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Abstract In previous work, security results of decorrelation theory was

based on the in�nity-associated matrix norm. This enables to prove that

decorrelation provides security against non-adaptive iterated attacks. In

this paper we de�ne a new matrix norm dedicated to adaptive chosen

plaintext attacks. Similarly, we construct another matric norm dedicated

to chosen plaintext and ciphertext attacks.

The formalism from decorrelation enables to manipulate the notion of

best advantage for distinguishers so easily that we prove as a trivial

consequence a somewhat intuitive theorem which says that the best ad-

vantage for distinguishing a random product cipher from a truly random

permutation decreases exponentially with the number of terms.

We show that several of the previous results on decorrelation extend

with these new norms. In particular, we show that the Peanut construc-

tion (for instance the DFC algorithm) provides security against adaptive

iterated chosen plaintext attacks with unchanged bounds, and security

against adapted iterated chosen plaintext and ciphertext attacks with

other bounds, which shows that it is actually super-pseudorandom.

We also generalize the Peanut construction to any scheme instead of

the Feistel one. We show that one only require an equivalent to Luby-

Racko�'s Lemma in order to get decorrelation upper bounds.

Decorrelation theory provides a new directions to design block ci-

phers with provable security against some classes of standard attacks.

Decorrelating to an order of d a block cipher C

K

which depends on

a random keyK roughly consists in making sure that for all d plain-

texts (x

1

; : : : ; x

d

), the corresponding ciphertexts (C

K

(x

1

); : : : ; C

K

(x

d

))

are uncorrelated. Although the notion of decorrelation is quite intu-

ive, there is no formal de�nition of it, but instead several ways to

measure it. Decorrelation theory has usually four tasks.

1. De�ning a measurement for the decorrelation. This usually relies

on a matrix norm.

?
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2. Constructing a simple primitive (also called \decorrelation mod-

ule") with a quite good decorrelation.

3. Constructing cryptographic algorithms from decorrelation mod-

ules, and proving that the decorrelation of the primitive is inher-

ited by the algorithm.

4. Proving that the decorrelation provides security against classes

of attacks.

In [10, 11, 14, 15], these issues have been treated with the in�nity-

associated matrix norm (denoted jjj:jjj

1

). In particular, it was shown

that this norm corresponds to the best advantage of a non-adaptive

chosen plaintext attack. The present paper proves the results, but

with a quite non-intuitive norm which corresponds to the best ad-

vantage of adaptive chosen plaintext attacks, and of adaptive chosen

plaintext and ciphertext attacks. In particular we show that previous

results on Peanut constructions extend to this setting. In particular,

DFC has the same provable security against adaptive iterated chosen

plaintext and ciphertext attacks.

1 Previous Results

The goal of decorrelation theory is to provide some kinds of formal

proof of security on block ciphers. Earlier results was due to Shan-

non [9] (who show the limits of unconditional security) and Luby

and Racko� [8] (who show how the randomness theory is applicable

to provide provable security). Decorrelation theory is mainly based

on Carter-Wegman's universal hashing paradigm [2]. As was shown

by Wegman and Carter [17], this enables to provide provably secure

Message Authentication Codes.

Results on decorrelation have �rst been published in STACS' 98 [10].

1

In this paper, decorrelation bias was formally de�ned.

De�nition 1. Given a random function F from a given set M

1

to

a given set M

2

and an integer d, we de�ne the \d-wise distribution

matrix" [F ]

d

of F as a M

d

1

�M

d

2

-matrix where the (x; y)-entry of

[F ]

d

corresponding to the multi-points x = (x

1

; : : : ; x

d

) 2 M

d

1

and

y = (y

1

; : : : ; y

d

) 2 M

d

2

is de�ned as the probability that we have

F (x

i

) = y

i

for i = 1; : : : ; d.

