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Serge Vaudenay

?
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e-mail: Serge.Vaudenay@ens.fr

Abstract Constructing a block cipher requies to de�ne a random per-

mutation, which is usually performed by the Feistel scheme and its vari-

ants. In this paper we investigate the Lai-Massey scheme which was used

in IDEA. We show that we cannot use it as is in order to obtain results

like Luby-Racko� Theorem. This can however be done by introducing

a simple function which has an orthomorphism property. We also show

that this design o�ers nice decorrelation properties, and we propose a

block cipher family called Walnut.

Designing a block cipher requires to build a random permutation

from a random key. In most of block cipher constructions, we dis-

tinguish two approachs. First we use a �xed network with parallel

permutations which are modi�ed at their inputs or outputs by sub-

key values. This was used for instance in Safer [11] and Square [3].

Second we use the Feistel scheme [4] (or one of its variants) which

starts from a random function (see Fig. 1). This was used for in-

stance in DES [1] and Blow�sh [14]. The literature gives an extra

construction which is not in these categories and which was used in

the IDEA cipher [9, 8]. It uses a simple scheme which we illustrated

on Fig. 2 and which we call the \Lai-Massey scheme" throughout

the paper. As for the Feistel scheme, this structure relies on a group

structure.

For the Feistel scheme, Luby and Racko� [10] proved that if the

round functions are random, then a 3-round Feistel cipher will look

random to any chosen plaintext attack when the number of chosen

plaintexts d is negligible towards 2

m

4

(where m is the block length).

In this paper, we show a similar result for the Lai-Massey scheme if

we add a simple function � which has the orthomorphism property:

it must be such that � and x 7! �(x)� x are both permutations.

?

Part of this work was done while the author was visiting the NTT Laboratories.
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Figure1. The Feistel Scheme.

s s

s s

s

s s

? ?

- �

?

� -

F

�

+ +

? ?

z

t

x

y

Figure2. The Lai-Massey Scheme.
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The Luby-Racko� result however holds when the round functions

are random. This has been extended by the decorrelation theory [18{

20, 22, 21] when the round function have some decorrelation property.

This was used to de�ne the Peanut construction family in which

the DFC cipher [2, 5, 6] is an example. We show that we can have

similar results with the Lai-Massey scheme and propose a similar

construction.

1 Notations

1.1 Feistel and Lai-Massey Schemes

Let (G;+) be a group. Given r functions F

1

; : : : ; F

r

on G we can

de�ne an r-round Feistel scheme which is a permutation on G

2

de-

noted 	(F

1

; : : : ; F

r

). It is de�ne by iterating the scheme on Fig. 1.

If r > 1, we let

	(F

1

; : : : ; F

r

)(x; y) = 	(F

2

; : : : ; F

r

)(y; x+ F

1

(y))

and

	(F

1

)(x; y) = (x+ F

1

(y); y):

(The last swap is omitted.)

Similarly, given a permutation � on G, we de�ne an r-round Lai-

Massey scheme as a permutation �

�

(F

1

; : : : ; F

r

) by

�

�

(F

1

; : : : ; F

r

)(x; y) = �

�

(F

2

; : : : ; F

r

)(�(x+F (x�y)); y+F (x�y))

and

�

�

(F

1

)(x; y) = (x+ F (x� y); y + F (x� y))

in which the last � is omitted.

For more convenience, if x 2 G

2

, we let x

l

and x

r

denote its two

halves: x = (x

l

; x

r

).

1.2 Advantage of Distinguishers and Best Advantage

A distinguisher A is a probabilistic Turing machine with unlimited

computation power. It has access to an oracle O and can send it a

3



limited number of queries. At the end, the distinguisher must out-

put 0 or 1. We consider the advantage for distinguishing a random

function F from a random function G de�ned by

Adv

A

(F;G) =

�

�

�Pr

h

A

O=F

= 1

i

� jPr

h

A

O=G

= 1

i
�

�

� :

Given an integer d and a random function F from a given set

M

1

to a given setM

2

, we de�ne the d-wise distribution matrix [F ]

d

as a matrix in R

M

d

1

�M

d

2

by

[F ]

d

(x

1

;:::;x

d

);(y

1

;:::;y

d

)

