals fU½p�xgp2Pm and outputs the
scattering coefficients fS½p�xgp2Pm . For any p ¼ ð�1; . . . ; �mÞ,
we denote pþ � ¼ ð�1; . . . ; �m; �Þ. Since S½p�x ¼ U½p�x ? 
2J

and U ½pþ ��x ¼ jU½p�x ?  �j, it results that

eW U ½p�x ¼ fS½p�x; U ½pþ ��xg�2P :

Applying eW to all propagated signals U ½p�x of the mth
layer Pm outputs all scattering signals S½p�x and computes
all propagated signals U ½pþ �� on the next layer Pmþ1. All
output scattering signals S½p�x along paths of length m � m
are thus obtained by first calculating eWx ¼ fS½;� x;
U½��xg�2P and then iteratively applying eW to each layer of
propagated signals for increasing m � m.

The translation invariance of S½p�x is due to the
averaging of U½p�x by 
2J . It has been argued [8] that an
average pooling loses information, which has motivated the
use of other operators such as hierarchical maxima [9]. A
scattering avoids this information loss by recovering
wavelet coefficients at the next layer, which explains the
importance of a multilayer network structure.

A scattering is implemented by a deep convolution
network [20] having a very specific architecture. As
opposed to standard convolution networks, output scatter-
ing coefficients are produced by each layer as opposed to
the last layer [20]. Filters are not learned from data but are
predefined wavelets. Indeed, they build invariants relative
to the action of the translation group, which does not need
to be learned. Building invariants to other known groups
such as rotations or scaling is similarly obtained with
predefined wavelets which perform convolutions along
rotation or scale variables [25], [26].

Different complex quadrature phase wavelets may be
chosen, but separating signal variations at different scales is
fundamental for deformation stability [25]. Using a mod-
ulus (4) to pull together quadrature phase filters is also
important to remove the high-frequency oscillations of
wavelet coefficients. The next section explains that it
guarantees a fast energy decay of propagated signals
U½p�x across layers so that we can limit the network depth.

For a fixed position u, windowed scattering coefficients

S½p�xðuÞ of order m ¼ 1; 2 are displayed as piecewise
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Fig. 2. A scattering propagator eW applied to x computes the first layer of wavelet coefficients modulus U½�1�x ¼ jx ?  �1 j and outputs its local
average S½;�x ¼ x ? 
2J (black arrow). Applying eW to the first layer signals U ½�1�x outputs first-order scattering coefficients S½�1� ¼ U½�1� ? 
2J (black
arrows) and computes the propagated signal U½�1; �2�x of the second layer. Applying eW to each propagated signal U½p�x outputs S½p�x ¼ U½p�x ? 
2J

(black arrows) and computes the next layer of propagated signals.



constant images over a disk representing the Fourier support

of the image x. This frequency disk is partitioned into sectors

f�½p�gp2Pm indexed by the path p. The image value is S½p�xðuÞ
on the frequency sectors �½p�, shown in Fig. 3.

For m ¼ 1, a scattering coefficient S½�1�xðuÞ depends

upon the local Fourier transform energy of x over the

support of  ̂�1
. Its value is displayed over a sector �½�1� that

approximates the frequency support of  ̂�1
. For �1 ¼ 2�j1r1,

there are K rotated sectors located in an annulus,

corresponding to each r1 2 G, as shown by Fig. 3a. Their

areas are proportional to k �1
k2 	 K�1 2�j1 .

Second-order scattering coefficients S½�1; �2�xðuÞ are

computed with a second wavelet transform that performs

a second frequency subdivision. These coefficients are

displayed over frequency sectors �½�1; �2� that subdivide

the sectors �½�1� of the first wavelets  ̂�1
, as illustrated in

Fig. 3b. For �2 ¼ 2�j2r2, the scale 2j2 divides the radial axis,

and the resulting sectors are subdivided into K angular

sectors corresponding to the different r2. The scale and

angular subdivisions are adjusted so that the area of each

�½�1; �2� is proportional to kj �1
j ?  �2

k2.

Fig. 4 shows the Fourier transform of two images and the
amplitude of their scattering coefficients. In this case, the
scale 2J is equal to the image size. The top and bottom images
are very different, but they have the same first-order
scattering coefficients. The second-order coefficients clearly
discriminate these images. Section 3.1 shows that the second-
order scattering coefficients of the top image have a larger
amplitude because the image wavelet coefficients are more
sparse. Higher order coefficients are not displayed because
they have a negligible energy, as explained in Section 3.

3 SCATTERING PROPERTIES

A convolution network is highly nonlinear, which makes it
difficult to understand how the coefficient values relate to
the signal properties. For a scattering network, Section 3.1
analyzes the coefficient properties and optimizes the
network architecture. Section 3.2 describes the resulting
computational algorithm. For texture analysis, the scatter-
ing transform of stationary processes is studied in Sec-
tion 3.3. Section 3.4 shows that a cosine transform further
reduces the size of a scattering representation.

3.1 Energy Propagation and Deformation Stability

A windowed scattering S is computed with a cascade of
wavelet modulus operators eW , and its properties, thus,
depend upon the wavelet transform properties. Conditions
are given on wavelets to define a scattering transform that
is nonexpansive and preserves the signal norm. This
analysis shows that kS½p�xk decreases quickly as the length
of p increases, and is nonnegligible only over a particular
subset of frequency-decreasing paths. Reducing computa-
tions to these paths defines a convolution network with
much fewer internal and output coefficients.

The norm and distance on a transform Tx ¼ fxngn which
output a family of signals will be defined by

kTx� Tx0k2 ¼
X
n

kxn � x0nk
2:
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Fig. 3. To display scattering coefficients, the disk covering the image

frequency support is partitioned into sectors �½p�, which depend upon

the path p. (a) For m ¼ 1, each �½�1� is a sector rotated by r1 that

approximates the frequency support of  ̂�1
. (b) For m ¼ 2, all �½�1; �2�

are obtained by subdividing each �½�1�.

