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Abstract

Many modern visual recognition algorithms in-

corporate a step of spatial ‘pooling’, where the

outputs of several nearby feature detectors are

combined into a local or global ‘bag of features’,

in a way that preserves task-related information

while removing irrelevant details. Pooling is

used to achieve invariance to image transforma-

tions, more compact representations, and better

robustness to noise and clutter. Several papers

have shown that the details of the pooling oper-

ation can greatly influence the performance, but

studies have so far been purely empirical. In this

paper, we show that the reasons underlying the

performance of various pooling methods are ob-

scured by several confounding factors, such as

the link between the sample cardinality in a spa-

tial pool and the resolution at which low-level

features have been extracted. We provide a de-

tailed theoretical analysis of max pooling and av-

erage pooling, and give extensive empirical com-

parisons for object recognition tasks.

1. Introduction

Modern computer vision architectures often comprise a

spatial pooling step, which combines the responses of

feature detectors obtained at nearby locations into some

statistic that summarizes the joint distribution of the fea-

tures over some region of interest. The idea of feature

pooling originates in Hubel and Wiesel’s seminal work

on complex cells in the visual cortex (1962), and is re-

lated to Koenderink’s concept of locally orderless im-

ages (1999). Pooling features over a local neighborhood

to create invariance to small transformations of the input
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is used in a large number of models of visual recogni-

tion. The pooling operation is typically a sum, an av-

erage, a max, or more rarely some other commutative

(i.e., independent of the order of the contributing fea-

tures) combination rule. Biologically-inspired models of

image recognition that use feature pooling include the

neocognitron (Fukushima & Miyake, 1982), convolutional

networks which use average pooling (LeCun et al., 1989;

1998), or max pooling (Ranzato et al., 2007; Jarrett et al.,

2009), the HMAX class of models which uses max pool-

ing (Serre et al., 2005), and some models of the primary

visual cortex area V1 (Pinto et al., 2008) which use av-

erage pooling. Many popular methods for feature ex-

traction also use pooling, including SIFT (Lowe, 2004),

histograms of oriented gradients (HOG) (Dalal & Triggs,

2005) and their variations. In these methods, the domi-

nant gradient orientations are measured in a number of re-

gions, and are pooled over a neighborhood, resulting in a

local histogram of orientations. Recent recognition sys-

tems often use pooling at a higher level to compute lo-

cal or global bags of features. This is done by vector-

quantizing feature descriptors and by computing the code-

word counts over local or global areas (Sivic & Zisserman,

2003; Lazebnik et al., 2006; Zhang et al., 2007; Yang et al.,

2009), which is equivalent to average-pooling vectors con-

taining a single 1 at the index of the codeword, and 0 ev-

erywhere else (1-of-k codes).

In general terms, the objective of pooling is to transform

the joint feature representation into a new, more usable one

that preserves important information while discarding ir-

relevant detail, the crux of the matter being to determine

what falls in which category. For example, the assumption

underlying the computation of a histogram is that the aver-

age feature activation matters, but exact spatial localization

does not. Achieving invariance to changes in position or

lighting conditions, robustness to clutter, and compactness

of representation, are all common goals of pooling.

The success of the spatial pyramid model (Lazebnik et al.,
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2006), which obtains large increases in performance by

performing pooling over the cells of a spatial pyramid

rather than over the whole image as in plain bag-of-features

models (Zhang et al., 2007), illustrates the importance of

the spatial structure of pooling neighborhoods. Perhaps

more intriguing is the dramatic influence of the way pool-

ing is performed once a given region of interest has been

chosen. Thus, Jarrett et al. (2009) have shown that pooling

type matters more than careful unsupervised pretraining of

features for classification problems with little training data,

obtaining good results with random features when appro-

priate pooling is used. Yang et al. (2009) report much better

classification performance on several object or scene clas-

sification benchmarks when using the maximum value of

a feature rather than its average to summarize its activity

over a region of interest. But no theoretical justification of

these findings is given. In previous work (Boureau et al.,

2010), we have shown that using max pooling on hard-

vector quantized features (which produces a binary vector

that records the presence of a feature in the pool) in a spa-

tial pyramid brings the performance of linear classification

to the level of that obtained by Lazebnik et al. (2006) with

an intersection kernel, even though the resulting feature is

binary. However, it remains unclear why max pooling per-

forms well in a large variety of settings, and indeed whether

similar or different factors come into play in each case.