1

A more complete version (with some error �xed in it) is available in [11].
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De�nition 2. Given a random function F from a given set M

1

to

a given setM

2

, an integer d, and a distance D over the matrix space

R

M

d

1

�M

d

2

, we de�ne the \d-wise decorrelation bias of function F" as

being the distance

DecF

d

D

(F ) = D([F ]

d

; [F

�

]

d

)

where F

�

is a uniformly distributed random function from M

1

to

M

2

. Similarly, for M

1

= M

2

, if C is a random permutation over

M

1

we de�ne the \d-wise decorrelation bias of permutation C" as

being the distance

DecP

d

D

(C) = D([C]

d

; [C

�

]

d

)

where C

�

is a uniformly distributed random permutation over M

1

.

In [10, 11], the in�nity-associated matrix norm denoted jjj:jjj

1

and

de�ned by

jjjAjjj

1

= max

row i

X

col j

jA

i;j

j

was considered. For an injection r from f0; 1g

m

to GF(q) and a

surjection � from GF(q) to f0; 1g

m

, it was shown that the random

function F de�ned on f0; 1g

m

by

F (x) = �

�

r(K

0

) + r(K

1

)x+ : : :+ r(K

d�1

)x

d�1

�

for (K

0

; : : : ;K

d�1

) uniformly distributed in f0; 1g

dm

provides a quite

good decorrelation. Namely,

DecF

d

jjj:jjj

1

(F ) � 2(q

d

:2

�md

� 1):

It was shown that this decorrelation could be inherited by a Feistel

network [3] in a construction called \Peanut". Namely, when the

round functions of an r-round Feistel network (r � 3) has a d-wise

decorrelation bias less than �, the d-wise decorrelation bias of the

whole permutation is less than

�

3�+ 3�

2

+ �

3

+ d

2

:2

1�

m

2

�

b

r

3

c

: (1)

It was also shown that decorrelation to the order 2 provides security

against di�erential and linear attacks.
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In SAC' 98 [12], the Euclidean norm (denoted jj:jj

2

) was pro-

posed, and it was shown that the same results hold for the d = 2

case with other upper bounds. These bounds unfortunately provides

worse bounds than for the jjj:jjj

1

ones, but are applicable to the

following decorrelation module for which the jjj:jjj

1

is not:

F (x) = (K

0

+K

1

x) mod p

with (K

0

;K

1

) 2

U

f0; : : : ; 2

m

� 1g

2

and a prime p < 2

m

.

Based on the Peanut construction, an algorithm called \DFC" [4,

5, 1] was submitted to the Advanced Encryption Standard process.

In Eurocrypt' 99 [15], the family of iterated attacks of order d was

considered. It was shown that decorrelation to the order 2d provides

security against iterated attacks of order d.

2 A New Decorrelation Measurement

Dedicated to Adaptive Attacks

Let us consider a dinstinguisher A which is limited to d queries to

an oracle O. Its computation power is unlimited, and its output (0

or 1) can be probabilistic. Its aim is to distinguish if O implements

a random function F

1

or a random function F

2

. For this we consider

the advantage

Adv

A

(F

1

; F

2

) =

�

�

�Pr

h

A

O=F

1

= 1

i

� Pr

h

A

O=F

2

= 1

i

�

�

� :

We say that A is non-adaptive if all queries can be sent simulta-

neously to the oracle (in particular, no query depend on the answer

to a previous query). A well known result shows that the largest

advantage of a non-adaptive chosen plaintext attack corresponds to

the jjj:jjj

1

norm of [F

1

]

d

� [F

2

]

d

. Namely, we have

max

A non�adaptive

chosen plaintext

d�limited

Adv

A

(F

1

; F

2

) =

1

2

jjj[F

1

]

d

� [F

2

]

d

jjj

1

:

We adapt this result in order to de�ne a new norm which will be

denoted jj:jj

a

.
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De�nition 3. Let M

1

and M

2

be two sets, and d be an integer.

