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Abstract

We review the regular tilings of d-sphere, Euclidean d-space, hyperbolic d-space

and Coxeter's regular hyperbolic honeycombs (with in�nite or star-shaped cells

or vertex �gures) with respect of possible embedding, isometric up to a scale, of

their skeletons into a m-cube or m-dimensional cubic lattice. In section 2 the last

remaining 2-dimensional case is decided: for any odd m � 7, star-honeycombs m

m

2

are embeddable while

m

2

m are not (unique case of non-embedding for dimension

2). As a spherical analogue of those honeycombs, we enumerate, in section 3, 36

Riemann surfaces representing all nine regular polyhedra on the sphere. In section

4, non-embeddability of all remaining star-honeycombs (on 3-sphere and hyperbolic

4-space) is proved. In the last section 5, all cases of embedding for dimension d > 2

are identi�ed. Besides hyper-simplices and hyper-octahedra, they are exactly those

with bipartite skeleton: hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic

3-, 4-, 5-space (only two, 435 and 4335, of those 11 are compact).

1 Introduction

We say that given tiling (or honeycomb) T has a l

1

-graph and embeds up to scale � into

m-cube H

m

(or, if the graph is in�nite, into cubic lattice Z

m

), if there exists a mapping

f of the vertex-set of the skeleton graph of T into the vertex-set of H

m

(or Z

m

) such that

�d

P

(v

i

; v

j

) = jjf(v

i

); f(v

j

)jj

l

1

=

X

1�k�m

jf

k

(v

i

)� f

k

(v

j

)j for all vertices v

i

; v

j

:

We take, of course, the smallest such number �.

Denote by T ! H

m

(by T ! Z

m

) isometric embedding of the skeleton graph of T

into m-cube (respectively, into m-dimensional cubic lattice); denote by T !

1

2

H

m

and by

T !

1

2

Z

m

isometric up to scale 2 embedding.

�
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1



Call an embeddable tiling l

1

-rigid, if all its embeddings as above are pairwise equiva-

lent. All, except 3- and 4-simplex, embeddable tilings in this paper turn out to be l

1

-rigid

and so having scale 1 or 2. Those embeddings were obtained by constructing a complete

system of alternated zones ; see [CDG97], [DSt96],[DSt97].

Actually, a tiling is a special case of a honeycomb, but we reserve the last term for the

case when the cell or the vertex �gure is a star-polytope and so the honeycomb covers the

space several times; the multiplicity of the covering is called its density.

Embedding of Platonic solids was remarked in [Kel75] and precised, for the dodecahe-

dron, in [ADe80]. Then [Ass81] showed that 36, 63, and mk (for even m � 8 and m =1)

are embeddable. The remaining case of odd m and limit cases of m = 2;1 was decided

in [DSt96]; all those results are put together in the Theorem 1 below.

All four star-polyhedra are embeddable. The great icosahedron 3

5

2

of Poinsot and the

great stellated dodecahedron

5

2

3 of Kepler have the skeleton (and, moreover, the surface)

of, respectively, icosahedron and dodecahedron; each of them has density 7. All ten star-4-

polytopes are not embeddable; see Theorem 3 below. [DSt97] considered also embedding

of all 6 Coxeter-Petri in�nite regular polyhedra; they are also not tilings of the space but

of sponge surface. (They are 36, 63, 44 and 46, 64, 66, each taking a region of 3-space,

which has identical shape with its complement.)

The case of Archimedean tilings of 2-sphere and of Euclidean plane was decided in

[DSt96]; it turns out that for any such tilings (except embeddable Prism

3

) exactly one

of two (a tiling and its dual) is embeddable. For 3-sphere and 3-space it was done in

[DSt98b]. All 92 regular-faced 3-polytopes were considered in [DGr97b] and, for all higher

dimensions, in [DSt96]. The truncations of regular polytopes were considered in [DSt97].

Another large generalization of Platonic solids - bifaced polyhedra - were considered in

[DGr97b]. (Some generalizations of Archimedean plane tilings, 2-uniform ones and eq-

uitransitive ones, were treated in [DSt96], [DSt97], respectively.) Finally, skeletons of

(Delaunay and Voronoi tilings of) lattices were dealt with in [DSt98a].

