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Abstract. In this paper we investigate a new way for protecting block

ciphers against classes of attacks (including di�erential and linear crypt-

analysis) which is based on the notion of decorrelation distance which is

fairly connected to Carter-Wegman's universal hash functions paradigm.

This de�nes a simple and friendly combinatorial measurement which en-

ables to quantify the security. We show that we can mix provable protec-

tions and heuristic protections. We �nally propose two new block cipher

families we call COCONUT and PEANUT, which implement these ideas

and achieve quite reasonable performances for real-life applications.

Before the second world war, security of encryption used to be

based on the secrecy of the algorithm. Mass telecommunication and

computer science networking however pushed the development of

public algorithms with secret keys. The most important research re-

sult on encryption was found for the application to the telegraph by

Shannon in the Bell Laboratories in 1949 [30]. It proved the uncon-

ditional security of the Vernam's Cipher which had been published

in 1926 [38]. Although quite expensive to implement for networking

(because the sender and the receiver need to be synchronized, and

it needs quite cumbersome huge keys), this cipher was used in the

Red Telephone between Moscow and Washington D.C. during the

cold war. Shannon's result also proves that unconditional security

cannot be achieved in a better (i.e. cheaper) way. For this reason,

empiric security seemed to be the only e�cient possibility, and all

secret key block ciphers which have been publicly developed were

considered to be secure until some researcher published an attack

on it. Therefore research mostly grew like a ball game between the

designers team and the analysts team and treatment on the general

security of block ciphers has hardly been done.

In adopting the Data Encryption Standard (DES) [1] in the late

70's, the U.S. Government classi�ed the development arguments.



Attacking DES was thus quite challenging, and this paradoxically

boosted research on block ciphers. Real advances on the security on

block ciphers have been made in the early 90's.

One of the most important result has been obtained by Biham

and Shamir in performing a di�erential cryptanalysis on DES [3{

6]. The best version of this attack can recover a secret key with a

simple 2

47

-chosen plaintext attack

1

. Although this attack is heuristic,

experiments con�rmed the results.

Biham and Shamir's attack was based on statistical cryptanal-

ysis idea which have also been used by Gilbert and Chass�e against

another cipher [11, 10]. Those ideas inspired Matsui who developed a

linear cryptanalysis on DES [22, 23]. This heuristic attack, which has

been implemented, can recover the key with a 2

43

-known plaintext

attack. Since then, many researchers tried to generalize and improve

these attacks (see for instance [20, 19, 13, 17, 32, 18, 25, 33]), but the

general ideas was quite the same.

The basic idea of di�erential cryptanalysis is to use properties

like \if x and x

0

are two plaintext blocks such that x

0

= x + a,

then it is likely that C(x

0

) = C(x) + b". Then the attack is an

iterated two-chosen plaintexts attack which consists in getting the

encrypted values of two random plaintexts which verify x

0

= x + a

until a special event like C(x

0

) = C(x)+b occurs. Similarly, the linear

cryptanalysis consists in using the probability Pr[C(x) 2 H

2

=x 2 H

1

]

for two given hyperplanes H

1

and H

2

. With the GF(2)-vector space

structure, hyperplanes are half-spaces, and this probability shall be

close to 1=2. Linear cryptanalysis uses the distance of this probability

to 1=2 when it is large enough. More precisely, linear cryptanalysis is

an incremental one-known plaintext attack where we simply measure

the correlation between the events [x 2 H

1

] and [C(x) 2 H

2

].

Instead of keeping on breaking and proposing new encryption

functions, some researchers tried to focus on the way to protect ci-

phers against some classes of attacks. Nyberg �rst formalized the no-

tion of strength against di�erential cryptanalysis [26], and similarly,

Chabaud and Vaudenay formalized the notion of strength against lin-

ear cryptanalysis [7]. With this approach we can study how to make

1

So far, the best known attack was an improvement of exhaustive search which re-

quires on average 2

54

DES computations.
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internal computation boxes resistant against both attacks. This can

be used in a heuristic way by usual active s-boxes counting tricks

(e.g., see [13, 15]). This has also been used to provide provable se-

curity against both attacks by Nyberg and Knudsen [27], but in an

unsatisfactory way which introduce some algebraic properties which

lead to other attacks as shown by Jakobsen and Knudsen [16].

In this presentation, we introduce a new way to protect block ci-

phers against various kind of attacks. This approach is based on the

notion of universal functions introduced by Carter and Wegman [8,

39] for the purpose of authentication. Protecting block ciphers is so

cheap that we call NUT (as for \n-Universal Transformation") the

added operations which provide this security. We �nally describe two

cipher families we call COCONUT (as for \Cipher Organized with

Cute Operations and NUT") and PEANUT (as for \Pretty Encryp-

tion Algorithm with NUT") and o�er two de�nite examples as a

cryptanalysis challenge.

The paper is organized as follows. First we give some de�nitions

on decorrelation distance (Section 1) and basic constructions (Sec-

tion 2). Then we state Shannon's perfect secrecy notion in term of

decorrelation distance (Section 3). We show how to express security

results in the Luby-Racko�'s security model (Section 4). Then we

compute how much Feistel Ciphers can be decorrelated (Section 5).

We prove how pairwise decorrelation can protect a cipher against

di�erential cryptanalysis and linear cryptanalysis (Sections 6 and

7). We generalize those results with the notion of \attacks of or-

der d" (Section 8). Finally, we de�ne the COCONUT and PEANUT

families (Sections 9 and 10).

1 Decorrelation Distance

For a treatment on block cipher, we consider ciphers as random per-

mutations C on the message-block space M. (Here the randomness

comes from the random choice of the secret key.) In most of practical

cases, we have M = f0; 1g

m

.

We �rst give formal de�nitions of the notion of decorrelation

distance which plays a crucial role in our treatment.
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De�nition 1. Given a random function F from a given set M

1

to

a given set M

2

and an integer d, we de�ne the d-wise distribution

matrix [F ]

d

of F as a M

d

1

�M

d

2

-matrix where the (x; y)-entry of

[F ]

d

corresponding to the multi-points x = (x

1

; : : : ; x

d

) 2 M

d

1

and

y = (y

1

; : : : ; y

d

) 2 M

d

2

is de�ned as the probability that we have

F (x

i

) = y

i

for i = 1; : : : ; d.