Fig. 4. (a) Two images xðuÞ. (b) Fourier modulus jx̂ð!Þj. (c) First-order scattering coefficients Sx½�1� displayed over the frequency sectors of
Fig. 3a. They are the same for both images. (d) Second-order scattering coefficients Sx½�1; �2� over the frequency sectors of Fig. 3b. They are
different for each image.



If there exists � > 0 such that, for all ! 2 IR2,

1� � � j
̂ð!Þj2 þ 1

2

X1
j¼0

X
r2G
j ̂ð2jr!Þj2 � 1; ð7Þ

then applying the Plancherel formula proves that if x is real,
then Wx ¼ fx ? 
2J ; x ?  �g�2P satisfies

ð1� �Þ kxk2 � kWxk2 � kxk2; ð8Þ

with

kWxk2 ¼ kx ? 
2Jk2 þ
X
�2P
kx ?  �k2:

In the following, we suppose that � < 1 and, hence, that the
wavelet transform is a nonexpansive and invertible opera-
tor with a stable inverse. If � ¼ 0, then W is unitary. The
Morlet wavelet  shown in Fig. 1 together with 
ðuÞ ¼
expð�juj2=ð2�2ÞÞ=ð2��2Þ for � ¼ 0:7 satisfy (7) with � ¼ 0:25.
These functions are used in all classification applications.
Rotated and dilated cubic spline wavelets are constructed in
[25] to satisfy (7) with � ¼ 0.

The modulus is nonexpansive in the sense that kaj �
jbk � ja� bj for all ða; bÞ 2 CC2. Since eW ¼ fx ? 
2J ; jx ?
 �jg�2P is obtained with a wavelet transform W followed
by a modulus, which are both nonexpansive, it is also
nonexpansive

k eWx� eWyk � kx� yk:

Let P1 ¼ [m2INPm be the set of all paths for any length
m 2 IN. The norm of Sx ¼ fS½p�xgp2P1 is

kSxk2 ¼
X
p2P1

kS½p�xk2:

Since S iteratively applies eW , which is nonexpansive, it is
also nonexpansive:

kSx� Syk � kx� yk:

It is thus stable to additive noise.
If W is unitary, then eW also preserves the signal norm

k eWxk2 ¼ kxk2. The convolution network is built layer by
layer by iterating on eW . If eW preserves the signal norm,
then the signal energy is equal to the sum of the scattering
energy of each layer plus the energy of the last
propagated layer:

kxk2 ¼
Xm
m¼0

X
p2Pm
kS½p�xk2 þ

X
p2Pmþ1

kU ½p�k2: ð9Þ

For appropriate wavelets, it is proven in [25] that the energy
of the mth layer

P
p2Pm kU ½p�k

2 converges to zero when m
increases, as well as the energy of all scattering coefficients
of order � m. This result is important for numerical
applications because it explains why the network depth
can be limited with a negligible loss of signal energy. By
letting the network depth m go to infinity in (9), it results
that the scattering transform preserves the signal energy:

kxk2 ¼
X
p2P1

kS½p�xk2 ¼ kSxk2: ð10Þ

This scattering energy conservation also proves that the
more sparse the wavelet coefficients, the more energy
propagates to deeper layers. Indeed, when 2J increases, one
can verify that at the first layer, S½�1�x ¼ jx ?  �1

j ? 
2J

converges to k
k2 kx ?  �k2
1. The more sparse x ?  �, the

smaller kx ?  �k1 and, hence, the more energy is propa-
gated to deeper layers to satisfy the global energy
conservation (10).

Fig. 4 shows two images having the same first-order
scattering coefficients, but the top image is piecewise
regular and, hence, has wavelet coefficients that are much
more sparse than the uniform texture at the bottom. As a
result, the top image has second-order scattering coeffi-
cients of larger amplitude than at the bottom. For typical
images, as in the CalTech101 dataset [12], Table 1 shows
that the scattering energy has an exponential decay as a
function of the path length m. Scattering coefficients are
computed with cubic spline wavelets which define a
unitary wavelet transform and satisfy the scattering energy
conservation (10). As expected, the energy of scattering
coefficients converges to 0 as m increases, and it is already
below 1 percent for m � 3.

The propagated energy kU½p�xk2 decays because U ½p�x is
a progressively lower frequency signal as the path length
increases. Indeed, each modulus computes a regular
envelope of oscillating wavelet coefficients. The modulus
can thus be interpreted as a nonlinear “demodulator” that
pushes the wavelet coefficient energy toward lower
frequencies. As a result, an important portion of the energy
of U½p�x is then captured by the low-pass filter 
2J that
outputs S½p�x ¼ U ½p�x ? 
2J . Hence, less energy is propa-
gated to the next layer.

Another consequence is that the scattering energy
propagates only along a subset of frequency decreasing
paths. Since the envelope jx ?  �j is more regular than
x ?  �, it results that jx ?  �ðuÞj ?  �0 is nonnegligible only
if  �0 is located at lower frequencies than  �, and,
hence, if j�0j < j�j. Iterating on wavelet modulus operators
thus propagates the scattering energy along frequency-
decreasing paths p ¼ ð�1; . . . ; �mÞ, where j�kj < j�k�1j for
1 � k < m. We denote by Pm# the set of frequency decreas-
ing paths of length m. Scattering coefficients along other
paths have a negligible energy. This is verified by Table 1
that shows not only that the scattering energy is concen-
trated on low-order paths, but also that more than
99 percent of the energy is absorbed by frequency-
decreasing paths of length m � 3. Numerically, it is
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TABLE 1
Percentage of Energy

P
p2Pm#

kS½p�xk2=kxk2 of
Scattering Coefficients on Frequency-Decreasing Paths

of Length m, Depending upon J

These average values are computed on the Caltech-101 database, with
zero mean and unit variance images.



therefore sufficient to compute the scattering transform
along frequency-decreasing paths. It defines a much smaller
convolution network. Section 3.2 shows that the resulting
coefficients are computed with OðN logNÞ operations.