= Pr[F (x

1

) = y

1

; : : : ; F (x

d

) = y

d

]:

For a matrix A in R

M

d

1

�M

d

2

, we de�ne

jjAjj

a

= max

x

1

X

y

1

max

x

2

X

y

2

: : :max

x

d

X

y

d

jA

(x

1

;:::;x

d

);(y

1

;:::;y

d

)

j:

It has been shown that jj:jj

a

is a matrix norm which can compute

the best advantage. Namely we have

max

A limited to d queries

chosen plaintext attack

Adv

A

(F;G) =

1

2

jj[F ]

d

� [G]

d

jj

a

: (1)

(See [24].)

Similarly, we recursively de�ne the jj:jj

s

norm by

jjAjj

s

= max

 

max

x

1

X

y

1

�

x

1

;y

1

(A);max

y

1

X

x

1

�

x

1

;y

1

(A)

!

(the norm of a matrix reduced to one entry being its absolute value)

where �

x

1

;y

1

(A) denotes the matrix in R

M

d�1

1

�M

d�1

2

such that

(�

x

1

;y

1

(A))

(x

2

;:::;x

d

);(y

2

;:::;y

d

)

= A

(x

1

;:::;x

d

);(y

1

;:::;y

d

)

:

Then we have

max

A limited to d queries

chosen plaintext and ciphertext attack

Adv

A

(F;G) =

1

2

jj[F ]

d

� [G]

d

jj

s

: (2)

(See [24].)
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1.3 Decorrelation Biases

We also use the decorrelation bias of order d of a function in the

sense of a given norm jj:jj de�ned by

DecF

d

jj:jj

(F ) = jj[F ]

d

� [F

�

]

d

jj

where F

�

is a random function uniformly distributed, and the decor-

relation bias of order d of a permutation de�ned by

DecP

d

jj:jj

(C) = jj[C]

d

� [C

�

]

d

jj

where C

�

is a random permutation uniformly distributed. (See [18,

20, 23, 24].)

2 On the Need for Orthomorphisms

Let us �rst consider the �

�

construction when � is the identity func-

tion. Obviously if (z; t) = �

�

(F

1

; : : : ; F

r

)(x; y) we have z� t = x�y.

Thus, for any random round functions, �

�

(F

1

; : : : ; F

r

) is fairly easily

distinguishable with only one known plaintext. This is why we have

to introduce the � permutation.

Let us consider a one-round Lai-Massey scheme with �:

(z; t) = (�(x+ F (x� y)); y + F (x� y)):

We have

z � t= (�(x+ F (x� y))� (x+ F (x� y))) + (x� y)

= �

0

(x+ F (x� y)) + x� y

where �

0

(u) = �(u)�u. Thus, if F is uniformly distributed and �

0

is

a permutation, then z � t is uniformly distributed. Ideally we thus

require that � and �

0

are permutations, which means that � is an

orthomorphism of the group.

Unfortunately, the existence of orthomorphisms is not guaranteed

for arbitrary groups. Actually, Hall-Paige Theorem [7] states that an

Abelian �nite group has an orthomorphism if and only if its order is

odd or Z

2

2

is isomorphic to one of its subgroups. In particular, Z

2

m

has no orthomorphism. In odd-ordered groups G, with multiplicative
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notations, the square �(x) = x

2

is an orthomorphism since �

0

is the

identity permutation and � is a permutation (its inverse is the

1+#G

2

-

power function). In Z

m

2

with m > 1, Schnorr and Vaudenay [15, 16]

exhibited

�(x) = (x AND c) XOR ROTL

i

(x)

which is an orthomorphism when the AND of all ROTL

ij

(c) values

is zero and the OR is 11: : :1.

1

For instance, i = 1 and c = 00 : : :01

leads to an orthomorphism. Stern and Vaudenay used a similar con-

struction in CS-Cipher [17].

We thus relax the orthomorphism properties by adopting the

following notion of �-almost orthomorphism.

