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ABSTRACT

We introduce the joint time-frequency scattering transform,
a time shift invariant descriptor of time-frequency structure
for audio classification. It is obtained by applying a two-
dimensional wavelet transform in time and log-frequency to
a time-frequency wavelet scalogram. We show that this de-
scriptor successfully characterizes complex time-frequency
phenomena such as time-varying filters and frequency mod-
ulated excitations. State-of-the-art results are achieved for
signal reconstruction and phone segment classification on the
TIMIT dataset.

Index Terms— audio classification, invariant descriptors,
time-frequency structure, wavelets, convolutional networks

1. INTRODUCTION

Signal representations for classification need to capture dis-
criminative information from signals while remaining invari-
ant to irrelevant variability. This allows accurate classifiers to
be trained using a limited set of labeled examples. In audio
classification, classes are often invariant to time shifts, mak-
ing time shift invariant descriptors particularly useful.

Mel-frequency spectral coefficients are time-frequency
descriptors invariant to time shifts up to 25 ms and form
the basis for the popular mel-frequency cepstral coefficients
(MFCCs) [1]. These can be seen as the time-averaging of a
wavelet scalogram, which is obtained by constant-Q wavelet
filtering followed by a complex modulus [2]. The time scat-
tering transform refines this while maintaining invariance
by further decomposing each frequency band in the wavelet
scalogram using another scalogram [2, 3]. The result can be
seen as the output of a multilayer convolutional network [3].
Classification experiments have demonstrated the importance
of this second layer, which captures amplitude modulation
[2]. Yet because it decomposes each frequency band sepa-
rately, it fails to capture more complex time-frequency struc-
ture such as time-varying filters and frequency modulation,
which are important in many classification tasks.
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Section 2 introduces the joint time-frequency scattering
transform which extends the time scattering by replacing
the second-layer wavelet transform in time with a two-
dimensional wavelet transform in time and log-frequency.
This is inspired by the neurophysiological models of S.
Shamma, where the scalogram-like output of the cochlea
is decomposed using two-dimensional Gabor filters [4].
Section 3 shows that joint time-frequency scattering better
captures the time-frequency structure of the scalogram by
adequately characterizing time-varying filters and frequency
modulation. This is illustrated in Section 4, which presents
signal reconstruction results from joint time-frequency scat-
tering coefficients that are comparable to state-of-the-art
algorithms and superior to time scattering reconstruction.
In Section 5, the joint time-frequency scattering transform
is shown to achieve state-of-the-art performance for phone
segment classification on the TIMIT dataset, demonstrat-
ing the importance of properly describing time-frequency
structure. All figures and numerical results are reproducible
using a MATLAB software package available at http:
//www.di.ens.fr/data/scattering/.

2. JOINT TIME-FREQUENCY SCATTERING

The wavelet scalogram of a signal represents time-frequency
structure through a wavelet decomposition, which filters a sig-
nal using a constant-Q wavelet filter bank. A time scattering
transform captures the temporal evolution of each frequency
band by another set of wavelet convolutions in time. It does
not fully capture the time-frequency structure of the scalo-
gram since it neglects correlation across frequencies. The
joint time-frequency scattering remedies this by replacing
the one-dimensional wavelet transform in time with a two-
dimensional wavelet transform in time and log-frequency.

We denote the Fourier transform of a signal x(t) by
x̂(ω) =

∫
x(u)e−iωu du. An analytic mother wavelet is a

complex filter ψ(t) whose Fourier transform ψ̂(ω) is con-
centrated over the frequency interval [1− 21/2Q, 1 + 21/2Q].
Dilations of this mother wavelet defines a family of filters
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centered at frequencies λ1 = 2j1/Q for j1 ∈ Z, given by

ψλ1
(t) = λ1ψ(λ1t) =⇒ ψ̂λ1

(ω) = ψ̂(λ1
−1ω) . (1)

Letting log u denote the base-two logarithm of u, we observe
that log λ1 = j1/Q samples each octave uniformly with
Q wavelets. The temporal support of ψλ1 is approximately
2πQ/λ1, so to ensure that the support does not exceed some
fixed window size T , we define ψλ1

using (1) only when
λ1 ≥ 2πQ/T . The low-frequency interval [0, 2πQ/T ] is
covered by linearly spaced filters of constant bandwidth
2π/T . However, to simplify explanations, we shall treat all
filters as dilations of ψ.