This paper proposes to fill the gap and to conduct a thor-

ough theoretical investigation of pooling. We compare dif-

ferent pooling operations in a categorization context, and

examine how the behavior of the corresponding statistics

may translate into easier or harder subsequent classifica-

tion. We provide experiments in the context of visual object

recognition, but the analysis applies to all tasks which in-

corporate some form of pooling (e.g., text processing from

which the bag-of-features method was originally adapted).

The main contributions of this paper are (1) an extensive

analytical study of the discriminative powers of different

pooling operations, (2) the discrimination of several fac-

tors affecting pooling performance, including smoothing

and sparsity of the features, (3) the unification of several

popular pooling types as belonging to a single continuum.

2. Pooling Binary Features

Consider a two-class categorization problem. Intuitively,

classification is easier if the distributions from which points

of the two classes are drawn have no overlap. In fact,

if the distributions are simply shifted versions of one an-

other (e.g., two Gaussian distributions with same vari-

ance), linear separability increases monotonically with the

magnitude of the shift (e.g., with the distance between

the means of two Gaussian distributions of same vari-

ance) (Bruckstein & Cover, 1985). In this section, we ex-

amine how pooling affects the separability of the resulting

feature distributions when the features being pooled are bi-

nary vectors (e.g., 1-of-k codes obtained by vector quanti-

zation in bag-of-features models).

2.1. Model

Let us examine the contribution of a single feature in a

bag-of-features representation (i.e., if the unpooled data is

a P × k matrix of 1-of-k codes taken at P locations, we

extract a single P -dimensional column v of 0s and 1s, in-

dicating the absence or presence of the feature at each lo-

cation). For simplicity, we model the P components of v

as i.i.d. Bernoulli random variables. The independence as-

sumption is clearly false since nearby image features are

strongly correlated, but the analysis of this simple model

nonetheless yields useful predictions that can be verified

empirically. The vector v is reduced by a pooling operation

f to a single scalar f(v) (which would be one component

of the k-dimensional representation using all features, e.g.,

one bin in a histogram). We consider two pooling types:

average pooling fa(v) = 1
P

∑P
i=1 vi, and max pooling

fm(v) = maxi vi.

2.2. Distribution Separability

Given two classes C1 and C2, we examine the separation

of conditional distributions p(fm|C1) and p(fm|C2), and

p(fa|C1) and p(fa|C2). Viewing separability as a signal-

to-noise problem, better separability can be achieved by ei-

ther increasing the distance between the means of the two

class-conditional distributions, or reducing their standard

deviation.

We first consider average pooling. The sum over P i.i.d.

Bernoulli variables of mean α follows a binomial distri-

bution B(P, α). Consequently, the distribution of fa is

a scaled-down version of the binomial distribution, with

mean µa = α, and variance σ2
a = α(1 − α)/P . The ex-

pected value of fa is independent of sample size P , and

the variance decreases like 1
P

; therefore the separation ra-

tio of means’ difference over standard deviation decreases

monotonically like 1√
P

.

Max pooling is slightly less straightforward, so we examine

means’ separation and variance separately in the next two

sections.

2.2.1. MEANS’ SEPARATION OF MAX-POOLED

FEATURES

fm is a Bernoulli variable of mean µm = 1 − (1 − α)P

and variance σ2
m = (1− (1−α)P )(1−α)P . The mean in-

creases monotonically from 0 to 1 with sample size P . Let

φ denote the separation of class-conditional expectations of
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max-pooled features,

φ(P ) , |E(fm|C1)−E(fm|C2)| = |(1−α2)
P−(1−α1)

P |,

where α1 , P(vi = 1|C1) and α2 , P(vi = 1|C2).
We abuse notation by using φ to refer both to the function

defined on sample cardinality P and its extension to R. It

is easy to show that φ is increasing between 0 and

PM ,

∣
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log
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)

/log

(
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1 − α2

)
∣

∣

∣

∣

,

and decreasing between PM and ∞, with lim0 φ =
lim∞ φ = 0.