Preserving energy does not imply that the signal
information is preserved. Since a scattering transform is
calculated by iteratively applying eW , one needs to invert eW
to invert S. The wavelet transform W is a linear invertible
operator, so inverting eWz ¼ fz ? 
2J ; jz ?  �jg�2P amounts
to recovering the complex phases of wavelet coefficients
removed by the modulus. The phase of Fourier coefficients
cannot be recovered from their modulus, but wavelet
coefficients are redundant, as opposed to Fourier coeffi-
cients. For particular wavelets, it has been proven that the
phase of wavelet coefficients can be recovered from their
modulus, and that eW has a continuous inverse, and the
phase can be recovered with a convex optimization [37].

Still, one cannot exactly invert S because we discard
information when computing the scattering coefficients
S½p�x ¼ U ½p� ? 
2J of the last layer Pm. Indeed, the propa-
gated coefficients jU ½p�x ?  �j of the next layer are elimi-
nated because they are not invariant and have a negligible
total energy. The number of such coefficients is larger than
the total number of scattering coefficients kept at previous
layers. Initializing the inversion by considering that these
small coefficients are zero produces an error. This error is
further amplified as the inversion of eW progresses across
layers from m to 0. Numerical experiments conducted over
one-dimensional audio signals [2], [7] indicate that recon-
structed signals have good audio quality with m ¼ 2 as long
as the number of scattering coefficients is comparable to the
number of signal samples. Audio examples in
www.di.ens.fr/data/scattering show that reconstructions
from first-order scattering coefficients are typically of much
lower quality because there are much fewer first-order than
second-order coefficients. When the invariant scale 2J

becomes too large, the number of second-order coefficients
also becomes too small for accurate reconstructions.
Although individual signals cannot be recovered, recon-
structions of equivalent stationary textures are possible
with arbitrarily large scale scattering invariants [7].

For classification applications, besides computing a rich
set of invariants, the most important property of a scattering
transform is its Lipschitz continuity to deformations.
Indeed, wavelets are stable to deformations and the
modulus commutes with deformations. Let x�ðuÞ ¼ xðu�
�ðuÞÞ be an image deformed by the displacement field � . Let
k�k1 ¼ supu j�ðuÞj and kr�k1 ¼ supu jr�ðuÞj < 1. If Sx is
computed on paths of length m � m, then it is proven in
[25] that for signals x of compact support:

kSx� � Sxk � C m kxk ð2�Jk�k1 þ kr�k1Þ; ð11Þ

with a second-order Hessian term which is part of the
metric definition on C2 deformations, but which is
negligible if �ðuÞ is regular. If 2J � k�k1=kr�k1, then the
translation term can be neglected and the transform is
Lipschitz continuous to deformations:

kSx� � Sxk � C m kxk kr�k1: ð12Þ

If m goes to 1, then C m can be replaced by a more

complex expression [25] which is numerically converging

for natural images.

3.2 Fast Scattering Computations

We describe a fast scattering implementation over fre-

quency decreasing paths where most of the scattering

energy is concentrated. A frequency decreasing path p ¼
ð2�j1r1; . . . ; 2�jmrmÞ satisfies 0 < jk � jkþ1 � J . If the wave-

let transform is computed over K rotation angles, then the

total number of frequency-decreasing paths of length m is

Km J
m

� �
. Let N be the number of pixels of the image x. Since


2J is a low-pass filter scaled by 2J , S½p�xðuÞ ¼ U ½p�x ?

2J ðuÞ is uniformly sampled at intervals �2J , with � ¼ 1 or

� ¼ 1=2. Each S½p�x is an image with ��22�2JN coefficients.

The total number of coefficients in a scattering network of

maximum depth m is thus

P ¼ N ��2 2�2J
Xm
m¼0

Km J

m

� �
: ð13Þ

If m ¼ 2, then P ’ ��2 N2�2JK2J2=2. It decreases exponen-

tially when the scale 2J increases.
Algorithm 1 describes the computations of scattering

coefficients on sets Pm# of frequency decreasing paths of

length m � m. The initial set P0
# ¼ f;g corresponds to the

original image U ½;�x ¼ x. Let pþ � be the path that begins

by p and ends with � 2 P. If � ¼ 2�jr, then U ½pþ ��xðuÞ ¼
jU½p�x ?  �ðuÞj has energy at frequencies mostly below

2�j�. To reduce computations, we can thus subsample this

convolution at intervals �2j, with � ¼ 1 or � ¼ 1=2, to

avoid aliasing.

Algorithm 1. Fast Scattering Transform
for m ¼ 1 to m do

for all p 2 Pm�1
# do

Output S½p�xð�2JnÞ ¼ U ½p�x ? 
2J ð�2JnÞ
end for

for all pþ �m 2 Pm# with �m ¼ 2�jmrm do

Compute

U ½pþ �m�xð�2jmnÞ ¼ jU½p�x ?  �mð�2jmnÞj
end for

end for

for all p 2 Pm# do

Output S½p�xð�2JnÞ ¼ U ½p�x ? 
2J ð�2JnÞ
end for

At the layer m there are KmðJmÞ propagated signals U½p�x
with p 2 Pm# . They are sampled at intervals �2jm which

depend on p. One can verify by induction on m that layer m

has a total number of samples equal to ��2 ðK=3Þm N . There

are also Km J
m

� �
scattering signals S½p�x, but they are

subsampled by 2J and thus have much fewer coefficients.

