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Audio Denoising by Time-Frequency
Block Thresholding

Guoshen Yu, Stéphane Mallat, Fellow, IEEE, and Emmanuel Bacry

Abstract—Removing noise from audio signals requires a non-
diagonal processing of time-frequency coefficients to avoid pro-
ducing “musical noise.” State of the art algorithms perform a pa-
rameterized filtering of spectrogram coefficients with empirically
fixed parameters. A block thresholding estimation procedure is
introduced, which adjusts all parameters adaptively to signal prop-
erty by minimizing a Stein estimation of the risk. Numerical exper-
iments demonstrate the performance and robustness of this proce-
dure through objective and subjective evaluations.

Index Terms—Audio denoising, block thresholding, Ephraim
and Malah, power spectrum, power subtraction, thresholding.

I. INTRODUCTION

UDIO signals are often contaminated by background envi-

ronment noise and buzzing or humming noise from audio
equipments. Audio denoising aims at attenuating the noise while
retaining the underlying signals. Applications such as music and
speech restoration are numerous.

Diagonal time-frequency audio denoising algorithms atten-
uate the noise by processing each window Fourier or wavelet
coefficient independently, with empirical Wiener [48], power
subtraction [2], [3], [38], or thresholding operators [20]. These
algorithms create isolated time-frequency structures that are
perceived as a “musical noise” [7], [60]. Ephraim and Malah
[21], [22] showed that this musical noise is strongly attenuated
with nondiagonal time-frequency estimators that regularize the
estimation by recursively aggregating time-frequency coeffi-
cients. This approach has further been improved by optimizing
the SNR estimation with parameterized filters [10] that rely on
stochastic audio models. However, these parameters should be
adjusted to the nature of the audio signal, which often varies
and is unknown. In practice, they are empirically fixed [7],
[10], [21], [22].

This paper introduces a new nondiagonal audio denoising
algorithm through adaptive time-frequency block thresholding
[60]. Block thresholding has been introduced by Cai and
Silverman in mathematical statistics [4]-[6] to improve the
asymptotic decay of diagonal thresholding estimators. For
audio time-frequency denoising, we show that block thresh-
olding regularizes the estimate and is thus effective in musical
noise reduction. Block parameters are automatically adjusted
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by minimizing a Stein estimator of the risk [55], which is
calculated analytically from the noisy signal values. Numerical
experiments show that this new adaptive estimator is robust
to signal type variations and improves the SNR and the per-
ceived quality with respect to state of the art audio denoising
algorithms.

The paper first reviews the state of the art time-frequency
audio denoising algorithms by emphasizing the difference be-
tween diagonal and nondiagonal methods. Section IIl introduces
time-frequency block thresholding and computes a Stein unbi-
ased estimate of the resulting risk to adjust automatically the
block parameters. Numerical experiments and comparisons are
presented in Section IV, with objective and subjective measures.

II. STATE OF THE ART

A. Time-Frequency Audio Denoising

Time-frequency audio-denoising procedures compute a
short-time Fourier transform or a wavelet transform or a
wavelet packet transform of the noisy signal, and processes
the resulting coefficients to attenuate the noise. These repre-
sentations reveal the time-frequency signal structures that can
be discriminated from the noise. We concentrate on the coef-
ficient processing as opposed to the choice of representations.
Numerical experiments are performed with short-time Fourier
transforms that are most commonly used in audio processing.

The audio signal f is contaminated by a noise € that is often
modeled as a zero-mean Gaussian process independent of f:

A time-frequency transform decomposes the audio signal y over
a family of time-frequency atoms { g1, k}h » where [ and k are the
time and frequency (or scale) localization indices. The resulting
coefficients shall be written

N-1

YLK = (y,06) = Y ynlgixln]

n=0

where * denotes the conjugate. These transforms define a com-
plete and often redundant signal representation. In this paper
we shall suppose that these time-frequency atoms define a tight
frame [18], [43], which means that there exists A > 0 such that

1
gl = — D [y 90 .
Lk

This implies a simple reconstruction formula

yinl = 5 3 VI Klarslnl
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The constant A is a redundancy factor and if A = 1 then a tight
frame is an orthogonal basis. A tight frame behaves like a union
of A orthogonal bases.

A frame representation provides an energy control. The
redundancy implies that a signal f has a nonunique way
to be reconstructed from a tight frame representation:
fln] = (1/A) 3, C[l, klgik[n], but all such reconstruc-
tions satisfy ’

1
IAI? < 5 Do ICH KPP @
Ik

with an equality if C[l, k] = (f, g1.x), V I, k.

Short-time Fourier atoms can be written: g; x[n] = w[n —
lu] exp (i2rkn/K), where w[n] is a time window of support
size K, which is shifted with a step v < K. [ and k are respec-
tively the integer time and frequency indexes with0 < | < N/u
and 0 < k < K. In this paper, w[n] is the square root of a Han-
ning window and u = K/2 so one can verify that the resulting
window Fourier atoms {g;  }1, 1 define a tight frame with A = 2.