Embeddable ones, among all compact regular tilings of all dimensions, were identi�ed

in [DSt96], [DSt97].

Coxeter (see [Cox54]) extended the concept of regular tiling, permitting in�nite cells

and vertex �gures, but with the fundamental region of the symmetry group of a �nite

content. His second extension was to permit honeycombs, i.e. star-polytopes can be cells or

vertex �gures. For the 2-dimensional case, on which we are focusing here,above extensions

produced only following new honeycombs -

m

2

m and m

m

2

for any odd m � 7 - which are

hyperbolic analogue of spherical star-polyhedra

5

2

5 (the small stellated dodecahedron of

Kepler) and 5

5

2

(the great dodecahedron of Poinsot). Both

5

2

5 and 5

5

2

have the skeleton of

the icosahedron. For any odd m above honeycombs cover the space (2-sphere for m = 5)

3 times. The skeleton of m

m

2

is, evidently, the same as of 3m, because it can be seen as

3m with the same vertices and edges forming m-gons instead of triangles. The faces of

m

2

m are stellated faces of m3 and it have the same vertices as 3m.
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2 Planar tilings and hyperbolic honeycombs

They are presented in the Table 1 below; notation there are as follows:

1. The row indicates the facet (cell) of the tiling (or honeycomb), the column indicates

its vertex �gure. The tilings and honeycombs are denoted usually by shortened (i.e.

without parentheses and commas) their Schl�a
i notation.

2. By m (m � 2) we denote m-gon, by

m

2

star m-gon (if m is odd); the pentagram

5

2

is

considered separately. By �

3

, �

3

, 


3

, Ico, Do and �

2

we denote regular ones tetrahedron,

octahedron, cube, icosahedron, dodecahedron and the square lattice Z

2

. In the Table 1,

the numbers are: any m � 7 in 8th column, row and any odd m � 7 in 9th column, row.

3. We consider that: 2m is a 2-vertex multi-graph with m edges; m2 can be seen as a

m-gon; all vertices of m1 are on the absolute conic at in�nity (it has an in�nite degree);

the faces 1 of 1m are inscribed in horocycles.

Table 1. 2-dimensional regular tilings and honeycombs.

2 3 4 5 6 7 m 1

m

2

5

2

2 22 23 24 25 26 27 2m 21

3 32 �

3

�

3

Ico 36 37 3m 31 3

5

2

4 42 


3

�

2

45 46 47 4m 41

5 52 Do 54 55 56 57 5m 51 5

5

2

6 62 63 64 65 66 67 6m 61

7 72 73 74 75 76 77 7m 71

m m2 m3 m4 m5 m6 m7 mm m1 m

m

2

1 12 13 14 15 16 17 1m 11

m

2

m

2

m

5

2

5

2

3

5

2

5

Theorem 1 All 2-dimensional tilings mk are embeddable,namely:

(i) if

1

m

+

1

k

>

1

2

( 2-sphere), then

2m! H

1

for any m, m2!

1

2

H

m

for odd m and m2! H

m

for even m;

33 = �

3

!

1

2

H

3

,

1

2

H

4

; 43 = 


3

! H

3

; 34 = �

3

!

1

2

H

4

;

35 = Ico(� 3

5

2

� 5

5

2

�

5

2

5) ! H

6

and 53 = Do(�

5

2

3) !

1

2

H

10

;

(ii) if

1

m

+

1

k

=

1

2

(Euclidean plane), then

21! H

1

, 12! Z

1

; 44 = �

2

! Z

2

, 36 !

1

2

Z

3

, 63 ! Z

3

;

(iii) if

1

2

>

1

m

+

1

k

(hyperbolic plane), then

mk !

1

2

Z

1

if m is odd, k � 1 and mk ! Z

1

is m is even or 1, k �1.

The following theorem, the main result of this note, gives the family, containing all

non-embeddable regular planar cases.