The number of operations to compute each layer is

therefore driven by the OððK=3Þm N logNÞ operations

needed to compute the internal propagated coefficients

with FFTs. For K > 3, the overall computational complexity

is thus OððK=3Þm N logNÞ.
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3.3 Scattering Stationary Processes

Image textures can be modeled as realizations of stationary

processes XðuÞ. We denote the expected value of X by

EðXÞ, which does not depend upon u. Despite the

importance of spectral methods, the power spectrum is

often not sufficient to discriminate image textures because

it only depends upon second-order moments. Fig. 5 shows

very different textures having the same power spectrum.

A scattering representation of stationary processes de-

pends upon second-order and higher order moments, and

can thus discriminate such textures. Moreover, it does not

suffer from the large variance curse of high-order

moments estimators [36] because it is computed with a

nonexpansive operator.
If XðuÞ is stationary, then U½p�XðuÞ remains stationary

because it is computed with a cascade of convolutions and

modulus which preserve stationarity. Its expected value

thus does not depend upon u and defines the expected

scattering transform:

SXðpÞ ¼ EðU ½p�XÞ:

A windowed scattering gives an estimator of SXðpÞ,
calculated from a single realization of X, by averaging

U ½p�X with 
2J :

S½p�XðuÞ ¼ U ½p�X ? 
2J ðuÞ:

Since
R

2J ðuÞ du ¼ 1, this estimator is unbiased:

EðS½p�XÞ ¼ EðU ½p�XÞ ¼ SXðpÞ:

For appropriate wavelets, it is proven in [25] that a

windowed scattering transform conserves the second

moment of stationary processes:X
p2P1

EðjS½p�Xj2Þ ¼ EðjXj2Þ: ð14Þ

The second-order moments of all wavelet coefficients,
which are useful for texture discrimination, can also be
recovered from scattering coefficients. Indeed, for
p ¼ ð�1; . . . ; �mÞ, if we write �þ p ¼ ð�; �1; . . . ; �mÞ, then

S½p�jX ?  �j ¼ S½p�U ½��X ¼ S½�þ p�X;

and replacing X by jX ?  �j in (14) givesX
p2P1

EðjS½�þ p�Xj2Þ ¼ EðjX ?  �j2Þ: ð15Þ

However, if p has a length m because of the m successive
modulus nonlinearities, one can show [25] that SXðpÞ also
depends upon normalized high-order moments ofX, mainly
of order up to 2m. Scattering coefficients can thus discrimi-
nate textures having the same second-order moments but
different higher order moments. This is illustrated by the two
textures in Fig. 5, which have same power spectrum and
hence the same second order moments. Scattering coeffi-
cients S½p�X are shown for m ¼ 1 and m ¼ 2, with the
frequency tiling illustrated in Fig. 3. The squared distance
between the order 1 scattering coefficients of these two
textures is of the order their variance. Indeed, order 1
scattering coefficients mostly depend upon second-order
moments and are thus nearly equal for both textures. On the
contrary, scattering coefficients of order 2 are different
because they depend on moments up to 4. Their squared
distance is more than five times bigger than their variance.

High-order moments are difficult to use in signal
processing because their estimators have a large variance
[36], which can introduce important errors. This large
variance comes from the blow up of large coefficient
outliers produced by Xq for q � 2. On the contrary, a
scattering is computed with a nonexpansive operator and
thus has much lower variance estimators. The estimation of
SXðpÞ ¼ EðU½p�XÞ by S½p�X ¼ U½p�X ? 
2J has a variance
which is reduced when the averaging scale 2J increases. For
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Fig. 5. (a) Realizations of two stationary processes XðuÞ. Top: Brodatz texture. Bottom: Gaussian process. (b) The power spectrum estimated from
each realization is nearly the same. (c) First-order scattering coefficients S½p�X are nearly the same for 2J equal to the image width. (d) Second-order
scattering coefficients S½p�X are clearly different.



all image textures, it is numerically observed that the
scattering variance

P
p2P1 EðjS½p�X � SXðpÞj

2Þ decreases to
zero when 2J increases. Table 2 gives the decay of this
scattering variance, computed, on average, over the Brodatz
texture dataset. Expected scattering coefficients of station-
ary textures are thus better estimated from windowed
scattering transforms at the largest possible scale 2J , equal
to the image size.

Let P1 be the set of all paths p ¼ ð�1; . . . ; �mÞ for all
�k ¼ 2jkrk 2 2ZZ 
Gþ and all length m. The conservation
(14) together with the scattering variance decay also implies
that the second moment is equal to the energy of expected
scattering coefficients in P1:

kSXk2 ¼
X
p2P1

jSXðpÞj2 ¼ EðjXj2Þ: ð16Þ

Indeed, EðS½p�XÞ ¼ SXðpÞ, so

EðjS½p�Xj2Þ ¼ SXðpÞ2 þ EðjS½p�X � EðS½p�XÞj2Þ:

Summing over p and letting J go to 1 gives (16).
Table 3 gives the ratio between the average energy along

frequency decreasing paths of length m and second
moments for textures in the Brodatz dataset. Most of this
energy is concentrated over paths of length m � 3.

3.4 Cosine Scattering Transform

Natural images have scattering coefficients S½p�XðuÞ that
are correlated across paths p ¼ ð�1; . . . ; �mÞ, at any given
position u. The strongest correlation is between coefficients
of a same layer. For each m, scattering coefficients are
decorrelated in a Karhunen-Loève basis that diagonalizes
their covariance matrix. Fig. 6 compares the decay of the
sorted variances EðjS½p�X �EðS½p�XÞj2Þ and the variance
decay in the Karhunen-Loève basis computed over half of
the Caltech image dataset, for the first and second layer of
scattering coefficients. Scattering coefficients are calculated
with a Morlet wavelet. The variance decay (computed on

the second half of the data) is much faster in the Karhunen-
Loève basis, which shows that there is a strong correlation
between scattering coefficients of the same layers.