A denoising algorithm modifies time-frequency coefficients
by multiplying each of them by an attenuation factor a[l, k] to
attenuate the noise component. The resulting “denoised” signal
estimator is

flol =5 2 Pl Moalnl = 5 3 all, KY [ Kaelol. )

Lk

Time-frequency denoising algorithms differ through the calcu-
lation of the attenuation factors a[l, k]. The noise coefficient
variance

o*[l, k) = E{[(e, g1.1)*}

is supposed to be known or estimated with methods such as [16],
[20], [45]. If the noise is stationary, which is often the case, then
the noise variance does not depend upon time: o%[l, k] = o2[k].

B. Diagonal Estimation

Simple time-frequency denoising algorithms compute each
attenuation factor al[l, k] only from the corresponding noisy co-
efficient Y[, k] and are thus called diagonal estimators. These
algorithms have a limited performance and produce a musical
noise. To minimize an upper bound of the quadratic estimation
risk

r=B{lf - fI?) < 5 Y BOFLR - FLAPY @

equation (4) being a consequence of (2), one can verify [20] that
the optimal attenuation factor is

all,k] =1 - (5)

b
gLk +1
where &[l, k] = F?[l,k]/o?[l, k] is the a priori SNR. The re-

sulting risk lower bound, also called oracle risk r,, is

|F[L, k]2 [l, k]
FlLE? + o[l k]

1
rg < ZRO where R, = Z | (6)
1Lk
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This lower bound cannot be reached because the “oracle” atten-
uation factor (5) depends upon the a priori SNR £[l, k] which is
unknown. It is thus necessary to estimate this SNR.

Diagonal estimators of the SNR [, k] are computed from the
a posteriori SNR defined by [l, k] = |Y[l,k]|?>/o?[l, k]. One
can verify that

f[lvk] = ’Y[lk] -1 @)

is an unbiased estimator. Inserting this estimator in the oracle
formula (5) defines the empirical Wiener estimator [38], [48]

1
all, k] = (1 - —é[l,k] n 1>+ (®)

with the notation (z) = max(z,0). Variants of this empirical
Wiener are obtained by minimizing a sum of signal distortion
and residual noise energy [23], [25], [30], [41] or by computing
a maximum likelihood estimate [38], [48], [59].

Power subtraction estimators [2], [3], [38], [51], [53] gener-
alize the empirical Wiener attenuation rule

B1 B2
1

— 9
L, k] +1 ®

all, k] = 1—Al

where 31,02 > 0 and A > 1 is an over-subtraction factor to
compensate variation of noise amplitude.

Following the statistical work of Donoho and Johnstone [20],
thresholding estimators have also been studied for audio noise
removal. A hard thresholding [26], [35], [39], [57] either retains
or sets to zero each noisy coefficient with

all, k] = 1 (10)

{E[Lk]+1>22}

Soft-thresholding estimator [8], [34], [37], [50] is a special case
of power subtraction (9) with 8; = 1/2, #2 = 1. Donoho
and Johnstone have proved that for Gaussian white noises, the
quadratic risk of thresholding estimators is close to the oracle
lower bound [20].

The attenuation factor a[l, k] of these diagonal estimators
only depends upon Y[, k] with no time-frequency regular-
ization. The resulting attenuated coefficients a[l, k]Y[l, k]
thus lack of time-frequency regularity. It produces isolated
time-frequency coefficients which restore isolated time-fre-
quency structures that are perceived as a musical noise. Fig. 1
shows the denoising of a short recording of the Mozart oboe
concerto with an additive Gaussian white noise. Fig. 1 (a) and
1 (b) show respectively the log spectrograms log | F[l, k]| and
log |Y[l, k]| of the original signal f and its noisy version y.
Fig. 1(c) displays a power subtraction attenuation map a[l, k],
with black points corresponding to values close to 1. The zoom
in Fig. 1(c’) shows that this attenuation map contains many
isolated coefficients close to 1 (black points). These isolated
coefficients restore isolated windowed Fourier vectors g; r[n]
that produce a musical noise.

C. Nondiagonal Estimation

To reduce musical noise as well as the estimation risk,
several authors have proposed to estimate the a priori
SNR ¢[l, k] with a time-frequency regularization of the a
posteriori SNR ~[l,k]. The resulting attenuation factors
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Fig. 1. (a), (b): Log-spectrograms of the original and noisy ‘“Mozart” signals.
(c), (d): Attenuation coefficients calculated with a power subtraction and a block
thresholding. Black pixels correspond to 1 and white to 0. (a’), (b’), (¢’), (d’):
zooms over rectangular regions indicated in (a), (b), (c), and (d).

a[l, k] thus depend upon the data values Y[I', k] for (I, k')
in a whole neighborhood of (I,k) and the resulting esti-
mator fln] = (1/A)Y,, all,k]Y[l,k]gi k[n] is said to be
nondiagonal. ,

In their pioneer paper Ephraim and Malah [21] have intro-
duced a decision-directed SNR estimator obtained with a first-
order recursive time filtering:

£l k] = afll = LK + (1 = ) (V1 K] = 1)+

where o € [0, 1] is a recursive filter parameter and -1,k =
|F[l—1,k]|?/o?[l, k] is an empirical SNR estimate of F[I—1, k]
based on the previously computed estimate. This decision-di-
rected SNR estimator has been applied with various attenua-
tion rules such as empirical Wiener estimator (8) [11], Ephraim
and Malah’s minimum mean-square error spectral amplitude
(MMSE-SA) [21], log spectral amplitude estimator (MMSE-
LSA) [22] and Wolfe and Godsill’s minimum mean-square error
spectral power estimator (MMSE-SP) [58] that are derived from
a Bayesian formulation using a Gaussian speech model [13],
[15], [17], [21], [22], [35], [42], as well as Martin’s MMSE esti-
mators using a Gamma speech model [44]. These works clearly
showed that the regularization of the SNR estimation reduces
musical noise as well as the estimation risk r = E{||f — f||*}.
Cohen [10] improved the decision-directed SNR estimator by
combining a causal recursive temporal filter with a noncausal
compactly supported time-frequency filter to get a first SNR es-
timation. He then refines this estimation in a Bayesian formula-
tion by computing a new SNR estimation using the MMSE-SP
attenuation rule [58] from the first SNR estimate. This noncausal
a priori SNR estimator has been combined with attenuation
rules derived from Gaussian [10], [13], Gamma and Laplacian
speech models [12]. Other SNR estimators have been proposed
by Cohen [14] with generalized autoregressive conditional het-
eroscedasticity (GARCH), applied with MMSE-LSA attenua-
tion rules of Gamma and Laplacian speech models [14].

Matz and Hlawatsch have also proposed to estimate the SNR
with a rectangular time-frequency filter and to use it together
with the empirical Wiener estimator (8) [46]. In one example,

an
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they showed a noticeable performance gain with respect to a
diagonal SNR estimation. The same nondiagonal SNR estima-
tion has been applied in [47] where the authors automatically
adapted the size of the short-time Fourier windows to the signal
properties.

Thresholding estimators [20] have also been studied with
time-regularized thresholds [29], [40], which are indirectly
based on nondiagonal SNR estimations [/, k]. Such thresholds
can further be adapted to a detection of speech presence [1],
[9], [56]. Nondiagonal estimators clearly outperform diagonal
estimators but depend upon regularization filtering parameters.
Large regularization filters reduce the noise energy but intro-
duce more signal distortion [7], [13], [21], [24]. It is desirable
that filter parameters are adjusted depending upon the nature
of audio signals. In practice, however, they are selected em-
pirically [7], [10], [13], [21], [22]. Moreover, the attenuation
rules and the a priori SNR estimators that are derived with
a Bayesian approach [10], [12]-[15], [17], [21], [22], [35],
[42] model audio signals with Gaussian, Gamma or Laplacian
processes. Although such models are often appropriate for
speech, they do not take into account the complexity of other
audio signals such as music, that include strong attacks.

III. TIME-FREQUENCY BLOCK THRESHOLDING

Block thresholding was introduced in statistics by Cai and
Silverman [4]-[6] and studied by Hall et al. [31]-[33] to ob-
tain nearly minimax signal estimators. The “p-point uncertainty
model” proposed by Matz and Hlawatsch [46] also led to a block
thresholding estimator with fixed parameters that are chosen
empirically. For audio signal denoising, we describe an adaptive
block thresholding nondiagonal estimator that automatically ad-
justs all parameters. It relies on the ability to compute an esti-
mate of the risk, with no prior stochastic audio signal model,
which makes this approach particularly robust.

A. Block Thresholding Algorithm

A time-frequency block thresholding estimator regularizes
power subtraction estimation (9) by calculating a single atten-
uation factor over time-frequency blocks. The time-frequency
plane {l, k} is segmented in I blocks B; whose shape may be
chosen arbitrarily. The signal estimator f is calculated from the
noisy data y with a constant attenuation factor a; over each block
B;

(12)

f[n]zz Z a;Y[l, k]gi k[n]-

To unders}and how to compute each a;, one relates the risk r =
E{||f — fl|*} to the frame energy conservation (2) and obtains

r=E{|f - fI’}
I
S%Z > E{jaY[L.E - F[LE?}. (13
i=1 (I,k)eBx

Since Y[l k] = F[l, k] + €[l, k] one can verify that the upper
bound of (13) is minimized by choosing

(14)
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where §; = F_LQ/U_L2 is the average a priori SNR in B;. It is
calculated from
1
5 2

1 I
— g |F[l,k]|? and 07 =
B 1 oes: i (k)EB;

F2= o[l k]

which are the average signal energy and noise energy in B;,

and Bl# is the number of coefficients (/, k) € B;. The resulting
oracle block risk 7, satisfies
[—
1 F?o?
oo < — Rpo where Ry = S =i i (15)
A o FP+o?

The oracle block attenuation coefficients a; in (14) can not
be calculated because the a priori SNR &; is unknown. Cai and
Silverman [4] introduced block thresholding estimators that es-
timate the SNR over each B; by averaging the noisy signal
energy

. Y2
Li==—1 (16)
o}
where
— 1
Y7 = oF YL K]

(L,k)EB;

Observe that if o[l,k] = &, for all (I,k) € B; then & is an
unbiased estimator of &;. The resulting attenuation factor a; is
computed with a power subtraction estimator (9)

i r=)
- é’i—i_l_l’_

A block thresholding estimator can thus be interpreted as a
nondiagonal estimator derived from averaged SNR estimations
over blocks. Each attenuation factor is calculated from all co-
efficients in each block, which regularizes the time-frequency
coefficient estimation. Fig. 1(d) displays a block thresholding
attenuation map a,; with black points corresponding to values
close to 1. The zoom in Fig. 1(d’) shows that nondiagonal block
thresholding attenuation factors are much more regular than the
diagonal power subtraction attenuation factors in Fig. 1(c’) and
they do not keep isolated points responsible for musical noise.