The wavelet transform convolves a signal xwith a wavelet
filter bank. Its complex modulus is the wavelet scalogram

x1(t, log λ1) = |x ∗ ψλ1(t)| , for all λ1 > 0 , (2)

an image uniformly sampled in t and log λ1. Here x1(t, log λ1)
represents time-frequency intensity in the interval of duration
2πQ/λ1 centered at t and the frequency band of bandwidth
λ1/Q centered at λ1. Figure 1(a) shows a sample scalogram.

While a rich descriptor of time-frequency structure, the
scalogram is not time shift invariant. The scattering trans-
form ensures invariance to time shifts smaller than T by time-
averaging with a low-pass filter φT of support T , giving

S1x(t, log λ1) = x1(·, log λ1) ∗ φT (t) , (3)

known as first-order scattering coefficients. These approxi-
mate mel-frequency spectral coefficients [2].

To recover the high frequencies lost when averaging by
φT in (3), x1 is convolved with a second set of wavelets ψλ2

.
Computing the modulus gives

x2(t, log λ1, log λ2) = |x1(·, log λ1) ∗ ψλ2(t)| . (4)

As before, averaging in time creates invariance and yields

S2x(t, log λ1, log λ2) = x2(·, log λ1, log λ2) ∗ φT (t) . (5)

These are called second-order time scattering coefficients.
They supplement the first order (and by extension mel-
frequency spectral coefficients) by capturing the temporal
variability of the scalogram [3]. Higher-order coefficients can
also be computed by repeating the same procedure.

A representation similar to second-order time scattering
is the constant-Q modulation spectrogram, which computes
the spectrogram of each frequency band and averages using
a constant-Q scale [5]. The cascade structure of alternat-
ing convolutions and modulus nonlinearities is also shared by
convolutional neural networks, which enjoy significant suc-
cess in many classification tasks [6, 7].

In addition to time shift invariance, the scattering trans-
form is also stable to time warping due to the constant-Q
structure of the wavelets [3]. This is useful in audio classifica-
tion where small deformations do not alter class membership.
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Fig. 1. (a) Scalogram of a woman saying the word “encyclo-
pedias” with Q = 8 and T = 32 ms. (b) Three examples of
real parts of wavelets Ψλ2

in the (t, log λ1)-plane.

In many audio classification tasks, such as speech recog-
nition, classes are invariant to frequency transposition. In this
case classifiers benefit from transposition-invariant descrip-
tors. The time scattering transform is made invariant to trans-
position by computing a frequency scattering transform along
log λ1, improving classification accuracy for such tasks [2].

While the time scattering transform successfully describes
the average spectral envelope and amplitude modulation of a
signal [2], it decomposes and averages each frequency band
separately and so cannot capture the relationship between lo-
cal temporal structure across frequency. Hence it does not ad-
equately characterize more complex time-frequency phenom-
ena, such as time-varying filters and frequency modulation.

To capture the variability of the scalogram across both
time and log-frequency, we replace the one-dimensional
wavelet transform in time with a two-dimensional wavelet
transform in time and log-frequency. This follows the cor-
tical model introduced by S. Shamma, where a sound is
decomposed by the cochlea into a wavelet scalogram which
is then convolved by two-dimensional Gabor filters in the
auditory cortex [4]. Representations based on this cortical
model have performed well in audio classification [8, 9], but
often lack a mathematical justification.

Let us define the two-dimensional wavelet

Ψλ2
(t, log λ1) = ψα(t)ψβ(log λ1) , (6)

where λ2 = (α, β) for α ≥ 0 and β ∈ R. The time wavelet
ψα(t) is calculated with a dilation by α−1 for α ≥ 2π/T as in
(1), giving a Fourier transform centered at α. For these wave-
lets, Q = 1, although the notation remains the same. Simi-
larly, we abuse notation and define the log-frequency wavelet
by dilating a mother wavelet ψ to get

ψβ(log λ1) = β ψ(β log λ1) . (7)

The identity of the wavelet will be clear from context.
The Fourier transform of ψβ is centered at the frequency

β. We shall refer to this “frequency” parameter β associated



with the log-frequency variable log λ1 as a “quefrency,” with
units of cycles per octave. Note that this is different from the
standard quefrency, which is measured in seconds.