Noting that φ(1) = |α1 − α2| is the distance between the

class-conditional expectations of average-pooled features,

there exists a range of pooling cardinalities for which the

distance is greater with max pooling than average pooling

if and only if PM > 1. Assuming α1 > α2, it is easy to

show that PM ≤ 1 ⇒ α1 > 1 − 1
e

> 0.63. This implies

that the feature is selected to represent more than half the

patches on average, which in practice does not happen in

usual bag-of-features contexts, where codebooks comprise

more than a hundred codewords.

2.2.2. VARIANCE OF MAX-POOLED FEATURES

The variance of the max-pooled feature is σ2
m = (1− (1−

α)P )(1 − α)P . A simple analysis of the continuous exten-

sion of this function to real numbers shows that it has limit

0 at 0 and∞, and is increasing then decreasing, reaching its

maximum of 0.5 at log(2)/| log(1 − α)|. The increase of

the variance can play against the better separation of the ex-

pectations of the max-pooled feature activation, when pa-

rameter values α1 and α2 are too close for the two classes.

Several regimes for the variation of means separation and

standard deviations are shown in Fig. 1.

2.2.3. CONCLUSIONS AND PREDICTIONS

Our simplified analysis leads to several predictions:

• Max pooling is particularly well suited to the separa-

tion of features that are very sparse (i.e., have a very

low probability of being active)

• Using all available samples to perform the pooling

may not be optimal

• The optimal pooling cardinality should increase with

dictionary size

The first point can be formalized by observing that the char-

acteristic pooling cardinality | 1
log(1−α) | (≈ 1

α
in the case

α ≪ 1), scales the transition to the asymptotic regime (low

variance, high probability of activation): the maximum of

the variance is reached at P = log(2)/| log(1 − α)|, and:

P(fm(v) = 1) > λ ⇔ P >
log(1 − λ)

log(1 − α)
.

Consequently, the range of cardinalities for which max

pooling achieves good separation between two classes dou-

bles if the probability of activation of the feature for both

classes is divided by two. A particularly favorable regime

is α2 ≪ α1 ≪ 1 – that is, a feature which is rare, but rela-

tively much more frequent in one of the two classes; in that

case, both classes reach their asymptotic regime for very

different sample cardinalities ( 1
α1

and 1
α2

).

We have recently conducted preliminary experiments re-

lated to the second point (Boureau et al., 2010) – namely,

that better performance can be obtained by using smaller

pooling cardinalities. We have compared the performance

of whole-image pooling, regular two-level spatial pyramid

pooling, and a two-level pyramid where the smaller pools

are taken randomly instead of spatially. In the random

pyramid setting, the performance of max pooling is inter-

mediate between that obtained with whole-image and spa-

tial pyramid pooling, while the classification using aver-

age pooling becomes worse than with whole-image pool-

ing. However, a number of concurrent factors could explain

the increased accuracy: (1) smaller pooling cardinality, (2)

smoothing over multiple estimates (one per finer cell of the

pyramid), (3) estimation of two distinct features (the max-

imum over the full and partial cardinalities, respectively).

The more comprehensive experiments presented in the next

section resolve this ambiguity by isolating each factor.

Finally, the increase of optimal pooling cardinality with

dictionary size is related to the link underlined above be-

tween the sparsity of the features (defined here as the prob-

ability of them being 0) and the discriminative power of

max-pooling, since the expected feature activations sum to

one in the general bag-of-features setting (exactly one fea-

ture is activated at each location), resulting in a mean ex-

pected activation of 1
k

with a k-word codebook. Thus, k
gives an order of magnitude for the characteristic cardinal-

ity scale of the transition to the asymptotic regime, for a

large enough codebook.

2.3. Experiments

We test our conjectures by running experiments

on the Scenes (Lazebnik et al., 2006) and Caltech-

101 (Fei-Fei et al., 2004) datasets, which respectively

comprise 101 object categories (plus a ”background” cate-

gory) and fifteen scene categories. In all experiments, the

features being pooled are local codes representing 16 × 16
SIFT descriptors that have been densely extracted using

the parameters yielding the best accuracy in our previous
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Figure 1. φ(P ) = |(1 − α1)
P − (1 − α2)

P |, σ1 and σ2 denote the distance between the expectations of the max-pooled

features of mean activation α1 and α2, and their standard deviations, respectively. ψmax = φ/(σ1 + σ2) and ψavg =
|α1 − α2|.