7)

B. Block Thresholding Risk and Choice of A

An upper bound of the risk of the block thresholding esti-
mator is computed by analyzing separately the bias and variance
terms. Observe that the upper bound of the oracle risk 7, in (15)
with blocks is always larger than that of the oracle risk r, in (6)
without blocks, because the former is obtained through the same
minimization but with less parameters as attenuation factors re-
main constant over each block. A direct calculation shows that
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[see (18), shown at the bottom of the page]. Ry, is close to R,
if both the noise and the signal coefficients have little variation
in each block. This bias term is thus reduced by choosing the
blocks so that in each block B; either i) F[l, k] and o[l, k] vary
little; or ii) £[I, k] > 1 and o[, k] varies little; or iii) {[{, k] < 1
and F'[l, k] varies little.

Block thresholding (17) approximates the oracle block atten-
uation (14) by replacing &; with an estimate &; in (16) and by
setting an oversubtraction factor A > 1 to control the variance
term of risk due to the noise variation. If the noise ¢ is a Gaussian
white noise, then the resulting risk »r = E{||f — f||?} can be
shown to be close to the oracle risk (15). The average noise en-
ergy over a block B; is

T-gr T M

(L,k)EB;

e[l, K]|?. (19)

If the frame is an orthogonal basis, in the particular case where
all blocks B; have the same size B# and the noise is Gaussian
white noise with variance o2 (hence E? = 2), Cai [4] proved
that

r=E{|f = fII*} < 2ARy, + AN o*Prob{e? > Ao?} (20)

where Prob{} is the probability measure. We have mentioned
that a tight frame behaves very similarly to a union of A orthog-
onal bases. Therefore, the oracle inequality with a frame repre-
sentation holds as well:

r=E{||f - f|I*} < QRbo—f—%azProb{e > A2} (21)

where M > N is the number of vectors g; j, in the frame. For the
window Fourier frame used in this paper, M = 2N and A = 2.

The second term 4Mo?Prob{e? > Ao?} is a variance term
corresponding to a probability of keeping pure noise coeffi-
cients, i.e., f is zero (y = ¢) and a; # 0 [cf. (17)]. Prob{e® >
Ao?} is the probability to keep a residual noise. The oracle risk
and the variance terms in (21) are competing. When X increases
the first term increases and the variance term decreases. Sim-
ilarly, when the block size B# increases the oracle risk Ry,
increases whereas the variance decreases. Adjusting A and the
block sizes B# can be interpreted as an optimization between
the bias and the variance of our block thresholding estimator.
The parameter \ is set depending upon B# by adjusting the
residual noise probability

Prob{e® > Ao’} = 6. (22)
The probability ¢ is a perceptual parameter. We set § = 0.1%
in (22) as our psychoacoustic experiments show that with a
residual noise probability & ~ 0.1%, musical noise is hardly
perceptible.

Gell K (o

— o[ H]) + (F7 -

|11,k

I
i=1 (I,k)€B;

> 0. (18)

(& +1)(E[L A +1)



1834

TABLE I
THRESHOLDING LEVEL A CALCULATED FOR DIFFERENT
BLOCK SIZE B# WITH § = 0.1%

B¥ | 4 8 | 16 | 32 | 64 | 128

i

A 4735125 [20 18] 15

Let B,;T# = L; x W; be a rectangular block size, where L; >
2 and W; > 2 are respectively the block length in time and
the block width in frequency (the unit being the time-frequency
index in the window Fourier transform). One can verify that with
half overlapping Hanning windows the average noise energy €2
follows approximately a x 2 distribution degrees with Bl# degree
of freedom. Thus, solving X in (22) amounts to looking up a x?
table. Table I gives values for a frequency width W; > 2. Due to
discretization effects, A takes nearly the same values for W; = 1
and W; = 2. We thus compute A for W; = 1 by multiplying
B by 2 and looking at Table I. That (22) holds with A shown
in Table I can also be verified by Monte Carlo simulation.

C. Adaptive Block Thresholding

A block thresholding segments the time-frequency plane in
disjoint rectangular blocks of length L; in time and width W; in
frequency. In the following by “block size” we mean a choice of
block shapes and sizes among a collection of possibilities. The
adaptive block thresholding chooses the sizes by minimizing an
estimate of the risk.

The risk E{||f — f||*} cannot be calculated since f is un-
known, but it can be estimated with a Stein risk estimate [55].
Best block sizes are computed by minimizing this estimated
risk. We saw in (13) that the block thresholding risk satisfies

r=E{|f - fI’}
I
S%Z > E{|laY[LK - F[ILEI*}. (23
i=1 (I,k)eB;

Since Y[l, k] = F[l,k] + €[l, k] and €[l, k] has a zero mean,
F[l, k] is the mean of Y'[I, k]. To estimate the block thresholding
risk Cai [6] uses the Stein estimator of the risk when computing
the mean of a random vector, which is given by Stein theorem
[55].