De�nition 1. In a given group G of order g, a permutation � is

called an �-almost orthomorphism if the function �

0

(x) = �(x)� x

is such that there are at most � elements in G with no preimage by

�

0

.

This de�nition �ts to Patarin's notion of \spreading" [12, 13]. We

prefer here to emphasis on the approximation of orthomorphism

properties.

We notice that since (�

�1

)

0

(x) = ��

0

(�

�1

(x)), then �

�1

is also

an �-almost orthomorphism when � is an �-almost orthomorphism.

Here is an useful lemma.

Lemma 2. If � is an �-almost orthomorphism over the group G,

then

8� 2 Gnf0g Pr

(X;Y )2

U

G

2

[�

0

(X)� �

0

(Y ) = �] � max(�; 1)g

�1

(3)

8� 2 Gnf0g Pr

X2

U

G

[�

0

(X) = �

0

(X + �)] � �g

�1

(4)

8� 2 G Pr

X2

U

G

[� � �

0

(X) 62 �

0

(G)] � 2�g

�1

: (5)

Proof. It is straigthforward that for any set A, the number of preim-

ages x such that �

0

(x) 2 A is at most � + #A. Let n

y

denote the

number of preimages of y. We have

Pr

(X;Y )2

U

G

2

[�

0

(X)� �

0

(Y ) = �] = g

�2

X

u

n

u

n

u+�

:

1

Thoughout this paper OR, AND and XOR denote the usual bit-wise boolean oper-

ators on bitstrings of equal length, and ROTL

i

denotes the left circular rotation by

i positions.
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First, if � = 1, for � 6= 0, the number of (x; y) pairs such that

�

0

(x)� �

0

(y) = � is at most g which is equal to �g.

Let us now consider � � 2. If there exists one y such that n

y

=

�+ 1, then for all other ys we have n

y

� 1. Hence

Pr

(X;Y )2

U

G

2

[�

0

(X)� �

0

(Y ) = �]�

�+ 1

g

2

� g

�2

+ g

�2

X

u

n

u+�

= �g

�2

+ g

�1

� �g

�1

:

In the other cases, we have n

y

� � hence

Pr

(X;Y )2

U

G

2

[�

0

(X) � �

0

(Y ) = �] � g

�2

�

X

u

n

u+�

= �g

�1

:

Therefore, in all cases this inequality holds.

We have

Pr

X2

U

G

[�

0

(X) = �

0

(X + �)] �

X

y;n

y

�2

n

y

g

�1

= 1 � g

�1

#fy;n

y

= 1g:

The number of ys such that n

y

= 1 is greater than g � 2�, thus the

probability is less than 2�g

�1

.

The number of xs such that ���

0

(x) 62 �

0

(G) is at most �+ g�

#�

0

(G) which is at most 2�. ut

As an example of almost orthomorphism in Z

2

m

(which has no

orthomorphism), we simply claim that the simple rotation ROTL

is a 1-almost orthomorphism. Actually, it is a permutation, and

ROTL

0

(x) is equal to x+MSB(x) where MSB(x) denotes the most

signi�cant bit of x. The 0 value is taken twice by this function (by

x = 0 and x = 11 : : :1), the value 100: : :0 is never taken, and all the

other values are taken once.

3 Extending the Luby-Racko� Theorem

In order to extend Luby-Racko� Theorem to the Lai-Massey scheme,

we need the following lemma, which corresponds to Patarin's \coef-

�cient H technique" [12, 13].
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Lemma 3. Let F

�

1

; F

�

2

; F

�

3

be three independent random functions

on a group G with uniform distribution, and let d be an integer.