A change of variables proves that a rotation and scaling
X2lrðuÞ ¼ Xð2�lruÞ produces a rotation and inverse scaling
on the path variable:

SX2lrðpÞ ¼ SXð2lrpÞ where 2lrp ¼
�
2lr�1; . . . ; 2lr�m

�
;

and 2lr�k ¼ 2l�jk rrk. If natural images can be considered
as randomly rotated and scaled [29], then the path p is
randomly rotated and scaled. In this case, the scattering
transform has stationary variations along the scale and
rotation variables. This suggests approximating the Kar-
hunen-Loève basis by a cosine basis along these variables.
Let us parameterize each rotation r by its angle � 2 ½0; 2��.
A path p ¼ ð2�j1r1; . . . ; 2�jkrkÞ is then parameterized by
ððj1; �1Þ; . . . ; ðjm; �mÞÞ.

Since scattering coefficients are computed along fre-
quency decreasing paths for which 0 < jk < jkþ1 � J , to
reduce boundary effects a separable cosine transform is
computed along the variables l1 ¼ j1, l2 ¼ j2 � j1; . . . ,
lm ¼ jm � jm�1, and along each angle variable �1; �2; . . . ; �m.
Cosine scattering coefficients are computed by applying this
separable discrete cosine transform along the scale and angle
variables ofS½p�XðuÞ for each u and each path lengthm. Fig. 6
shows that the cosine scattering coefficients have variances
for m ¼ 1 and m ¼ 2 which decay nearly as fast as the
variances in the Karhunen-Loève basis. It shows that a DCT
across scales and orientations is nearly optimal to decorrelate
scattering coefficients. Lower frequency DCT coefficients
absorb most of the scattering energy. On natural images,
more than 99.5 percent of the scattering energy is absorbed by
the 1=2 lowest frequency cosine scattering coefficients.

We saw in (13) that without oversampling � ¼ 1,
when m ¼ 2, an image of size N is represented by
P ¼ N 2�2J ðKJ þK2JðJ � 1Þ=2Þ scattering coefficients.
Numerical computations are performed with K ¼ 6 rota-
tion angles and the DCT reduces at least by 2 the number
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TABLE 2
Normalized Scattering Variance

P
p2P1 EðjSX � SXðpÞj

2Þ=
EðjXj2Þ, as a Function of J , Computed on Zero-Mean

and Unit Variance Images of the Brodatz Dataset,
with Cubic Spline Wavelets

TABLE 3
Percentage of Energy

P
p2Pm#

jSXðpÞj2=EðjXj2Þ Along
Frequency Decreasing Paths of Length m, Computed on the

Normalized Brodatz Dataset, with Cubic Spline Wavelets

Fig. 6. A: Sorted variances of scattering coefficients of order 1 (left) and order 2 (right), computed on the CalTech101 database. B: Sorted variances
of cosine transform scattering coefficients. C: Sorted variances in a Karhunen-Loève basis calculated for each layer of scattering coefficients.



of coefficients. At a small invariant scale J ¼ 2, the
resulting cosine scattering representation has P ¼ 3N=2
coefficients. As a matter of comparison, SIFT represents
small blocks of 42 pixels with eight coefficients, and a
dense SIFT representation thus has N=2 coefficients. When
J increases, the size of a cosine scattering representation
decreases like 2�2J , with P ¼ N for J ¼ 3 and P � N=40
for J ¼ 7.

4 CLASSIFICATION

A scattering transform eliminates the image variability
due to translations and linearizes small deformations.
Classification is studied with linear generative models
computed with a PCA, and with discriminant SVM
classifiers. State-of-the-art results are obtained for hand-
written digit recognition and for texture discrimination.
Scattering representations are computed with a Morlet
wavelet.

4.1 PCA Affine Space Selection

Although discriminant classifiers such as SVM have better
asymptotic properties than generative classifiers [28], the
situation can be inverted for small training sets. We
introduce a simple robust generative classifier based on
affine space models computed with a PCA. Applying a
DCT on scattering coefficients has no effect on any linear
classifier because it is a linear orthogonal transform.
Keeping the 50 percent lower frequency cosine scattering
coefficients reduces computations and has a negligible
effect on classification results. The classification algorithm
is described directly on scattering coefficients to simplify
explanations. Each signal class is represented by a
random vector Xk whose realizations are images of N
pixels in the class.

Each scattering vector SXk has P coefficients. Let
EðSXkÞ be the expected vector over the signal class k. The
difference SXk �EðSXkÞ is approximated by its projection
in a linear space of low dimension d� P . The covariance
matrix of SXk has P 2 coefficients. Let Vk be the linear space
generated by the d PCA eigenvectors of this covariance
matrix having the largest eigenvalues. Among all linear
spaces of dimension d, it is the space that approximates
SXk �EðSXkÞ with the smallest expected quadratic error.
This is equivalent to approximating SXk by its projection on
an affine approximation space:

Ak ¼ EfSXkg þVk:

The classifier associates to each signal x the class index k̂
of the best approximation space:

k̂ðxÞ ¼ argmin
k�C

kSx� PAk
ðSxÞk: ð17Þ

The minimization of this distance has similarities with
the minimization of a tangential distance [14] in the sense
that we remove the principal scattering directions of
variability to evaluate the distance. However, it is much
simpler since it does not evaluate a tangential space that
depends upon Sx. Let V?k be the orthogonal complement
of Vk corresponding to directions of lower variability.
This distance is also equal to the norm of the difference

between Sx and the average class “template” EðSXkÞ,
projected in V?k :

kSx� PAk
ðSxÞk ¼ kPV?k

ðSx�EðSXkÞÞk: ð18Þ

Minimizing the affine space approximation error is thus
equivalent to finding the class centroid EðSXkÞ which is the
closest to Sx, without taking into account the first
d principal variability directions. The d principal directions
of the space Vk result from deformations and from
structural variability. The projection PAk

ðSxÞ is the opti-
mum linear prediction of Sx from these d principal modes.
The selected class has the smallest prediction error.