1) Theorem (Stein Unbiased Risk Estimate Sure): Let’Y =

(Y1,...,Y},) be a normal random vector with the identity as
covariance matrix and mean F = (F,..., F},). Let Y + h(Y)
be an estimator of F, where h = (hq,...,h,) : R? — RP

almost differentiable (h; : R? — RV j). Define v -h =
Ly (9/0Y;)hy. 1 B {S_ (9/0Y;)hi(Y)|} < oo, then

R=E|Y+h(Y)-F|*> =p+ E{|b(Y)[|*+2v-h(Y)}.
24
So
R=p+|h(Y)|3+2v -h(Y) (25)
is an unbiased estimator of the risk R of Y +h(Y), called Stein
unbiased risk estimator [55]. .
An estimation of the risk E{||f — f||*} upper bound (23)

is derived from this theorem by computing an estimator R; of
the risk in each block Bi: Ri = > 1)ep, E{IF[l.k] —
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frequency

Y

time

|:] block

Fig. 2. Partition of macroblocks into blocks of different sizes.

r '": macroblock

a;Y[l,k]|*}. Over a block B;, the mean vector F;, =
(F[l,ED)@ken, of Yi = (Y[, k])q ke, is estimated by
Fi = (F[l k])(l,k)GBi with Fi = aiYi = Yi + h(Yl) From
the expression (17) of a; we derive that

72
h(Y:) = -Y; (/\?—Zzlyfz,\;z + 1??<AE$ :

K2

Under the hypothesis that the noise variance remains constant
on each block, o2, k] = &7 for (I, k) € B;, the resulting Stein
estimator of the risk R; = 3, ;. g E{|F[l, k] —a;Y[l, ]|} is

2
R; =7 <BZ#+E{Hh (;’—) +2v-h(%) }) (26)

and a direct calculation shows that
N2B¥ —ax(B¥ - 2)
+ V2> A_z

) Z
Y;Z i 2A0]
=2

9

L PRGN PR (27)
C\EE-2) e |

If the noise is Gaussian white and the frame is an orthogonal
basis then the noise coefficients are uncorrelated with same vari-
ance and Stein theorem proves that R; is an unbiased risk es-
timator of the risk R;. If the noise is not white but stationary
then the noise variance does not change in time. If the blocks
B; are sufficiently narrow in frequency then the noise variance
still remains constant over each block so the risk estimator re-
mains unbiased. We mentioned that a tight frame behaves very
similarly to a union of A orthogonal bases. As a consequence,
the theorem result applies approximately and the resulting esti-
mator mains nearly unbiased.

The adaptive block thresholding groups coefficients in blocks
whose sizes are adjusted to minimize the Stein risk estimate and
it attenuates coefficients in those blocks. To regularize the adap-
tive segmentation in blocks, the time-frequency plane is first de-
composed in macroblocks M, j = 1,2...,J, as illustrated in
Fig. 2. Each macroblock M; is segmented in blocks B; of same
size which means that Bf = P; is constant over a macroblock
M;. The Stein risk estimation over M; is (1/A4) 3¢y, Ri.
Several such segmentations are possible and we want to choose
the one that leads to the smallest risk estimation. The optimal
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Fig. 3. Zoom on the onset of “Mozart.” (a) Log-spectrogram. (b) Attenuation
coefficients of a fixed block thresholding. (b’) Block sizes in the time-frequency
rectangle at the signal onset. (c) Attenuation coefficients of an adaptive block
thresholding. (c’) Adapted block sizes at the signal onset.

block size and hence P; is calculated by choosing the block
shape that minimizes ) 0, _,, R;. Once the block sizes are com-
puted, coefficients in each EZ are attenuated with (17), where A
is calculated with (22).

In numerical experiments, each macroblock is segmented
with 15 possible block sizes L x W with a combination of block
length L = 8,4, 2 and block width W = 16, 8, 4,2, 1. The size
of macroblocks is set to be equal to the maximum block size
8 x 16. Fig. 2 illustrates different segmentations of these mac-
roblocks into time-frequency blocks of same size. Minimizing
the estimated risk adapts the blocks to the signal time-frequency
properties. In particular, it eliminates “pre-echo” artifacts on
signal onsets and results in less distortion on signal transients.

Fig. 3(a) zooms on the onset of “Mozart” signal whose log-
spectrogram is illustrated in Fig. 1(b). The attenuation factors
of block thresholding with a fixed block size L =8 and W =1
are displayed in Fig. 3(b). At the beginning of the harmonics,
blocks of large attenuation factors spread beyond the onset of the
signal. Fig. 3(b’) illustrates the horizontal blocks at the onsets
marked in Fig. 3(a) and (b). In the time interval where the blocks
exceed the signal onset, moderate attenuation is performed, and
since the noise is not eliminated a transient noise component
is heard before the signal beginning. This can be called as a
“pre-echo” artifact. On the other hand, this moderate attenuation
in the blocks that exceeds signal onsets muffles the onsets as
well.

In Fig. 3(c) and (c’), the adaptive block method chooses
blocks of shorter length L in the first part of “Mozart,” which
hardly exceed the onset of the signal. This reduces considerably
the “pre-echo” artifact. After the onset, the adaptive block
method chooses narrow horizontal blocks, to better capture the
harmonic signal structures.

