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Abstract

This paper introduces orthogonal bandlet bases to approximate images having some geometrical
regularity. These bandlet bases are computed by applying parameterized Alpert transform oper-
ators over an orthogonal wavelet basis. These bandletization operators depend upon a multiscale
geometric flow that is adapted to the image, at each wavelet scale. This bandlet construction has a
hierarchical structure over wavelet coefficients taking advantage of existing regularity among these
coefficients. It is proved that Cα images having singularities along Cα curves are approximated
in a best orthogonal bandlet basis with an optimal asymptotic error decay. Fast algorithms and
compression applications are described. c© 2000 Wiley Periodicals, Inc.

I Introduction

Wavelet bases are suboptimal to approximate natural images because they can not take advan-
tage of the geometrical regularity of image structures. Indeed, wavelets have a square support
translated on a square grid, that are not adapted to the anisotropic regularity of geometrical ele-
ments including edges. Several frames such as the curvelets of Candès and Donoho [3] and the
warped bandlets of Le Pennec and Mallat [13] have been introduced to improve the approximation
performances of wavelets. The image is decomposed over vectors that are elongated and have van-
ishing moments in various directions to take advantage of existing image regularity along specific
directions. Asymptotic theorems give better approximation error decays in these frames compared
to wavelet bases, but curvelets and warped bandlets do not seem to clearly improve the numerical
approximation capabilities of wavelets for most natural images.

The human visual system suggests a different hierarchical approach to geometric image repre-
sentation. Hubel and Wiesel [11] showed in the 1960’s that the V1 visual cortex region includes
simple cells that have a quasi-linear response relatively to the input visual stimuli received on the
retina. The response of a simple cell can thus be interpreted as an inner product between the retina
image and an “impulse response”. The support of these impulse responses, also called receptive
fields are well localized in the retina image. Many experiments [12] have measured these impulse
responses which are oscillating functions similar to wavelets. More recent physiological experi-
ments have shown that a geometrical integration appears through horizontal connections between
these simple cells [10, 21], within the columnar structure discovered by Hubel and Wiesel. These
horizontal connections vary depending upon the image properties. Horizontal connections are also
involved in the perception of geometric illusions such as Kaniza triangle [14].

From a mathematical point of view, the question raised by these recent physiological models
is to understand if one can construct hierachical image representations from wavelet coefficients,
to take advantage of geometric image regularity. Defining a geometry on wavelet coefficients also
offers the flexibility to let this geometry depend upon the image scale. This can be important for
textures having multiscale structures following different geometries at each scale.
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We prove that defining a hierarchical geometric representation from wavelet coefficients has
number of mathematical and algorithmic advantages over direct decompositions such as curvelet
and warped bandlet frames. As opposed to these previous constructions, the resulting bandlet bases
are orthogonal and inherit the regularity of the wavelets they are constructed from. The geometry
can also be adapted at each scale. These bases are derived from a wavelet basis with a cascade of
orthogonal operators that define a discrete bandletization, which leads to a fast algorithm.

The key property that enables to construct a hierachical representation from wavelet coeffi-
cients is given in Section IV, which proves that geometric regularity is preserved over sets of
orthogonal wavelet coefficients. It produces a form of redundancy among wavelet coefficients. A
bandletization operator transforms these orthogonal wavelet coefficients to take advantage of their
regularity with vanishing moments along appropriate directions. This bandletization is imple-
mented with an Alpert transform along parameterized multiscale geometric flows. The succession
of the orthogonal wavelet transform and adapted bandletization is equivalent to a decomposition
in an adapted orthogonal bandlet basis.

To best approximate an image f from M coefficients, a “best” bandlet basis is constructed by
optimizing the geometrical parameters of the bandletization. For images f that are Cα besides
a set of Cα curves, the main theorem proves that an approximation fM from M parameters in an
optimized bandlet basis satisfies

|| f − fM||22 = O(M−α).

Similarly to the original result proved for warped bandlets [13], this approximation scheme is
adaptive with respect to the regularity exponent α which is a priori unknown. However, it intro-
duces no boundary artefacts and proofs are simpler because it takes advantage of the approximation
properties of the underlying wavelet basis.

For discrete images with N pixels, this bandlet construction also defines orthogonal bases of
RN . Section VII describes a fast algorithm that decomposes an image in a best bandlet basis
with O(NMκ) operations, where M is the number of parameters used for approximation and κ =
(α +1)(p−1)2. For a compression application where the number M of parameters scales like Nγ ,
γ < 1, the overall complexity is O(N1+γκ).

For compression applications, images are decomposed in a best bandlet basis and the resulting
coefficients are quantized and entropy coded. For images that are discretizations of Cα functions
outside Cα edges, Section VIII proves that the error introduced by this compression scheme decays
like logα(R)R−α , where R is the number of bits of the compressed code. The resulting distortion-
rate curve approaches the Kolmogorov asymptotic lower bound up to a logarithmic factor.

II Wavelet Approximation of Geometrically Regular Images

Donoho [7] introduced a cartoon image model where f (x) for x ∈ [0,1]2 is Cα over regions
whose boundaries are piecewise Cα curves. To incorporate the diffraction blur produced by the
optics of a camera this model is refined in [13] with a convolution by an unknown regular kernel.
An example is shown in figure III.1, left. The following definition formalizes this model.

Definition 1. A function f ∈ L2([0,1]2) is said to be Cα -geometrically regular with a scale s > 0
if f = f̃ ∗h where f̃ ∈ Cα(Λ) for Λ = [0,1]2−{γi}16i6G. The blurring kernel h is Cα , supported
in [−s,s]2 with ||h||Cα 6 s−(2+α). The edge curves γi are Cα and do not intersect tangentially. For
s = 0, the same definition is valid for f = f̃ .

The image f̃ is typically discontinuous along the edge curves γi, that may correspond to bound-
ary of objects in the observed scene. The convolution with the blurring kernel h accounts for the
diffraction phenomenon. The scale parameter s of h may be arbitrarily small. For an open set Ω in
R2, Cα(Ω) is the space of α-holderian functions, and || f ||Cα (Ω) is the usual norm on this space.
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Wavelet approximation. An isotropic wavelet orthogonal basis of L2([0,1]2) is obtained by
translating and dilating three mother wavelets {ψH ,ψV ,ψD} (for the horizontal, vertical and di-
agonal directions) [15]. We consider compactly supported wavelets having a support in [−K,K]2.
Let p be the number of vanishing moments of these wavelets. Inner products in this basis of
L2([0,1]2) are written

(II.1) f k
j [n] def.= 〈 f , ψ

k
jn〉 with


k ∈ {H,V,D}, j < 0,
n = (n1,n2) ∈ {0, . . . ,2− j−1}2,
ψk

jn(x) = 2− j ψk(2− jx1−n1,2− jx2−n2),

with appropriate modifications of ψk
jn to maintain their support in [0,1]2, as explained by Cohen et

al. in [5]. In the following we shall drop the orientation index k ∈ {H,V,D} to simplify notations.

(a) (b) 〈f,ψH

jn〉

〈f,ψD

jn〉〈f,ψV

jn〉

j
=

-6
j
=

-7
j
=

-8

(c)

FIGURE II.1. (a) Example of a Cα geometrically regular function f . (b) Orthogonal
wavelet coefficients at different scales 2 j. (c) Zoom over wavelet coefficients located in a
square including a singularity curve.

Let M be the number of wavelet coefficients above a threshold T . The M-term wavelet approx-
imation of f is

fM = ∑
| f j[n]|>T

f j[n]ψ jn.

If f ∈ Cα([0,1]2) with α < p then wavelet coefficients are small at fine scales and one can prove
[17] that the approximation error satisfies

(II.2) || f − fM||22 = O(M−α).

An image that is Cα geometrically regular is typically not uniformly Cα over [0,1]2 because of the
discontinuities across edges. For such an image f , the approximation error || f − fM||2 is dominated
by wavelet coefficients f j[n] corresponding to wavelets ψ jn whose support intersects the singularity
curves of f . As a consequence the error || f − fM||22 decas like M−1 as opposed to M−α . These edge
wavelet coefficients thus need to be retransformed in order to reduce this approximation error.

III Review of Geometric Image Approximations

For Cα geometrically regular functions, one wants to find an approximation scheme with M
parameters which yields an error that decays like M−α , as in a wavelet approximation of uniformly
Cα functions. Indeed, although these functions may be discontinuous, one can take advantage of
the regularity of the geometry of their edge curves.

Curvelet frame. In order to exploit the geometric image regularity along edge curves, the image
is decomposed over functions having vanishing moments along several directions and a support
that is elongated. The curvelets of Candès and Donoho [3] are such elongated functions that define
a frame. Candès and Donoho proved that for α = 2 the best M-term approximation fM of a Cα -
geometrically regular function f satisfies

(III.1) || f − fM||22 = O(log3(M)M−2).
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Curvelet approximations are nearly optimal for α = 2, but one does not reach the M−α optimal
bound for α > 2. For bounded variation functions, curvelet approximations do not either reach the
optimal error decay α = 1 obtained by wavelet bases. This is due to the non-adaptivity of curvelet
frame geometry.

To define an orthonormal basis of RN , Do and Vetterli [6] have introduced a modified con-
struction with contourlets implemented with a multiscale and directional filter bank. However,
contourlets do not satisfy the asymptotic decay error property (III.1) of curvelets.

Adaptive schemes. Instead of decomposing the image in a fixed basis or frame, adaptive schemes
adapt the approximation procedure to an estimated geometry calculated from the image.

The wedgelet scheme of Donoho [7] divides the image support into adapted dyadic squares as
in figure V.2. Over each square the image is approximated with a “wedge” that is constant on each
side of a straight line that approximates the image edge in the square. This approach is generalized
by Shukla et al. [20] with polynomials separated by polynomial curves. A Classification and
Regression Tree (CART) [2] algorithm is used to optimize the dyadic image segmentation.

These approximation schemes can reach the same error decay (III.1) as curvelets only if the
edges are discontinuities with no blurring, and the image segmentation in dyadic squares intro-
duces blocking artifacts in the approximation which are discontinuities at the squares boundaries.

Capturing wavelet regularity along edges. Wavelet approximations of geometrically regular
functions are unefficient because edges create many large amplitude wavelet coefficients. To im-
prove wavelet representations, several approaches have been proposed to further transform wavelet
coefficients along edges. Wakin et al. [22] and Dragotti and Vetterli [9] perform a vector quantiza-
tion of wavelet coefficients. Following the work of Matei and Cohen on adaptive ENO lifing [16],
new lifting schemes have also been introduced to predict wavelet coefficients from their neighbors
[4]. These approaches are mostly algorithmic and do not lead to approximation theory. They re-
quire to detect edge curves, which makes it difficult to obtain optimal approximation results when
the image is blurred.