Let � be an �-almost orthomorphism on G. For any family of G

2

elements (x

1

; : : : ; x

d

; y

1

; : : : ; y

d

) such that the x

i

values are pairwise

di�erent as well as the y

l

i

� y

r

i

values, we have

Pr[�

�

(F

�

1

; F

�

2

; F

�

3

)(x

i

) = y

i

; i]

Pr[C

�

(x

i

) = y

i

; i]

� 1�

d(d � 1)

2

(g

�1

+ g

�2

)� f(�)

where g denotes the cardinality of G and C

�

is a random permutation

of G

2

uniformly distributed, provided that d < g

2

, and f(�) is a

function such that f(0) = 0 and

f(�) = d

d(� � 1) + 3� � 1

2g

:

Proof. We let U

i

; V

i

;W

i

denote the values after the �rst, second and

�nal round of �

�

(F

�

1

; F

�

2

; F

�

3

)(x

i

) respectively. For any value t in G

2

,

we let�t denote t

l

�t

r

. The probabilistic event [W

i

= y

i

] is equivalent

to [�V

i

= �y

i

and W

l

i

= y

l

i

]. Now we have

�V

i

= �

0

(U

l

i

+ F

�

2

(�U

i

)) +�U

i

W

l

i

= V

l

i

+ F

�

3

(�V

i

):

The [W

i

= y

i

] event is thus equivalent to

e

i

= [F

�

2

(�U

i

) 2 �

0

�1

(�y

i

��U

i

)� V

l

i

and F

�

3

(�y

i

) = y

l

i

� U

l

i

]:

When the �U

i

are pairwise di�erent, as well as the �V

i

, it is thus

easy to compute the probability that we have W

i

= y

i

for all i

because it relies on independent F

2

(�U

i

) and F

3

(�V

i

) uniformly

distributed random variables. In addition we need all �y

i

��U

i

to

have preimages by �

0

.

We have

Pr[W

i

= y

i

; i = 1; : : : ; d]

= Pr[e

i

; i = 1; : : : ; d]

� Pr[e

i

;�U

i

6= �U

j

;�y

i

��U

i

2 �

0

(G); i 6= j]

= Pr[e

i

=�U

i

6= �U

j

;�y

i

��U

i

2 �

0

(G); i 6= j]�

8



Pr[�U

i

6= �U

j

;�y

i

��U

i

2 �

0

(G); i 6= j]

= g

�2d

(1� Pr[9i < j �U

i

= �U

j

or 9i �y

i

��U

i

62 �

0

(G))]

� g

�2d

 

1 �

d(d � 1)

2

:max

i<j

Pr[�U

i

= �U

j

]� d:max

i

Pr[�y

i

��U

i

62 �

0

(G)]

!

We notice that

�U

i

= �

0

(x

l

i

+ F (�x

i

)) +�x

i

:

The probability of having collisions with �

0

with two di�erent uni-

formly distributed inputs is less than max(�; 1)g

�1

for �x

i

6= �x

j

from Equation (3). If we have �x

i

= �x

j

, then we will have �U

i

=

�U

j

with probability at most �g

�1

from Equation (4) since x

i

6= x

j

and thus x

l

i

6= x

l

j

. In addition, Pr[�y

i

� �U

i

62 �

0

(G)] is less than

2�g

�1

from Equation (5). Therefore Pr[W

i

= y

i

; i = 1; : : : ; d] is

greater than

g

�2d

 

1 �

d(d� 1)

2

max(�; 1)g

�1

� 2d�g

�1

!

:

We have

Pr[C

�

(x

i

) = y

i

; i = 1; : : : ; d] =

1

g

2

(g

2

� 1) : : : (g

2

� d + 1)

:

Since

g

2

(g

2

� 1) : : : (g

2

� d+ 1)

g

2d

� 1�

d(d � 1)

2g

2

when g

2

> d, we obtain the result. ut

We can now state our result.

Theorem 4. Let F

�

1

; F

�

2

; F

�

3

be three random functions on a group G

with a uniform distribution. Let � be an �-almost orthomorphism on

G. For any distinguisher limited to d chosen plaintexts (d < g

2

) be-

tween �

�

(F

�

1

; F

�

2

; F

�

3

) and a random permutation C

�

with a uniform

distribution, we have

Adv(�

�

(F

�

1

; F

�

2

; F

�

3

); C

�

) � d(d � 1)

�

g

�1

+ g

�2

�

+ f(�)

where g is the cardinality of G and f(�) is de�ned as in Lemma 3.
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Proof. We can assume without loss of generality that the distin-

guisher never request the same query twice. Let ! denote the ran-

dom tape of the distinguisher A, and A be the set of all (!; y) entries

which leads to the output 1. We have

p

O

= Pr

h

A

O

= 1

i

=

X

(!;y)2A

Pr[!] Pr[C(x

i

) = y

i

; i = 1; : : : ; d]

where x = (x

1

; : : : ; x

d

) in which x

i

depends on ! and (y

1

; : : : ; y

i�1

).