Since the two-dimensional Fourier transform of Ψλ2
is

centered at (α, β), it oscillates along the slope β/α. Its sup-
port in time and log-frequency is 2π/α by 2π/β. Sample
wavelets are shown in Figure 1(b). To ensure invertibility of
the wavelet transform, the Fourier transforms of Ψλ2

must
cover a half-plane, hence the requirement that β take negative
values. The sign of β determines the direction of oscillation.

The wavelet transform of x1 is calculated through a two-
dimensional convolution with Ψλ2 . Taking the modulus gives

x2(t, log λ1, log λ2) = |x1 ∗Ψλ2(t, log λ1)| , (8)

where log λ2 = (logα, log |β|, sgnβ). Similarly to (5),
second-order time-frequency scattering coefficients are com-
puted by time-averaging, which yields

S2x(t, log λ1, log λ2) = x2(·, log λ1, log λ2) ∗ φT (t) . (9)

Higher-order coefficients are obtained as before by repeating
the above process. In contrast to the time scattering transform,
the joint descriptor successfully captures the two-dimensional
structure of the scalogram at time scales below T .

To obtain frequency transposition invariance, it would
suffice to average both S1x and S2x along log λ1 using a fre-
quency window. However, the amount of invariance needed
may differ between classes. Since the invariant is created
through a linear mapping – averaging along log λ1 – a dis-
criminative linear classifier can learn the proper amount of
invariance for each class [2].

Just as time scattering is invariant to deformation in time,
the two-dimensional wavelet decomposition ensures that the
frequency-averaged joint scattering transform is invariant to
deformation of the scalogram in time and log-frequency. This
is useful for many audio classification tasks, where classes are
often invariant under small deformations of the scalogram.

3. SCATTERING TIME-FREQUENCY STRUCTURE

We apply the joint time-frequency scattering transform to
two signal models: a fixed excitation convolved with a time-
varying filter and an unfiltered frequency-modulated excita-
tion. Both represent non-separable time-frequency structure
and are insufficiently captured by the time scattering trans-
form but well characterized by joint time-frequency scatter-
ing. These models do not model more advanced structures
such as polyphony and inharmonicity, but allow us to explore
the basic properties of the joint scattering transform.

3.1. Time-varying filter

Let us consider a harmonic excitation

e(t) =
2π

ξ

∑
n

δ

(
t− 2πn

ξ

)
=
∑
k

eikξt (10)

of pitch ξ. The signal is then given by applying a time-varying
filter h(t, u) to e(t), defined as

x(t) =

∫
e(t− u)h(t, u) du . (11)

Parseval’s theorem now gives

x(t) =
1

2π

∫
ê(ω)ĥ(t, ω)eiωt dω , (12)

where ĥ(t, ω) is the Fourier transform of h(t, u) along u.
Thus x(t) is the inverse Fourier transform of ê(ω) multiplied
by a time-varying transfer function ĥ(t, ω). These transforms
are also known as pseudo-differential operators.

Time-varying filters appear in many audio signals and
carry important information. For example, during speech pro-
duction the vocal tract is deformed to produce a sequence of
phones. This produces amplitude modulation, but also shifts
formants in the spectral envelope, which can be modeled by a
time-varying filter. Similarly, much of the instrument-specific
information in a musical note is contained in the attack, which
is often characterized by a changing spectral envelope. For
these reasons, it is important for an audio descriptor to ade-
quately capture time-varying filters.