For a matrix A 2 R

M

d

1

�M

d

2

we de�ne

jjAjj

a

= max

x

1

X

y

1

max

x

2

X

y

2

: : :max

x

d

X

y

d

jA

(x

1

;:::;x

d

);(y

1

;:::;y

d

)

j:

Theorem 4. For any random functions F

1

and F

2

from a set M

1

to a set M

2

and any integer d, we have

max

A distinguisher

d�limited

Adv

A

(F

1

; F

2

) =

1

2

jj[F

1

]

d

� [F

2

]

d

jj

a

:

Proof. Let A be a distinguisher. It �rst queries with a random X

1

(where the randomness comes from A only), then get a random Y

1

(whose randomness also comes from O). Then it queries a random

X

2

which depends on X

1

and Y

2

, and get a Y

2

, ... At the end, A

answers a random value A = 0 or 1. We have

Pr

h

A

O

= 1

i

=

X

x

1

;y

1

;:::;x

d

;y

d

Pr[x

1

] Pr[y

1

=x

1

] : : :Pr[A = 1=x

1

: : : y

d

]:

Let p

i

= Pr

h

A

O=F

i

= 1

i

. Since the randomness of A and F

i

are

independent, we have

p

i

=

X

x

1

;y

1

;:::;x

d

;y

d

Pr[x

1

] Pr[x

2

=x

1

; y

1

] : : :Pr[A = 1=x

1

: : : y

d

][F

i

]

d

x;y

where x = (x

1

; : : : ; x

d

) and y = (y

1

; : : : ; y

d

). This is a sum of terms

of the form Pr[x

1

]f(x

1

). Obviously, the advantage is maximal when

Pr[x

1

] = 1 for the maximal f(x

1

). Actually, we show that this sum is

maximal for some deterministic distinguisher in which x

j

is a func-

tion of y

1

; : : : ; y

j�1

only. We have

p

1

� p

2

=

X

y

a

y

�

[F

1

]

d

x;y

� [F

2

]

d

x;y

�

where a

y

is 0 or 1. Obviously, this di�erence is maximal if a

y

is 1 for

the positive terms, and 0 for the negative terms. We notice that the

sum of all terms is 0. Hence we have

jp

1

� p

2

j =

1

2

X

y

�

�

�[F

1

]

d

x;y

� [F

2

]

d

x;y

�

�

�

when it is maximal. The choice of x which maximizes this sum com-

pletes the proof. ut
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In order to deal with decorrelation biases, it is pleasant to have

matrix norms, i.e. norms such that jjA�Bjj � jjAjj:jjBjj. If we have

such a norm, we actually have the following property

DecP

d

jj:jj

(C

1

� C

2

) � DecP

d

jj:jj

(C

1

):DecP

d

jj:jj

(C

2

) (2)

and the same for DecF

jj:jj

. The following result says it is applicable

for the jj:jj

a

norm.

Theorem 5. jj:jj

a

is a matrix norm.

Proof. We make an induction on d. Let A be a matrix in R

M

d

1

�M

d

2

.

To each x

1

2 M

1

and each x

2

2 M

2

we associate a submatrix

�

x

1

;y

1

(A) in R

M

d�1

1

�M

d�1

2

de�ned by

(�

x

1

;y

1

(A))

(x

2

;:::;x

d

);(y

2

;:::;y

d

)

= A

(x

1

;:::;x

d

);(y

1

;:::;y

d

)

:

These submatrices actually de�ne a matrix �(A) which is basically

a di�erent way of viewing A. We have the following property which

links the corresponding norms for the parameters d and d� 1

jjAjj

a

= max

x

1

X

y

1

jj�

x

1

;y

1

(A)jj

a

:

Let A and B be two matrices. We have

jjA�Bjj

a

= max

x

1

X

y

1

jj�

x

1

;y

1

(A�B)jj

a

:

Straightforward computations show that

�

x

1

;y

1

(A�B) =

X

t

1

�

x

1

;t

1

(A)� �

t

1

;y

1

(B):

Thus by induction we have

jjA�Bjj

a

=max

x

1

X

y

1

X

t

1

jj�

x

1

;t

1

(A)� �

t

1

;y

1

(B)jj

a

�max

x

1

X

y

1

X

t

1

jj�

x

1

;t

1

(A)jj

a

:jj�

t

1

;y

1

(B)jj

a

:

This last expression is actually a jjj:jjj

1

norm of the product of two

matrices A

0

and B

0

de�ned by

(A

0

)

x

1

;t

1

= jj�

x

1

;t

1

(A)jj

a

6



and

(B

0

)

t

1

;y

1

= jj�

t

1

;y

1

(B)jj

a

:

We already know that jjj:jjj

1

is a matrix norm. Therefore we have

jjA�Bjj

a

� jjjA

0

�B

0

jjj

1

� jjjA

0

jjj

1

:jjjB

0

jjj

1

which is jjAjj

a

:jjBjj

a

. ut

As in [10, 11], this theorem implies the following properties.

Corollary 6. For any random function F

1

; : : : ; F

4

, if F

�

denotes a

random function with uniform distribution, the following properties

hold.

DecF

d

jj:jj

a

(F

1

� F

2

)� DecF

d

jj:jj

a

(F

1

):DecF

d

jj:jj

a

(F

2

) (3)

jj[F

1

� F

2

]

d

� [F

1

� F

3

]

d

jj

a

� DecF

d

jj:jj

a

(F

1

):jj[F

2

]

d

� [F

3

]

d

jj

a

(4)

jj[F

1

� F

2

]

d

� [F

3

� F

4

]

d

jj

a

� DecF

d

jj:jj

a

(F

1

):jj[F

2

]

d

� [F

4

]

d

jj

a

+DecF

d

jj:jj

a

(F

4

):jj[F

1

]

d

� [F

3

]

d

jj

a

(5)

Similar properties hold for permutations.

We outline that Equation (3) means that if F

1

and F

2

are two in-

dependent random functions with the same distribution an if � is

the best advantage of a d-limited distinguisher between F

1

and a

uniformly distributed random function F

�

, then the best advantage

of a d-limited distinguisher between F

1

�F

2

and F

�

is less than 2�

2

.

Similarly, for r rounds, the best advantage is less than

1

2

(2�)

r

: the

advantage decreases exponentially with the number of rounds.

3 On the Decorrelation Module of Peanut

The DFC algorithm is a Peanut construction which uses the following

decorrelation module.

F (x) = (Ax+B) mod (2

64

+ 13) mod 2

64

where (A;B) 2

U

f0; : : : ; 2

64

� 1g

2

. This is a particular case of the

Peanut decorrelation module for which we prove the same bound for

its decorrelation bias, but with the jj:jj

a

norm.
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Theorem 7. For an integer m, let q = 2

m

(1 + �) be a prime power

with � > 0. We consider an injection r from f0; 1g

m

to GF(q), and a

surjection � from GF(q) to f0; 1g

m

. We de�ne the following random

function on f0; 1g

m

.

F (x) = �

�

r(A

0

) + r(A

1

):r(x) + : : :+ r(A

d�1

):r(x)

d�1

�

where (A

0

; : : : ; A

d�1

) 2 f0; 1g

md

. We have

DecF

d

jj:jj

a

(F ) � 2

�

(1 + �)

d

� 1

�

:

Proof. We adapt the proof of [11]. We let F

�

be a uniformly dis-

tributed random function. In the computation of jj[F ]

d

� [F

�

]

d

jj

a

, let

x

1

, x

2

= f

2

(y

1

), : : : x

d

= f

d

(y

1

; : : : ; y

d�1

) such that

X

y=(y

1

;:::;y

d

)

j[F ]

d

x;y

� [F

�

]

d

x;y

j

is maximal, where x = (x

1

; : : : ; x

d

).

For some terms in the sum, some x

i

may be equal to each other.

For this we need to make a transformation in order to assume that

all x

i

s are pairwise di�erent. For any (x; y) term, let c be the total

number of di�erent x

i

s. Let � be a monotone injection from f1; : : : ; cg

to f1; : : : ; dg such that all x

�(i)

are di�erent. We notice that if x

i

=

x

j

, we can restrict the sum to y

i

= y

j

(because the other terms

will be all zero). We thus still have x

0

i

= x

�(i)

= f

0

i

(y

0

1

; : : : ; y

0

i�1

)

where y

0

i

= y

�(i)

, and all x

0

i

are pairwise di�erent for i = 1; : : : ; c.