This affine space selection is effective if SXk � EðSXkÞ is
well approximated by a projection in a low-dimensional
space. This is the case if realizations of Xk are translations
and limited deformations of a single template. Indeed, the
Lipschitz continuity implies that small deformations are
linearized by the scattering transform. Hand-written digit
recognition is an example. This is also valid for stationary
textures where SXk has a small variance, which can be
interpreted as structural variability.

The dimension d must be adjusted so that SXk has a
better approximation in the affine space Ak than in affine
spaces Al of other classes l 6¼ k. This is a model selection
problem, which requires an optimization of the dimension d
to avoid overfitting [5].

The invariance scale 2J must also be optimized. When
the scale 2J increases, translation invariance increases, but
it comes with a partial loss of information, which brings
the representations of different signals closer. One can
prove [25] that the scattering distance kSx� Sx0k decreases
when 2J increases, and it converges to a nonzero value
when 2J goes to1. To classify deformed templates such as
hand-written digits, the optimal 2J is of the order of the
maximum pixel displacements due to translations and
deformations. In a stochastic framework where x and x0

are realizations of stationary processes, Sx and Sx0

converge to the expected scattering transforms Sx and
Sx0. To classify stationary processes such as textures, the
optimal scale is the maximum scale equal to the image
width because it minimizes the variance of the windowed
scattering estimator.

A cross-validation procedure is used to find the dimen-
sion d and the scale 2J which yield the smallest classifica-
tion error. This error is computed on a subset of the training
images, which is not used to estimate the covariance matrix
for the PCA calculations.

As in the case of SVM, the performance of the affine PCA
classifier is improved by equalizing the descriptor space.
Table 1 shows that scattering vectors have unequal energy
distribution along its path variables, in particular as the
order varies. A robust equalization is obtained by dividing
each S½p�XðuÞ by

�ðpÞ ¼ max
xi

�X
u

jS½p�xiðuÞj2
�1=2

; ð19Þ

where the maximum is computed over all training signals xi.
To simplify notations, we still write SX the vector of
normalized scattering coefficients S½p�XðuÞ=�ðpÞ.
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Affine space scattering models can be interpreted as
generative models computed independently for each class.
As opposed to discriminative classifiers such as SVM, we
do not estimate cross-correlation interactions between
classes, besides optimizing the model dimension d. Such
estimators are particularly effective for a small number of
training samples per class. Indeed, if there are few training
samples per class, then variance terms dominate bias errors
when estimating off-diagonal covariance coefficients be-
tween classes [4].

An affine space approximation classifier can also be
interpreted as a robust quadratic discriminant classifier
obtained by coarsely quantizing the eigenvalues of the
inverse covariance matrix. For each class, the eigenvalues
of the inverse covariance are set to 0 in Vk and to 1 in V?k ,
where d is adjusted by cross validation. This coarse
quantization is justified by the poor estimation of covar-
iance eigenvalues from few training samples. These affine
space models are robust when applied to distributions of
scattering vectors having non-Gaussian distributions,
where a Gaussian Fisher discriminant can lead to sig-
nificant errors.

4.2 Handwritten Digit Recognition

The MNIST database of hand-written digits is an example
of structured pattern classification where most of the
intraclass variability is due to local translations and
deformations. It is comprised of at most 60,000 training
samples and 10,000 test samples. If the training dataset is
not augmented with deformations, the state of the art was
achieved by deep-learning convolution networks [30],
deformation models [17], [3], and dictionary learning [27].
These results are improved by a scattering classifier.

All computations are performed on the reduced cosine
scattering representation described in Section 3.4, which
keeps the lower frequency half of the coefficients. Table 4
computes classification errors on a fixed set of test images,
depending upon the size of the training set, for different
representations and classifiers. The affine space selection of
Section 4.1 is compared with an SVM classifier using RBF
kernels, which are computed using Libsvm [10], and whose
variance is adjusted using standard cross validation over a
subset of the training set. The SVM classifier is trained with
a renormalization which maps all coefficients to ½�1; 1�. The
PCA classifier is trained with the renormalization factors
(19). The first two columns of Table 4 show that classifica-
tion errors are much smaller with an SVM than with the
PCA algorithm if applied directly on the image. The third

and fourth columns give the classification error obtained
with a PCA or an SVM classification applied to the modulus
of a windowed Fourier transform. The spatial size 2J of the
window is optimized with a cross validation that yields a
minimum error for 2J ¼ 8. It corresponds to the largest
pixel displacements due to translations or deformations in
each class. Removing the complex phase of the windowed
Fourier transform yields a locally invariant representation
but whose high frequencies are unstable to deformations, as
explained in Section 2.1. Suppressing this local translation
variability improves the classification rate by a factor 3 for a
PCA and by almost 2 for an SVM. The comparison between
PCA and SVM confirms the fact that generative classifiers
can outperform discriminative classifiers when training
samples are scarce [28]. As the training set size increases,
the bias-variance tradeoff turns in favor of the richer SVM
classifiers, independently of the descriptor.

Columns 6 and 8 give the PCA classification result
applied to a windowed scattering representation for m ¼ 1
and m ¼ 2. The cross validation also chooses 2J ¼ 8. Fig. 7
displays the arrays of normalized windowed scattering
coefficients of a digit “3.” The first- and second-order
coefficients of S½p�XðuÞ are displayed as energy distribu-
tions over frequency disks described in Section 2.3. The
spatial parameter u is sampled at intervals 2J so each image
of N pixels is represented by N2�2J ¼ 42 translated disks,
both for order 1 and order 2 coefficients.

Increasing the scattering order from m ¼ 1 to m ¼ 2

reduces errors by about 30 percent, which shows that
second-order coefficients carry important information even
at a relatively small scale 2J ¼ 8. However, third-order
coefficients have a negligible energy and including them
brings marginal classification improvements while increas-
ing computations by an important factor. As the learning set
increases in size, the classification improvement of a
scattering transform increases relative to windowed Fourier
transform because the classification is able to incorporate
more high-frequency structures, which have deformation
instabilities in the Fourier domain as opposed to the
scattering domain.