√
P/(

p

α1.(1 − α1) +
p

α2.(1 − α2)) give a measure of separability for max and average pooling. φ reaches its peak

at smaller cardinalities than ψmax. (a) When features have relatively large activations, the peak of separability is obtained for small

cardinalities (b) With sparser feature activations, the range of the peak is much larger (note the change of scale in the x axis). (c) When

one feature is much sparser than the other, ψmax can be larger than ψavg for some cardinalities (shaded area). Best viewed in color.

work (2010) (every 8 pixels for the Scenes and every 4

pixels for Caltech-101). The codes jointly represent 2 × 2
neighborhoods of SIFT descriptors, with subsampling

of 1 and 4 for the Scenes and Caltech-101, respectively.

Features are pooled over the whole image using either

average or max pooling. Classification is performed with

a one-versus-one support vector machine (SVM) using a

linear kernel, and 100 and 30 training images per class for

the Scenes and Caltech-101 datasets, respectively, and the

rest for testing, following the usual experimental setup.

We report the average per-class recognition rate, averaged

over 10 random splits of training and testing images.

2.3.1. OPTIMAL POOLING CARDINALITY

We first test whether recognition can indeed improve for

some codebook sizes when max pooling is performed over

samples of smaller cardinality, as predicted by our analysis.

Recognition performance is compared using either average

or max pooling, with various combinations of codebook

sizes and pooling cardinalities. We use whole-image rather

than pyramid or grid pooling, since having several cells of

same cardinality provides some smoothing that is hard to

quantify. Results are presented in Fig. 2. Recognition per-

formance of average-pooled features (Average in Fig. 2)

drops with pooling cardinality for all codebook sizes, as

expected; performance also drops with max pooling (1 es-

timate in Fig. 2) when the codebook size is large. However,

noticeable improvements appear at intermediate cardinal-

ities for the smaller codebook sizes (compare blue, solid

curves on the left and right of Fig. 2), as predicted by our

analysis.

Next, we examine whether better recognition can be

achieved when using a smoother estimate of the expected

max-pooled feature activation. We consider two ways of

refining the estimate. First, if only a fraction of all sam-

ples is used, a smoother estimate can be obtained by re-

placing the single max by an empirical average of the max

over different subsamples, the limit case as pool cardinal-

ity decreases being average pooling. The second approach

directly applies the formula for the expectation of the max-

imum (1 − (1 − α)P , using the same notation as before)

to the empirical mean computed using all samples. This

has the benefit of removing the constraint that P be smaller

than the number of available samples, in addition to be-

ing computationally very simple. Results using these two

smoothing strategies are plotted in Fig. 2 under labels Em-

pirical and Expectation, respectively. Smoothing the esti-

mate of the max-pooled features always helps, especially

at smaller pooling cardinalities. The best performance is

then obtained with pooling cardinalities smaller than the

full cardinality in all our experiments. As predicted, the

maximum of the curve shifts towards larger cardinality as

codebook size increases. The best estimate of the max-

pooled feature is the expectation computed from the em-

pirical mean, 1 − (1 − α)P . P here simply becomes the

parameter of a nonlinear function applied to the mean. In

all cases tested, using this nonlinear function with the opti-

mal P outperforms both average and max pooling.

2.3.2. COMBINING MULTIPLE POOLING

CARDINALITIES

The maximum over a pool of smaller cardinality is not

merely an estimator of the maximum over a large pool;

therefore, using different pool cardinalities (e.g., using a

spatial pyramid instead of a grid) may provide a more

powerful feature, independently of the difference in spa-

tial structure. Using a codebook of size 256, we com-

pare recognition rates using jointly either one, two, or three

different pooling cardinalities, with average pooling, max

pooling with a single estimate per pooling cardinality, or

max pooling smoothed by using the theoretical expectation.

Results presented in Table 1 show that combining cardinal-

ities improves performance with max pooling only if the

estimate has not been smoothed. Thus, the simultaneous

presence of multiple cardinalities does not seem to provide
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Figure 2. Influence of pooling cardinality and smoothing on performance. Top row: Scenes dataset. Bottom row: Caltech-101 dataset.

