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TOWARD 4-DIMENSIONAL

FULLERENES

1

Michel Deza and Mikhail Shtogrin

Abstract

We explore the existence of high-dimensional analogues of fullerenes

F

n

(i.e. of simple polyhedra with only 5- and 6-gonal faces) seen

as (d� 1)-dimensional simple manifolds (preferably, polytopal or

at least spherical) with only 5- and 6-gonal 2-faces. Three in�nite

families of such 4-fullerenes are presented here. The Construction

A gives 4-polytopes by suitable insertion of fullerenes F

30

(D

5h

)

into glued 120-cells. The Construction B gives 3-spheres by grow-

ing dodecahedra and barrels F

24

around of given fullerene. The

Construction C gives 4-fullerenes from special decoration of given

4-fullerene, which add fullerenes F

20

, F

24

, F

26

and F

28

(T

d

) only.

Finally, in�nite 5-fullerenes (including a simply connected S

3

�R

1

)

are obtained (by a variation of gluing of two regular tilings 5333

of hyperbolic 4-space).

1 Introduction

We de�ne here n-fullerene as a (n� 1)-dimensional simple (i.e. n-valent)

manifold (on any surface), such that any 2-face is 5- or 6-gon. We are

specially interested by the n-fullerenes, which are spherical, i.e. home-

omorphic to the (n � 1)-sphere, and, moreover, polytopal, i.e. convex.

So, the dual of a n-fullerene is a (n� 1)-dimensional simplicial manifold,

such that any (n� 3)-face is adjacent to 5 or 6 (n� 2)-simplexes.

We will use following notation. F

n

(G) denotes a fullerene, i.e simple

polyhedron with only 5- and 6-faces, having n vertices and the group

of symmetry G. In particular, the regular dodecahedron F

20

(I

h

) and

the \hexagonal barrel" (unique F

24

) will be also denoted as Do and B

6

,

respectively.

1
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Clearly, 120-cell is a 4-dimensional analogue of the regular Do. There

exists a 5-dimensional analogue: simple regular tiling of the hyperbolic

4-space by 120-cells; this (in�nite) tiling is denoted by 5333. 120-cell and

5333 are a 4-fullerene and a 5-fullerene, in our terms.

For any 4-polytope (moreover, for any combinatorial 3-sphere, i.e. a

cell-complex on it), denote by (v; e; p; q) its f -vector, i.e. the number of

its i-faces for i = 0; 1; 2; 3. The Euler's characteristic, i.e. the number

v � e + p � q is 0 on 3-sphere. Remind also that in any i-face of simple

3-manifold, intersect exactly 4-i (i+1)-faces; so, if it is spherical, then

e = 2v, p = v + q and the number p

5

of 5-faces is 6q.

Because of v � e + p � q = 0, there is no on 3-sphere an analogue

for the special role of the hexagonal (or 4-gonal) faces in simple (or

4-valent, respectively) polyhedra in terms of their cells. It is why we

de�ned d-fullerenes in terms of their 2-faces. So, all 3-faces of polyhe-

dral d-fullerenes are fullerenes; we want, moreover, those fullerenes to

be close relatives of Do. Besides B

6

(unique next to Do, by the num-

ber of vertices), two other fullerenes with isolated hexagons, unique F

26

and unique F

28

(T

d

), are also candidates. The duals of those three poly-

hedra are known in Chemistry (under name Frank-Kasper polyhedra

Z

14

; Z

15

; Z

16

) and Physics, where they appear as dislinations (rotational

defects) with respect to the vertex �gure of the local icosahedral order.

The fullerene F

30

(D

5h

) (1-elongated dodecahedron) will also appear be-

low, in the Construction A.

Some relevant facts and analogues are:

(i) It is well-known (see, for example, [Bok95]) that the boundary of

the 120-cell is unique simple equifacetted 3-sphere with (combinatorial)

facet F

20

. But [She66] has shown that every 4-polytope can be approxi-

mated arbitrary closely (in the Hausdor� distance) by a polytope whose

facets are projective images of the dodecahedron. Remind also that 120-

cell is the universal polytope in the sense that any regular � 4-polytope,

including star-polytopes, can be inscribed (vertices into vertices) in it

( [Cox73], page 269); moreover, ([vOs15]) one of them (

5

2

33, in Schl�a
i

notation) is isomorphe to 120-cell = 533. [FTo64] in Chapter 10, conjec-

tures that 120-cell is isoperimetrically best (i.e. it has the least volume

among 4-polytopes of unit in-radius, having 120 cells) and proves that it

is locally best. See also [Con67], [Miy90] for some operations on 120-cell.