Warped bandlet approximation. The warped bandlet transform, introduced by Le Pennec and
Mallat [13] also uses a dyadic square segmentation to approximate functions. In each square the
geometry is not defined by finding an edge location but an orientation along which the image
has regular variations. This orientation is defined by a vector field called geometric flow, that is
nearly parallel to the edge as shown in figure III.1, (a). To take advantage of the image regularity
along the flow, a larger band parallel to the flow is warped into a rectangle as in figure III.1,
(b). The image in the band is warped into a rectangular image whose flow is either horizontal or
vertical. Decomposing this warped image over an anisotropic separable orthogonal wavelet basis
is equivalent to decomposing the original image in orthogonal bandlets obtained by warping these
wavelets [13]. Figure III.1 illustrates this process. The union of these bandlet bases over all the
bands defines a bandlet frame of L2([0,1]2). Le Pennec and Mallat proved that decomposing a Cα -
geometrically regular image over a best bandlet frame yields a bandlet approximation that satisfies
|| f − fM||22 = O(M−α) where M is the total number of bandlet coefficients and parameters that
specifies the geometric flow and segmentation. Difficulties and boundary issues appear for warped
bandlets because adjacent image squares are typically warped with different geometric flows. The
resulting bandlets are discontinuous at these boundaries and the orthogonality is lost.

This paper introduces new orthogonal bandlet bases obtained with orthogonal operators applied
directly to wavelet coefficients. A multiscale geometric flow is defined over wavelet coefficients,
which avoids all boundary issues and maintains the orthogonality of this transform. Next section
anlyzes the regularity of wavelet coefficients which is at the core of this construction.
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FIGURE III.1. (a) Image segmentation in dyadic squares, inside each of which there is
a single edge. (b) Zoom on a band shown in (a), with its geometric flow nearly parallel
to the edge. (c) This band is warped into a square where the flow becomes horizontal. A
separable anisotropic wavelet with a rectangular support in this square corresponds to a
bandlet parallel to the flow in the original band.

IV Polynomial Approximations of Wavelet Coefficients

To improve wavelet approximations, this section studies the regularity of wavelet coefficients
located along edges. This regularity suggests approximating these wavelet coefficients with piece-
wise polynomials in the wavelet coefficient domain. For Cα geometrically regular functions, the
resulting approximation scheme yields a nearly optimal approximation error and gives the basic
principles of bandlet approximations constructed over wavelet bases.

IV.1 Anisotropic Regularity of Wavelets Coefficients
Orthogonal wavelet coefficients of f are calculated through convolutions with scaled wavelets

〈 f , ψ jn〉= f j(2 jn) where f j(x)
def.= f ∗ψ j(x) and ψ j(x) =

1
2 j ψ(−2− jx).

The convolution guarantees that f j is at least as regular as ψ j. The function f j also inherits the
regularity of f . In the following, we suppose that the wavelet ψ is Cα .

If f is Cα geometrically regular with a scale s in the sense of Definition 1 then it can be written
f = f̃ ∗h, where f̃ is piecewise Cα with singularities along piecewise Cα curves and where h is a
regularization kernel that is supported in [−s,s]. As a consequence

(IV.1) f j = f̃ ∗h∗ψ j = 2 j f̃ ∗h j

where h j = 2− j h ∗ψ j is a new regularization kernel. Since ψ j has a support in [−K2 j,K2 j]2 the
new kernel h j has a support in [−s j,s j]2 with s j = s+K2 j.

Local warping. In the neighborhood of an edge, the values of the wavelet coefficients f j(x) are
regular when moving nearly parallel to the edge. Such displacement directions are specified by a
geometric flow which is a vector field. Following the original bandlet approach [13], the geometric
regularity of f j is characterized after a warping that transforms the geometric flow in a horizontal
or vertical vector field.

Locally an edge can be parameterized horizontally or vertically. The geometric flow is a vector
field which is also parameterized horizontally or vertically and which is constant in the other
direction. Figure IV.1 (c) shows an example in a square S ⊂ [0,1]2 of length λ > 0, where the
edge curve is parameterized horizontally by x2 = γ(x1). For (x1,x2) ∈ S the coordinates of a flow
vector can be written (1, γ̃ ′(x1)), where γ̃ ′ specifies the flow direction. If the edge is parameterized
vertically, then the geometric flow is parallel vertically and hence can locally be written (γ̃ ′(x2),1).

Let us consider the warping operator

(IV.2) (x̃1, x̃2) = w(x1,x2)
def.= (x1,x2− γ̃(x1)),
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FIGURE IV.1. (a) Original image f . (b) Wavelet coefficients of f . (c) Zoom on wavelet
coefficients in a square S including an edge. A geometric flow is a vector field nearly
parallel to the edge curve. The warping w aligns the flow horizontally or vertically.

where γ̃ ′ is the derivative of γ̃ . The curve x2 = γ̃(x1) is an integral curve of the flow. This warping
transforms the geometric flow in a horizontal flow as illustrated in figure IV.1(c). If the flow
direction γ̃ ′ is sufficiently close to the edge direction γ ′ then Proposition 1 gives upper bounds on
the partial derivatives of the warped wavelet coefficients f jW(x̃) def.= f j(w−1(x̃)). A similar result is
proved in [13].

Proposition 1. Let f be a Cα geometrically regular function with a scale s. Suppose that f has
only one singularity curve parameterized horizontally by x2 = γ(x1). Let s j = s + K2 j. There
exists a constant C > 0 such that for any 2 j if, over a square S of length λ 6 s1/α

j a polynomial
flow direction γ ′(x) satisfies

(IV.3) ∀(x1,x2) ∈ S = S1×S2, |γ ′(x1)− γ̃
′(x1)|6 (1+ ||γ||Cα )λ

α−1,

then the resulting warped wavelet coefficients f jW(x̃) def.= f j(w−1(x̃)) satisfy

(IV.4) ∀ i1 6 α, ∀ i2 6 p, ∀ x̃ ∈ w(S),

∣∣∣∣∣∂ i1+i2 f jW

∂xi1
1 ∂xi2

2

(x̃)

∣∣∣∣∣6 C 2 j (1+ ||γ||αCα )s−i1/α−i2
j .

Proof. Condition (IV.3) implies that there exists an integral curve γ̃ of the flow γ̃ ′ that satisfies
||γ− γ̃||∞ 6 (1+ ||γ||Cα )λ α .

The derivatives of γ − γ̃ are first bounded using condition (IV.3). Let γ1 be a Taylor expansion
of degree α−1 of γ inside S1. It satisfies ||γ(i)−γ1

(i)||∞ 6 ||γ||Cα λ α−i. The derivatives of γ− γ̃ can
be bounded using

||γ(i)− γ̃
(i)||∞ 6 ||γ(i)− γ1

(i)||∞ + ||γ1
(i)− γ̃

(i)||∞.

The second term is bounded using an expansion in {θm}α−1
m=0 the orthogonal family of Lagrange

polynomial on S1

γ1
(i)− γ̃

(i) =
α−1

∑
m=0

〈γ1− γ̃, θm〉θm
(i)

and thus
||γ1

(i)− γ̃
(i)||∞ 6 α||γ1− γ̃1||L∞ max

m

(
||θm||L1 ||θm

(i)||∞
)

There exists a constant Cθ independent of λ such that ||θm||1 6 Cθ λ 1/2 and ||θm
(i)||∞ 6 Cθ λ−i−1/2.

Using the fact that ||γ1
(i)− γ̃(i)||∞ 6 ||γ1

(i)− γ(i)||∞ + ||γ(i)− γ̃(i)||∞ 6 (1+2||γ||Cα )λ α−i, one has

(IV.5) ∀ i 6 α, ||γ(i)− γ̃
(i)||∞ 6 C1 λ

α−i 6 C1 s1−i/α

j ,

for a constant C1.
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Equation (IV.1) shows that f j = 2 j f̃ ∗h j where h j = 2− j h∗ψ j has a support in [−s j,s j]2. The
proof of inequality (IV.4) is performed by expanding the derivatives of the convolution

f jW(x) = 2 j
∫

f̃ (x1−u1,x2 + γ̃(x1)−u2)h j(u)du

= 2 j
∫

f̃ (A(x,u))h j(B(x,u))du

where

A(x,u) def.= (x−u1,x2 + γ(x1−u1)−u2) and B(x,u) def.= (u1,u2 + γ̃(x1)− γ(x1−u1)).

Taking derivatives leads to

(IV.6)
∂ i1+i2 f jW

∂xi1
1 ∂xi2

2

(x) = 2 j
∫ i1

∑
d=0

(
d
i1

)
∂ i1−d

∂x1i1−d

[
f̃ (A(x,u))

] ∂ d

∂x1d

[(
∂ i2h j

∂x2i2

)
(B(x,u))

]
du.

By hypothesis the function x1 7→ f̃ (A(x,u)) is regular and there exists a constant C such that∣∣∣∣ ∂ i1−d

∂x1i1−d

[
f̃ (A(x,u))

]∣∣∣∣6 C || f ||Cα (Λ) max(||γ||αCα ,1).

The second term of equation (IV.6) is bounded with the Faa di Bruno formula for the derivatives
of a composition

∂ d

∂x1d

[(
∂ i2h j

∂x2i2

)
(B(x,u))

]
(IV.7)

= ∑
(ks)s

d!
k1! . . .kd!

∂ k+i2h j

∂ kx1∂ i2x2
(B(x,u))

d

∏
s=1

(
γ̃(s)(x1)− γ(s)(x1−u1)

s!

)ks

,(IV.8)

where the sum is on all d-tupe (ks)s such that ∑sks = d and where k def.= ∑ks. The deviation on the
geometry is bounded using

|γ̃(s)(x1)− γ
(s)(x1−u1)|6 |γ̃(s)(x1)− γ

(s)(x1)|︸ ︷︷ ︸
6C1s1−s/α

j

+ |γ(s)(x1)− γ
(s)(x1−u1)|︸ ︷︷ ︸

6 ||γ||Cα s j

(IV.9)

6 C1 max(1, ||γ||αCα )s1−s/α

j .(IV.10)

Using the fact that

(IV.11)
∣∣∣∣ ∂ k+i2h j

∂ kx1∂ i2x2
(B(x,u))

∣∣∣∣6 Cψs−2−i2−k
j ,

where Cψ is a constant that depends only on ψ , expression (IV.7) together with bounds (IV.10) and
(IV.11) leads to ∣∣∣∣ ∂ d

∂x1d

[
∂ i2h j

∂x2i2
(B(x,u))

]∣∣∣∣6 C ∑
(ks)s

s−2−i2−k
j

d

∏
s=1

sks(1−i/α)
j

6 C max(1, ||γ||αCα )s−2−i2−α/d
j .

The term corresponding to d = i1 thus dominates in equation (IV.6) and one concludes to the bound
(IV.4) using the fact that the size of the support of h j is s2

j . �
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IV.2 Polynomial Regression Over Band-shaped Domains
The regularity of warped wavelet coefficients along edges implies that these coefficients can

be approximated with piecewise polynomials. This section explains how to construct these poly-
nomials to approximate edge wavelet coefficients at each scale 2 j. We suppose that f is Cα ge-
ometrically regular, with a regularization scale s. A regularization by a scale s 6= 0 is essentially
equivalent to translating the wavelet scale 2 j by s and replacing 2 j by s j = s + K2 j. We suppose
that s = 0 to simplify explanations.