Basically, each row of the d-wise distribution matrix corresponds to

the distribution of the d-tuple (F (x

1

); : : : ; F (x

d

)) where (x

1

; : : : ; x

d

)

corresponds to the index of the row.

De�nition 2. Given two random functions F and G from a given

set M

1

to a given set M

2

, an integer d and a distance D over the

vector space R

M

d

1

�M

d

2

, we call D([F ]

d

; [G]

d

) the d-wise decorrelation

D-distance between F and G.

A decorrelation distance of zero means that for any multi-point x =

(x

1

; : : : ; x

d

) the multi-points (F (x

1

); : : : ; F (x

d

)) and (G(x

1

); : : : ; G(x

d

))

have the same distribution, so that F and G have the same decorre-

lation.

Actually, we do not need a distance over the whole matrix set,

but only on some sub-algebra. We distinguish the decorrelation of

functions from the decorrelation of permutations (or ciphers). Dis-

tribution matrices A of functions (as well as other matrices in the

sub-algebra they span) are such that if x

i

= x

j

for some indices

i and j in any multi-point x, then for all multi-point y such that

y

i

6= y

j

we have A

x;y

= 0 (because if x

i

= x

j

then F (x

i

) = F (x

j

)).

Additional properties hold for permutations. Thus, we indeed need

distance over the corresponding sub-algebra.

It is also important to study the decorrelation distance of a given

random function F to a reference random function. Random func-

tions F are compared to uniformly distributed random functions

(that we call perfect random functions) which will be denoted F

�

.

We say that the decorrelation of the random function F

�

is perfect.

Similarly, random permutations C are compared to a uniformly dis-

tributed permutations C

�

(which will be called perfect cipher), and

the decorrelation of the cipher C

�

is perfect. Any random function

(resp. cipher) with a d-wise decorrelation distance of zero to the per-

fect random function (resp. perfect cipher) will be said to have a

perfect decorrelation.
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For instance, let say that F is a random function from M

1

to

M

2

. Saying that F has a perfect 1-wise decorrelation means that for

any x

1

the distribution of F (x

1

) is uniform. Saying that the function

F has a perfect 2-wise decorrelation means that for any x

1

6= x

2

the random variables F (x

1

) and F (x

2

) are uniformly distributed

and independent. Saying that a cipher C on M has a perfect 2-

wise decorrelation means that for any x

1

6= x

2

, the random variable

(C(x

1

); C(x

2

)) is uniformly distributed among all the (y

1

; y

2

) pairs

such that y

1

6= y

2

.

De�nition 3. Let F (resp. C) be a random function from M

1

to

M

2

(resp. a random permutation overM). Let D be a distance over

the algebra spanned by the d-wise distribution matrices of random

functions (resp. of random permutations). We call d-wise decorre-

lation D-bias and we denote

f

Dec

d

D

(F ) (resp. Dec

d

D

(C)) the quan-

tity D([F ]

d

; [F

�

]

d

) (resp. D([C]

d

; [C

�

]

d

)) where F

�

(resp. C

�

) is uni-

formly distributed.

We note that this notion is fairly similar to the notion of universal

functions which was been introduced by Carter and Wegman [8, 39].

More precisely, we recall that a random function F fromM

2

toM

2

is

�-almost strongly universal

d

if for any pairwise di�erent (x

1

; : : : ; x

d

)

and any (y

1

; : : : ; y

d

) we have

Pr[F (x

i

) = y

i

; i = 1; : : : ; d] �

1

#B

d

+ �:

If we de�ne jjAjj

1

= max

x;y

jA

x;y

j, if the function F has a d-wise

decorrelation jj:jj

1

-bias of �, then it is �-almost strongly universal

d

.

The converse is true when � �

1

#B

d

. Although the notion is fairly

similar, we will use our formalism which is adapted to our context.

For the purpose of our treatment, we de�ne the L

2

norm, the in�nity

weighted norm N

1

and the L

1

-associated matrix norm jjj:jjj

1

on

R

M

d

1

�M

d

2

by:

jjAjj

2

=

s

X

x;y

(A

x;y

)

2

(1)

N

1

(A) = max

x;y

jA

x;y

j

Pr[x

C

�

7! y]

(2)
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jjjAjjj

1

=max

x

X

y

jA

x;y

j (3)

where C

�

is the Perfect Cipher. We note that the N

1

can only be de-

�ned on the sub-algebra spanned by distribution matrices of ciphers

i.e. with the convention that 0=0 = 0.

We recall that the jj:jj

2

and jjj:jjj

1

norms are matrix norms, i.e.

jjA�Bjj � jjAjj:jjBjj. Moreover,N

1

has a similar property in its sub-

algebra of de�nition. Multiplicativity of the decorrelation distance to

C

�

is very useful when we consider product ciphers. Concretely, if

C

1

and C

2

are two independent ciphers, then

Dec

d

(C

1

� C

2

) � Dec

d

(C

1

):Dec

d

(C

2

)

for any matrix norm. (This comes from [C

1

�C

2

]

d

= [C

2

]

d

� [C

1

]

d

and

[C

i

]

d

� [C

�

]

d

= [C

�

]

d

.) This property makes the decorrelation bias

a multiplicative combinatorial measurement whenever the norm is a

matrix norm.

2 Basic Constructions

Perfect 1-wise decorrelation is easy to achieve when the message-

block space M is given a group structure. For instance we can use

C(x) = x +K where K has a uniform distribution on M, which is

exactly Vernam's Cipher ([38]).

We can construct perfect pairwise decorrelated ciphers on a �eld

structure M by C(x) = a:x + b where K = (a; b) is uniform in

M

�

� M. This requires to consider the special case a = 0 when

generating K. On the standard space M = f0; 1g

m

, it also requires

to implement arithmetic on the �nite �eld GF(2

m

), which may lead

to poor encryption rate on software. As an example we can mention

the COCONUT Ciphers (see Section 9).

A similar way to construct (almost) perfect 3-wise decorrelated

ciphers on a �eld structure M is by C(x) = a + b=(x + c) where

K = (a; b; c) with b 6= 0. (By convention we set 1=0 = 0.)