D. Nondiagonal Wiener Postprocessing and Masking Noise

Similarly to the bootstrapping algorithm of Cohen [10] which
performs a second SNR estimation from the signal obtained
after a first denoising, the block thresholding estimation is im-
proved by applying a second thresholding estimation. A block-
thresholding algorithm regularizes the time-frequency estima-
tion as compared to a diagonal thresholding, but it outputs a
time-frequency estimation with some block structures as shown
in Fig. 4(b). This first estimation is used as an input to com-
pute a Wiener time-frequency estimation that takes advantage of
the time-frequency regularization provided by the block thresh-
olding estimation.
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Fig.4. (a)Log-spectrogram of “TIMIT-F.” (b), (¢), (d) attenuation coefficients,
respectively, of a block thresholding, of a nondiagonal Wiener estimator, and of
an oracle estimator.

Let f be the block thresholding estimation from the noisy
data y. Similarly to the postprocessing proposed by Baraniuk
for images denoising [28], this first estimation is postprocessed
by computing a new attenuation factor using the oracle formula
(5) calculated from its time-frequency coefficients F'[l,k] =

(fs 91k

g — LA

= — . 28
(L K17 + 7L, A @

This new attenuation factor is applied on the noisy time-fre-
quency coefficients to reconstruct a second estimator.

flnl = 5 S all WY1 Hgralo.

Lk

This Wiener estimator is nondiagonal since the attenuation co-
efficients a[l, k] depend upon values of Y[I’, k] in a time-fre-
quency neighborhood of (I, k). Comparing with Fig. 4(b) and (c)
shows that the amplitude of the nondiagonal Wiener attenua-
tion factors a[l, k] is more regular then the block thresholding
attenuation factors and is closer to the oracle attenuation (5) dis-
played in Fig. 4(d). Experiments show that this post-processing
increases the SNR on average by about 0.2 dB and improves the
audio quality of denoised signals.

Retaining a low-amplitude noise is sometimes desirable to
mask artifices generated by an estimation procedure [2], [51].
Following [2], one can retain a masking noise by setting a floor
value to the attenuation factor:

an [lv k] = max(&[l, k]? aO) (29)
where 0 < ag < 1 is the minimum attenuation factor of the
noise.

IV. EXPERIMENTS AND RESULTS

The experiments presented below have been performed on
various types of audio signals: “Piano” is a simple example that
contains a single clear clavier stroke; “Mozart” is a musical ex-
cerpt that contains relatively quick notes played by a solo oboe;
“TIMIT-M” and “TIMIT-F” are, respectively, male and female
utterances taken from the TIMIT database [27]. “TIMIT-M” and
“TIMIT-F” are sampled at 16 kHz whereas all the other sig-
nals are sampled at 11 kHz. They were corrupted by Gaussian
white noise of different amplitude. Short-time Fourier transform
with half-overlapping windows were used in the experiments.
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These windows are the square root of Hanning windows of size
50 ms for “Piano” and “Mozart” and 20 ms for “TIMIT-M” and
“TIMIT-E.”!

For each sound, denoising with “partial noise removal” and
“maximum noise removal” were applied: the former retains
some low-amplitude residual noise; the latter removes almost
all the original noise.

Block thresholding was configured as described in
Sections III-C and III-D. For partial noise removal and
maximum noise removal, we respectively set ag ~ 0.05 (the
residual noise was calibrated to have similar energy for all
methods under comparison) and ag = 0 in (29). MMSE-LSA
attenuation rule [22] of Ephraim and Malah was also used in
our evaluation. Combined with the decision-directed a priori
SNR estimator (11) with a = 0.98 as proposed in [21], [22],
this algorithm (referred to as LSA-DD) led to satisfactory
results for partial noise removal. However, it resulted in too
much signal distortion for maximum noise removal as a larger
a was configured. Consequently, for this case, we substituted
the decision-directed SNR estimator by the noncausal SNR
estimator recommended in [10] which has been shown more
effective in noise reduction. The so-obtained algorithm is
referred to as LSA-NC.

Power subtraction (9) was configured with A = 5, 31 = (5 =
1 asrecommended in [2]. The floor value aq in (29) has the same
values as the ones chosen for block thresholding (ag = 0.05 for
partial noise removal and ¢y = 0 for maximum noise removal).

Both objective and subjective evaluations have been per-
formed. The objective measures are respectively the SNR and
the segmental SNR [49] defined as

N
> fn]
SNR = 10log;y v n=0

(30)

where H represents the number of frames in the signal, S is the
number of samples per frame that corresponds to 32 ms, and
7T () = min[max(z, —10), 35] confines the SNR in each frame
to a perceptually meaningful range between 35 dB and — 10 dB.
Segmental SNR has been shown to have a higher correlation
with perceived quality than SNR does [49].