This section gives some insights to understand why an appropriate piecewise polynomial ap-
proximation of the wavelet coefficients of f leads to an approximation fM of f that satisfies

(IV.12) || f − fM||22 6 C log(M)αM−α ,

where M is the total number of parameters needed to specify fM. Technical details are omitted to
carry the main ideas. A more precise theorem is proved in section V.

The set E of edge wavelet coefficients f j[n] = f j(2 jn) = 〈 f , ψ jn〉 corresponds to wavelets
ψ jn whose support intersects a single edge of f . Since the support of ψ jn is included in [2 jn−
K2 j,2 jn + K2 j], it corresponds to the set of points 2 jn that are at a distance smaller then K2 j

from an edge. This set E of edge wavelet coefficients is first segmented in squares of length λ

such that in any such square S, the corresponding edge is parameterized either horizontally or
vertically. Figure IV.2 (c) shows an example of such a segmentation. In the following, a horizontal
parameterization x2 = γ(x1) is assumed.

(a) (b)
(c) (d)

FIGURE IV.2. (a) A geometrically regular image. (b) Wavelet coefficients. (c) A non-
dyadic segmentation into squares together with bands of size λ × µ over each square
crossing the singularities. (d) A dyadic subdivision of the coefficients together with a
dyadic subdivision into bands.

The width λ of the squares is chosen in order to match the precision of the approximation.
Over each square S, an approximated flow γ̃ ′ is defined as the Taylor expansion of degree α−2 of
γ inside S. It satisfies inside S

(IV.13) ||γ ′− γ̃
′||∞ 6 ||γ||Cα λ

α−1.

The warping w(x1,x2) = (x1,x2 − γ̃(x1)) maps the flow γ̃ ′ onto a horizontal flow. As shown on
Figure IV.3 (d), the warped domain w(S) is subdivided into horizontal bands of length λ and
width µ that will be adjusted. This set of warped band defines a segmentation of the square S into
bands that follow the approximated flow γ̃ ′, see Figure IV.3 (e).

Polynomial approximation. The size λ ×µ of the bands is set by analyzing the polynomial ap-
proximation error over each band β ⊂ S. Wavelet coefficients f j[n], for 2 jn ∈ β are approximated
by a polynomial Pβ of degree p− 1 defined over the warped domain w(β ). Choosing Pβ as a
Taylor expansion of the warped function f jW inside w(β ) leads to an error

∀x ∈ β , | f j(x)−Pβ (w(x))|=| f jW(w(x))−Pβ (w(x))|(IV.14)

6 ∑
i1+i2=α

∣∣∣∣∣
∣∣∣∣∣ ∂ α f jW

∂xi1
1 ∂xi2

2

∣∣∣∣∣
∣∣∣∣∣
∞

λ
i1 µ

i2 .(IV.15)



ORTHOGONAL BANDLET BASES 9

(a)

(d)
(e)

γ

γ

γ

β

S

w(β)

w
(b) (c)

λ

FIGURE IV.3. (a) A geometrically regular image with a square S of width λ on which
the geometry γ is parameterized horizontally. (b) Approximated geometric flow γ̃ ′. (c)
Horizontal flow over the warped domain w(S). (d) A horizontal band w(β ) of size λ ×µ

in the warped domain. (e) The corresponding band β .

Condition (IV.13) allows to use Lemma 1 to bound the derivatives of f jW and leads to

∀x ∈ β , | f j(x)−Pβ (w(x))|6 C (1+ ||γ||αCα )2 j
∑

i1+i2=α

s−i1/α−i2
j λ

i1 µ
i2

6 C′
(

2 j s−1
j λ

α +2 j s−α

j µ
α

)
.

To minimize this approximation error bound, the ratio width/length= µ/λ of the bands is chosen
so that

(IV.16) s−1
j λ

α = s−α

j µ
α =⇒ ∀x ∈ β , | f j(x)−Pβ (w(x))|6 2C′ 2 j s−1

j λ
α .

This defines the width µ of the bands as a function of their length λ .
Since the number of bands is

M j =
area of all bands
area of a band

= LK 2 j/(µλ ),

where L is the total length of the edges curves of f , the chosen length λ can be expressed as a
function of the number of bands M j

(IV.17) λ = µ s1/α−1
j =⇒ λ = (CK)−1 s−1

j M−1
j .

Approximation error. Let f̃ j[n] = Pβ (w(2 jn)) be the approximated wavelet coefficients. This
construction is carried over each band β inside E , which defines a discrete piecewise polynomial
approximation f̃ j over the set of coefficients located near edges. Let M0 > 0 be some fixed integer.
For locations (2 jn) outside the set E of edge coefficients, the approximated coefficients are set to
f̃ j[n] = f j[n] if f j[n] is one of the M0 highest coefficients and f̃ j[n] = 0 otherwise.

In the following, E denotes the set of coefficients located near edge curves and R ∪C are the
remaining coefficients, where R stands for the coefficients over regular areas and C for corner
coefficients where two curves are crossing. For each scale 2 j 6 2 j0 def.= M−α

0 , the number of band is
fixed to M j = M0. Using equations (IV.16) and (IV.17), the approximation error can be computed
for the set of edge coefficients

∑
j> j0

|| f j− f̃ j||2`2(E ) 6 ∑
j> j0

(nbr. coef. in bands) max
β ,(2 jn)∈β

| f j[n]−Pβ (w(2 jn))|2(IV.18)

6 ∑
j> j0

LK 2− j (2C′ 2 j s−1
j λ

α)2 6 ∑
j> j0

C1 s−1
j λ

2α(IV.19)

6 ∑
j> j0

C1 M−α

j 6 CM−α

0 log(M0).(IV.20)
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The scale 2 j0 = M−α

0 ensures that the error on the remaining fine scales 2 j < 2 j0 is bounded by
O(M−α

0 ). The error of the wavelet approximation of a regular images with M0 coefficients decays
like O(M0−α) as staten in equation (II.2). On can thus prove that the error for the remaining
coefficients in region R ∪C satisfies

(IV.21) ∑
j> j0

|| f j− f̃ j||2`2(R∪C ) = O(M−α

0 ).

Let

fM
def.= ∑

j,n
f̃ j[n]ψ jn.

It results from equations (IV.20) and (IV.21) that

(IV.22) || f − fM||22 = ∑
j
|| f j− f̃ j||22 = O(M−α

0 log(M0)).

Number of parameters. Let M be the total number of parameters that specifies fM. One has
M = MB + MG where MB is the number of polynomial coefficients to specify the approximated
coefficients f̃ j[n] and MG is the number of geometric coefficients to specify the polynomial bands.

For each relevant scale 2 j > 2 j0 , the number of polynomial coefficients is p(p+1)
2 M j =

p(p+1)
2 M0

so that

MB = M0 + ∑
j> j0

p(p+1)
2

M j = C log(M0)M0.

To specify each band β one need to record the coordinates of the segmentation square S containing
β and the coefficients of the adapted polynomial flow γ̃ ′. Since γ̃ ′ is a 1D polynomial of degree
p− 1, the number of geometric coefficients at each scale 2 j > 2 j0 is proportional to M j and thus
MG is proportional to M0 log(M0).

Summing the number of polynomial and geometric parameters leads to

M = MB +MG = C log(M0)M0.

Combining this result with the error bound (IV.22) leads to the global approximation bound (IV.12)

|| f − fM||22 6 C log(M)α+1 M−α .

The technical details are skipped since the bandlet basis construction presented in section V gives
a constructive proof of this results, without the sub-optimal log(M)α factor. g

V Orthogonal Bandlet Bases

The scheme presented in the previous section does not provide an effective algorithm to com-
pute the adapted geometric flows γ̃ ′ since the location of the edges γ is unknown. It does not either
describe a way to estimate the optimal size λ × µ of the bands since the Holder exponent α is
unknown.

We introduce a computational scheme were wavelet coefficients are transformed by an orthog-
onal bandletization operator that decomposes these coefficients over a discrete Alpert basis. This
Alpert basis depends upon the segmentation and geometrical flows computed at the corresponding
scale. This geometry is calculated with a best basis search strategy that optimizes the resulting
image approximation. The resulting adaptive bandletization establishes connections between or-
thogonal wavelet coefficients, with a geometry that is adapted to the image. In that sense, this
approximation scheme has similarities with the horizontal connections observed in the V1 visual
cortex between simple cells computing wavelet coefficients.
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V.1 Alpert Bases
For fast computations, wavelet image coefficients are segmented with dyadic squares. Figure

IV.2 (d) shows an example of such dyadic subdivisions. Wavelet coefficients located in a square
S ⊂ [0,1]2 of length λ at a given scale 2 j are approximated by decomposing these coefficients in
an Alpert basis, and thresholding the resulting coefficients. This Alpert basis [1]. depends upon
the geometric flow calculated in this square. It is defined from a multiresolution constructed over
the space `2(S) of wavelet coefficients in S, with piecewise polynomials over bands of dyadic
widths that are parallel to the geometric flow. We shall see that thresholding the transformed
wavelet coefficients in this Alpert basis is equivalent to automatically adjusting the optimal width
µ = s1/α−1

j λ without any knowledge of α .

Alpert polynomial multiresolution. A geometric flow direction γ̃ ′ is assumed to be known over
S. The warping operator w in (IV.2) warps S into S̃ as shown in Figure V.1 (a). Points xn

def.= 2 jn∈ S
are warped onto x̃n

def.= w(2 jn). The space `2(S) is the set of sampled functions {g(xn)}2 jn∈S.
Similarly `2(S̃) denotes functions sampled in the warped domain {g̃(x̃n)}2 jn∈S. A set of wavelets
coefficients { f j[n]}2 jn∈S are sample values of f j(x) at points xn or of f̃ j(x̃) at points x̃n.

To define a multiresolution, for each scale 2`, the warped square S̃ is recursively subdivided
into 2−` horizontal bands S̃ =

⋃2−`−1
i=0 β̃`,i. This process is illustrated in figure V.1. The scheme

divides β̃`,i = β̃`−1,2i∪ β̃`−1,2i+1 by looking for a horizontal cut ensuring that β̃`−1,2i and β̃`−1,2i+1
contain the same number of points. The recursive subdivision is stopped at the scale ` = L such
that 2L(λ2− j)2 6 p(p+1)/2.

Each band β`,i
def.= w−1(β̃`,i) in the original square S has a width roughly equal to λ 2` and

contains 2`(λ 2− j)2 sampling points. Note that some bands near the boundary of S might be
disconnected.

w

ℓ =-1 ℓ =-2 ℓ =-3

(a)

(a’)

(b) (c) (d)

(b’) (c’) (d’)

FIGURE V.1. (a) Wavelet coefficients over a square S near an edge curve. The adapted
flow γ̃ ′ is depicted as arrows. (a’) The warping maps the flow onto a horizontal flow. (c-d)
Further refinements of the segmentation in bands.

Alpert multiresolution spaces Ṽ` ⊂ `2(S̃) are defined for each scale 2`,L 6 ` 6 0 by

Ṽ`
def.=
{

g̃ ∈ `2(S̃)
∖

∀(2 jn) ∈ β`,i, g̃(x̃n) = Pi(x̃n),
with Pi polynomial and deg(Pi) < p.