We let C = �

�

(F

�

1

; F

�

2

; F

�

3

). Thus we have

p

C

� p

C

�

=

X

(!;y)2A

Pr[!](Pr[C(x

i

) = y

i

; i]� Pr[C

�

(x

i

) = y

i

; i]):

We split the sum between the y entries for which the�y

i

are pairwise

di�erent, and the others. From the previous lemma we have

p

C

� p

C

�

� �

X

(!;y)2A

�y

i

6=�y

j

Pr[!]p

�

�� Pr[9i < j �C

�

(y

i

) = �C

�

(y

j

)]

where � =

d(d�1)

2

(g

�1

+ g

�2

) + f(�) and p

�

is the probability that

C

�

(x

i

) = y

i

for i = 1; : : : ; d. The �rst sum is less than �, and the last

probability is less than

d(d�1)

2

g

�1

, thus

p

C

� p

C

�

� ���

d(d � 1)

2

g

�1

:

We can then apply the same result to the symmetric distinguisher,

and obtain the result. ut

4 Inheritance of Decorrelation in the

Lai-Massey Scheme

We can use the same proof as in [24] for proving that the decorrela-

tion bias of the round functions of a Lai-Massey scheme is inherited

by the whole structure. The following lemma is a straightforward

application of a more general lemma from [24].

Lemma 5. Let m be an integer, and F

1

; : : : ; F

r

be r random func-

tions on a group G. Let � be a permutation on G. We have

jj[�

�

(F

1

; : : : ; F

r

)]

d

� [�

�

(F

�

1

; : : : ; F

�

r

)]

d

jj

a

�

r

X

i=1

DecF

d

jj:jj

a

(F

i

)

where F

�

1

; : : : ; F

�

r

are uniformly distributed random functions.
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Following [24], this lemma and Lemma 3 enables to prove the fol-

lowing corollary.

Corollary 6. If F

1

; : : : ; F

r

are r (with r � 3) random function on a

group G of order g such that DecF

d

jj:jj

a

(F

i

) � � and if � is an �-almost

orthomorphism on G, we have

DecP

d

jj:jj

a

(�

�

(F

1

; : : : ; F

r

)) �

�

3�+ d(d � 1)

�

2g

�1

+ g

�2

�

+ 2f(�)

�

b

r

3

c

where f(�) is de�ned in Lemma 3.

5 On Super-Pseudorandomness

Super-pseudorandomness corresponds to cases where attacks can

query chosen ciphertexts as well. We extend Lemma 3 in order to

get results on the super-pseudorandomness.

Lemma 7. Let F

�

1

; F

�

2

; F

�

3

; F

�

4

be four independent random func-

tions on a group G with uniform distribution, and let d be an in-

teger. Let � be an �-almost orthomorphism on G. For any set of

x

1

; : : : ; x

d

; y

1

; : : : ; y

d

values in G

2

such that the x

i

values are pair-

wise di�erent, we have

Pr[�

�

(F

�

1

; F

�

2

; F

�

3

; F

�

4

)(x

i

) = y

i

; i]

Pr[C

�

(x

i

) = y

i

; i]

� 1�d(d�1)

�

g

�1

+ g

�2

�

�f

0

(�)

where g denotes the cardinality of G and C

�

is a random permutation

of G

2

uniformly distributed, provided that d < g

2

, and f

0

(�) is a

function such that f

0

(0) = 0 and

f

0

(�) = dg

�1

(d(�� 1) + �� 1):

Proof. �

�

(F

�

1

; F

�

2

; F

�

3

; F

�

4

)(x

i

) = y

i

) is equivalent to

�

�

(F

�

1

; F

�

2

; F

�

3

)(x

i

) = �

�

�1

(F

�

4

)(y

i

):

We can focus on the probability that all ��

�

�1

(F

�

4

)(y

i

) are pair-

wise di�erent. Siminarly as in the proof of Lemma 3, this holds but

for a probability less than

d(d�1)

2

max(�; 1)g

�1

. We can then apply

Lemma 3 to complete the proof. ut

11



This extends Theorem 4.