For a suitable choice of λ1 we can show that

S1x(t, log λ1) ≈ |ψ̂λ1(kξ)| |ĥ(·, λ1)| ∗ φT (t) , (13)

where k = bλ1/ξe is the index of the partial closest to λ1,
while for small enough quefrencies |β|

S2x(t, log λ1, log λ2)

≈ Cξ−1|h̃ ∗Ψλ2(·, log λ1)| ∗ φT (t)
, (14)

whereC does not depend on x. Here h̃(t, logω) is a weighted
and log-scaled version of |ĥ(t, ω)| given by h̃(t, logω) =

ω|ĥ(t, ω)|. First-order coefficients thus provide the time-
averaged amplitude of ĥ sampled at the partials kξ since
|ψ̂λ1

(kξ)| is non-negligible only for λ1 ≈ kξ. Furthermore,
the second order approximates the two-dimensional scatter-
ing coefficients of the modified filter transfer function h̃,
capturing its time-frequency structure.

In contrast, the time scattering transform only character-
izes separable time-varying filters h that can be written as the
product of an amplitude modulation in time and a fixed filter.
In this case the model reduces to the amplitude-modulated,
filtered excitation considered in [2]. Time scattering and joint
time-frequency scattering thus differ in that the latter captures
the non-separable structure of h while the former only de-
scribes its separable structure.

To justify (13) and (14), we proceed as in [2], convolving
(12) with ψλ1 and taking the modulus to obtain

x1(t, log2 λ1) ≈ |ĥ(t, λ1)|
∑
k

|ψ̂λ1
(kξ)| , (15)



for ĥ(t, ω) smooth enough and λ1/Q < ξ. In this case at
most one partial kξ ≈ λ1 is found in the support of the
wavelet so the sum only contains one non-negligible term
when k = bλ1/ξe. Averaging in time yields (13). Fur-
thermore, we note that as a function of log λ1, the sequence
of partials

∑
k |ψ̂λ1(kξ)| can be approximated at large scale

by Cλ1ξ−1. For small |β|, ψβ is very regular in log λ1. If
|ĥ(t, ω)| is also smooth enough along ω, we can therefore
replace the sum of partials by Cλ1ξ−1 when convolving x1
with Ψλ2 . Rewriting the convolution using h̃ then yields

x1 ∗Ψλ2
(t, log λ1) ≈ Cξ−1h̃ ∗Ψλ2

(t, log λ1) . (16)

Taking the modulus and averaging then gives (14).

3.2. Frequency modulation

We now consider an excitation of varying pitch

x(t) =
∑
k

eikθ(t) . (17)

At time t, x has instantaneous pitch θ′(t) and relative pitch
variation θ′′(t)/θ′(t). This carries important information in
many sounds, such as tonal speech, bioacoustic signals, and
music (e.g. for vibratos and glissandi). A good audio descrip-
tor should therefore adequately describe such pitch changes.

For appropriate λ1 and T , we can show that

S1x(t, log λ1) ≈ |ψ̂λ1(kθ′(·))| ∗ φT (t) , (18)

where k = bλ1/θ′(t)e as before. Furthermore, for |β| large,

S2x(t, log λ1, log λ2)

≈ C
(
S1x(t, ·) ∗ φ2π/β(log λ1)

) ∣∣∣ψ̂ (−βθ′′(t)αθ′(t)

)∣∣∣ , (19)

where C is independent of x.
While first-order joint scattering coefficients provide an

average of the instantaneous pitch θ′(t) over the interval of
duration T , the second order describes the rate of pitch varia-
tion θ′′(t)/θ′(t). Indeed, for fixed t and λ1, S2x is maximized
along the line α/β = −θ′′(t)/θ′(t), and so captures this fre-
quency modulation structure. The time scattering transform,
in contrast, only captures the bumps in each frequency band
induced by the varying pitch, ignoring its frequency structure.

To see why (18) and (19) hold, we linearize θ(t) over the
support of ψλ1

when decomposing (17), which gives

x1(t, log λ1) ≈ |ψ̂λ1(kθ′(t))| , (20)

provided that λ1/Q < ‖θ′‖∞. As before, only the partial
k = bλ1/θ′(t)e is contained in the frequency support of ψλ1

.
Averaging in time gives (18). Each partial traces a curve along
λ1 = kθ′(t), so locally the scalogram x1 can be approximated
by sliding Dirac functions Cδ(log λ1 − log kθ′(t)) for some