}
.
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The space Ṽ` is composed of discrete vectors sampled from piecewise polynomial. There is no
continuity requirement on these underlying continuous function so that vectors of Ṽ` can exhibit
jump discontinuities across bands.

These spaces are embedded since Ṽ` ⊂ Ṽ`−1. An orthogonal basis {h̃`,i,k}i,k of each space Ṽ`

is defined using discrete Legendre polynomials, where k = (k1,k2) with k1 + k2 < p indexes the
polynomial degree and 0 6 i < 2−` indexes the position. Basis vectors {h̃`,i,k}k are obtained by
Gram-Schmidt orthogonalization of the set of monomials {P̃k}k vectors defined by

∀ x̃n ∈ β̃`,i, P̃k(x̃n) = (x̃1)k1(x̃2)k2 . where x̃n = (x̃1, x̃2).

Alpert wavelets {ã`,i,k}i,k are an orthogonal basis of the orthogonal complement W̃` of Ṽ` in Ṽ`−1

that satisfies Ṽ`−1 = Ṽ`⊕⊥W̃`. The Alpert wavelet vectors {ã`,i,k}k are computed by Gram-Schmidt
orthogonalization of the family

{h̃`−1,2i,k− h̃`−1,2i+1,k}k1+k2<p ⊂ Ṽ`−1

against the family {h̃`,i,k}k1+k2<p ⊂ Ṽ`. The numerical computation of the decomposition of a
vector on this Alpert basis is carried over by a fast algorithm described in section B. This algorithm
involves the orthogonalization over low-dimensional spaces and thus avoid the numerical burden
of orthogonalizing directly the vectors h̃`,i,k.

The resulting multi-wavelets vectors ã`,i,k are sampled from piecewise polynomial functions
that are discontinuous at the middle of the band β̃`,i. Each vector ã`,i,k has vanishing moments
over the warped domain since is is orthogonal to Ṽ`

∀k1 + k2 < p, ∑
n

ã`,i,k(x̃n) (x̃n)k = 0

where (x̃n)k def.= (x̃1)k1(x̃2)k1 for each point x̃n = (x̃1, x̃2) in the warped domain. The orthogonal basis
{ã`,i,k}`,i,k of `2(S̃) defines an orthogonal Alpert basis of `2(S) by

a`,i,k(xn)
def.= ã`,i,k(x̃n).

Note that this definition over the original domain S does not involve any interpolation.
In the following m = (i,k) indexes the p(p + 1)2`−1 Alpert wavelets {a`,m} at a scale 2` and

we consider m as an integer. The orthogonal Alpert basis B(S, γ̃ ′) of `2(S) is defined by

B(S, γ̃ ′) def.=
{

a`,m

∖
L 6 ` 6 0 and 0 6 m < p(p+1)2`−1

}
.

In the following we write a`,m[n] = a`,m(xn) the coordinates of the discrete Alpert vector.
The following proposition gives the normalization of the Alpert basis vectors, which is used to

find upper bounds for Alpert coefficients.

Proposition 2. There exists a constant Ca such that for any flow γ̃ ′ defined over S the Alpert basis
B(S, γ̃ ′) = {a`,m}`,m satisfies

||a`,m||2 = 1, and ||a`,m||∞ 6 Ca λ
−1 2−`/2 2 j,(V.1)

and ||a`,m||1 6 Ca λ 2`/2 2− j.(V.2)

Proof. The support of an Alpert vector a`,m is β`,m and its cardinal is

Card(β`,m) =
#{points in S}
#{nbr.bands}

= λ
2 2` 2−2 j.

Let

(V.3) I`,m =
{

n
∖
|a`,m[n]|> 1

2
||a`,m||∞

}
.
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One has the following bound

(V.4) 1 = ||a`,m||2 > ∑
n∈I`,m

|a`,m[n]|2 >
1
2

Card(I`,m)||a`,m||2∞.

Asymptotically, the coefficients a`,m[n] are samples from one of p(p+1)/2 piecewise polynomial
scaled by a factor 2`. One thus has

∀`,m, Card(I`,m) > Ca Card(β`m) ,

where Cb is a constant that does not depends on ` and m. It results that

(V.5) ||a`,m||∞ 6
√

2Ca Card(β`,m)−1/2 ,

which implies (V.1) by inserting (V.5) and (V.3) in (V.4) The bound on the `1 norm is obtained
using

||a`,m||1 6 Card(β`,m) ||a`,m||∞.

�

V.2 Bandletization of Wavelet Coefficients
Segmentation of wavelets coefficients. For each scale 2 j, a segmentation S j = {S}S∈S j subdi-

vides [0,1]2 into non-overlapping squares S of width bigger than 2 j. Following the ideas of section
IV.2, the length λ of the squares must be adapted to the approximation precision.

In order to do so, the segmentation S j is enforced to contain only squares of dyadic lengths
2k for k 6 0. A segmentation of [0,1]2 using dyadic squares is obtained by a recursive subdivision
of the original square into four squares of equal sizes. On figure V.2 one can see the subdivision
steps leading to the construction of a dyadic subdivision S j, together with the tree representing
the subdivision process. Each square S ∈ S j of size 2k × 2k corresponds to a leaf of the tree at
depth k.

S2

S3

S11 S12

S13 S14

S41

S43 S44

S421 S421

S421S421

S2

S3

S11 S12

S13 S14

S41 S42

S43 S44

S2S1

S3 S4

(a) (b) (c)
(d)

S0

S1

S2 S3

S4

S11 S12 S13 S14 S41

S42

S43 S44

S421 S422 S423 S424

FIGURE V.2. (a-c) Construction of a dyadic segmentation by successive subdivisions.
(d) Quadtree representation of the segmentation. Each leaf of the tree indicates a square
in the segmentation and can be represented with a binary string whose length is propor-
tional to the depth of the tree.

For a geometrically regular image f , an adapted segmentation S j should encapsulate the sin-
gularity curves in a set of squares whose size λ matches the approximation precision. Junctions
between singularity curves should be covered by small squares as in section IV.2 and the remaining
domain should be covered by the largest possible squares.

The squares of the dyadic segmentation S j, are partitioned into several groups:
The set E (S j) = E H(S j)∪E V (S j) of edge squares. By definition, an horizontal (resp. vertical)
edge square S ∈ E H (resp. S ∈ E V ) is a square smaller than λ (T ) that is at a distance less than
s j

def.= s + K2 j from one and only one edge curve. This curve is supposed to be parameterized
horizontally (resp. vertically) by x2 = γ(x1) (resp. x1 = γ(x2)) with

(V.6) |γ ′|6 2.

Over such a square, the adapted flow γ̃ ′ should be designed to approximate γ ′.
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The set C (S j) of corner squares. By definition, a corner square is a square that contains the
junction of two curves.
The set R(S j) of regular squares: these are the squares that do not contain any edge curves.

Figure V.3 shows an example of such an adapted dyadic segmentation.

Regular square

Edge square

Small Edge square

Corner square

b

(a) (b)

FIGURE V.3. (a) Wavelet transform of a geometrically regular function. (b) Example of
a segmentation S j adapted to the geometry of the function.

Bandlet basis. Inside each square S ∈ S j, the choice of discrete Alpert basis B(S, γ̃ ′S) con-
structed in section V.1 depends on the choice of a geometric flow γ̃ ′S.

Over regular square S ∈R(S j), a basis adapted to the geometrically image f should not trans-
form the wavelets coefficients. For such a square S, the flow γ̃ ′S is undefined and the projection
onto B(S, γ̃ ′S) leaves the wavelet coefficients in S unchanged.

A dyadic segmentation together with the adapted flows Γ j = (S j,{γ̃ ′S}S∈S j) specifies a ban-
deletization basis B(Γ j) of the whole space of wavelet coefficients at a scale 2 j

B(Γ j)
def.=

⋃
S∈S j

B(S, γ̃ ′S).

A discrete Alpert vector aν ∈B(Γ j) is thus specified by ν = ( j,S, γ̃ ′S, `,m) where
2 j is a scale of the 2D wavelet transform,
S ∈S j is a square of width λ = 2−L/2 2 j,
γ̃ ′S is a geometric flow,
` ∈ {L, . . . ,0} and m ∈ {0, . . . , p(p + 1)2−`−1− 1} are the scale and index of a discrete Alpert
vector a`,m ∈B(S, γ̃ ′S) and

∀(2 jn) ∈ S ∈S j, aν [n] = a`,m[n] where B(S,γ ′S) = {a`,m}`,m.

The coefficients aν [n] are the coordinates of a bandlet function bν ∈ L2([0,1]2) in the wavelet
basis. This function is defined by

(V.7) bν(x) = ∑
n

aν [n]ψ jn(x).

This function is called a bandelet. Indeed it is a combination of wavelets along a band and its sup-
port is thus also along a band as illustrated in figure V.4. Bandlets are obtained from an orthogonal
wavelet basis with an orthogonal transformation that we call a “bandletization”. It results that if
we apply this transformation to each scale 2 j,

B(Γ) def.=
⋃
j60

{
bν

∖
aν ∈B(Γ j)

}
, where Γ

def.=
⋃
j60

Γ j,

is an orthogonal basis of L2([0,1]2).
Bandlets are as regular as the underlying wavelets because they are obtained in (V.7) as a finite

linear combination of wavelets of same scale 2 j. If the wavelets have a compact support then
the resulting bandlets have a compact support. The support of bandlets overlap in the same way
that the support of wavelets overlap. Setting to zero bandelet coefficients does not create any
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H D

V
S1

S1

S2

S2

S3

S3

(a)

(b) (c) (d)

(b’) (c’) (d’)

FIGURE V.4. (a) Localization on the wavelet domain of the squares Si on which each
Alpert wavelet vector is defined. (b-d) Discrete Alpert vectors a`i for various scale 2`.
(b’-d’) Corresponding bandlet functions b`i.

blocking artifact because bandlets are regular. This is particularly important to reconstruct image
approximations with no artifacts.

VI Best Bandlet Basis Approximation

The set of bandelet bases defines a dictionary of orthogonal bases D = {B(Γ)}Γ∈G. In order to
approximate a function f with M parameter, one would like to find a bandlet basis B(Γ?) = {bν}ν

adapted to f . This adapted basis should be chosen in order to minimize the approximation error
|| f − fM|| of f in B(Γ?) defined by

(VI.1) fM
def.= ∑

|〈 f ,bν 〉|>T
〈 f , bν〉bν

where the number of coefficients is M = MB +MD coefficients, where

(VI.2) MB
def.= Card{ν \ |〈bν , f 〉|> T } ,

is the number of bandlet coefficients above the threshold and MD is the number of coefficients
needed to specify Γ? in G. Our goal is to choose B(Γ?) such that

|| f − fM||2 = O(M−α).

VI.1 Bandlet Basis Dictionary
The number of bandlet bases in the dictionary is reduced to a finite size by parameterizing the

flows γ̃ ′S up to a precision T 2 and by limiting the bandletization to the scales 2 j > T 2.

Parameterizing the geometry. Inside a square S of length λ , a geometric flow direction γ̃ ′ is
parameterized by a polynomial of degree p−2 whose coefficients are quantized at a precision τ

(VI.3) γ̃
′(x) =

p−2

∑
i=0

ai τ

λ i+1 xi with ai ∈ Z.