Perfect decorrelated ciphers of higher orders require dedicated

structure. We can for instance use Dickson's Polynomials.
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An alternate way consists of using Feistel Ciphers with decorrelated

functions [9]. Given a setM =M

2

0

whereM

0

has a group structure

and given r random functions F

1

; : : : ; F

r

on M

0

we denote C =

	(F

1

; : : : ; F

r

) the cipher de�ned by C(x

l

; x

r

) = (y

l

; y

r

) where we

iteratively compute a sequence (x

l

i

; x

r

i

) such that

x

l

0

= x

l

and x

r

0

= x

r

x

l

i

= x

r

i�1

and x

r

i

= x

l

i�1

+ F

i

(x

r

i�1

)

y

l

= x

r

r

and y

r

= x

l

r

:

(Note that the �nal exchange between the two halves is canceled

here.) In most of the constructions, M

0

is the group Z

2

m

2

, so the

addition is the bitwise exclusive or.

IfM

0

has a �eld structure, we can use perfect d-wise decorrelated

F

i

functions by F

i

(x) = a

d

:x

d�1

+ : : : + a

2

:x + a

1

where (a

1

; : : : ; a

d

)

is uniformly distributed on M

d

0

.

Decorrelation of Feistel Ciphers depends on the decorrelation of

all F

i

functions. It will be studied in Section 5.

3 Shannon's Unconditional Security

In this section, we consider perfect decorrelation.

Intuitively, if C has a perfect 1-wise decorrelation, the encryp-

tion C(x

1

) contains no information on the plaintext-block x

1

, so the

cipher C is secure if we use it only once (as one-time pad [38]). This

corresponds to Shannon's perfect secrecy theory [30]. Similarly, if C

has a perfect d-wise decorrelation, it is unconditionally secure if we

use it only d times (on di�erent plaintexts) as the following theorem

shows.

Theorem 4. Let C be a cipher with a perfect d-wise decorrelation.

For any x

1

; : : : ; x

d�1

, if X is a random variable such that X 6= x

i

,

then

H(X=C(x

1

); : : : ; C(x

d�1

); C(X)) = H(X)

where H denotes Shannon's entropy of random variables.

This means that if an adversary knows d � 1 pairs (x

i

; C(x

i

)), for

any y

d

which is di�erent from all C(x

i

)'s, his knowledge of C

�1

(y

d

) is

7



exactly that it is di�erent from all x

i

's. We recall that by de�nition

we have H(X=Y ) = H(X; Y )�H(Y ) and

H(X) = �

X

x

Pr[X = x] log

2

Pr[X = x]

with the convention that 0 log

2

0 = 0.

Proof. From de�nitions, straightforward computations shows that

for any random variable X we have

H(X=C(x

1

); : : : ; C(x

d�1

); C(X)) = H(X) + p log

2

p

where p = Pr[X 6= x

i

; i = 1; : : : ; d � 1]. Hence for any random

variable such that Pr[X = x

i

] = 0 the property holds. ut

4 Security in the Luby-Racko� Model

To illustrate the power of the notion of decorrelation, let us �rst

measure the unconditional security. In the Luby-Racko� model, an

attacker is an in�nitely powerful Turing machine A

O

which has ac-

cess to an oracle O whose aim is to distinguish a cipher C from the

Perfect Cipher C

�

by querying the oracle which implements either

cipher, and with a limited number d of inputs (see [21]). The oracle

O either implements C or C

�

, and that the attacker must �nally

answer 0 (\reject") or 1 (\accept"). We measure the ability to dis-

tinguish C from C

�

by the advantage Adv

A

(C) = jp � p

�

j where p

(resp. p

�

) is the probability of answering 1 if O implements C (resp.

C

�

). A general distinguisher is illustrated on Fig. 1. We have the

Input: an oracle which implements a permutation c

1. calculate a message X

1

and get Y

1

= c(X

1

)

2. calculate a message X

2

and get Y

2

= c(X

2

)

3. : : :

4. calculate a message X

d

and get Y

d

= c(X

d

)

5. depending on X = (X

1

; : : : ; X

d

) and Y = (Y

1

; : : : ; Y

d

), output 0 or 1

Fig. 1. A General d-Limited Distinguisher.

following theorem.
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Theorem 5. Let d be an integer and C be a cipher. For any general

d-limited distinguisher (depicted on Fig. 1), we have

Adv

Fig:1

(C) � Dec

d

N

1

(C)

where the N

1

norm is de�ned by Equation (2).

In particular, we have unconditional security when the decorrelation

is perfect and we still have a proven quanti�ed security when the

decorrelation is small.

Proof. Each execution of the attack with an oracle which imple-

ments C is characterized by a random tape ! and the successive

answers y

1

; : : : ; y

d

of the queries which we denote x

1

; : : : ; x

d

respec-

tively. More precisely, x

1

depends on !, x

2

depends on ! and y

1

and

so on. The answer thus depends on (!; y

1

; : : : ; y

d

). Let A be the set

of all (!; y

1

; : : : ; y

d

) such that the output of the distinguisher is 1

and let � = Dec

d

N

1

(C). We have

p =

X

(!;y

1

;:::;y

d

)2A

Pr[!] Pr[C(x

i

(!; y

1

; : : : ; y

i�1

)) = y

i

; i = 1; : : : ; d]

� (1 + �)

X

(!;y

1

;:::;y

d

)2A

Pr[!] Pr[C

�

(x

i

(: : :)) = y

i

; i = 1; : : : ; d]

� (1 + �)p

�

so we have p � p

�

� � for any attacker. We can apply this result

to the attacker which produces the opposite output to complete the

proof. ut

Here is a more intuitive meaning of Theorem 5 which is interesting

when we use encryption as a message authentication code.

Corollary 6. Let d be an integer and C be a cipher on a space of size

M . For any chosen plaintext attack which can query up to d�1 C(x

i

)

values and which issues a (x

d

; y

d

) pair with x

d

6= x

i

(i = 1; : : : ; d�1),

the probability that y

d

= C(x

d

) is at most

1

M

+Dec

d

N

1

(C).