C. Convolving x1 along log λ1 with ψβ for |β| large enough
to capture only one line gives Cψβ(log λ1 − log kθ′(t)). For
a fixed λ1, this is a complex exponential of instantaneous fre-
quency −βθ′′(t)/θ′(t) multiplied by an envelope. Convolv-
ing this in time with a wavelet ψα on whose support the en-
velope is approximately constant then gives

x1 ∗Ψλ2(t, log λ1)

≈ Cψβ
(

log λ1

kθ′(t)

)
ψ̂
(
−βθ

′′(t)
αθ′(t)

) , (21)

Taking the modulus, we can replace |ψβ | with the low-pass
filter φ2π/β . Assuming that θ′′(t)/θ′(t) is almost constant
over an interval of duration T , averaging gives (19).

We note that the time-varying filter and frequency modu-
lation models in (12) and (17) are complementary. For small
quefrencies |β|, the joint scattering coefficients capture time-
frequency structure over large frequency intervals, which is
given by time-varying filters. Larger |β| describe more lo-
calized behavior in log-frequency, like frequency modulation.
This scale separation allows the joint scattering transform to
simultaneously characterize both types of structures.

4. TIME-SHIFT INVARIANT RECONSTRUCTION

After having analyzed a given signal xwith a scattering trans-
form, synthesizing a new signal y from the invariant coeffi-
cients S1x and S2x highlights what information is captured
in the representation — and, conversely, what is lost. In this
section, we use a backpropagation algorithm on stationary au-
dio textures to qualitatively compare the joint scattering trans-
form with other architectures.

The reconstruction y is first initialized with random noise,
and then iteratively updated to converge to a local minimum
of the functional

‖Sx− Sy‖2 = ‖S1x− S1y‖2 + ‖S2x− S2y‖2 (22)

with respect to y. Since the forward computation of scatter-
ing coefficients consists of an alternated sequence of linear
operators (wavelet convolutions) and modulus nonlineari-
ties, the chain rule for gradient backpropagation yields a
sequence of closed-form derivatives in the reverse order.
The modulus nonlinearities are backpropagated by applying
|z(t)|′ = Real(z′(t) |z(t)|/z(t)). In turn, the backpropaga-
tion of the wavelet transforms consists of convolving each
frequency band by the complex conjugate of the correspond-
ing wavelet and summing across bands [10].

To illustrate, we have synthesized a bird song recording
using different scattering transforms. Here T = 375 ms and
is of the order of three bird calls (see Figure 2(a)). First-order
coefficients S1x yield the reconstruction in Figure 2(c). This
fits the averaged mel-frequency spectrum of the target sound.
Although this is sufficient when x is the realization of a Gaus-
sian process, it does not convey the typical intermittency in
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Fig. 2. Reconstructed bird calls from time-invariant coeffi-
cients. Top to bottom: (a) original x(t), (b) from McDermott
and Simoncelli representation [11], (c) from first-order scat-
tering, (d) from first- and second-order time scattering, (e)
from first- and second-order joint time-frequency scattering.

natural sounds. This is partly mitigated by adding second-
order coefficients, giving the reconstruction in Figure 2(d),
since these encode the amplitude modulation spectra in each
acoustic subband. However, these spectra are not synchro-
nized across subbands, so time scattering tends to synthesize
auditory textures made of decorrelated impulses. In contrast,
we observe that the reconstruction from joint scattering coef-
ficients in Figure 2(e) is able to capture coherent structures in
the time-frequency plane, such as joint modulations in ampli-
tude and frequency. Notably, because of their chirping struc-
ture, bird calls are better synthesized with joint scattering. In-
deed, recalling (19), chirps are represented with few nonzero
coefficients in the basis of joint time-frequency wavelets. We
believe that audio re-synthesis is greatly helped by this gain in
sparsity. More experiments are available at http://www.
di.ens.fr/data/scattering/audio/.

McDermott and Simoncelli [11] have built an audio tex-

ture synthesis algorithm based on a scattering-like transform
along time, of which they compute cross-correlation statistics
across λ1 and across λ2, as well as marginal moments (vari-
ance and skewness). Their representation is also able to syn-
chronize frequency bands and recover amplitude modulation.
Nevertheless, asymmetry in frequency modulation is lost. In-
deed, while all bird calls from the original recording have
an ascending instantaneous frequency, some of the chirps re-
constructed with their method descend instead. Moreover,
the higher-order statistics on which they rely are unstable to
deformations and hence not suitable for classification pur-
poses. In this section, we have shown that joint scattering may
achieve comparable or better quality in audio re-synthesis, yet
with only using stable features.