In the following, the precision is set to

(VI.4) τ = τ(λ ) def.= λ
p/(p−1),

which ensures that a flow γ ′ can be approximated by a flow γ̃ ′ quantized as in equation (VI.3) with
||γ ′− γ̃ ′||∞ = O(λ α−1).
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The adapted geometric flow γ̃ ′ is thus chosen in the finite set

(VI.5) G (S) def.=

{
γ̃
′(x) =

p−2

∑
i=0

ai τ(λ )
λ i+1 xi ∖ ai ∈ Z and |ai|6 2C λ/τ(λ )

}
,

where the constant C is set so that the following bound on polynomial expansion holds

(VI.6) ∀x ∈ [0,1], |a0 +a1x+ . . .aα−1 xα−1|6 1 =⇒ ∀ i, |ai|6 C.

Construction of the dictionary. The dictionary D j of bandletization bases at a given scale 2 j

is composed of the bases B(Γ j), for all possible dyadic segmentations S j and geometric flow
directions γ̃ ′S ∈ G (S) inside the squares S of the segmentation.

D j
def.=
{
B(Γ j)

∖
Γ j = (S j,{γ̃

′
S}) and ∀S ∈S j, γ̃

′
S ∈ G (S)

}
.

Let T > 0 be the non-linear approximation threshold. A finite bandlet dictionary DT 2 of bases
of L2([0,1]2) is constructed by using bandletization bases for the first wavelet scales 2 j > T 2 and
using the wavelet basis functions for the remaining scales.

DT 2
def.=
{
B(Γ)

∖
∀2 j > T 2, B(Γ j) ∈D j

}
.

VI.2 Best Basis Approximation
A Lagrangian minimization computes a bandlet basis B(Γ?) whose segmentation {S j} j and

geometric flows {γ̃ ′S}S∈S j are adapted to f .

Number of coefficients. Let T > 0 be some approximation threshold and

(VI.7) B(Γ) = {bν}ν ∈DT 2 , where Γ =
⋃

j

Γ j,

be a bandlet basis, where Γ j = (S j,{γ̃ ′S}S) are the parameters that describe the basis at each scale.
The thresholded approximation at T in this basis is defined by equation (VI.1). The number of
parameters M needed to describe fM is decomposed as

(VI.8) M = MB +MD where MD = MG +MS = ∑
j,k

MG j +MS j.

The number of bandelets coefficients MB is defined by equation (VI.2) and for each scale 2 j,

MS j is the number of parameters needed to specify the segmentation S j. The dyadic segmenta-
tion is described using a quadtree structure, as shown on figure V.2. The quadtree is coded using
one coefficient per node to specify wether it is an interior node or if it corresponds to a square
S that is either horizontal edge S ∈ E H(S j), vertical edge S ∈ E V (S j) or regular S ∈ R(S j).
Corner squares S ∈C (S j) are treated as regular squares since no bandletization is performed on
the wavelets coefficients of these squares. One has

(VI.9) MS j 6 Card(S j).

MG j is the number of parameters needed to specify the geometric flows γ̃ ′S over all the dyadic
squares S ∈S j. The adapted flow γ̃ ′S is parameterized with p− 1 polynomial coefficients. The
number of geometric coefficients is thus

(VI.10) MG j 6 (p−1) Card(S j).
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Lagrangian minimization. A best basis is computed by minimizing the Lagrangian

(VI.11) L ( f ,B(Γ),T ) def.= ∑
|〈bν , f 〉|<T

|〈bν , f 〉|2 +T 2 M,

as introduced by Donoho in [7]. A similar Lagrangian is optimized by Le Pennec and Mallat in
[13]. The best bandlet basis B(Γ?) adapted to f is defined by

(VI.12) B(Γ?) def.= argmin
B(Γ)∈DT 2

L ( f ,B(Γ),T ).

This best bandlet basis can be computed with a fast algorithm described in section VII. The fol-
lowing theorem gives the approximation rate of a geometrically regular function f in this adapted
bandlet basis B(Γ?).

Theorem 1. Let f be a Cα -geometrically regular function. There exists C such that for any T > 0
the M parameters approximation fM in the best bandlet basis B(Γ?) satisfies

(VI.13) || f − fM||22 6 C M−α .

This theorem states that the approximation of geometrically regular functions in a best bandlet
basis recovers the asymptotic M−α decay of the approximation of uniformly regular functions in
a wavelet basis. This asymptotic decay rate is thus optimal.
Proof. The proof relies on Lemma 1 that constructs an optimized bandlet basis within the dictio-
nary which yields approximation error from M parameters that decays in O(M−α).

Lemma 1. Let f be a Cα -geometrically regular function of Definition 1. There exists C such that
for all T > 0 there exists a bandlet basis B(Γ) ∈DT 2 in which the thresholded approximation fM
of f at T in this basis satisfies

(VI.14) || f − fM||22 6 C T
2α

α+1 and M 6 C T− 2
α+1 .

The proof of Lemma 1 is in appendix A. Theorem 1 is derived by showing that the best basis
that minimizes the Lagrangian is nearly as good as the optimized bandlet basis provided by lemma
1.

Lemma 1 provides an adapted bandlet basis B(Γ) ∈DT 2 such that

L ( f ,B(Γ?),T ) 6 L ( f ,B(Γ),T ) 6 C T
2α

α+1 ,

so || f − fM||22 6 L ( f ,B(Γ?),T ) 6 C T
2α

α+1(VI.15)

and M T 2 6 L ( f ,B(Γ?),T ) 6 C T
2α

α+1 .(VI.16)

Combining these equations proves equation (VI.13) in theorem 1.

�

VII Fast Bandlet Approximation

This section describes the fast transform of a discretized image in a best bandlet basis. A
Matlab implementation of this transform is available [18].

A discretized image f of N×N pixels is obtained by projecting a function f ∈ L2([0,1]2) onto
a set of orthogonal scaling functions {ϕJn}n at a resolution 2J = N−1

∀n ∈ {0, . . . ,N−1}2, f [n] def.= 〈 f , ϕJn〉 where ϕJn(x)
def.= 2−J

ϕ(2−Jx−n).

In the following, ϕ is assumed to be the scaling function associated with the 2D wavelet functions
used for the construction of the bandlet bases. This allows to consider that the discrete coeffi-
cients f j[n] computed with the fast orthogonal wavelet transform are inner products 〈 f , ψ jn〉 of
the underlying continuous function with the wavelet basis defined in (II.1). This hypothesis eases
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the explanations since the continuous approximation results of section VI.2 carry over without
modification in the discrete setting. These theoretical results are still valid for an arbitrary scaling
function ϕ as long as it is Cα regular and has a compact support, using arguments similar to those
of [13].

The forward fast discrete bandlet transform decomposes the discrete image f in a best bandlet
basis of RN×N , which is equivalent to the decomposition of the underlying function f on a best
bandlet basis of L2([0,1]2).

(1) 2D wavelet transform. The wavelet coefficients { f j[n]} j,n are computed using a discrete
wavelet transform of the image f . The complexity of the fast wavelet transform is O(N2) [15].

(2) Fast Alpert transform. For each scale 2 j > T 2, for each dyadic square S of length λ larger
than 2 j, for each geometric flow γ̃ ′ ∈ G (S), let B(S, γ̃ ′) = {a`,m}`,m. The Alpert coefficients
〈 f j, a`,m〉 of the wavelet coefficients f j of f inside S are computed using the fast Alpert transform
described in section B. The complexity of the Alpert transform for each square is O(m2) where
m2 = (2− jλ )2 is the number of coefficients in the square S.

(3) Lagrangian minimization. For each scale 2 j, the dyadic segmentation S j is computed using
a fast bottom-up algorithm similar to the CART regression procedure [2]. This involves computing
the value of the Lagrangian L ( f j,B(S, γ̃ ′),T ) for all the squares S and geometries γ̃ ′ ∈ G (S).
This set of Lagrangian is stored in a full quad-tree that is pruned by the regression tree algorithm
as detailed in [13]. The resulting dyadic segmentation S j corresponding to the tree together with
the set of optimized geometries γ̃ ′S for each S ∈S ?

j are the best basis parameter for the scale 2 j.

Numerical Complexity. The lagrangian minimization requires to compute the Alpert transform
over each square S of dyadic length for each geometry of G (S). The bottom-up procedure that
builds the quadtree has a negligible complexity. For each scale 2 j, the complexity of computing
the Alpert transform over the set of all squares of length λ and all geometries is

(1/λ )2︸ ︷︷ ︸
nbr.squares

× CA (2− j
λ )2︸ ︷︷ ︸

complexity Alpert tr.

×CG λ
−(p−1)2︸ ︷︷ ︸

nbr.geometries

= C 2−2 j T−2(p−1)2
,

since equation (VI.5) shows that the cardinal of G (S) is proportional to λ−(p−1)2
and that λ >

2 j > T 2. As the number of such widths λ and scales 2 j is proportional to | log2(T )|, the overall
complexity of the bandlet transform is O(N2 T−2(p−1)2

). Since the number of parameters M used
for the approximation in the best bandlet basis scales like T− α+1

2 , the complexity of the algorithm
is O(NMκ) with κ = (α +1)(p−1)2.

The complexity of the algorithm scales linearly in the number of pixels as for the classical
wavelet transform. It requires testing an exhaustive set of local geometries with a precision related
to M, which makes the algorithm slower than an orthogonal wavelet transform. In [19] the authors
describe an application to surface compression and propose the use of bandlets with one vanishing
moment, thus replacing the Alpert transform by an orthogonal Haar transform. The resulting
compression algorithm competes favorably with the state of the art and the use of one vanishing
moment is enough for this kind of geometrical data. The overall complexity of the resulting
scheme is roughly equal to a dozen of orthogonal wavelet transforms for a typical compression
scenario.

VIII Best Bandlet Basis Compression

An image f is compressed in a bandlet basis B(Γ) = {bν}ν ∈ DT 2 by quantizing and coding
its transformed coefficients and by coding the geometric parameters Γ = {Γ j} j that describe the
basis, where Γ j = (S j,{γ̃ ′S}S∈S j). The restored image from the compressed code is

(VIII.1) fR
def.= ∑

ν

QT (〈 f , bν〉)bν ,
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where QT is a uniform quantizer defined by

(VIII.2) QT (x) = qT, if (q−1/2)T 6 x 6 (q+1/2)T.

The coding distortion is

D(R) def.= || f − fR||22.
Since |x−QT (x)|6 T/2 and QT (x) = 0 if |x|6 T/2, one has

D(R) = || f − fR||22 = ∑
ν

|〈 f , bν〉−QT (〈 f , bν〉)|2(VIII.3)

6 ∑
|〈 f ,bν 〉|<T/2

|〈 f , bν〉|2 +
1
4

MB T 2(VIII.4)

6 || f − fM||22 +
1
4

MB T 2,(VIII.5)

which links the distortion D(R) with the non-linear approximation fM obtained with a thresholding
at T/2 as defined in (VI.1). The number of coefficients M = MB +MS +MG is computed following
section VI.2.