Theorem 2 For any odd m � 7 we have

(i)

m

2

m is not embeddable;

(ii) m

m

2

(� 3m)!

1

2

Z

1

.
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The assertion (ii) is trivial. The proof of (i) will be preceded by 3 lemmas and �rst

two of them are easy but of independent interest for embedding of (not necessary planar)

graphs.

Let G be a graph, scale � embeddable into Z

m

, let C be an oriented circuit of length

t in G and let e be an arc in C. Then there are � elementary vectors , i.e. steps in the

cubic lattice Z

m

, corresponding to the arc e; denote them by x

1

(e); :::; x

�(e)

. Clearly, the

sum of all vectors x

i

(e) by all i and all arcs e of the circuit, is the zero-vector.

Now, if t is even, denote by e

�

the arc opposite to e in the circuit C; if t is odd, denote

by e

0

,e

00

two arcs of C opposite to e. For even t, call the arc e balanced if the set of all its

vectors x

i

(e) coincides with the set of all x

i

(e

�

), but the vectors of arc e

�

go in opposite

direction on the circuit C to the vectors of e. For odd t, call the arc e balanced if a

half of vectors of e

0

together with a half of vectors of the second opposite arc e

00

form a

partition of the set of vectors of e and those vectors go in opposite direction (on C) to

those of arc e.

Remind, that the girth of the graph is the length of its minimal circuit.

Lemma 1. Let G be an embeddable graph of girth t. Then

(i) any arc of a circuit of length t is balanced;

(ii) if t is even, then any arc of a circuit of length t+ 1 is also balanced.

Lemma 2. Let G be an embeddable graph of girth t and let P be an isometric oriented

path of length at most b

t

2

c in G. Then there are no two arcs on this path having vectors,

which are equal, but have opposite directions on the path.

Lemma 3 The girth of the skeleton of

m

2

m is 3 for m = 5 and m� 1 for any odd m � 7.

Proof of Lemma 3

b3

a0

a1

a2

a3

b0

a4

Fig . 1a. A fragment of 7/2 7

a5

a6

b1

b2

b4

b5

b6

Consider Fig.1a.Take a cell A = (a

0

; :::; a

m

= a

0

) of the

m

2

m, i.e. a star m-gon, seen

as an oriented cycle of length m = 2k + 1. Consider following automorphism of the

honeycomb: a turn by 180 degrees around the midpoint of the segment [a

0

; a

k

]. The

image of A is the oriented star m-gon B = (b

0

; :::; b

m

= b

0

) with b

0

= a

k

,b

k

= a

0

. Consider

4



now oriented cycle C = (a

0

; a

1

; :::; a

k

= b

0

; :::; b

k

= a

0

) of even length m � 1 = 2k. In

order to prove the Lemma 3, we will show that C is a cycle of minimal length.

First we show that the graph distance d(a

0

; a

k

) = k (i.e. the path P := (a

0

; a

1

; :::; a

k

)

is a shortest path from a

0

to a

k

). It will imply that d(a

0

; c(A)) = d(a

k

; c(A)) = k, where

c(A) is the center of the cell A, because all vertices of

m

2

m are vertices of regular triangles

of 3m.

Let Q be a shortest path from a

0

to a

k

. Then it goes around the vertex c(A) or the

center c(B) of the cell B, because otherwise Q goes through at least one of the vertices

a

k+1

, a

2k

, b

k+1

, b

2k

and so Q contains at least one of the pairs of vertices (a

0

; a

k+1

),

(a

0

= b

k

; b

2k

), (b

k

= a

0

; a

2k

), (a

k

= b

0

; b

k+1

). But each of those pairs has, by the symmetry

of our honeycomb

m

2

m, same distance between them as (a

0

; a

k

); it contradicts to the

supposition that Q is a shortest path. So, we can suppose that Q goes around c(A) (the

argument is the same if it goes around c(B)). Now, to each edge (s; t), corresponds, from

the center c(A) of A, the angle (s; c(A); t). The 2k + 1 edges of A are only edges, for

which this angle is

4k�

2k+1

; for any other edge, the angle is smaller, since it is more far from

c(A). So, if Q contains an edge, other than one from A, then, in order to reach a

k

from

a

0

, it should be of length more than k. Therefore, any shortest path from a

0

to a

k

, should

consist only of edges of A and then it is of length k. So, d(a

0

; c(A)) = k also, as well as

for any edge of 3m. Same holds for m = 5.