On the negative side, it must be noted that joint scattering
is insufficient to capture temporal changes in harmonic struc-
ture. Indeed, partial tones which are several octaves apart are
not likely to be correctly in tune — a limitation that we shall
specifically address as a future work.

5. CLASSIFICATION

We evaluate the performance of the joint time-frequency scat-
tering representation on phone segment classification using
the TIMIT dataset [12]. The corpus consists of 6300 phrases,
each of which has its constituent phone segments labeled with
its position, duration, and identity. Given a position and dura-
tion, we want to identify the phone contained in the segment.
This task is easier than the problem of continuous speech
recognition, but provides a straightforward framework when
evaluating signal representations for speech.

We follow the same setup as in [2]. Each phone is rep-
resented by a given descriptor applied to a 192-millisecond
window centered on the phone along with the phone’s log-
duration. A Gaussian support vector machine (SVM) is used
as a classifier through the LIBSVM library [13].

The SVM is a discriminatively trained, locally linear clas-
sifier. This means that, given enough training data, an SVM
can learn the amount of averaging needed along log λ1 to gain
the desired invariance [2]. We therefore present results for
scattering transforms without averaging along log λ1.

Table 1 shows the results of the classification task.
MFCCs calculated over the segment with a window size of
32 ms and concatenated to yield a single feature vector pro-
vide a baseline error rate of 18.3%. The non-scattering state
of the art achieves 16.7% and is obtained using a committee-
based hierarchical discriminative classifier on MFCC descrip-
tors [14]. A convolutional network classifier applied to the
log-scalogram with learned filters obtains 19.7% [7].

The time scattering transform is computed with T =
32 ms and Q = 8 up to the second order. As in previous
experiments, we compute the logarithm of the scattering [2].
Since it better captures amplitude modulation, results improve
with respect to MFCCs, achieving an error of 17.3%.



Representation Error rate (%)
MFCCs 18.3
State of the art (excl. scattering) [14] 16.7
Time Scattering 17.3
Time Scattering + Freq. Scattering 16.1
Joint Time-Freq. Scattering 15.8

Table 1. Error rates in percent for the phone segment classifi-
cation task. MFCCs and scattering transforms are computed
with T = 32 ms and Q = 8.

Applying an unaveraged frequential scattering transform
along log λ1 up to a scale of K = 4 octaves and computing
the logarithm yields an error rate of 16.1%. As discussed ear-
lier, transposition invariance counters speaker variability, and
so improves performance. However, the frequency scattering
is computed along log λ1 of a time scattering transform which
has been averaged in time, so its discriminability also suffers
from not capturing local correlations across frequencies.

Computing the joint time-frequency scattering transform
for K = 4 octaves yields an error of 15.8%, an improve-
ment compared to the time scattering transform with scatter-
ing along log-frequency. This illustrates the importance of
the complex time-frequency structure that is captured by the
joint scattering transform, and can be partly explained by the
fact that the onset of many phones is characterized by rapid
changes in formants, which can be modeled by time-varying
filters. As we saw earlier, these are better described by time-
frequency scattering compared to time scattering. However,
the small window size T limits the loss of time-frequency
structure in the time scattering transform. We therefore expect
a greater improvement for tasks involving larger time scales.

The previous state of the art was obtained at 15.9% using a
scattering transform with multiple Q factors [2]. This more ad
hoc descriptor has many similarities with the joint scattering
transform, but is difficult to study analytically.

6. CONCLUSION

We introduced the joint time-frequency scattering transform,
which is a time-shift invariant representation stable to time-
frequency warping. This representation characterizes time-
varying filters and frequency modulation. Reconstruction ex-
periments show how it successfully captures complex time-
frequency structures of locally stationary signals. Finally,
phone segment classification results demonstrate the value of
adequately representing these structures for classification.
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