The bit budget of this transformed code is

R def.= RB +RS +RG = ∑
j
(RB j +RS j +RG j)

where
RB j is the number of bits needed to code the bandlet coefficients 〈 f , bν〉 = 〈 f j, aν〉 for a single
scale 2 j. Since there are 2−2 j bandlets coefficients at a scale 2 j, the index of each of the MB j

non-zero quantized coefficients is coded using log2(2
−2 j) bits per coefficient. For a bounded

image f , one has

|〈 f , bν〉|6 || f j||∞||aν ||1 6 2 j|| f ||∞||ψ||1Cb 6 || f ||∞||ψ||1Cb,

so there exists a constant C1 such that the quantized amplitudes QT (〈 f , bν〉) are coded using less
than log2(C1/T ) bits per coefficient. The number of bits to code the bandlet coefficients is thus
bounded by

RB j 6 MB j
(
log2(2

−2 j)+ log2(C1/T )
)
.

The usual scale restriction 2 j > T 2 implies that RB j 6 C MB j | log2(T )|.
RS j the number of bits needed to code the quadtree segmentation S j for a single scale 2 j. One
needs to differentiate between interior, vertical edge and horizontal edge nodes so 2 bits per
segmentation coefficient is needed, and thus RS j = 2MS j where MS j is the number of coefficients
needed to specify the dyadic segmentation S j, as described in section VI.2.
RG j the number of bits needed to code the adapted geometric flow γ̃ ′S ∈ G (S) inside each square
S of each quadtree S j. Each geometric coefficient MG j is quantized and equation (VI.5) shows
that there are Card(G (S)) = CG λ−(1−p)2

possible quantized geometries where CG is a constant.
As λ > 2 j, the condition 2 j > T 2 implies

RG j 6 MG j log2(CG λ
−(1−p)2

) 6 C MG j | log2(T )|.

Using this coding scheme, the total bit budget is thus

R = ∑
2 j>T 2

(RB j +RS j +RG j) 6 C M | log(T )|,

where M = ∑ j(MB j + MS j + MG j) is the total number of coefficients needed to specify fM as
described in section VI.2.
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In order to minimize D(R), equation (VIII.5) shows that one should use the Lagragian min-
imization of (VI.12) with a Lagrange multiplier equal to T/2. An adaptive compression of the
image is thus performed by using the best bandlet basis defined by

B(Γ∗) def.= argmin
B(Γ)∈DT 2

L ( f ,B(Γ),T/2).

One needs to compute the distortion D(R) in this basis and link this distortion with the number of
bits R.

The bounds of equation (VI.15) shows that the thresholding approximation fM at T/2 in the
bandlet basis B(Γ∗) satisfies

(VIII.6) || f − fM||22 6 C (T/2)
2α

α+1 , with M 6 C (T/2)−
2

α+1 .

The scheme used to code the bandlet coefficients and the geometric parameters ensures that R 6
C M | log(T )|. Combining this result with the bounds of equations (VIII.5) and (VIII.6) proves the
following theorem.

Theorem 2. Let f be a Cα -geometrically regular function. There exists C > 0 such that for any
T > 0, the compressed image fR in the best bandlet basis B(Γ∗) satisfies

|| f − fR||22 6 C log2(R)α R−α .

The class of geometrically regular functions contains the class of uniformly Cα functions, for
which the Kolmogorov bound decreases like R−α , see [8]. This theorem thus proves that the
asymptotic coding error decay in an adapted bandlet basis reaches the Kolmogorov lower bound
for geometrically regular functions up to a | log(R)|α factor.

Appendix: Proof of lemma 1

Proof. A bandlet basis B(Γ) ∈DT 2 is built by choosing, for each scale 2 j, a discrete Alpert basis
B(Γ j). At each scale 2 j the thresholded approximation f jM j of the wavelets coefficients f j at T in
B(Γ j) = {aν}ν is defined by

f jM j = ∑
|〈 f j,aν 〉|>T

〈 f j, aν〉aν .

The number of parameters is defined following equation (VI.8) by M j = MG j +MS j +MB j. Using
the fact that 〈 f , aν〉= 〈 f j, b`,m〉 for some index (`,m), one can decompose the approximation error
as

|| f − fM||22 = ∑
j
|| f j− f jM j ||22 where M def.= ∑

j
M j.

In order to build a bandlet basis adapted to the function f , one has to consider three approximation
modes depending on the scale.

For fine scales: 2 j < 2 j0 def.= T
2α

α+1 , a standard result, states that || f j||22 6 C2 j for a constant C that
depends only on f . As | f j[n]| 6 || f ||∞||ψ||12 j, one has, for T small enough, f j[n] = 0, so M j = 0
and

∑
j< j0

|| f j− f jM j ||22 6 ∑
j< j0

C 2 j 6 2C 2 j0 = 2C T
2α

α+1 , with ∑
j< j0

M j = 0.

For coarse scales: 2 j > 2 j1 def.= T
1

α+1 , there is less than 2−2 j1 coefficients so

∑
j> j1

|| f j− f jM j ||22 6 2−2 j1 T 2 6 T
2α

α+1 .

Since there is no segmentation and no flow MS j = MG j = 0 and hence

∑
j> j1

M j 6 2−2 j1 6 T
−2

α+1 .
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For intermediate scales: 2 j0 6 2 j 6 2 j1 , a bandletization basis B(Γ j) adapted to f is used to
approximate the coefficients. Such a basis is provided by Lemma 3. This lemma proves that a
thresholding in this basis gives the following error

j1

∑
j= j0

|| f j− f jM j ||22 6
j1

∑
j= j0

C
(

s
α−p

δ

j T
4α p

δ +22 jα
)

where δ
def.= 2α p+α + p

6 2C
(

2 j0
α−p

δ T
4α p

δ +22 j1α

)
6 4C T

2α

α+1 .

Combining all these bounds proves (VI.14) in lemma 1. �

Adapted segmentation of wavelet coefficients. In order to match the approximation precision
given by T , the optimal width of the square in an adapted segmentation S j is set to

(A.1) λ (T ) def.= C0 T
2p
δ s

p+1
δ

j and δ
def.= 2α p+α + p,

where C0 is a constant that depends only on f and whose value is tuned during the proof of
Lemma 4. This definition of the optimal width is similar to the one given in equation (IV.17) but
it is parameterized by the threshold value T .

Section V.2 has introduced the partition of squares S ∈S j into edge squares S ∈ E (S j), corner
squares S ∈ C (S j) and regular squares S ∈R(S j). Only edges squares S ∈ E contain an adapted
flow γ̃ , since in the other squares the original coefficients are not modified. Ideally, one would like
to have only regular squares and squares of width λ . But topological constraints (such as edges
crossings and corners) and curvature variations (horizontal edges that become vertical) forces to
subdivide some squares of width λ into smaller ones. The set of edge squares is thus subdivided as
E = Eλ ∪ Ẽλ where Eλ is the set of squares length λ (T ) and Ẽλ contains squares of smaller lengths.
The following lemma shows that one can build a dyadic segmentation with a small number of these
subdivided squares S ∈ Ẽλ .

Lemma 2. Let f be a geometrically regular function. There exists a constant C such that for all
λ > 0, there exists a dyadic segmentation S j of [0,1]2 into squares of width larger than 2 j, that
has the following properties:

Card(S j) 6 C (λ−1 + | log2(λ/2 j)|), Card(Eλ (S j)) 6 C λ
−1,

Card(Ẽλ (S j)) 6 C | log2(λ/2 j)|, Card(C (S j)) 6 C.

Proof. Following [13], a dyadic image segmentation is performed by iteratively labeling edge
squares S ∈ E and corner squares S ∈ C while removing temporary unlabeled squares S ∈T . The
algorithm proceeds as follow:

Initialization: label the square S = [0,1]2 as temporary S ∈T .
Step 1: Split in four every temporary square S ∈T and remove S from T .
Step 2: Label, in the following order, each new subdivided square S as a:
• regular square S ∈R(S j) if it is at a distance larger than s j from all edges,
• corner square S ∈ C (S j) if its size is smaller than 2 j,
• horizontal edge square S ∈ E H(S j) if a single horizontal edge component γ is closer than
s j from S. Following the edge square definition of section V.2, the curve is supposed to be
parameterized horizontally with |γ ′|6 2.
• vertical edge square S ∈ E V (S j) if a single vertical edge component γ is closer than s j from
S,
• temporary square S ∈T otherwise.
Step 3: Go to step 1 if there remains temporary squares.

Figure A.1 illustrate this process.
The first set of subdivision steps subdivides squares that contain edges until the square length

reaches λ (T ). Due to the regularity of the curves, the number of resulting edge squares is of order
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FIGURE A.1. Recursive subdivision of dyadic squares with the corresponding labeling
S ∈ {R,E V ,E H ,C }.

O(λ−1). The non-tangency condition of the curves also ensures that after a constant number of
steps, only a constant number of squares near junctions are labeled as temporary.

In the neighborhood of the junctions, the recursive splitting continues during log(λ/2 j) steps
until the length of the squares is 2 j. As there is only a finite number of such junctions, the number
of the small edge squares is of order O(log(λ/2 j)). �

The following lemma constructs an adapted bandletization basis for a given scale 2 j. It uses
the construction of an adapted dyadic segmentation together with an adapted quantized geometric
flow that closely matches the real geometry.

Lemma 3. Let f be a Cα -geometrically regular function. There exists C such that for any T > 0,
if 2 j satisfies

T
2α

α+1
def.= 2 j0 6 2 j 6 2 j1 def.= T

1
α+1 ,

then there exists a bandletization basis B(Γ j)∈D j, such that the thresholding approximation f jM j

at T of f j in this basis satisfies

(A.2)

 || f j− f jM j ||22 6 C max
(

s
α−p

δ

j T
4α p

δ ,22 jα
)

,

M j 6 C s
α−p

δ

j T−2 α+p
δ , with δ

def.= 2α p+α + p.

Proof. The optimal width λ = λ (T ) of the edge squares is defined in equation (A.1). Lemma 2
provides a dyadic segmentation of [0,1]2 with edge squares conforming as much as possible to this
optimal length λ . A bandletization basis B(Γ j) is defined by choosing the bandlet basis B(S, γ̃ ′S)
provided by lemma 4 over edge squares S ∈ Eλ (S j)∪ Ẽλ (S j) and by keeping the original wavelet
coefficients over the remaining squares. Wavelet coefficients inside a square S are denoted f j[n]
and the corresponding thresholded approximation with M(S) coefficients is denoted f jM(S). One
has the following error

|| f j− f jM j ||22 = ∑
S∈R(S j)

|| f j− f jM(S)||2`2(S) + ∑
S∈C (S j)

|| f j− f jM(S)||2`2(S)

+ ∑
S∈Eλ (S j)

|| f j− f jM(S)||2`2(S) + ∑
S∈Ẽλ (S j)

|| f j− f jM(S)||2`2(S)

with
MB j = ∑

S∈R(S j)
M(S)+ ∑

S∈C (S j)
M(S)+ ∑

S∈Eλ (S j)
M(S)+ ∑

S∈Ẽλ (S j)

M(S)

In regular squares S ∈R(S j), we saw in equation (II.2) that

∀(2 jn) ∈ S, |〈 f , ψ jn〉|6 C f 2 j(1+α),

where C f is proportional to || f ||Cα (Λ). Let 2 j? be the cutoff scale defined by

2 j? def.= (C f )−
1

α+1 T
1

α+1
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If j < j?, one has | f j[n]|< T , thus ∑S∈R(S j) M(S) = 0. If j > j?, one has

∑
S∈R(S j)

M(S) 6 2−2 j? 6 (C f )
2

α+1 T− 2
α+1 6 (C f )

2
α+1 s

α−p
δ

j T−2 α+p
δ .