Table II compares the SNR and the segmental SNR of
the three denoising algorithms: block thresholding (BT),
MMSE-LSA based algorithms (LSA-DD or LSA-NC) and
power substraction (PS). One can observe that the MMSE-LSA
based algorithms achieved systematically a better SNR than the
power subtraction method, the average gain being 0.3 dB for
partial noise removal and 1.3 dB for maximum noise removal.
Yet another systematic SNR improvement was achieved by
block thresholding over MMSE-LSA, with an average gain
of 0.9 dB for partial noise removal and 0.8 dB for maximum

A demo and a reference software is available online at http://www.cmap.
polytechnique.fr/$\sim$yu/research/ABT/samples.html
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TABLE II
COMPARISON OF POWER SUBTRACTION (PS), EPHRAIM AND MALAH
(LSA-DD 0R LSA-NC) AND BLOCK THRESHOLDING (BT) ALGORITHMS, ON
FOUR TYPES OF NOISY SIGNALS WITH DIFFERENT NOISE LEVELS.
THE Top THE SNR VALUES FOR PARTIAL NOISE REMOVAL AND
MAXIMUM NOISE REMOVAL, AND THE BOTTOM THE SEGMENTAL SNR VALUES

Signal & SNR Partial Noise Removal Maximum Noise Removal
PS | LSA-DD | BT PS | LSA-NC | BT

Mozart -2.73 dB 8.68 8.91 11.12 | 8.75 10.15 11.90
Mozart 3.46 dB 13.01 13.21 14.46 | 12.92 14.01 14.45
Mozart 9.23 dB 17.17 17.93 18.40 | 16.98 18.10 18.45
Mozart 14.73 dB | 21.11 21.12 22.49 | 20.87 21.99 2243
Piano 4.75 dB 17.70 18.24 19.95 | 18.30 19.45 20.47
TIMIT-M 10.76 dB | 18.65 18.84 19.46 | 18.55 19.16 19.70
TIMIT-F 20.63 dB | 25.15 25.21 26.46 | 24.95 25.88 26.38

Signal & SSNR Partial Noise Removal Maximum Noise Removal

PS LSA-DD | BT PS LSA-NC | BT
Mozart -5 dB 6.32 7.17 8.53 6.80 8.23 9.77
Mozart 0 dB 10.56 11.61 12.12 | 10.76 12.14 12.24
Mozart 5 dB 14.79 15.87 15.92 | 14.79 16.01 16.14
Mozart 10 dB 18.68 19.31 19.96 | 18.52 19.78 19.90
Piano -5 dB 5.74 6.70 7.53 6.77 8.42 8.94
TIMIT-M 0 dB 9.16 9.97 9.98 9.61 10.85 11.02
TIMIT-F 10 dB 15.04 15.70 16.51 | 14.88 15.67 16.45

noise removal. With respect to segmental SNR, though the
average gains are smaller, these results are confirmed: block
thresholding outperformed MMSE-LSA based algorithms
which performed better than power substraction.

The subjective evaluation was performed by a large group of
200 adult listeners. All subjects claimed to have normal hearing,
151 claimed to listen to music regularly, 58 claimed to have
some general knowledge on signal processing and 26 claimed
to have had experience using audio processing software. The
authors were obviously excluded from this test.

Each subject participated in an evaluation of successively the
seven sounds mentioned above. The evaluation of each sound
consisted in three consecutive steps: partial noise removal, max-
imum noise removal and a comparison between these two noise
removals. For the first two steps, each subject had to rank the
three denoising results (block thresholding, MMSE-LSA and
power subtraction) according to their global appreciation of the
sounds. Let us note that they had the possibility to give a same
rank to several methods each time. In the third step, each subject
had to select between the two previously top-ranked denoising
results (i.e., the top-ranked partial denoising result and the top
ranked maximum denoising result) the one they appreciated the
most. In all cases, the subjects could listen to the denoising re-
sults as well as to the noisy sounds as many times as they wished.
The order of the sounds and of the denoising results were ran-
domized in order to minimize any bias. The overall test for a
single subject lasted for about 15 min.

The subjective evaluation showed clearly that the power sub-
traction algorithm is by far the least favored as it obtained less
than 4% top ranking votes for each of the sounds. The major
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TABLE III
SUBJECTIVE COMPARISON BETWEEN BLOCK THRESHOLDING (BT) AND EPHRAIM AND MALAH (LSA-DD AND LSA-NC), FOR PARTIAL NOISE REMOVAL AND
MAXIMUM NOISE REMOVAL. THE COLUMNS BT AND LSA GIVE THE PERCENTAGE OF LISTENERS THAT PREFERRED THE CORRESPONDING ALGORITHM OVER
THE OTHER ONE, FOR EACH NOISY SIGNAL. THE COLUMN EQU. GIVES THE PERCENTAGE OF LISTENERS FOR WHOM THE QUALITY OF BOTH ALGORITHMS IS
EQUAL. THE LAST TWO AGGREGATE THE RESULTS FOR ALL MUSIC SIGNALS (MOZART AND PIANO) AND ALL SPEECH SIGNALS (TIMIT-M AND TIMIT-F),