1 estimate: max computed over a single pool. Empirical: empirical average of max-pooled features over several subsamples (not plotted

for smaller sizes, when it reaches the expectation) Expectation: theoretical expectation of the maximum over P samples 1 − (1 − α)P ,
computed from the empirical average α. Average: estimate of the average computed over a single pool. Best viewed in color.

any benefit beyond that of an approximate smoothing.

Table 1. Classification results with whole-image pooling over bi-

nary codes (k = 256). One indicates that features are pooled

using a single cardinality, Joint that the larger cardinalities are

also used. SM: smooth maximum (1 − (1 − α)P ).

Smallest cardinality 1024 512 256

Caltech 101 Avg, One 32.4 ± 1.1 31.3 ± 1.0 28.6 ± 1.1
Avg, Joint 31.9 ± 1.2 32.1 ± 1.2
Max, One 31.7 ± 1.4 32.7 ± 1.3 30.4 ± 2.3
Max, Joint 34.4 ± 0.7 35.8 ± 0.9
SM, One 37.9 ± 0.6 40.5 ± 0.7 42.0 ± 1.4
SM, Joint 39.4 ± 1.3 40.6 ± 0.8

15 Scenes Avg, One 69.8 ± 0.7 68.7 ± 0.8 66.3 ± 0.7
Avg, Joint 69.6 ± 0.7 69.2 ± 1.0
Max, One 63.5 ± 0.6 64.8 ± 0.7 64.3 ± 0.4
Max, Joint 65.4 ± 0.6 67.1 ± 0.6
SM, One 67.2 ± 0.8 70.4 ± 0.7 72.6 ± 0.7
SM, Joint 69.2 ± 0.7 70.7 ± 0.7

2.3.3. PRACTICAL CONSEQUENCES

In papers using a spatial pyramid (Lazebnik et al., 2006;

Yang et al., 2009), there is a coupling between the pool-

ing cardinality and other parameters of the experiment: the

pooling cardinality is the density at which the underlying

low-level feature representation have been extracted (e.g.,

SIFT features computed every 8 pixels in (Lazebnik et al.,

2006)) multiplied by the spatial area of each spatial pool.

While using all available samples is optimal for average

pooling, this is usually not the case with max pooling over

binary features, particularly when the size of the codebook

is small. Instead, the pooling cardinality for max pooling

should be adapted to the dictionary size, and the remaining

samples should be used to smooth the estimate. Another,

simpler way to achieve similar or better performance is to

apply to the average-pooled feature the nonlinear transfor-

mation corresponding to the expectation of the maximum,

(i.e., 1 − (1 − α)P , using the same notation as before);

in addition, the parameter P is then no longer limited by

the number of available samples in a pool, which may be

important for very large codebooks. Our experiments us-

ing binary features in a three-level pyramid show that this

transformation yields improvement over max pooling for

all codebook sizes (Table 2). The increase in accuracy is

small, however the difference is consistently positive when

looking at experimental runs individually instead of the dif-

ference in the averages over ten runs.

Table 2. Recognition accuracy with 3-level pyramid pooling over

binary codes. One-vs-all classification has been used in this ex-

periment. Max: max pooling using all samples. SM: smooth max-

imum (expected value of the maximum computed from the aver-

age 1 − (1 − α)P ), using a pooling cardinality of P = 256 for

codebook sizes 256 and 512, P = 512 for codebook size 1024.

Codebook size 256 512 1024

Caltech 101 Max 67.5 ± 1.0 69.2 ± 1.1 71.0 ± 0.8
SM 68.6 ± 0.9 70.0 ± 1.2 71.8 ± 0.8

15 Scenes Max 77.9 ± 0.7 79.4 ± 0.5 80.2 ± 0.4
SM 78.2 ± 0.4 79.9 ± 0.5 80.5 ± 0.6
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3. Pooling Continuous Sparse Codes

Sparse codes have proven useful in many image applica-

tions such as image compression and deblurring. Com-

bined with max pooling, they have led to state-of-the-

art image recognition performance with a linear classi-

fier (Yang et al., 2009; Boureau et al., 2010). However, the

analysis developed for binary features in the previous sec-

tion does not apply, and the underlying causes for this good

performance seem to be different.