Table 4 shows that below 5,000 training samples, the
scattering PCA classifier improves results of a deep-
learning convolution network, which learns all filter
coefficients with a back-propagation algorithm [20]. As
more training samples are available, the flexibility of the
SVM classifier brings an improvement over the more rigid
affine classifier, yielding a 0.43 percent error rate on the
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TABLE 4
Percentage of Errors of MNIST Classifiers, Depending on the Training Size



original dataset, thus improving upon previous state-of-the-
art methods.

To evaluate the precision of affine space models, we
compute an average normalized approximation error of
scattering vectors projected on the affine space of their own
class, over all classes k:

�2
d ¼ C�1

XC
k¼1

EðkSXk � PAk
ðSXkÞk2Þ

EðkSXkk2Þ
: ð20Þ

An average separation factor measures the ratio between
the approximation error in the affine space Ak of the signal
class and the minimum approximation error in another
affine model Al with l 6¼ k, for all classes k:

�2
d ¼ C�1

XC
k¼1

Eðminl6¼kkSXk � PAl
ðSXkÞk2Þ

EðkSXk � PAk
ðSXkÞk2Þ

: ð21Þ

For a scattering representation with m ¼ 2, Table 5 gives
the dimension d of affine approximation spaces optimized
with a cross validation. It varies considerably, ranging from
5 to 140 when the number of training examples goes from
300 to 40,000. Indeed, many training samples are needed to
reliably estimate the eigenvectors of the covariance matrix
and thus to compute reliable affine space models for each
class. The average approximation error �2

d of affine space
models is progressively reduced while the separation ratio
�2
d increases. It explains the reduction of the classification

error rate observed in Table 4 as the training size increases.

The US-Postal Service is another handwritten digit
dataset, with 7,291 training samples and 2,007 test images
of 16
 16 pixels. The state of the art is obtained with
tangent distance kernels [14]. Table 6 gives results obtained
with a scattering transform with the PCA classifier for
m ¼ 1; 2. The cross validation sets the scattering scale to
2J ¼ 8. As in the MNIST case, the error is reduced when
going from m ¼ 1 to m ¼ 2 but remains stable for m ¼ 3.
Different renormalization strategies can bring marginal
improvements on this dataset. If the renormalization is
performed by equalizing using the standard deviation of
each component, the classification error is 2.3 percent,
whereas it is 2.6 percent if the supremum is normalized.

The scattering transform is stable but not invariant to
rotations. Stability to rotations is demonstrated over the
MNIST database in the setting defined in [18]. A database
with 12,000 training samples and 50,000 test images is
constructed with random rotations of MNIST digits. The
PCA affine space selection takes into account the rotation
variability by increasing the dimension d of the affine
approximation space. This is equivalent to projecting the
distance to the class centroid on a smaller orthogonal space
by removing more principal components. The error rate in
Table 7 is much smaller with a scattering PCA than with a
convolution network [18]. Much better results are obtained
for a scattering with m ¼ 2 than with m ¼ 1 because
second-order coefficients maintain enough discriminability
despite the removal of a larger number d of principal
directions. In this case, m ¼ 3 marginally reduces the error.

Scaling and rotation invariance is studied by introducing
a random scaling factor uniformly distributed between
1=

ffiffiffi
2
p

and
ffiffiffi
2
p

, and a random rotation by a uniform angle. In
this case, the digit “9” is removed from the database so as to
avoid any indetermination with the digit “6” when rotated.
The training set has 9,000 samples (1,000 samples per class).
Table 8 gives the error rate on the original MNIST database
when transforming the training and testing samples with
either random rotations or scalings, or with both. Scalings
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TABLE 5
For Each MNIST Training Size, the Table Gives the

Cross-Validated Dimension d of Affine Approximation Spaces,
Together with the Average Approximation Error �2

d and
Separation Ratio �2

d of These Spaces

TABLE 6
Percentage of Errors for the Whole USPS Database

TABLE 7
Percentage of Errors on an MNIST Rotated Dataset [18]

Fig. 7. (a) Image XðuÞ of a digit “3.” (b) Arrays of windowed scattering coefficients S½p�XðuÞ of order m ¼ 1, with u sampled at intervals of 2J ¼ 8
pixels. (c) Windowed scattering coefficients S½p�XðuÞ of order m ¼ 2.



have a smaller impact on the error rate than rotations
because scaled scattering vectors span an invariant linear
space of lower dimension. Second-order scattering outper-
forms first-order scattering, and the difference becomes
more significant when rotation and scaling are combined.
Second-order coefficients are highly discriminative in the
presence of scaling and rotation variability.

4.3 Texture Discrimination

Visual texture discrimination remains an outstanding image
processing problem because textures are realizations of non-
Gaussian stationary processes, which cannot be discrimi-
nated using the power spectrum. The affine PCA space
classifier removes most of the variability of SX � EðSXÞ
within each class. This variability is due to the residual
stochastic variability, which decays as J increases, and to
variability due to illumination, rotation, scaling, or perspec-
tive deformations when textures are mapped on surfaces.

Texture classification is tested on the CUReT texture
database [21], [35], which includes 61 classes of image
textures of N ¼ 2002 pixels. Each texture class gives images
of the same material with different pose and illumination
conditions. Specularities, shadowing, and surface normal
variations make classification challenging. Pose variation
requires global rotation and illumination invariance. Fig. 8
illustrates the large intraclass variability after a normal-
ization of the mean and variance of each textured image.