We will show now that: (i)any path R of length 2k � 2 is not closed and (ii)R cannot

be closed by only one edge. But C is a closed path of length 2k; so (i), (ii) will imply

that 2k (respectively, 2k + 1) is the minimal length of any (respectively, any odd) simple

isometric cycle in the graph. For m = 5 (ii) does not holds.

Suppose that R is closed; let as see it as a 2k � 2-gon on hyperbolic plane. Any angle

of R is a multiple i

2�

m

, but i > 1 for at least one angle, because (2k � 2)

2�

m

< 2�. Suppose

that a angle has 1 < i � k; the argument will be the same, if k + 1 � i < m� 1, but for

the complementary angle (m� i)

2�

m

with 1 < m� i � k.

See Fig.1b for the following argument. Fix an angle r; s; t between two adjacent edges

(r; s) and (s; t) of R, has i with 1 < i � k. Let s� be the opposite vertex to s on R, let

(s; r

0

), (s; t

0

) be the edges such that the angles r; s; r

0

, t; s; t

0

are

2�

m

. Let A, B be the cells

m

2

, de�ned by pairs (r; s); (s; r

0

) and (t; s); (s; t

0

) of their adjacent edges and c(A), c(B)

are their centers. The vertex c(A) not belongs to the path from s to s� of length k � 1,

since we proved above that d(s; c(A) = k); so this path should go around c(A). Let p be

the vertex of A, reachable from s by k� 1 steps on A, starting by r, let q be the vertex of

B, reachable from s by k � 1 steps on B, starting by t. By mirror on (r; s) (respectively,

(s; t)) we obtain the cells A

0

, B

0

, their centers c(A

0

), c(B

0

) and vertices p

0

, q

0

, which are

re
ections of p, q. Call A-domain, the part of the hyperbolic plane, bounded by half-

lines c(A); p;1, c(A

0

); p

0

1 and the angle c(A); s; c(A

0

); call B-domain, the part, bounded

similarly for B. Actually, B-domain is the re
ection of A-domain by the bisectrisse of the

angle (r; s; t).

We will show now that the vertex s� should belong to both A- and B-domains, but

they do not have common points, besides s. This contradiction will show, that our R, a

closed path of length 2k�2, do not exists. Any edge of the path (s; t; :::; s�) of length k�1

is seen from c(A) under angle at most

4�

m

with equality if and only if the edge belongs to

5



A (as, for example, the edge (r; s)). Summing up those angles along the path (st; :::; s�),

we get less than (k� 1)

4�

m

, obtained for the path of length k � 1 from s to p, going along

A. It implies that s� belongs to A-domain and also, by re
ection, to B-domain.

Fig. 1b. A fragment of 9/2 9

s

r

t

p

p'

r'

c(A)

c(A')

t'

c(B)

q

q'

c(B')

But A- and B-domains intersect only in point s, because the lines through (c(A); p)

and (s; r

0

) diverge on the hyperbolic plane. In fact, denote by �

1

, �

2

, �

1

, �

2

the angles

(p, c(A), s), (c(A), s, r'), (c(A), p, r'), (p, r', s), respectively. They are equal to

4�

m

+

2�

m

,

�

m

,

�

m

+

�

m

,

2�

m

+

�

m

, respectively. So �

1

+ �

2

=

7�

m

� �, since m � 7 and the lines, if they

converge or parallel, do it on the right side of Fig. 1b. Now, �

1

+ �

2

=

5�

m

< � and the

lines, if they converge or parallel, do it on the left. So, they diverge.

We demonstrated ad absurdum, the non-existence of the vertex s� and so, of the

closed path R. So, a path R of length 2k � 2 is not closed. But p; q is never an edge; so

we need at least two edge in order to close R. If two edges are enough, then points r

0

, t

0

coincide, i.e. i = 2; actually, two edges will be enough if, moreover, m = 7. The proof of

Lemma is completed.