We can now de�ne x

0

c+1

; : : : ; x

0

d

with some new arbitrary functions

f

0

c+1

; : : : ; f

0

d

in such a way that all x

0

i

are pairwise di�erent. We have

DecF

d

jj:jj

a

(F ) =

X

y

0

1

;:::;y

0

c

�

�

�

�

�

�

�

X

y

0

c+1

;:::;y

0

d

�

[F ]

d

x

0

;y

0

� [F

�

]

d

x

0

;y

0

�

�

�

�

�

�

�

�

�

X

y

0

1

;:::;y

0

d

j[F ]

d

x

0

;y

0

� [F

�

]

d

x

0

;y

0

j

where x

0

= (x

0

1

; : : : ; x

0

d

) and y

0

= (y

0

1

; : : : ; y

0

d

). Hence we can assume

without loss of generality that all x

i

s are pairwise di�erent.

8



Obviously, [F ]

d

x;y

can be written j:2

�md

where j is an integer. Let

N

j

be the number of y such that [F ]

d

x;y

= j:2

�md

. We have

DecF

d

jj:jj

a

(F )�

+1

X

j=0

N

j

jj � 1j2

�md

= 2N

0

:2

�md

+

+1

X

j=0

N

j

j:2

�md

�

+1

X

j=0

N

j

:2

�md

:

The �rst sum is equal to

X

y

[F ]

d

x;y

which is equal to 1. The second sum is 2

�md

times the total number

of y, which is also 1. Thus we have DecF

d

jj:jj

a

(F ) � 2N

0

:2

�md

.

Let A be the set of all (x; y) such that [F ]

d

x;y

= 0. Let B be the

set of all (a

0

; : : : ; a

d�1

) in GF(q)

d

such that for at least one j we have

a

j

62 r(f0; 1g

m

). From usual interpolation tricks, we know that for

any (x; y) in A there exists at least one (a

0

; : : : ; a

d�1

) in GF(q)

d

such

that

�(a

0

+ a

1

:r(x

j

) + : : :+ a

d�1

:r(x

j

)

d�1

) = y

j

for j = 1; : : : ; d. Since [F ]

d

x;y

= 0 this must be in B. Furthermore this

mapping from A to B must be an injection. Hence N

0

, which is the

cardinality of A is less than the cardinality of B which is q

d

� 2

md

.

ut

4 Decorrelation of Peanut-like Constructions

We show here that the decorrelation of internal decorrelation mod-

ules in a cipher can be inherited by the whole scheme.

Lemma 8. Let d be an integer, and F

1

; : : : ; F

r

be r random func-

tions which are use in order to de�ne a random function 
(F

1

; : : : ; F

r

).

We assume that the 
 structure is such that for any x, computing


(F

1

; : : : ; F

r

)(x) requires a

i

computations of F

i

for i = 1; : : : ; r. We

have

jj[
(F

1

; : : : ; F

r

)]

d

� [
(F

�

1

; : : : ; F

�

r

)]

d

jj

a

�

r

X

i=1

DecF

a

i

d

jj:jj

a

(F

i

)

where F

�

1

; : : : ; F

�

r

are uniformly distributed random functions.

9



Proof. By triangular inequalities, we have

jj[
(F

1

; : : : ; F

r

)]

d

� [
(F

�

1

; : : : ; F

�

r

)]

d

jj

a

�

r

X

i=1

jj[
(F

1

; : : : ; F

i�1

; F

�

i

; : : : ; F

�

d

)]

d

� [
(F

1

; : : : ; F

i

; F

�

i+1

; : : : ; F

�

d

)]

d

jj

a

:

From Theorem 4, each term corresponds to the best distinguisher

between
(F

1

; : : : ; F

i�1

; F

�

i

; : : : ; F

�

d

) and 
(F

1

; : : : ; F

i

; F

�

i+1

; : : : ; F

�

d

).