(ii) Pasini [Pas98] proved non-existence of 4-dimensional football, i.e.

equifacetted 4-fullerene with (combinatorial) facet F

60

(I

h

). Clearly, any

equifacetted spherical 4-fullerene with (combinatorial) facet F

n

, has v =

qn

4

vertices. Perhaps, 120-cell is unique such 4-fullerene.

(iii) All �nite 3-fullerenes have (because of v�e+p = 2(1�g), where
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g is the genus of the surface) 12(1� g) pentagonal faces; so, either they

are usual spherical fullerenes, or g = 1 and they are partitions of the

torus or the Klein bottle by hexagons.

(iv) There exists (non-simple, of course) a tiling of Euclidean 3-space

by (116 polyhedra isomorphic to) the Do; the question about tiling of

4-space by 4-polytopes isomorphic to the 120-cell, is open (see [Sch84]).

Irregular pentagonal dodecahedra together with B

6

(also with F

28

(T

d

)

or B

6

and F

26

) �ll Euclidean 3-space. Those space-�llings were used (in

[Wel84] on pp. 74, 136-139, 659-664) for description of clathrate crystal

structures of some ice-like or silicate compounds. The hexagonal barrel

B

6

tiles alone the hyperbolic 3-space; it is the fundamental polyhedron

of a compact hyperbolic manifold, called the L�obell space (L�obell, 1931),

which was considered also in Cosmology; see, for example, [Got80].

(v) We can show, using Theorem 6 from [DSt97], that the skeleton of

the dual of any 4-fullerene does not embed isometrically (up to a scale)

in any cubic lattice; 120-cell also does not embed ( [DGr97]).

The Table below present three families of 4-fullerenes, constructed in

this note.

In the Table the columns 1, 2 give the number of vertices and 2-faces;

the number of edges is 2V , clearly. The next 5 columns give the number

of corresponding fullerenes among cells of a 4-fullerene; here F

20

, F

24

are Do, B

6

while F

28

, F

30

are unique fullerenes with symmetry T

d

, D

5h

,

respectively, and such number of vertices. The last column F

0

gives: the

number of 3-cells F , when it is a fullerene in the Construction B, and

the number of 3-cells in F , when it is a 4-fullerene in the construction C.

The symbols v, p = (p

5

; p

6

), q denote the number of vertices, of 2-faces

and (for the Construction C) of cells of F .

Table. f-vectors of some \4-dimensional fullerenes"

V P F

20

F

24

F

28

F

30

F

0

120� 600 720 120 0 0 0

A

i

560i+ 40 666i+ 54 94i+ 26 0 0 12i� 12

B(F ) 30v

71v

2

+ 10

7v

2

+ 48 2v � 40 0 0 2

C

1

(F ) 20v 20v + 3p 2p

5

2p

6

v 0 q
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2 Construction of polytopal 4-fullerenes A

i

It will be a 4-dimensional analogue of the following simple construc-

tion of the i-layered dodecahedron F

20+10i

; see Figure above for such F

30

.

Stellate a face t of Do (i.e. extend face-planes of its 5 neighbors until

their intersection; so we got a 5-pyramid on the face). Then do a pro-

jective transformation, sending the apex of 5-pyramid to in�nity so that

the 5-pyramid became right regular 5-prism. The image of our regu-

lar dodecahedron will be inscribed in the continuation of above 5-prism.

The face t became larger and its opposite became smaller, but the both

remain regular 5-gons; all other faces became irregular. Only one of six

5-axes of symmetry of Do will remain. Take the mirror re
ection of such

modi�ed dodecahedron on the face-plane of t. Two such dodecahedra

glued by the \large" regular face, obtained from t, form the convex 3-

polytope F

30

(D

5h

). It has exactly two regular 5-gonal faces: \small" ones

from both modi�ed dodecahedra. On each of them we can continue same

procedure and get general i-layered dodecahedron F

20+10i

with symmetry

D

5d

for even i > 0 and D

5h

for odd i. (This tube is the dual of 2-capped

pile of i 5-anti-prisms.)

Apply same procedure to the 120-cell in 4-space. Stellate a dodecahe-

dral face t until we get a pyramid on it. By a projective transformation,
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sending the apex to in�nity, it will be transformed into right prism, hav-

ing Do as a base. 120-cell will be modi�ed: t became larger, its opposite

became smaller, but both remain regular; all other dodecahedral cells

became irregular. Take the mirror re
ection of modi�ed 120-cells on the

3-space, containing t; we get (from two modi�ed 120-cells, glued by the

\large" regular dodecahedron) the convex 4-polytope A

1

(120� cell). It

have exactly two faces Do, \small" Do's of two modi�ed 120-cell, other

dodecahedra are irregular. The continuation of this procedure on each

of \small" Do gives the 4-polytope A

i

(120� cell). See its f -vector in the

Table above; exactly 30i� 30 its 2-faces are hexagons.