3.1. Influence of Pooling Cardinality

In the case of binary features, and when no smoothing is

performed, we have seen above that there is an optimal

pooling cardinality, which increases with the sparsity of

the features. Smoothing the features displaces that opti-

mum towards smaller cardinalities. In this section, we per-

form the same analysis for continuous features, and show

that (1) it is always better to use all samples for max pool-

ing when no smoothing is performed, (2) however the in-

crease in signal-to-noise ratio (between means’ separation

and standard deviation) does not match the noise reduction

obtained by averaging over all samples.

Let P denote cardinality of the pool. For a Gaussian dis-

tribution, a classical result is that the expectation of the

max over samples from a distribution of variance σ2 grows

asymptotically (when P → ∞) like
√

2σ2 log(P ). Thus,

the separation of the maxima over two Gaussian samples

increases indefinitely with sample size if their standard de-

viations are different, but the rate of growth is very slow.

Exponential distribution (or Laplace distributions for fea-

ture values that may be negative) are often preferred to

Gaussian distributions to model visual feature responses

because they are highly kurtotic. In particular, they are

a better model for sparse codes. Assume the distribution

of the value of a feature for each patch is an exponen-

tial distribution with mean 1
λ

and variance 1
λ2 . The cor-

responding cumulative distribution function is 1 − e−λx.

The cumulative distribution function of the max-pooled

feature is (1 − e−λx)P . The mean and variance of the

distribution can be shown to be respectively µm = H(P )
λ

and σ2
m = 1

λ2

∑P
l=1

1
l
(2H(l) − H(P )), where H(k) =

∑k
i=1

1
i

denotes the harmonic series. Thus, for all P ,
µ1

µ2

= σ1

σ2

= λ1

λ2

, and the distributions will be better sep-

arated if the scaling factor of the mean is bigger than the

scaling factor of the standard deviations, i.e., H(P ) >
√

∑P
l=1

1
l
(2H(l) −H(P )), which is true for all P . Fur-

thermore, since H(P ) = log(P ) + γ + o(1) when P →
∞ (where γ is Euler’s constant), it can be shown that
∑P

l=1
1
l
(2H(l) − H(P )) = log(P ) + O(1), so that the

distance between the means grows faster (like log(P ))

than the standard deviation, which grows like
√

log(P ).
Two conclusions can be drawn from this: (1) when no

smoothing is performed, larger cardinalities provide a bet-

ter signal-to-noise ratio, but (2) this ratio grows slower than

when simply using the additional samples to smooth the es-

timate (1/
√

P assuming independent samples, although in

reality smoothing is less favorable since the independence

assumption is clearly false in images).

3.2. Experiments

We perform the same experiments as in the previous section

to test the influence of codebook size and pooling cardinali-

ties, using continuous sparse codes instead of binary codes.

Results are presented in Fig. 3. As expected from our anal-

ysis, using larger pooling cardinalities is always better with

continuous codes when no smoothing is performed (blue

solid curve): no bump is observed even with smaller dictio-

naries. Max pooling performs better than average pooling

on the Caltech dataset (bottom row in Fig. 3); this is not

predicted by the analysis using our very simple model. On

the Scenes dataset (top row in Fig. 3), max pooling and av-

erage pooling perform equally well when the largest dictio-

nary size tested (1024) is used. Slightly smoothing the esti-

mate of max pooling by using a smaller sample cardinality

results in a small improvement in performance; since the

grid (or pyramid) pooling structure performs some smooth-

ing (by providing several estimates for the sample cardinal-

ities of the finer levels), this may explain why max pooling

performs better than average pooling with grid and pyra-

mid smoothing, even though average pooling may perform

as well when a single estimate is given.

3.3. Mixture Distribution

Our simple model does not account for the better discrim-

ination sometimes achieved by max pooling for continu-

ous sparse codes with large dictionaries. In a previous

paper (Boureau et al., 2010), we showed that max pool-

ing may perform better than average pooling with expo-

nential features sampled from mixture distributions, with

one of the components of the mixture being shared be-

tween classes and having a lower expected activation. This

may play a role in the better performance of max pooling.