Proof. Such an attack can be transformed into a d-limited distin-

guisher: the distinguisher �rst simulate the attack by obtaining d�1

pairs from the oracle and obtain a (x

d

; y

d

) pair. It then queries the

oracle with x

d

and output 1 if, and only if y

d

= C(x

d

). From the fact

that the advantage is at most � we obtain the result. ut
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Here is a more precise theorem in the non adaptive case. We call

a distinguisher \non adaptive" if no x

i

queried to the oracle depends

on some previous answers y

j

(see Fig. 2).

Input: an oracle which implements a permutation c

1. calculate some messages X = (X

1

; : : : ; X

d

)

2. get Y = (c(X

1

); : : : ; c(X

d

))

3. depending on X and Y , output 0 or 1

Fig. 2. A d-Limited Non-Adaptive Distinguisher.

Theorem 7. Let d be an integer and C be a cipher. The best d-

limited non-adaptive distinguisher (depicted on Fig. 2) for C is such

that

Adv

Fig:2

(C) =

1

2

Dec

d

jjj:jjj

1

(C)

where the jjj:jjj

1

norm is de�ned by Equation (3).

Proof. For those attacks, with the notations of Theorem 5, we have

p =

X

x

Pr[x]

X

y

1

(x;y)2A

Pr

h

x

C

7! y

i

(where 1

P

is de�ned to be 1 if predicate P is true and 0 otherwise)

thus, for the best attack, we have

jp� p

�

j = max

x7!Pr[x]

A

�

�

�

�

�

X

x

Pr[x]

X

y

1

(x;y)2A

�

Pr

h

x

C

7! y

i

� Pr

�

x

C

�

7! y

��

�

�

�

�

�

:

We can easily see that this maximum is obtained when x 7! Pr[x] is

a Dirac distribution on a multi-point x = x

0

and A includes all y's

such that Pr

h

x

0

C

7! y

i

� Pr

�

x

0

C

�

7! y

�

has the same sign, which gives

the result. ut

Here is a more intuitive consequence analog to Corollary 6.

Corollary 8. Let d be an integer and C be a cipher on a space of size

M . For any chosen plaintext attack which aims to compute C(x

d

) for

a given x

d

and which only can query for d� 1 chosen values C(x

i

)

for x

i

6= x

d

(i = 1; : : : ; d� 1) in a non-adaptive way, the probability

of success is at most

1

M

+Dec

d

jjj:jjj

1

(C).
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5 Decorrelation of Feistel Ciphers

In this section, we assume that M = M

0

2

where M

0

is a group.

Thus we can consider Feistel Ciphers on M.

Theorem 7 can be used in a non-natural way. For instance, let us

recall the following theorem.

Theorem 9 (Luby-Racko� [21]). Let F

1

; F

2

; F

3

be three indepen-

dent uniform random functions on M

0

and d be an integer. For any

distinguishing attacker A against 	(F

1

; F

2

; F

3

) on M =M

0

2

which

is limited to d queries, we have

Adv

A

(	(F

1

; F

2

; F

3

)) �

d

2

p

#M

:

Thus from Theorem 7 we have

Dec

d

jjj:jjj

1

(	(F

1

; F

2

; F

3

)) � 2

d

2

p

#M

:

For completeness, we also mention some improvements to the

previous theorem due to Patarin [28, 29].

Theorem 10 (Patarin [29]). Let F

1

; : : : ; F

6

be six independent

uniform random functions on M

0

and d be an integer. For any dis-

tinguishing attacker against 	(F

1

; : : : ; F

6

) on M = M

0

2

which is

limited to d queries A, we have

Adv

A

(	(F

1

; : : : ; F

6

)) �

37d

4

(#M)

3

2

+

6d

2

#M

:

So, as Theorem 9 guarantees the security of a three-round Feistel

Cipher for d = 


�

(#M)

1

4

�

, this one guarantees the security for

d = 


�

(#M)

3

8

�

.

The decorrelation jjj:jjj

1

-bias of Feistel Ciphers can be estimated

with the following lemma.

Lemma 11. Let F

1

; : : : ; F

r

(resp. R

1

; : : : ; R

r

) be r independent ran-

dom functions onM

0

such that jjj[F

i

]

d

�[R

i

]

d

jjj

1

� �

i

(i = 1; : : : ; r).

We have

jjj[	(F

1

; : : : ; F

r

)]

d

� [	(R

1

; : : : ; R

r

)]

d

jjj

1

� (1 + �

1

) : : : (1 + �

r

)� 1:

11



Proof. Let u

i

denotes the input of F

i

(resp. R

i

) in 	(F

1

; : : : ; F

r

)

(resp. 	(R

1

; : : : ; R

r

)). We thus let (u

0

; u

1

) denotes the input of the

ciphers, and (u

r+1

; u

r

) denotes the output. Here, all u

i

s are multi-

points, i.e. u

i

= (u

i

1

; : : : ; u

i

d

). We have

Pr

F

1

;:::;F

r

[u

0

u

1

7! u

r+1

u

r

]� Pr

R

1

;:::;R

r

[u

0

u

1

7! u

r+1

u

r

]

=

X

u

2

;:::;u

r�1

 

r

Y

i=1

Pr

F

i

[u

i

7! u

i+1

� u

i�1

]�

r

Y

i=1

Pr

R

i

[u

i

7! u

i+1

� u

i�1

]

!

=

X

u

2

;:::;u

r�1

X

I�f1;:::;rg

I 6=;

0

@

Y

i2I

(Pr

F

i

�Pr

R

i

)

Y

i 62I

Pr

R

i

1

A

[u

i

7! u

i+1

� u

i�1

]

hence

X

u

r+1

;u

r

�

�

�

�

Pr

F

1

;:::;F

r

[u

0

u

1

7! u

r+1

u

r

]� Pr

R

1

;:::;R

r

[u

0

u

1

7! u

r+1

u

r

]

�

�

�

�

�

X

u

2

;:::;u

r+1

X

I�f1;:::;rg

I 6=;

0

@

Y

i2I

jPr

F

i

�Pr

R

i

j

Y

i 62I

Pr

R

i

1

A

[u

i

7! u

i+1

� u

i�1

]

�

X

I�f1;:::;rg

I 6=;

Y

i2I

�

i

= (1 + �

1

) : : : (1 + �

r

)� 1:

ut

From this lemma and the previous observation we obtain the follow-

ing theorem.