We can apply the construction A to any non-exposed dodecahedral

cell of a A

i

(120 � cell), i.e. having only dodecahedral neighbors: we

obtain 3-spheres, but now there is no guarantee of convexity. When

operation A is applied to several non-exposed dodecahedra, no two of

them should have same dodecahedral neighbor. In order to enumerate

such possibilities, the solution of following extremal problem will be of

interest (we give it in dual form for 600-cell): estimate the maximal

number of vertices in 600-cell with all pairwise distances (in the skeleton,

having the diameter 5) at least 3. It is at most 9, clearly, and at least 6:

take 3 suitable vertices on each of two 10-gons (among all 12), which lie

in two orthogonal planes.

In Chapter 4 (Sections 1.7 and 1.8) of [SaM97] are constructed (from

600-cell, by inverting the Hopf �bration of the 3-sphere) 4-fullerenes,

having each 144 dodecahedral cells and 12k cells B

6

for k = 2; 3; 4; 6.

Also in Chapter 7 (Sections 2.7, 3 and 4.2) of [SaM97] are given crystall

agregats, which can be used to construct 4-fullerenes.

3 Construction of spherical 4-fullerenes B(F)

Fix a fullerene F with v vertices, p =

v

2

+2 faces and e =

3v

2

edges. From

an interior point o of F take on the ray through each vertex b a point b

0

with distance d(o; b

0

) = d(o; b)+1. Put on each face of F dodecahedra Do

on 5-gons and barrels B

6

on 6-gons, so that their lateral sides coincide.

(Always in this construction Do and B

6

are combinatorial.) We got 1-

corona: F itself and n polyhedra of 1-st 
oor. The surface of 1-corona

consists of p 1-anti-faces, i.e. opposite ones to the faces of F and others,

which are organized in n 3-hedral triples of 5-gons with the central vertex

b

0

(for each of v vertices b of F ). Put n new Do into those n 3-hedral

angles, one Do for each. We got 2-corona with the 2-nd 
oor, consisting

of v dodecahedra. Each of them is adjacent to 1-corona in 3 faces (of its

3-hedral angle) and to 3 neighbors on the 2-nd 
oor; so 6 remaining faces
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are free. Each of 12 5-gonal (or p� 12 hexagonal) 1-anti-faces is incident

to 5 (or 6,respectively) dodecahedra of the 2-nd 
oor. Those 5 (or 6)

5-gons form a half-dodecahedron (or a half-barrel, respectively). Add for

each of them the second half in order to obtain p new polyhedra; they

form 3-rd 
oor. We got 3-corona. The surface of 3-corona consists of

p 2-anti-faces (i.e. the faces, opposite to 1-anti-faces) and e quadruples,

i.e. two edge-adjacent 5-gons and two other 5-gons, edge-adjacent to the

�rst two via each vertex of the edge of their adjacency. First two 5-gons

are from the surface of 2-corona, two others are from the surface of the

3-corona. Take now two copies of 3-corona. (Remind, that each i-corona

is a 3-ball in 3-space.) Now we will join them in 4-space, putting between

them e new dodecahedra, which will form 4-th 
oor for each copy. Also

corresponding 2-anti-faces of them will coincide. Each Do of the 4-th


oor is incident to each copy of 3-corona by a quadruple and to four

neighbors on the 4-th 
oor.

Clearly, B(Do) is the 120-cell itself and B(B

6

) consists only of two

(combinatorial) fullerenes Do and B

6

.

In fact, the construction B can be similarly applied to any simple

3-polytope with, say, v vertices and any given p-vector (p

3

; p

4

; :::), where

p

i

is the number of i-gonal faces for any i � 3. Above construction

will give simple 3-sphere with 30v vertices, 60v edges,

71v

2

+ 10 2-faces

(including 5p

i

i-faces for each i, except 5) and

11v

2

+ 10 cells, including

2 original 3-polytopes, 4p

i

i-gonal barrels B

i

(p

i

on both 1-st and both

3-rd 
oors) and

7v

2

dodecahedra (v on each of both 2-nd 
oors and

3v

2

,

i.e. the number e of edges, on the common 4-th 
oor). Note that B

5

is

Do and so, 4p

5

+

7v

2

is the number of all dodecahedra.