In both cases one has

∑
S∈R(S j)

|| f j− f jM(S)||2`2(S) 6 2−2 j
(

max
S⊂R(S j)

| f j[n]|2
)

6 (C f )2 22 jα .

In corner squares S ∈ C (S j), there is a constant number C of coefficients and thus

∑
S∈C (S j)

|| f jM(S)− f j||2`2(S) 6 C T 2 6 C s
α−p

δ

j T
4α p

δ and ∑
S∈C (S j)

M(S) 6 C,

which satisfies bounds (A.2).
In edge squares S ∈ Eλ (S j) of size λ , lemma 4 bounds the bandlet approximation error and the
number of coefficients needed. Since there are less than C λ−1 such squares, one has

(A.3) ∑
S∈Eλ (S j)

|| f j− f jM(S)||2`2(S) 6 (C λ
−1)λ s

α−p
δ

j T
4α p

δ

together with

(A.4) ∑
S∈Eλ (S j)

M(S) 6 (C λ
−1)λ s

α−p
δ

j T−2 α+p
δ ,

and since

(A.5) λ (T ) def.= C0 T
2p
δ s

p+1
δ

j and δ
def.= 2α p+α + p,

one get (A.2) by inserting (A.5) into (A.3) and (A.4).
In small edges squares S ∈ Ẽ (S j) of size less than λ , lemma 4 still applies. The number of
bandlets coefficients M(S) is bounded by the number of coefficients needed for squares of optimal
size λ . Since there is less than | log2(λ/2 j)|6 C1 | log2(T )| such squares, bounds (A.2) still holds.
Geometric coefficients. By combining these bounds together one get the error bound of equation
(A.2). Equations (VI.9) and (VI.10) show that

MS j +MG j 6 pCard(S j) 6 C λ
−1 6 CC−1

0 T−2 p
δ s

− p+1
δ

j

6 CC−1
0 s

α−p
δ

j T−2 α+p
δ

(
T−2 α

δ s
− 1+α

δ

j

)
︸ ︷︷ ︸
61 since s j>T

2α
α+1

6
(
CC−1

0

)
s

α−p
δ

j T−2 α+p
δ ,

which gives the bound of equation (A.2) for the number of coefficients. �
The technical analysis of the bandlet approximation in an edge square S is detailed in Lemma 4.

In this Lemma, f j is the set of wavelet coefficients inside S, f jM(S) is the thresholded approximation
of f j at T in basis B(S, γ̃ ′) and M(S) is the number of needed bandlet coefficients.

Lemma 4. Let f be a Cα -geometrically regular function. There exists C > 0 such that for any
T > 0 and 2 j satisfying

(A.6) T
2α

α+1
def.= 2 j0 6 2 j 6 2 j1 def.= T

1
α+1 ,

for any edge square S of width λ
def.= λ (T ) there exists an adapted geometric flow γ̃ ′ ∈ G (S) such

that

(A.7)

 || f j− f jM(S)||2`2(S) 6 C λ s
α−p

δ

j T
4α p

δ

M(S) 6 C λ s
α−p

δ

j T−2 α+p
δ ,

with δ
def.= 2α p+α + p.
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Proof. The edge curve is parameterized in S by x2 = γ(x1). Let γ̃ ′0 be a Taylor polynomial ex-
pansion of degree α − 2 of γ ′ inside S. An adapted polynomial flow γ̃ ′ ∈ G (S) quantized with a
precision τ = λ α/(p−1) is defined by

γ̃
′
0(x) =

p−2

∑
i=0

αi

λ i+1 xi and γ̃
′(x) =

p−2

∑
i=0

aiτ

λ i+1 xi with ai = Qτ(αi),

where the uniform quantizer Qτ is defined by

Qτ(x) = qτ, if (q−1/2)τ 6 x 6 (q+1/2)τ.

Since the edge square definition of equation (V.6) enforces that |γ ′|6 2, one has

∀x ∈ [0,1],

∣∣∣∣∣p−2

∑
i=0

(αi/λ )xi

∣∣∣∣∣6 2 =⇒ |ai|6 2Cλ/τ,

where the constant C is defined by equation (VI.6) and thus γ̃ ′ ∈ G (S). Furthermore, this adapted
flow satisfies

||γ̃ ′− γ
′||∞ 6 ||γ̃ ′− γ̃

′
0||∞ + ||γ̃ ′0− γ

′||∞(A.8)

6 (p−1)τ/λ + ||γ||Cα λ
α−1 6 (1+ ||γ||Cα )λ

α−1.(A.9)

The set of points x such that |γ(x1)− x2|6 K s j is denoted T . The support of an Alpert vector is
β`,m.

Bounding bandlets coefficients. There are two kinds of Alpert vectors a`,m ∈B(S, γ̃ ′):
If β`,m does not intersect T , the fact that f is Cα -regular away from edges implies

(A.10) ∀(2 jn) /∈T , | f j[n]|= |〈 f , ψ jn〉|6 C f 2 j(1+α),

where C f is proportional to || f ||Cα (Λ), which leads to

|〈 f j, a`,m〉|6 C f || f j||∞||a`,m||1 6 (C f Ca)2 jα 2`/2
λ

where ||a`,m||1 is given by equation (V.1). A bandlet cutoff scale 2L0 is defined by

(C f Ca)2 jα 2L0/2
λ = T =⇒ 2L0 def.= (C fCa)

−2 2−2 jα T 2
λ
−2,

hence

(A.11) 2` 6 2L0 =⇒ |〈 f , a`,m〉|6 T.

If β`,m intersects T , one needs to use the regularity of the warped function f jW. Let P(x)
be a Taylor polynomial expansion of degree p of the function f jW inside w(β`,m), where w is
the warping operator defined by equation (IV.2). The definition (A.1) of λ (τ) together with
the bound s j > 2 j > T

2α

α+1 implies that λ (τ) 6 C0 s1/α

j . Equation (A.9) then allows to apply
Proposition 1 which provides bounds on the derivatives of f jW. The construction of the band
detailed in section V.1 enforces that w(β`,m) is of size λ × µ where µ

def.= λ 2`. Similarly to
equation (IV.15), the error is bounded by

∀ x̃ ∈ w(β`,m), | f jW(x̃)−P(x̃)|6 ∑
(i1,i2)∈Ip

α

∣∣∣∣∣
∣∣∣∣∣ ∂ α f jW

∂xi1
1 ∂xi2

2

∣∣∣∣∣
∣∣∣∣∣
L∞

λ
i1 µ

i2

6 C (1+ ||γ||αCα ) ∑
(i1,i2)∈Ip

α

2 js−i1/α−i2
j λ

i1 µ
i2

6 CW 2 j
(

s−1
j λ

α + s−p
j (2`

λ )p
)

,

where the constant CW depends on ||γ||Cα and || f ||Cα (Λ) and where the set of indices is

Ip
α

def.=
{

(i1, i2)
∖

i1 + i2 = p and i1 < α

α + i2 6 p and i1 = α

}
.
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It results that for all x̃ = w(x) ∈ w(β`,m)

(A.12) f jW(x̃) = P(x̃)+ ε(x̃) with ||ε||∞ 6 CW 2 j
(

s−1
j λ

α + s−p
j (2`

λ )p
)

.

The bandlets inner products are bounded using the fact that a`,m is orthogonal to the space of
discrete warped polynomials of degree p−1 on w(β`,m)

〈 f , a`,m〉= ∑
2 jn∈β`,m

f j[n]a`,m[n] = ∑
2 jn∈β`,m

f jW(w(2 jn))a`,m[n]

= ∑
2 jn∈β`,m

ε(w(2 jn))a`,m[n],

which leads to the following bound

(A.13) |〈 f , a`,m〉|6 ||ε||∞||a`,m||1 6 (CW Ca)λ
p+1 s−p

j 2`/2 max
(

sp−1
j λ

α−p,2`p
)

,

where ||a`,m||1 is bounded by equation (V.1). A bandlet cutoff scale 2L1 is defined by

sp−1
j λ

α−p = 2L1 p =⇒ 2L1 def.= s1−1/p
j λ

α/p−1.

The constant C0 that defines the optimal length λ (T ) in equation (A.1) is set to

C0
def.= (CWCa)−δ/(2p)

which implies

(A.14) 2` 6 2L1 =⇒ |〈 f , a`,m〉|6 (CW Ca)λ
δ

2p s−
1+p

2
j 6 T.

Bounding M(S). The number of coefficients above the threshold

M(S) def.= Card(JT ) where JT
def.= {(`,m) \ |〈 f , a`,m〉|> T }

can be bounded using the sets

J0
def.=
{
(`,m)

∖
Supp(a`,m)∩T = /0 and 2` > 2L0

}
and J1

def.=
{
(`,m)

∖
Supp(a`,m)∩T 6= /0 and 2` > 2L1

}
since equations (A.11) and (A.14) implies that JT ⊂ (J0∪ J1).

One has

Card(J0) 6 ∑
`>L0

2−` 6 22−L0 6 2(C f Ca)2
λ 22 jα︸︷︷︸

6T
2α

α+1

λ︸︷︷︸
6T

2p
δ

T−2

6 2(C f Ca)2
λ T−2 α

α+1
p+1

δ 6 2(C f Ca)2
λ s

α−p
δ

j T−2 α+p
δ .

For each scale 2`, there are less than K 2 j/(λ 2`) bandlets in {a`,m}m that intersect T , so

Card(J1) 6 ∑
`>L1

K 2 j/(λ 2`) 6 2K 2 j
λ
−1 2−L1

6 2K 2 j s1/p−1
j λ

−α/p 6 2K s1/p
j λ

−α/p 6 2K λ s
α−p

δ

j T−2 α+p
δ

The number of coefficients is thus bounded by

M(S) 6 Card(J0)+Card(J1) 6 C2 λ s
α−p

δ

j T−2 α+p
δ .
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Bounding || f j− f jM(S)||22. One has

|| f j− f jM(S)||22 = ∑
(`,m)/∈JT

|〈 f j, a`,m〉|2(A.15)

= ∑
(`,m)∈(J0∪J1)\JT

|〈 f j, a`,m〉|2 + ∑
(`,m)∈J̃o∪J̃1

|〈 f j, a`,m〉|2,(A.16)

where the set of coefficients are split according to

J̃0
def.=
{
(`,m)

∖
Supp(a`,m)∩T = /0 and 2` < 2L0

}
and J̃1

def.=
{
(`,m)

∖
Supp(a`,m)∩T 6= /0 and 2` < 2L1

}
.