Theorem 12. Let F

1

; : : : ; F

r

be r independent random functions on

M

0

such that

f

Dec

d

jjj:jjj

1

(F

i

) � � (i = 1; : : : ; r). For any k � 3 we

have

Dec

d

jjj:jjj

1

(	(F

1

; : : : ; F

r

)) �

 

(1 + �)

k

� 1 +

2d

2

p

#M

!

b

r

k

c

:

We can remark that the lemma remains valid if we replace the group

operation used in the Feistel construction by any other pseudogroup

law. This makes the decorrelation jjj:jjj

1

-bias a friendly tool for con-

structing Feistel Ciphers.

12



6 Di�erential Cryptanalysis

In this section we assume thatM is given a group structure of order

M . We study the security of pairwise decorrelated ciphers against

basic di�erential cryptanalysis. We study criteria which prove that

the attack cannot be better than exhaustive attack, M .

Let C be a cipher on M and let C

�

be the Perfect Cipher.

Although di�erential cryptanalysis has been invented in order

to recover a whole key by Biham and Shamir (see [5, 6]), we study

here the basic underlying notion which makes it work. We call basic

di�erential cryptanalysis the distinguisher which is characterized by

a pair (a; b) 2 M

2

with a 6= 0 and which is depicted on Fig. 3.

Input: a cipher c, a complexity n, a characteristic (a; b)

1. for i from 1 to n do

(a) pick uniformly a random X and query for c(X) and c(X + a)

(b) if c(X + a) = c(X) + b, stop and output 1

2. output 0

Fig. 3. Di�erential Distinguisher.

It is well known that di�erential cryptanalysis depends on the

following DP

C

(a; b) (see for instance [26]). We de�ne

DP

C

(a; b) = Pr

X

[C(X + a) = C(X) + b]

where X has a uniform distribution. This quantity thus depends on

the choice of the cipher (i.e. on the key). Here we focus on average

complexities of attacks with no prior information on the key, i.e.

on the average value E

�

DP

C

(a; b)

�

over the distribution of C. The

problem of successful attacks for sets of weak keys is not our purpose

here. We �rst mention that E

�

DP

C

(a; b)

�

has an interesting linear

expression with respect to the pairwise distribution matrix of C.

Namely, straightforward computation shows that

E(DP

C

(a; b)) =

1

M

X

x

1

;x

2

y

1

;y

2

1

x

2

=x

1

+a

y

2

=y

1

+b

Pr

"

x

1

C

7! y

1

x

2

7! y

2

#

: (4)

13



Lemma 13. For the attack of Fig. 3, we have

Adv

Fig:3

(C) � n:max

�

1

M � 1

; E

�

DP

C

(a; b)

�

�

:

Proof. It is straightforward to see that the probability, for some �xed

key, that the attack accepts C is

1�

�

1� DP

C

(a; b)

�

n

which is less than n:DP

C

(a; b). Hence we have p � n:E

�

DP

C

(a; b)

�

.

Since from Equation (4) we have E

�

DP

C

�

(a; b)

�

=

1

M�1

, we obtain

the result. ut

Theorem 14. Let C be a cipher on a groupM of order M . For any

basic di�erential distinguisher (depicted on Fig. 3) of complexity n,

we have

Adv

Fig:3

(C) �

n

M � 1

+

n

2

Dec

2

jjj:jjj

1

(C):

Proof. Actually we notice that E

�

DP

C

�

(a; b)

�

=

1

M�1

and that

�

�

�

�

E

�

DP

C

(a; b)

�

�

1

M � 1

�

�

�

�

�

1

2

Dec

2

jjj:jjj

1

(C)

from Equation (4). ut

So, if the pairwise decorrelation bias has the order of 1=M , basic

di�erential cryptanalysis does not work against C, but with a com-

plexity in the scale of M .

7 Linear Cryptanalysis

Linear cryptanalysis has been invented by Matsui [22, 23] based on

the notion of statistical attacks which are due to Gilbert et al. [11, 31,

10]. We study here the simpler version of the original attack against

pairwise decorrelated ciphers.

In this section we assume

2

that M = GF(2

m

). The inner dot

product a � b in GF(2

m

) is the parity of the bitwise and of a and b.

2

Although it is easy to generalize the notion of linear cryptanalysis over other �nite

�elds, we only consider the characteristic 2 case for a better understanding.

14



Let C be a cipher on M and let C

�

be the Perfect Cipher.

As in Section 6, we similarly call basic linear cryptanalysis the

distinguisher characterized by a pair (a; b) 2 M

2

with b 6= 0 which

is depicted on Fig. 4.

Input: a cipher c, a complexity n, a characteristic (a; b), a set A

1. initialize the counter value u to zero

2. for i from 1 to n do

(a) pick a random X with a uniform distribution and query for c(X)

(b) if X � a = c(X) � b, increment the counter u

3. if u 2 A, output 1, otherwise output 0

Fig. 4. Linear Distinguisher.

We notice here that the attack depends on the way it accepts or

rejects depending on the �nal counter c value.

As pointed out by Chabaud and Vaudenay [7], linear cryptanal-

ysis is based on the quantity

LP

C

(a; b) =

�

2Pr

X

[X � a = C(X) � b]� 1

�

2

:

(Here we use Matsui's notations taken from [24].) As for di�eren-

tial cryptanalysis, we focus on E

�

LP

C

(a; b)

�

, and there is a linear

expression of this mean value in term of the pairwise distribution

matrix [C]

2

which comes from straightforward computations :

E(LP

C

(a; b)) = 1� 2

2�2m

X

x

1

6=x

2

y

1

6=y

2

1x

1

�a=y

1

�b

x

2

�a 6=y

2

�b

Pr

"

x

1

C

7! y

1

x

2

7! y

2

#

: (5)

Lemma 15. For the attack of Fig. 4 we have

lim

n!+1

Adv

Fig:4

(C)

n

1

3

� 9:3

�

max

�

1

2

m

� 1

; E

�

LP

C

(a; b)

�

��

1

3

:

Proof. Let N

i

be the random variable de�ned as being 1 or 0 depend-

ing on whether or not we have x �a = c(x) � b in the ith iteration. All

N

i

's are independent and with the same 0-or-1 distribution. Let �

be the probability that N

i

= 1, for a �xed permutation c. From the

15



Central Limit Theorem, we can approximate the �nal quantity u=n

to a normal distribution law with mean � and standard deviation

� =

q

�(1��)

n

. Let A be the set of all accepted u=n quantities. For a

�xed c, the probability that the attack accepts is

p

c

�

n!+1

Z

t2A

e

�

(t��)

2

2�

2

�

p

2�

dt:

We let p

c

eq

denotes the right hand term of this equation. We can

compare it to the theoretical expected value p

0

of p

c

eq

de�ned by

� =

1

2

and � =

1

2

p

n

i.e.

p

0

=

Z

t2A

e

�

(t�

1

2

)

2

n

p

2�

2

p

ndt:

The di�erence p

c

eq

� p

0

is maximal when A = [�

1

; �

2

] for some values

�

1

and �

2

which are roots of the Equation

(t� �)

2

�

2

+ log�

2

= 4n

�

t�

1

2

�

2

� log 4n:

Hence, the maximum of the di�erence p

c

eq

� p

0

is at most the max-

imum when A = [�

1

; �

2

] over the choice of �

1

and �

2

, which is the

maximum minus the minimum of p

c

eq

� p

0

when A =]�1; � ]. Now

we have

Z

�

�1

e

�

(t��)

2

2�

2

�

p

2�

dt =

Z

���

�

�1

e

�

t

2

2

p

2�

dt

so we have

p

c

eq

� p

0

�

�

max

�

�min

�

�

Z

p

n

���

p

�(1��)

2

p

n(��

1

2

)

e

�

t

2

2

p

2�

dt:

We consider the sum as a function f(�) on �. Since we have f

�

1

2

�

=

0, we have jf(�)j � B:

�

�

���

1

2

�

�

� where B is the maximum of jf

0

(x)j

when x varies from � to

1

2

. We have

f

0

(x)

s

2�

n

=

0

@

�

1

q

x(1� x)

�

1

2

� x

x(1� x)

� � x

q

x(1� x)

1

A

e

�

n(��x)

2

2x(1�x)

16



so

jf

0

(x)j �

s

n

2��(1� �)

+

�

�

���

1

2

�

�

�

�(1� �)

e

�

1

2

p

2�

�

s

n

2��(1� �)

+

�

�

���

1

2

�

�

�

�(1� �)

:

Therefore we have

�

�

�p

c

eq

� p

0

�

�

� � 2

r

n

2�

�

�

���

1

2

�

�

�

q

�(1� �)

+ 2

�

��

1

2

�

2

�(1� �)

: (6)

Let � = E ((2�� 1)

2

) over the distribution of C. (We recall that �

depends on the permutation c.) Let � =

1

8

�

�

q

2�

n

�

1

3

. Since � � 1 and

n � 1, we have � � :17 so if

�

�

���

1

2

�

�

� � � we have

�

�

�p

c

eq

� p

0

�

�

� � :55(�n)

1

3

:

Now we have

�

�

���

1

2

�

�

� � � with a probability less than

�

4�

2

, which is

less than 8:68(�n)

1

3

, and in this case we have

�

�

�p

c

eq

� p

0

�

�

� � 1. Hence,

we have

E

�

�

�

�p

c

eq

� p

0

�

�

�

�

� 9:3(�n)

1

3

:

We note that � = E

�

LP

C

(a; b)

�

. We �nally note thatE

�

LP

C

�

(a; b)

�

=

1

2

m

�1

from Equation (5). ut

Theorem 16. Let C be a cipher on M = f0; 1g

m

. For any linear

distinguisher (depicted on Fig. 4) we have

lim

n!+1

Adv

Fig:4

(C)

n

1

3

� 9:3

�

1

2

m

� 1

+ 2Dec

2

jjj:jjj

1

(C)

�

1

3

:

This asymptotic result comes from approximation to the normal law

by the Large Number Theorem, which is correct whenever n is not

too small (i.e. n > 30). This result is thus actually valid for any

practical n.

Proof. Actually we notice that E

�

LP

C

�

(a; b)

�

=

1

2

m

�1

and that

�

�

�

�

E

�

LP

C

(a; b)

�

�

1

2

m

� 1

�

�

�

�

� 2Dec

2

jjj:jjj

1

(C)

from Equation (5). ut
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So, if the pairwise decorrelation bias has the order of 2

�m

, linear

distinguishers does not work against C, but with a complexity in

the scale of 2

m

.

8 Iterated Attacks of Order d

Theorems 14 and 16 suggest that we try to generalize them to at-

tacks in the model depicted on Fig. 5. In this model, we iterate a

d-limited non-adaptive attack T . We assume that this attack obtains

a sample (X; Y ) with X = (X

1

; : : : ; X

d

) and Y = (Y

1

; : : : ; Y

d

) such

that y

i

= c(X

i

) for a given distribution of X. Thus, we can think

of a known plaintext attack where X has a �xed distribution (e.g. a

uniform distribution) or of a chosen plaintext attack where X has a

given distribution (e.g. in di�erential cryptanalysis,X = (X

1

; X

1

+a)

where X

1

has a uniform distribution). The result of the attack de-

pends on the result of all iterated ones in a way characterized by

a set A. For instance, if A = f0; 1g

n

\f(0; : : : ; 0)g we can de�ne the

di�erential cryptanalysis (thus of order d = 2). If A is the set of all

(t

1

; : : : ; t

n

) with an acceptable sum we can de�ne the linear crypt-

analysis (of order d = 1).

Input: a cipher c, a complexity n, a distribution on X, a test T , an acceptance

set A

1. for i from 1 to n do

(a) get a new X = (X

1

; : : : ; X

d

)

(b) get Y = (c(X

1

); : : : ; c(X

d

))

(c) set T

i

= 0 or 1 with an expected value T (X;Y )

2. if (T

1

; : : : ; T

n

) 2 A output 1 otherwise output 0

Fig. 5. Iterated Attack of Order d.