It looks di�cult to determine when the construction B leads to 4-

polytopes (i.e. the convex 3-spheres) even when applied to such polyhe-

dra as the regular tetrahedron, the cube or the barrel B

i

. B

3

is a cube

with two opposite vertices truncated; B

4

is the dual of 2-capped 4-anti-

prism (one of all 8 polyhedra whose faces are regular triangles). B

3

(in

general, B

i

) are called in [BoS95] D�urer octahedron (in general, the spin-

dle with two i-gons); among constructions, given in [BoS95], there are

two simple equifacetted 3-manifolds: one with 10 facets B

3

and other

with 26 facets B

4

(the �rst is a non-polytopal 3-sphere).

Construction B can be applied also to any simple partition of Eu-

clidean or hyperbolic plane. In, particular, take, as original F , the fol-

lowing in�nite fullerene: half-space bounded by a plane, partitioned by

regular hexagons (i.e. (63)= graphite).
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4 Construction C of 4-fullerenes C

j

(F )

We give this construction in the dual terms of general simplicial 3-

manifold; it was inspired by [MoS84], [SaM85]. Apply to the simplicial

3-manifold F�, which is the dual to given simple 3-manifold F , following

four operations:

1) Transform each edge into a 4-path of three edges, by addition of

two new edges on each edge, and subdivide each tetrahedron, using new

edges, into four tetrahedra and one truncated tetrahedron.

2) By projection of all its faces from an interior point, subdivide each

truncated tetrahedron into four tetrahedra and four 6-pyramids.

3) Glue each two 6-pyramids with common base into a 6-bipyramids

(cf. two 4-pyramids, glued into the octahedron in transition to f.c.c.

lattice A

3

).

4) Subdivide each 6-bipyramid into six tetrahedra with common edge,

linking its apexes.

Denote obtained simplicial complex by C

1

(F ); iterating above proce-

dure j times produces C

j

(F ). If F has v vertices, p 2-faces (including

p

5

5-gonal and p

6

6-gonal ones), q cells , then C

1

(F ) has 20v + p 2-faces

(including 2v + 3p

6

hexagons) and only following cells: all cells of F

plus 2p

5

dodecahedra, 2p

6

hexagonal barrels B

6

and v fullerenes F

28

(T

d

).

So, if F is a 4-fullerene (for example, 120-cell or one obtained by above

constructions A or B), then any C

j

(F ) is also 4-fullerene.

If original simplicial manifold F� is spherical, then its j-th simplicial

subdivision, described above, is also spherical. But the question of pre-

serving convexity is di�cult. Operations 1), 2), 3) could be arranged in

order to preserve it. (For example, chosen interior points of the tetrahe-

dra should be moved \out" within 4-th dimension in order to get edges

between neighbors, then suitable two points around of each edge should

be found and so on.) But the operation 3) can destroy convexity. More-

over, four above topological operations can be seen separately, which is

not the case of their metrical contreparts.

The dualization of another decoration of 600-cell, given in [MoS84]

and [SaM85], produces another in�nite family of spherical 4-fullerenes,

having now, as cells, only dodecahedra, B

6

and the fullerene F

32

(D

3h

).

Similarly to the construction C

j

(F ), one can generalize it on a construc-

tion (say, D

j

(F )), which, starting from a 4-fullerene F , gives an in�nite

family of 4-fullerenes, having, besides of cells of F , only cells B

6

and

F

32

(D

3h

). A mixed construction (choosing suitably operation C or D on

each step) gives asymptotically non-periodic 4-fullerenes, having, besides

of cells of F , only cells B

6

, F

28

(T

d

) and F

32

(D

3h

).
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5 Some 5-fullerenes

The regular tiling 5333 of hyperbolic 4-space by 120-cells is a 5-fullerene:

all its 2-faces are 5-gons. All 2-faces of following simple manifolds are

6-gons: the simple regular tiling 63 of Euclidean plane by hexagons and

non-compact simple regular tiling 633 of hyperbolic 3-space by tilings

63. Both above in�nite 3- and 4-fullerenes are simply connected; follow-

ing 3-fullerenes - the simple tilings by hexagons of (unlimited in both

directions) cylinder, M�obius surface, torus and Klein bottle - are not.

The following is an in�nite family of 5-fullerenes, having both 5-gonal

and 6-gonal 2-faces. Take two copies of the tilings 5333 and glue them

in some pairs of corresponding 120-cells. Delete now from the manifold

the interiors of those 120-cells. For each of them, any corresponding

pair (from both 5333) of neighboring 120-cells glue in a 4-polytope A

1

,

described in the Section 1. If the tilings are glued in only one 120-cell,

the 4-manifold is the direct product of the 3-sphere and the Euclidean

line; so it is simply connected.

We doubt that d-fullerenes with large d exist.
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