In fact, the sparse code vectors extracted on images have

an overwhelming number of zero components, and may

thus be better modeled as a mixture distribution of a Dirac

delta function and an exponential distribution, than as a sin-

gle exponential distribution. Assuming the mixture coeffi-

cients vary between images, the mean of the distribution

computed over an image shifts between 0 and the mean of

the exponential; this may result in a larger overlap between

class-conditional distributions when using average pooling

than max pooling, as illustrated in our work (Boureau et al.,

2010).
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Figure 3. Influence of pooling cardinality and smoothing on performance. Top row: Scenes dataset. Bottom row: Caltech-101 dataset.

1 estimate: maximum computed over a single pool. Empirical: empirical average of max-pooled features over several subsamples of

smaller cardinality. Average: estimate of the average computed over a single pool. Best viewed in color.

4. Transition from Average to Max Pooling

The previous sections have shown that depending on the

data and features, either max or average pooling may per-

form best. The optimal pooling type for a given classifi-

cation problem may be neither max nor average pooling,

but something in between; in fact, we have shown that it

is often better to take the max over a fraction of all avail-

able feature points, rather than over the whole sample. This

can be viewed as an intermediate position in a parametriza-

tion from average pooling to max pooling over a sample

of fixed size, where the parameter is the number of feature

points over which the max is computed: the expected value

of the max computed over one feature is the average, while

the max computed over the whole sample is obviously the

real max.

This is only one of several possible parametrizations that

continuously transition from average to max pooling. The

P -norm of a vector (more accurately, a version of it nor-

malized by the number of samples N ) is another well-

known one: fP (v) =
(

1
N

∑N

i=1 v
P
i

)
1

P

, which gives the

average for P = 1 and the max for P → ∞. This

parametrization accommodates square-root pooling (for

P = 2) and absolute value pooling (for P = 1), that have

also used in the literature (e.g. (Yang et al., 2009)).

A third parametrization is the sum of samples weighted by

a softmax function:
∑

i
exp(βxi)

P

j exp(βxj)
xi. This gives average

pooling for β = 0 and max pooling for β → ∞. Finally,

a fourth parametrization is 1
β

log 1
N

∑

i exp(βxi), which

gives the average for β → 0 and the max for β → ∞.

As with the P -norm, the result only depends on the empir-

ical feature activation mean in the case of binary vectors;

thus, these functions can be applied to an already obtained

average pool.

Fig. 4 plots the recognition rate obtained on the Scenes

dataset using sparse codes and each of the four parametriza-

tions mentioned. Instead of using the expectation of the

maximum for exponential distributions, we have used the

expectation of the maximum of binary codes (1−(1−α)P ),

applied to the average, as we have observed that it works

well; we refer to this function as the expectation of the

maximum (maxExp in Fig. 4), although it does not con-

verge to the maximum when P → ∞ for continuous codes.

Both this parametrization and the P -norm perform better

than the two other pooling functions tested, which present

a marked dip in performance for intermediate values.

5. Discussion

This paper has looked more closely into the factors un-

derlying the recognition performance of pooling opera-

tions. By carefully adjusting the pooling step of fea-

ture extraction, relatively simple systems of local features

and classifiers can become competitive to more complex

ones: our previous work (Boureau et al., 2010) had already

demonstrated that it was possible to achieve similar lev-

els of performance with a linear kernel as with Lazebnik

et al. (2006)’s intersection kernel, using vector quantized

binary codes. Here, we have investigated what properties

of max pooling may account for this good performance,

and shown that this pooling strategy was well adapted to
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Figure 4. Recognition rate obtained using several pooling functions that perform a continuous transition from average to max pooling

when varying parameter P (see text). Best viewed in color.

features with a low probability of activation. We have pro-

posed several methods for further improving pooling: (1)

use directly the formula for the expectation of the maxi-

mum to obtain a smoother estimate in the case of binary

codes, (2) pool over smaller samples and take the average.

When using sparse coding, some limited improvement may

be obtained by pooling over subsamples of smaller cardi-

nalities and averaging, and conducting a search for the opti-

mal pooling cardinality, but this is not always the case. Fur-

ther directions we envision include pooling across several

feature types, and adapting pooling parameters separately

for each feature. We hope that paying more attention to the

choice of the pooling function will lead to better designed

recognition architectures.
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