It is tenting to believe that a cipher resists to this model of attacks

once it has a small d-wise decorrelation bias. This is wrong as the

following example shows. Let C be a cipher with a perfect d-wise

decorrelation. We assume that an instance c of C is totally de�ned

by d (x

i

; y

i

) points so that C is uniformly distributed in a set of

K = M(M � 1) : : : (M � d + 1) permutations denoted c

1

; : : : ; c

K

.
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From x = (x

1

; : : : ; x

d

) and y = (y

1

; : : : ; y

d

) we can de�ne I(x; y) as

the unique index k such that c

k

(x

i

) = y

i

for i = 1; : : : ; d. We let

T (x; y) =

(

1 if I(x; y) � 0 mod �

0 otherwise

for a given modulus � = n=a and

A = f0; 1g

n

\f(0; : : : ; 0)g:

If we feed this attack with C or C

�

, we have

p �

1

�

=

a

n

and p

�

� 1�

 

1�

1

�

!

n

� 1� e

�a

for a << n. Thus Adv can be large even with a relatively large n.

This problem actually comes from the fact that the tests T provide

a same expected result for C and C

�

but a totally di�erent standard

deviation.

We can however prove the security when the cipher has a good

decorrelation to the order 2d.

Theorem 17. Let C be a cipher on a message space of size M such

that Dec

2d

jjj:jjj

1

(C) � � for some given d � M=2. For any iterated

attack (depicted on Fig. 5) of order d such that the obtained plaintexts

are independent, we have

Adv

Fig:5

(C) � 3

  

2� +

5d

2

2M

+

3�

2

!

n

2

!

1

3

+

n�

2

where � is the probability that for two independent X and X

0

there

exists i and j such that X

i

= X

0

j

.

For instance, if the distribution of X is uniform, we have � �

d

2

2M

.

Proof. Let Z (resp. Z

�

) be the probability that the test accepts

(X;C(X)) (resp. (X;C

�

(X))), i.e.

Z = E

X

(T (X;C(X))):

Let p (resp. p

�

) be the probability that the attack accepts, i.e.

p = Pr

C

[(T

1

; : : : ; T

n

) 2 A]:
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Since the T

i

s are independent and with the same expected value Z

which only depends on C, we have

p = E

C

0

@

X

(t

1

;:::;t

n

)2A

Z

t

1

+:::+t

n

(1� Z)

n�(t

1

+:::+t

n

)

1

A

:

We thus have p = E(f(Z)) where f(z) is a polynomial of degree at

most n with values in [0; 1] for any z 2 [0; 1] entries and with the

form f(z) =

P

a

i

z

b

i

(1� z)

n�b

i

. It is straightforward that jf

0

(z)j � n

for any z 2 [0; 1]. Thus we have jf(z)� f(z

�

)j � njz � z

�

j.

The crucial point in the proof is in proving that jZ�Z

�

j is small

within a high probability. For this, we need jE(Z) � E(Z

�

)j and

jV (Z)� V (Z

�

)j to be both small.

From Theorem 7 we know that jE(Z) � E(Z

�

)j �

�

2

. We note

that Z

2

corresponds to a another test but with 2d entries, hence we

have jE(Z

2

)�E((Z

�

)

2

)j �

�

2

. Hence jV (Z)�V (Z

�

)j �

3

2

�. Now from

the Tchebichev's Inequality we have

Pr[jZ � E(Z)j > �] �

V (Z)

�

2

:

Hence we have

jp� p

�

j �

2V (Z

�

) +

3

2

�

�

2

+ n

�

�

2

+ 2�

�

so, with � =

�

2V (Z

�

)+

3

2

�

n

�

1

3

we have

jp� p

�

j � 3

��

2V (Z

�

) +

3�

2

�

n

2

�

1

3

+

n�

2

:

Now we have

V (Z

�

) =

X

(x;y)2A

(x

0

;y

0

)2A

Pr

X

[x] Pr

X

[x

0

]

 

Pr

C

�

"

x! y

x

0

! y

0

#

� Pr

C

�

[x! y] Pr

C

�

[x

0

! y

0

]

!

�

1

2

X

x;y

x

0

;y

0

Pr

X

[x] Pr

X

[x

0

]

�

�

�

�

�

Pr

C

�

"

x! y

x

0

! y

0

#

� Pr

C

�

[x! y] Pr

C

�

[x

0

! y

0

]

�

�

�

�

�

:
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The sum over all x and x

0

entries with colliding entries (i.e. with

some x

i

= x

0

j

) is less than �. The sum over all y and y

0

entries with

colliding entries and no colliding x and x

0

is less than d

2

=4M . The

sum over all no colliding x and x

0

and no colliding y and y

0

is equal

to

1� �

2

 

1�

M(M � 1) : : : (M � 2d+ 1)

M

2

(M � 1)

2

: : : (M � d+ 1)

2

!

which is less than

d

2

2(M�d)

. Thus we have V (Z

�

) � � +

d

2

4M

+

d

2

2(M�d)

which is less than � +

5d

2

4M

when 2d �M .. ut

This theorem proves that we need n = 
(1=

p

�) or n = 
(

p

M) to

have a meaningful iterated attack. If we apply it to linear cryptanal-

ysis, this result is thus weaker than Theorem 16. It is however much

more general.

9 COCONUT: a Perfect Decorrelation Design

In this section we de�ne the COCONUT Ciphers family which are

perfectly decorrelated ciphers to the order two.

The COCONUT Ciphers are characterized by some parameters

(m; p). m is the block length, and p is a irreducible polynomial of

degree m in GF(2) (which de�nes a representation of the GF(2

m

)

Galois Field). A COCONUT Cipher of block length m is simply a

product cipher C

1

�C

2

�C

3

where C

1

and C

3

are any (possibly weak)

ciphers which can depend from each other, and C

2

is an independent

cipher based on a 2m-bit key which consists of two polynomials A

and B of degree at most m � 1 over GF(2) such that A 6= 0. For

a given representation of polynomials into m-bit strings, we simply

de�ne

C

2

(x) = A:x +B mod p:

Since C

2

performs perfect decorrelation to the order two and since

it is independent from C

1

and C

3

, any COCONUT Cipher is obvi-

ously perfectly decorrelated to the order two. Therefore Theorems

14 and 16 shows that COCONUT resists to the basic di�erential and

linear cryptanalysis.