AND THEY GIVE THE 95% CONFIDENCE INTERVAL

(CI) DERIVED FROM THE NUMBER OF LISTENERS

Signal & SSNR Partial Noise Removal Maximum Noise Removal
BT LSA-DD EQU. BT LSA-NC EQU.
Mozart -5 dB 47.0 26.0 27.0 80.1 10.5 9.4
Mozart 0 dB 47.3 21.6 31.1 44.1 37.5 18.4
Mozart 5 dB 53.2 22.8 24.0 40.4 38.7 20.9
Mozart 10 dB 54.7 12.0 33.3 41.3 24.7 34.0
Piano -5 dB 54.7 29.3 16.0 70.0 12.1 17.9
TIMIT-M 0 dB 61.9 10.7 274 394 385 22.1
TIMIT-F 10 dB 34.5 30.9 34.5 37.0 26.0 37.0
Music 51.4 22.3 26.3 55.2 24.7 20.1
95% CI (48.2,54.5) | (19.8,25.0) | (23.6,29.1) | (52.1,583) | (22.1,27.5) | (17.7, 22.7)
Speech 48.2 20.8 31.0 38.2 323 29.5
95% CI (432,532) | (16.9,25.1) | (26.5, 35.8) | (33.4,43.1) | (27.7,37.1) | (25.1, 34.2)
complaint the subjects had about it was the strong musical noise TABLE IV

artifact.

Table III concentrates on the comparison between block
thresholding and the MMSE-LSA algorithms. Confirming
the previous (segmented) SNR results, in the case of musical
sounds, the subjects showed a clear preference for block thresh-
olding over MMSE-LSA for both partial noise removal and
maximum noise removal. Again, for the male speech sound
TIMIT-M, block thresholding is very clearly preferred over the
MMSE-LSA algorithm in the case of partial noise removal. Be-
sides, a slight preference for block thresholding is shown for the
female sound TIMIT-F in the case of maximum noise removal.
On the other speech sounds (TIMIT-M with maximum noise
removal and TIMIT-M with partial noise removal), the results
do not show any significant difference. Table III also displays
the 95% confidence intervals of the overall votes on music
and speech signals. For example, the statistics show that one is
95% confident that between 48.2% and 54.5% of subjects favor
block thresholding for music signals in the case of partial noise
removal. These small confidence intervals, nonoverlapping in
most cases, demonstrate the high reliability of this subjective
evaluation and confirm the preference for block thresholding.

For musical sounds, one can explain the improvement of
block thresholding over MMSE-LSA based algorithms as
follow. For partial noise removal, the residual noise is more
uniform, closer to a white noise and less “metallic” than the
one obtained by LSA-DD. For maximum noise removal, block
thresholding produces less musical noise than LSA-NC, and
it results in less distortion on signal transients. With the Piano
sound for instance, which corresponds to one of the highest
vote in favor of block thresholding, the clavier stroke is much
less muffled by block thresholding than by LSA-NC, due to its
adaptive block size adjustment as explained in Section III-C.
These improvements are not significant enough for speech
sounds (except for the partial noise removal of the male voice
TIMIT-M for which the vote is clearly in favor of block
thresholding) to lead to a clear distinction between the two
algorithms.

PERCENTAGE OF THE DIFFERENT BLOCK SIZE SELECTED BY THE BLOCK
THRESHOLDING ALGORITHM FOR MOZART (TOP) AND TIMIT-M (BOTTOM)

Mozart W=16 | W=8 | W=4 | W=2|W=1
L=38 253 10.4 52 4.0 11.5
L=4 10.7 42 3.0 1.9 3.6
L=2 5.1 2.5 22 3.0 7.3
TIMITM | W=16 | W=8 | W=4 | W=2|W=1
L=38 26.4 9.1 6.3 1.7 3.9
L=4 12.3 7.8 1.5 1.3 2.4
L= 11.9 6.7 3.0 1.7 3.9

Finally, the third step of the evaluation showed that max-
imum noise removal was most of the time preferred to partial
noise removal. A little musical noise does not seem to be as an-
noying as a small residual noise. However, such preference is
much stronger for musical sounds (99.2% versus 9.8%) than for
speech sounds (71.7% versus 29.3%) for which intelligibility
and a clear articulation (i.e., clear transients) appear to be one
of the main criteria.

The block size distribution presented in Table IV shows the
adaptivity of the block thresholding algorithm. The largest
block size L x W = 8 x 16 is most frequently selected because
it is optimal for large time-frequency regions where the signal
energy is uniformly dominated by the noise energy. The blocks
of size 8 x 1 having a narrow frequency width occur relatively
often for musical signals such as Mozart recording because it
matches their narrow frequency harmonics. On the contrary,
the speech signal TIMIT-M privileges 2 x 16 blocks having
a narrow time width because speech signals contain many
short transients. As expected, the adaptive window size ad-
justment follows the signal time-frequency energy distribution
properties.
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V. CONCLUSION

Nondiagonal time-frequency estimators are more effective
than diagonal estimators to remove noise from audio signals
because they introduce less musical noise. These nondiagonal
estimators are derived from a time-frequency SNR estimation
performed with parameterized filters applied to time-fre-
quency coefficients. This paper introduces an adaptive audio
block-thresholding algorithm that adapts all parameters to the
time-frequency regularity of the audio signal. The adaptation
is performed by minimizing a Stein unbiased risk estimator
calculated from the data. The resulting algorithm is robust to
variations of signal structures such as short transients and long
harmonics. Numerical experiments demonstrate improvements
with respect to state of the art time-frequency audio denoising
procedures through objective and subjective evaluations.
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