This attack can be transformed into a distinguisher between F

i

and

F

�

i

by simulating the other functions. Hence this attack cannot have

an advantage greater than the best attack for distinguishing F

i

from

F

�

i

with the same number of queries. The number of queries for this

attack is at most a

i

d. By applying back Theorem 4, we obtain the

result. ut

This lemma can be considered as a \meta-theorem" which is ap-

plicable to any product cipher construction. For instance, for the

Feistel construction 	(F

1

; : : : ; F

r

), we have a

i

= 1 for all i. The

Peanut construction consists of picking decorrelated modules as round

functions. In order to �nish to estimate the decorrelation of Feistel

structures, we need a lemma in order to estimate the decorrelation

of Feistel ciphers with truly random functions. This is precisely the

Luby-Racko� [8] Lemma.

Lemma 9 (Luby-Racko� 88). Let F

�

1

; F

�

2

; F

�

3

be three random

function on f0; 1g

m

2

with uniform distribution. We have

DecP

d

jj:jj

a

(	(F

�

1

; F

�

2

; F

�

3

)) � 2d

2

:2

�

m

2

:

(This is a straightforward translation of the original result by using

Theorem 4.) We can thus upper boud the decorrelation bias in a

Peanut construction.

Corollary 10. If F

1

; : : : ; F

r

are r random function (r � 3) on

f0; 1g

m

2

such that DecF

d

jj:jj

a

(F

i

) � �, we have

DecP

d

jj:jj

a

(	(F

1

; : : : ; F

r

)) � (3�+ 2d

2

:2

�

m

2

)

b

r

3

c

:

We note that this slightly improves Equation (1) taken from [10, 11].

10



Proof. Since the best advantage cannot increase when we make a

product of independent ciphers, Lemma 9 holds for any Feistel cipher

with at least three rounds. We write 	(F

1

; : : : ; F

r

) as a product of

j

r

3

k

Feistel ciphers with at least 3 rounds. We apply Lemma 8 and

Lemma 9 to each of it, and we �nally apply Equation (2). ut

Other product constructions require an equivalent to the Luby-

Racko� Lemma. For instance, the Lai-Massey scheme which is used

in IDEA [7, 6] has an equivalent result. (See [16].)

5 Super-Pseudorandomness

We now address the problem of d-limited adaptive chosen plaintext

and ciphertext distinguishers. Since the proofs are essentially the

same, we do not give all details here. We �rst de�ne the correspond-

ing norm.

De�nition 11. Let M

1

and M

2

be two sets, and d be an integer.

For a matrix A 2 R

M

d

1

�M

d

2

we let �

x

1

;y

2

(A) denote the matrix in

R

M

d�1

1

�M

d�1

2

de�ned by

(�

x

1

;y

1

(A))

(x

2

;:::;x

d

);(y

2

;:::;y

d

)

= A

(x

1

;:::;x

d

);(y

1

;:::;y

d

)

:

By induction on d we de�ne

jjAjj

s

= max

 

max

x

1

X

y

1

jj�

x

1

;y

2

(A)jj

s

;max

y

1

X

x

1

jj�

x

1

;y

2

(A)jj

s

!

with the convention that jjAjj

s

= jA

();()

j for d = 0.

Since chosen ciphertext makes sense for permutation only, all the

following results hold for permutations.

Theorem 12. For any random permutation C

1

and C

2

over a set

M and any integer d, we have

max

A distinguisher

chosen plaintex and ciphertext

d�limited

Adv

A

(C

1

; C

2

) =

1

2

jj[C

1

]

d

� [C

2

]

d

jj

s

:

The proof is a straiftforward adaptation of the proof of Theorem 4.

11



Theorem 13. jj:jj

s

is a matrix norm.

For this proof, we adapte the proof of Theorem 5 and notice that

max

y

1

X

x

1

jM

x

1

;y

1

j = jjjM jjj

1

where jjj:jjj

1

is the matrix norm associated to the L

1

vector norm.