One can wonder why C

1

and C

3

are for. Actually, C

2

makes some

precise attacks provably impractical, but in a way which makes the
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cipher obviously weak against other attacks. (C

2

is actually a linear

function, thus although we can prove it resists to some attacks which

are characterized by some parameter d � 2, it is fairly weak against

attacks of d = 3.) We believe that all real attacks on any real cipher

have an intrinsic order d, that is they use the d-wise correlation in

the encryption of d messages. Attacks of a large d on real ciphers are

impractical, because the d-wise decorrelation can hardly be analyzed

since it depends on too many factors. Therefore, the COCONUT

approach consists in making the cipher provably resistant against

attacks of order at most 2 such as di�erential or linear cryptanalysis,

and heuristically secure against attacks of higher order by real life

ciphers as C

1

and C

3

.

The COCONUT98 Cipher has been proposed in [35] with param-

eters m = 64 and p = x

64

+ x

11

+ x

2

+ x+ 1.

10 PEANUT: a Partial Decorrelation Design

In this section we de�ne the PEANUT Ciphers family, which achieves

an example of partial decorrelation. This family is based on a combi-

natorial tool which has been previously used by Halevi and Krawczyk

for authentication in [14].

The PEANUT Ciphers are characterized by some parameters

(m; r; d; p). They are Feistel Ciphers of block length of m bits (m

even), r rounds. The parameter d is the order of partial decorrelation

that the cipher performs, and pmust be a prime number greater than

2

m

2

.

The cipher is de�ned by a key of

mrd

2

bits which consists of a

sequence of r lists of d

m

2

-bit numbers, one for each round. In each

round, the F function has the form

F (x) = g(k

1

:x

d�1

+ k

2

:x

d�2

+ : : :+ k

d�1

:x+ k

d

mod p mod 2

m

2

)

where g is any permutation on the set of all

m

2

-bit numbers.

Let us now estimate the decorrelation jjj:jjj

1

-bias of the PEANUT

ciphers.

Lemma 18. Let K = GF(q) be a �nite �eld, let r : f0; 1g

m

2

! K

be an injective mapping, and let � : K ! f0; 1g

m

2

be a surjective
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mapping. Let F be a random function de�ned by

F (x) = �(r(A

d�1

):r(x)

d�1

+ : : :+ r(A

0

))

where the A

i

's are independent and uniformly distributed in f0; 1g

md

2

.

We have

f

Dec

d

jjj:jjj

1

(F ) � 2

 

�

q

2

m

2

�

d

� 1

!

:

Proof. Let x = (x

1

; : : : ; x

d

) be a multi-point in f0; 1g

m

2

. We want to

prove that

S =

X

y=(y

1

;:::;y

d

)

j[F ]

d

x;y

� [F

�

]

d

x;y

j � 2

 

�

q

2

m

2

�

d

� 1

!

:

Let c be the number of pairwise di�erent x

i

's. For any y such that

there exists (i; j) such that y

i

6= y

j

and x

i

= x

j

, the contribution to

the sum is zero. So we can assume that y is de�ned over the 2

cm

2

choices of y

i

's on positions corresponding to pairwise di�erent x

i

's.

If we let x

d+1

; : : : ; x

2d�c

be new �xed points such that we have exactly

d pairwise di�erent x

i

's, since the probability that F (resp. F

�

) maps

x onto y is equal to the sum over all choices of y

d+1

; : : : ; y

2d�c

that

it maps the extended x onto the extended y, we can assume w.l.o.g.

that c = d.

For any multi-point y we thus have that Pr[x 7! y] = j:2

�

md

2

where j is an integer. Let N

j

be the number of multi-points y which

verify this property. We have

P

j

N

j

= 2

md

2

and

P

j

jN

j

= 2

md

2

. We

have

S �

X

j

N

j

�

�

�

�

j � 1

2

md

2

�

�

�

�

= 2N

0

:2

�

md

2

:

N

0

is the number of unreachable y's, i.e. the y's which correspond to

a polynomial whose coe�cients are not all r-images. This number is

thus less than the number of missing polynomials which is q

d

� 2

md

2

.

ut

From Theorem 12 with k = 3 we thus obtain the following theo-

rem.
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Theorem 19. Let C be a cipher in the PEANUT family with pa-

rameters (m; r; d; p). We have

Dec

d

jjj:jjj

1

(C) �

 

�

1 + 2

�

p

d

2

�

md

2

� 1

��

3

� 1 +

2d

2

2

m

2

!

b

r

3

c

:

When p � 2

m

2

we can approximate

Dec

d

jjj:jjj

1

(C) �

0

@

6d

�

p� 2

m

2

�

+ 2d

2

2

m

2

1

A

b

r

3

c

:

Example 20. We can use the parameters m = 64, r = 9, d = 2

and p = 2

32

+ 15. We obtain that Dec

2

jjj:jjj

1

(C) � 2

�76

. Therefore

from Theorems 14 and 16 no di�erential or linear distinguisher can

be e�cient. The PEANUT98 Cipher has been proposed with these

parameters in [35].

In an earlier version of this work [34], we proposed a similar

construction (say PEANUT97) which uses prime numbers smaller

than 2

m

2

. However the result above does not hold with the jjj:jjj

1

norm, but rather with the jj:jj

2

one. The drawback is that this norm

has less friendly theorems for constructing Feistel ciphers, and in

particular we need more rounds to make the cipher provably secure.

(For more information, see [36].)

11 Conclusion and Further Work

Decorrelation modules are cheap and friendly tools which can strengthen

the security of block ciphers. Actually, we can quantify their security

against a class of cryptanalysis which includes di�erential and linear

cryptanalysis. To illustrate this paradigm, we proposed two de�nite

prototype ciphers in [35].

Research on other general cryptanalysis is still an open problem.

In particular, it is not sure that 2d-decorrelation is necessary for get-

ting provable security against iterated attacks of order d (Theorem

17).

One problem with the COCONUT or PEANUT construction is

that it requires a long key (in order to make the internal random
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functions independent). In real-life examples, we can generate this

long key by using a pseudorandom generator fed with a short key,

but the results on the security based on decorrelation are no longer

valid. However, provided that the pseudorandom generator produces

outputs which are indistinguishable from truly random sequences,

we can still prove the security. This approach has been developed in

[12] for submitting a candidate (DFC) to the Advanced Encryption

Standard process which has been initiated by the U.S. Government.
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