Table 9 compares error rates obtained with different
image representations. The database is randomly split into a
training and a testing set, with 46 training images for each
class as in [35]. Results are averaged over 10 different splits.
A PCA affine space classifier applied directly on the image
pixels yields a large classification error of 17 percent. The
lowest published classification errors obtained on this

dataset are 2 percent for Markov random fields [35],
1.53 percent for a dictionary of textons [15], 1.4 percent for
basic image features [11], and 1 percent for histograms of
image variations [6]. A PCA classifier applied to a Fourier
power spectrum estimator also reaches 1 percent error. The
power spectrum is estimated with windowed Fourier
transforms calculated over half-overlapping windows
whose squared modulus are averaged over the whole
image to reduce the estimator variance. A cross-validation
optimizes the window size to 2J ¼ 32 pixels.

For the scattering PCA classifier, the cross validation
chooses an optimal scale 2J equal to the image width to
reduce the scattering estimation variance. Indeed, contrarily
to a power spectrum estimation, the variance of the
scattering vector decreases when 2J increases. Fig. 9
displays the scattering coefficients S½p�X of order m ¼ 1
and m ¼ 2 of a CureT textured image X. A PCA classifica-
tion with only first-order coefficients (m ¼ 1) yields an error
0.5 percent, although first-order scattering coefficients are
strongly correlated with second-order moments whose
values depend on the Fourier spectrum. The classification
error is improved relative to a power spectrum estimator
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Fig. 8. Examples of textures from the CUReT database with normalized
mean and variance. Each row corresponds to a different class, showing
intraclass variability in the form of stochastic variability and changes in
pose and illumination.

TABLE 9
Percentage of Classification Errors of Different Algorithms on CUReT

Fig. 9. (a) Example of CureT texture XðuÞ. (b) First-order scattering coefficients S½p�X, for 2J equal to the image width. (c) Second-order scattering
coefficients S½p�XðuÞ.

TABLE 8
Percentage of Errors on Scaled/Rotated MNIST Digits



because SX½�1�X ¼ jX ?  �1
j ? 
2J is an estimator of a first-

order moment S½�1�X ¼ EðjX ?  �1
jÞ and thus has a lower

variance than second-order moment estimators. A PCA
classification with first- and second-order scattering coeffi-
cients (m ¼ 2) reduces the error to 0.2 percent. Indeed,
scattering coefficients of order m ¼ 2 depend upon mo-
ments of order 4, which are necessary to differentiate
textures having same second-order moments, as in Fig. 5.
Moreover, the estimation of S½�1; �2�X ¼ EðkX ?  �1

j ?  �2
jÞ

has a low variance because X is transformed by a
nonexpansive operator as opposed to Xq for high-order
moments q � 2. For m ¼ 2, the cross validation chooses
affine space models of small dimension d ¼ 16. However,
they still produce a small average approximation error (20)
�2
d ¼ 2:5 � 10�1 and the separation ratio (21) is �2

d ¼ 3.
The PCA classifier provides a partial rotation invariance

by removing principal components. It mostly averages the
scattering coefficients along rotated paths. The rotation of
p ¼ ð2�j1r1; . . . ; 2�jmrmÞ by r is defined by rp ¼ ð2�j1rr1; . . . ;
2�jmrrmÞ. This rotation invariance obtained by averaging
comes at the cost of a reduced representation discrimin-
ability. As in the translation case, a multilayer scattering
along rotations recovers the information lost by this
averaging with wavelet convolutions along rotation angles
[26]. It preserves discriminability by producing a larger
number of invariant coefficients to translations and rota-
tions, which improves rotation invariant texture discrimi-
nation [26]. This combined translation and rotation
scattering yields a translation and rotation invariant
representation which remains stable to deformations [25].

5 CONCLUSION

A scattering transform is implemented by a deep convolu-
tion network. It computes a translation invariant represen-
tation which is Lipschitz continuous to deformations, with
wavelet filters and a modulus pooling nonlinearity.
Averaged scattering coefficients are provided by each
layer. The first layer gives SIFT-type descriptors, which
are not sufficiently informative for large-scale invariance,
whereas the second layer brings additional stable and
discriminative coefficients.

The deformation stability gives state-of-the-art classifica-
tion results for handwritten digit recognition and texture
discrimination, with SVM and PCA classifiers. If the dataset
has other sources of variability due to the action of another
Lie group such as rotations, then this variability can also be
eliminated with an invariant scattering computed on this
group [25], [26].

In complex image databases such as CalTech256 or
Pascal, important sources of image variability do not result
from the action of a known group. Unsupervised learning is
then necessary to take into account this unknown varia-
bility. For deep convolution networks, it involves learning
filters from data [20]. A wavelet scattering transform can
then provide the first two layers of such networks. It
eliminates translation or rotation variability, which can help
in learning the next layers. Similarly, scattering coefficients
can replace SIFT vectors for bag-of-feature clustering
algorithms [8]. Indeed, we showed that second layer
scattering coefficients provide important complementary
information, with a small computational and memory cost.
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France. In 1988, he joined the Computer
Science Department of the Courant Institute of
Mathematical Sciences where he became an
associate professor in 1994 and a professor in

1996. From 1995 to 2012, he was a full professor in the Applied
Mathematics Department at the Ecole Polytechnique, Paris. From 2001
to 2008, he was a cofounder and CEO of a start-up company. Since
2012, he has been with the Computer Science Department of the Ecole
Normale Supérieure in Paris. His research interests include computer
vision, signal processing, and harmonic analysis. He received the 1990
IEEE Signal Processing Society’s paper award, the 1993 Alfred Sloan
fellowship in mathematics, the 1997 Outstanding Achievement Award
from the SPIE Optical Engineering Society, the 1997 Blaise Pascal Prize
in applied mathematics from the French Academy of Sciences, the 2004
European IST Grand prize, the 2004 INIST-CNRS prize for most cited
French researcher in engineering and computer science, and the 2007
EADS prize of the French Academy of Sciences. He is a fellow of the
IEEE and EURASIP.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1886 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 8, AUGUST 2013



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