Proof of Theorem 2

Consider star-m-gons A, B and the circuit C as in beginning of the proof of Lemma

3 above. Take the arc e = (a

0

; a

1

) on the circuit C; by Lemma 1 (i), e is balanced, i.e.

the vectors x

i

(e

�

) of the opposite arc e

�

= (b

0

; b

1

) are same, as of the arc e, but they have

opposite directions with respect of the circuit C. The same arc e, seen as a arc of the

circuit B of length m, is opposite to two arcs in this odd circuit and, in particular, to

the arc (a

k

; a

k+1

). The last arc has, by Lemma 1 (ii),

�

2

vectors, coinciding with vectors

of e, but with opposite direction on the circuit B. Finally, consider the oriented path

6



(a

k+1

; a

k

= b

0

; b

1

) of length 2 in our

m

2

m. Its two arcs have vectors, coinciding, but going

in opposite direction on this path. But it contradicts to Lemma 2, because 2 < k.

3 Spherical analogue of Coxeter's honeycombs

In this Section we consider, for any pair (i;m) of integers, such that 1 � i <

m

2

and

g:c:d:(i;m) = 1, star-polygons

m

i

. Clearly,

m

1

denotes now a convexm-gon; so we see star-

polygons as a generalization of convex ones. We will allow further extension: star-polygons

m

i

with

m

2

< i < m, let us call them large star-polygons. They cannot be represented on

Euclidean or hyperbolic plane, because they have there the same representation as

m

m�i

.

But they can be represented on the sphere by the following way; see Fig.2 for the simplest

3

1

and

3

2

. Let a

0

; :::; a

m�1

be m points, placed in this order, on a great circle of the sphere,

in order to form a regular m-gon. Then the spherical (great circle) distance d(a

0

; a

i

) is

2�i

m

, but on

m

i

, the length of the way is d(a

0

; a

i

) for i <

m

2

and 2� � d(a

0

; a

i

) otherwise.

Using this larger set of polygons, we will look for spherical representations of regular (i.e.

with a group of symmetry acting transitively on all j-faces, 0 � j � 2) polyhedra.

Fig. 2a. 3/1 Fig. 2b. 3/2

In the Table 2 below, the rows (columns) denote a cell (respectively, a vertex �gure)

of would-be representations. If the representation, corresponding to a given pair of (

m

i

;

n

j

)

of polygons, exists, we denote it by this pair and write its density in corresponding cell

of the Table 2. The densities were counted directly, by superposing the representation

on corresponding regular polyhedron. But the expression of the density, given in the

formula 6.41 of [Cox73] for multiply-covered sphere is valid for our representations, i.e.

the density of (

m

i

;

n

j

) is N

1

(

i

m

+

j

n

�

1

2

), where N

1

is the number of edges. (Above expression

is equivalent to Cayley's generalization of Euler's Formula, given as the formula 6.42 in

[Cox73].) Our representations are Riemann surfaces, i.e. d-sheeted spheres (or d almost

coincident, almost spherical surfaces) with the sheets connected in certain branch-points.

We see a

m

i

as a representation of the m-cycle on the sphere, together with a bi-

partition of i-covering of the sphere. Call interior the part with angle, which is less

than �. For representations below, the vertex �gure selects uniquely the part of the cell;

7



namely, the vertex �gure

n

j

gives the value

2�j

n

for the angle of the cell. It takes interior

of the cell if j <

n

2

and exterior otherwise.

The Table 2 shows that each of all nine regular polyhedra (seen as abstract surfaces)

admits four such Riemann surfaces and we checked, case by case, that all 36 are di�erent

and that remaining 28 possible representations do not exist. Each of four representations

for each regular polyhedron has same genus as corresponding abstract surface; so the

genus is four for 8 representations of the form (

5

i

;

5

j

) and zero for all others.