Therefore Corollary 6 holds for the jj:jj

s

norm with permutations.

We can also extend Lemma 8.

Lemma 14. Let d be an integer, F

1

; : : : ; F

r

be r random functions,

and C

1

; : : : ; C

s

which are use in order to de�ne a random permuta-

tion C = 
(F

1

; : : : ; F

r

; C

1

; : : : ; C

s

). We assume that the 
 structure

is such that for any x and y, computing C(x) or C

�1

(y) requires a

i

computations of F

i

for i = 1; : : : ; r and b

i

computations of C

i

or C

�1

i

for i = 1; : : : ; s. We have

jj[
(F

1

; : : : ; F

r

; C

1

; : : : ; C

s

)]

d

� [
(F

�

1

; : : : ; F

�

r

; C

�

1

; : : : ; C

�

s

)]

d

jj

s

�

r

X

i=1

DecF

a

i

d

jj:jj

a

(F

i

) +

s

X

i=1

DecP

b

i

d

jj:jj

s

(C

i

)

where F

�

1

; : : : ; F

�

r

are uniformly distributed random functions and

C

�

1

; : : : ; C

�

s

are uniformly distributed random permutations.

For instance, in the Peanut construction, we have s = 0 and a

i

= 1

for all i. However Lemma 9 is not applicable with the jj:jj

s

norm. We

thus use a similar lemma for 4-round Feistel ciphers.

Lemma 15 (Luby-Racko� 88). Let F

�

1

; F

�

2

; F

�

3

; F

�

4

be four ran-

dom function on f0; 1g

m

2

with uniform distribution. We have

DecP

d

jj:jj

s

(	(F

�

1

; F

�

2

; F

�

3

; F

�

4

)) � 2d

2

:2

�

m

2

:

We can therefore measure the decorrelation in the sense of jj:jj

s

of

Peanut constructions.

Corollary 16. If F

1

; : : : ; F

r

are r random function (r � 4) on

f0; 1g

m

2

such that DecF

d

jj:jj

a

(F

i

) � �, we have

DecP

d

jj:jj

a

(	(F

1

; : : : ; F

r

)) � (4�+ 2d

2

:2

�

m

2

)

b

r

4

c

:

This shows how much super-pseudorandom a Peanut construction

is.
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6 Security by Decorrelation with the New

Norms

We already know that the decorrelation with the jjj:jjj

1

norm enables

to prove the security against di�erential, linear distinguishers and

non-adaptive chosen plaintext iterated attacks. Since we have jj:jj

s

�

jj:jj

a

� jjj:jjj

1

, all these results are applicable to the decorrelation

with the jj:jj

a

norm.

From the proofs in [15] it is quite clear that all results on iterated

attack extends to jj:jj

a

-decorrelation when each iteration is adaptive,

and to jj:jj

s

-decorrelation when they can use chosen ciphertexts in

addition.

One open question remains from the iterated attacks results. In

[15] it was shown that the security proof requires some assumption

on the distribution of the queries to the oracle. This was meaningful

when we addresses the known plaintext non-adaptive attacks. But

now adaptive attacks are chosen plaintext in essence. It thus remains

to improve the results from [15] in order to get provable security

against these attacks.

7 Conclusion

We have shown to which matrix norm adaptive attacks and chosen

plaintext and ciphertext attacks was related to. These norms de�ne

a much stronger notion of decorrelation. We have shown that previ-

ous upper bounds on the decorrelation extends to these new norms,

in particular for the Peanut construction. We also generalized the

Peanut construction to any scheme which is not necessarily a Feis-

tel one. We have shown that if it is a product scheme, then we can

upper bound the decorrelation of the whole scheme from the decor-

relation of its internal functions, provided that we can extend the

Luby-Racko� Lemma to this scheme.

Our formalism happen to be practical enough in order to make

trivial the exponential decreasing of the best advantage of a distin-

guisher between a product cipher and a truly random cipher.
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