The first part of the error in equation (A.16) is bounded using

∑
(`,m)∈(J0∪J1)\JT

|〈 f j, a`,m〉|2 6 (Card((J0∪ J1)\JT )T 2

6 (Card(J0∪ J1)T 2 6 C2 λ s
α−p

δ

j T
4α p

δ .

Bounding the contribution of J̃0 ∪ J̃1 to the error using directly equation (A.13) leads to a sub-
optimal result. The linear space

V def.= Span{a`,m \ (`,m) ∈ J0∪ J1 }

allows us to write the second part of the error in equation (A.16) as a projection

∑
(`,m)∈J̃o∪J̃1

|〈 f j, a`,m〉|2 = || f j−PV ( f j)||22.

The following decomposition

f j = f 0
j + f 1

j where
{
∀(2 jn) ∈T , f 0

j [n] = 0, and f 1
j [n] = f j[n],

∀(2 jn) /∈T , f 0
j [n] = f j[n], and f 1

j [n] = 0,

leads to

|| f j−PV ( f j)||2 6 || f 1
j −PV ( f 1

j )||2 + || f 0
j ||2 + ||PV ( f 0

j )||2
6 || f 1

j −PV ( f 1
j )||2 +2|| f 0

j ||2.

The norm of f 0
j is bounded using the fact that the wavelet coefficients are bounded by equation

(A.10) outside T

|| f 0
j ||22 6

(
λ

2 2−2 j)︸ ︷︷ ︸
nbr. pts. in S

(C f )2 22 j(α+1) 6 (C f )2
λ 22 jα︸︷︷︸

6T
2α

α+1

λ︸︷︷︸
6T

2p
δ

6 (C f )2
λ T

2α

α+1 + 2p
δ s

p+1
δ

j 6 (C f )2
λ T

4α p
δ s

α−p
δ

j .

Equation (A.12) allows to decompose f jW = P+ ε inside each warped domain w(βL0,m). The fact
that warped discret polynomials P belongs to V implies that the pointwise error is bounded by

∀(2 jn) ∈ βL0,m, | f 1
j [n]−PV ( f 1

j )[n]|6 2||ε||∞ 6 4CW 2 j s−1
j λ

α .

Since the number of points (2 jn)⊂T where f 1
j [n] 6= 0 is (Ks j/λ )(b2− j)2, one gets the estimate

|| f j−PV ( f j)||22 6 (Ks j/λ )(λ2− j)2(2||ε||∞)2 6 C s−1
j λ

2α+1 6 C λ T
4α p

δ s
α−p

δ

j .

�
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Appendix: Fast Alpert Transform

Let B(S, γ̃ ′) = {a`,m}`,m be an Alpert bandletization basis over a square S containing wavelets
coefficients f j[n] for (2 jn) ∈ S. An adapted Alpert transform [1] computes with a fast algorithm
the coefficients {〈 f j, a`,m〉}`,m of f j with a complexity of O(N) where N is the number of input
wavelet coefficients f j[n].

For x ∈ R2, let xt = xt1
1 xt2

2 and |t|= t1 + t2. The 2D monomials are indexed using

∀ t such that |t|< p, t̃ def.=
1
2
|t|(|t|+1)+ t2 ∈ {0, . . . , p(p+1)/2−1}.

In the following, the sampling locations of wavelet coefficients are written as xn
def.= 2 jn ∈ [0,1]2

and the warped points x̃n
def.= w(xn) where the warping is defined by (IV.2). If A and B are two

matrices, [A;B] denotes the concatenation along columns, [A,B] the concatenation along rows and
diag(A,B) the concatenation along the diagonal.

Polynomial inner-product. The dot product of two polynomials P and Q defined over a band
β̃`,m is

〈P, Q〉`,m
def.= ∑

xn∈β`,m

P(x̃n)Q(x̃n) = PTA`,mQ.

where P is the column vector of coefficients of P in the basis of monomials

P(x) = ∑
|t|<p

Pt̃ xp.

For all m, the symmetric matrices A`,m of size p(p+1)/2× p(p+1)/2 are the matrices of the dot
products over β̃`,m for discrete polynomial vectors expressed in the basis of monomials, defined by

(B.1) ∀m = 0, . . . ,2`−1, (A`,m)s̃,t̃
def.= ∑

xn∈β`,m

(x̃n)s+t .

These matrices are computed iteratively during the Alpert transform.

Initialization. The finest partition S =
⋃2−L−1

m=0 βLm is computed by recursive splits as explained
in section V.1. For all m ∈ {0, . . . ,2−`−1}, one needs to compute the polynomial PLm of degree p
that interpolates f j on βLm,

∀xn ∈ βLm, PLm(x̃n) = f j[n].

These polynomials correspond to the finest scale representation of f j in the basis of local mono-
mials. The matrices ALm must also be calculated with (B.1) for ` = L.

Computation of Alpert coefficients. For each scale ` = L, . . . ,−1 and each m, the pair of polyno-
mials (P0,P1)

def.= (P̀ ,2m, P̀ ,2m+1) is decomposed into a sum of a lower scale polynomial P def.= P̀ +1,m
and a residual (Q0,Q1) which is orthogonal to polynomials of degree less than p− 1. The poly-
nomials P0 and Q0 are restricted to β̃`,2m, the polynomials P1 and Q1 are restricted to β̃`,2m+1

whereas the polynomial P = P0−Q0 = P1−Q1 is restricted to β̃`+1,m. In the following we denote
A0 = A`,2m, A1 = A`,2m+1 and A def.= diag(A0,A1).

The residual polynomials (Q0,Q1) is computed as the projection of (P0,P1) on a set of or-
thogonal couples of polynomials {(h0

t ,h
1
t )}06|t|<p. Each couple ht

def.= (h0
t ,h

1
t ) is the piecewise

polynomial that interpolates the bandlet vector a`ĩ for ĩ def.= p(p+1)i/2+ t̃ over the set of locations
β̃`+1,m = β̃`,2m∪ β̃`,2m+1,

∀ x̃n ∈ β̃`,2m+ε , b`,ĩ[n] def.= hε
t (x̃n), for ε ∈ {0,1}.

The bandlet piecewise-polynomials ht are computed by satisfying two criteria.
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Orthogonality: For each 0 6 |t|, |t ′|< p, one should have

(B.2) δt,t ′ = ∑
xn∈β`+1,i

ht(x̃n)ht ′(x̃n) = ∑
xn∈β`,2i

h0
t (x̃n)h0

t ′(x̃n)+ ∑
xn∈β`,2i+1

h1
t ′(x̃n)h1

t (x̃n)

where δ is the Kronecker symbol.
Vanishing moments: For each 0 6 |s|, |t| < p, ht is orthogonal to the monomial xs defined on
β̃`,m

(B.3) 0 = ∑
xn∈β`+1,i

ht(x̃n)(x̃n)s = ∑
xn∈β`,2i

h0
t (x̃n)(x̃n)s + ∑

xn∈β`,2i+1

h1
t ′(x̃n)(x̃n)s.

One can express conditions (B.2) and (B.3) in matrix form in the basis of the monomials as

(B.4)
(
(B.2) ⇐⇒ HT AH = Id

)
and

(
(B.3) ⇐⇒ [A0,A1]H = 0

)
,

where the column of index t̃ of the matrix H of size p(p+1)× p(p+1)/2 is [h0
t ;h

1
t ]. Conditions

(B.4) mean that

A1/2 H is an orthogonal basis of the kernel of [A0,A1]A−1/2.

Matrix H can thus be computed with a constant number of operations proportional to (p(p +
1)/2)3. The residual is computed by [Q0;Q1] = H [P0;P1] and the low scale polynomial is P =
P0 −Q0. The bandlet coefficients are the projections of (Q0,Q1) onto the computed basis using
the dot product defined by A

〈 f j, a`m̃〉= 〈h0
t , Q0〉`,2m + 〈h1

t , Q1〉`,2m+1 = (ht)
T
A [Q0;Q1]

for m̃ def.= p(p + 1)i/2 + t̃. The dot product matrix for the next scale is computed using A`+1,m =
A`,2m +A`,2m+1.

A constant number of operations is needed to compute each bandelet matrice H and to update
matrices A`,m for each scale 2`. Since this process is repeated N/2` times for each scale, the overall
complexity of the algorithm is O(N) to transform N wavelet coefficients f j[n].

Bibliography
[1] Alpert, B. A class of bases in L2 for the sparse representation of integral operators. SIAM J. Math. Anal. (1993),

no. 24.
[2] Breiman, L.; Friedman, J.; Stone, C.; Olshen, R. Classification and Regression Trees. Chapman & Hall/CRC,

1984.
[3] Candes, E.; Donoho, D. New tight frames of curvelets and optimal representations of objects with piecewise C2

singularities. Comm. Pure Appl. Math. 57 (2004), no. 2, 219–266.
[4] Claypoole, R. L.; Davis, G. M.; Sweldens, W.; Baraniuk, R. G. Nonlinear wavelet transforms for image coding

via lifting. IEEE Trans. Image Processing 12 (2003), no. 12, 1449–1459.
[5] Cohen, A.; Daubechies, I.; Vial, P. Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon.

Anal. 1 (1993), no. 1, 54–81.
[6] Do, M. N.; Vetterli, M. The contourlet transform: an efficient directional multiresolution image representation.

IEEE Transactions on Image Processing 14 (2005), no. 12.
[7] Donoho, D. Wedgelets: Nearly-minimax Estimation of Edges. Ann. Statist 27 (1999), 353–382.
[8] Donoho, D. Counting Bits with Kolmogorov and Shannon. Wald Lecture I (2000).
[9] Dragotti, P.; Vetterli, M. Wavelet Footprints: Theory, Algorithms and Applications. IEEE Trans. on Signal Pro-

cessing 51 (2003), no. 5, 1306–1323.
[10] Field, D. J.; Hayes, A.; Hess, R. F. Contour integration by the human visual system: evidence for a local ”associa-

tion field”. Vision Research 33 (1993), no. 2, 173–193.
[11] Hubel, D.; Wiesel, T. Receptive Fields and Functional Architecture of Monkey Striate Cortex. Journal of Physiol-

ogy (London) 195 (1968), 215–243.
[12] I., D. A. G. O.; D., F. R. Spatiotemporal Receptive Field Dynamics in the Central Visual Pathways. Trends in

Neurosciences 18 (1995), no. 10, 451–458.
[13] Le Pennec, E.; Mallat, S. Bandelet Image Approximation and Compression. SIAM Multiscale Modeling and Sim-

ulation 4 (2005), no. 3, 992–1039.



ORTHOGONAL BANDLET BASES 29

[14] Lee, T. S. Computations in the early visual cortex. J Physiol Paris 97 (2003), no. 2-3, 121–139.
[15] Mallat, S. A Wavelet Tour of Signal Processing. Academic Press, San Diego, 1998.
[16] Matei, B.; Cohen, A. Nonlinear Subdivison Schemes : Applications to Image processing, in Tutorials on Multires-

olution in Geometric Modelling, pp. 93–97. Springer Verlag, 2002.
[17] Meyer, Y. Wavelets and Operators. Cambridge University Press, 1993.
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