Theorem 8. Let F

�

1

; F

�

2

; F

�

3

; F

�

4

be four random functions on a group

G with a uniform distribution. Let � be an �-almost orthomorphism

on G. For any distinguisher limited to d chosen plaintexts or cipher-

texts (d < g

2

) between �

�

(F

�

1

; F

�

2

; F

�

3

; F

�

4

) and a random permutation

C

�

with a uniform distribution, we have

Adv(�

�

(F

�

1

; F

�

2

; F

�

3

; F

�

4

); C

�

) � d(d � 1)

�

g

�1

+ g

�2

�

+ f

0

(�)

where g denotes the cardinality of G and f

0

(�) is de�ned in Lemma 7.

The proof is the same as in Theorem 4, but with no consideration

on the �y

i

6= �y

j

cases.

This shows that a 4-round random Lai-Massey scheme with an �-

almost orthomorphism is a super-pseudorandom permutation when

used less than

q

g=max(�; 1) times. This also extends to the follow-

ing decorrelation bias upper bound.

Corollary 9. If F

1

; : : : ; F

r

are r (with r � 4) random function on a

group G of order g such that DecF

d

jj:jj

a

(F

i

) � � and if � is an �-almost

orthomorphism on G, we have

DecP

d

jj:jj

s

(�

�

(F

1

; : : : ; F

r

)) �

�

4� + d(d� 1)

�

2g

�1

+ g

�2

�

+ 2f

0

(�)

�

b

r

4

c

where f

0

(�) is de�ned in Lemma 7.

6 A New Family of Block Ciphers

In this section we construct a new family of block ciphers called

Walnut (as for \Wonderful Algorithm with Light N-Universal Trans-

formation") Walnut is a Lai-Massey scheme which depends on four

parameters (m; r; d; q) where m is the message-block length (must

be even), r is the number of rounds, d is the order of decorrelation

and q is an integral prime power at least 2

�

m

2

. It is characterized by

having round function F

i

with the form

F

i

(x) = �

i

(r

i

(K

i;1

) + r

i

(K

i;2

)r

i

(x) + : : :+ r

i

(K

i;d

)r

i

(x)

d�1

)

where the K

i;j

are independent uniformly distributed bitstrings of

length m=2, r

i

is an injective mapping from f0; 1g

m

2

to GF(q), and

12



�

i

is a surjective mapping from GF(q) to f0; 1g

m

2

. This is a straight-

forward extension of the Peanut construction. It has been shown in

[24] that DecF

d

(F

i

) is less than

� = 2

�

(1 + �)

d

� 1

�

where q = (1 + �)2

m

2

. We use � = ROTL as a 1-almost orthomor-

phism. Therefore by approximating the upper bounds of Corollaries 6

and 9 we have

DecP

d

jj:jj

a

(Walnut(m; r; d; q))��

�

6d� + 2d

2

2�

m

2

�

b

r

3

c

DecP

d

jj:jj

s

(Walnut(m; r; d; q))��

�

8d� + 2d

2

2

�

m

2

�

b

r

4

c

:

With m = 64, d = 2 and p = 2

32

+ 15, we obtain

DecP

d

jj:jj

a

(Walnut(64; r; 2; 2

32

+ 15)) � 2

�24

b

r

3

c

DecP

d

jj:jj

s

(Walnut(64; r; 2; 2

32

+ 15)) � 2

�24

b

r

4

c

:

This provides su�cient security against di�erential and linear at-

tacks for r � 12.

7 Conclusion

We have shown that adding a simple orthomorphism (or almost or-

thomorphism) enables the Lai-Massey scheme to provide random-

ness on three rounds, and super-pseudorandomness on four rounds,

like for the Feistel scheme. We have shown that we can get similar

decorrelation upper bounds as well and propose a new block cipher

family.
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