In the Table 2, the column with

2

1

corresponds to doubling of regular polygons. Alexan-

drov ( [Ale58]) considered, for other purpose, the doubling of any convex polygon as an

abstract sphere, realized as a degenerated (i.e. with volume 0) convex polyhedron. m2

and 2n on the plane and the sphere appeared also in Section 7 of [FTo64]. By analogy,

we will do such doubling for star-polygons

m

i

with i <

m

2

. But for large star-polygons

we should do doubling on the sphere. The row and the column with

m

i

correspond to

any pair of mutually prime integers (i;m), 1 � i < m. As Table 2 shows, there exist all

representations (

2

1

;

m

i

) and (

m

i

;

2

1

) and each of them has density i (and the genus 0).

An in�nity of other representations can be obtained by permitting polygons

m

i+tm

for

any integer t � 0; the way on the edge (a

0

; a

i+tm

) will be 2�t� d(a

0

; a

i+tm

).

Table 2. 36 representations of regular polyhedra on the sphere.

2

1

3

1

3

2

4

1

4

3

5

1

5

4

5

2

5

3

m

i

m

m�i

2

1

1 1 2 1 3 1 4 2 3 i m� i

3

1

1 1 3 1 7 1 19 7 13

3

2

2 3 5 5 11 11 29 17 23

4

1

1 1 5

4

3

3 7 11

5

1

1 1 11 3 9

5

4

4 19 29 21 27

5

2

2 7 17 3 21

5

3

3 13 23 9 27

m

i

i

m

m�i

m� i

4 Star-honeycombs

Besides star-polygons and four regular star-polyhedra on 2-sphere, which are all embed-

dable (last four are isomorphic to Ico or Do), there are ( [Cox54]) only following regular

star-honeycombs: ten regular star-polytopes on 3-sphere and four star-honeycombs in

hyperbolic 4-space; see the Tables 1, 3-5. In this section we show that none of last 14 is

embeddable. Consider �rst the case of 3-sphere.

There are six regular 4-polytopes (4-simplex �

4

, 4-cross-polytope �

4

, 4-cube 


4

, self-

dual 24-cell and the pair of duals 600-cell and 120-cell) and ten star-4-polytopes; see the

Chapter 14 in [Cox73]. [Ass81] showed non-embeddability of 24- and 600-cell; [DGr97c]

did it for 120-cell. Clearly, 


4

and �

4

are H

4

and

1

2

H

4

themselves and they are l

1

-rigid.
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But �

4

embeds into

1

2

H

5

(i.e. an embedding of scale 2 into 5-cube) and it it embeds also,

for example, with scale 6 into 10-cube.

Embeddable ones among Archimedean tilings of 3-sphere and 3-space, were identi�ed

in [DSt98b]; for example, snub 24-cell (semi-regular Gosset's 4-polytope s(3; 4; 3)) embeds

into

1

2

H

12

while the Grand Antiprism of [Con67] is not embeddable.

The isomorphisms among ten star-4-polytopes, see [vOs15] and pp. 266-267 of [Cox73],

imply, of course, the isomorphisms of the skeletons of those polytopes. Using Schl�a
i

notation, those isomorphisms of graphs are:

(i)

5

2

53 � 5

5

2

3;

(ii)

5

2

33 �120-cell (remind the isomorphism of

5

2

3 and 53);

(iii) all remaining seven skeletons are isomorphic with the skeleton of 600-cell (more-

over, 35

5

2

has same faces; remind the isomorphism of 3

5

2

and 35).

So eight star-polytopes from (ii) and (iii) above are not embeddable. Remaining

case (i) is decided by the Theorem 3 below, using following 5-gonal inequality, which is

necessary condition (see [Dez60]) for embedding of graphs:

d

ab

+ (d

xy

+ d

xz

+ d

yz

) � (d

ax

+ d

ay

+ d

az

) + (d

bx

+ d

by

+ d

bz

)

for distances between any �ve its vertices a; b; c; x; y.

Theorem 3 None of ten star-4-polytopes is embeddable.

Proof of Theorem 3

In view of above isomorphisms, it will be enough to show that (the skeleton of) 4-

polytope P :=

5

2

53 is not 5-gonal. P is the stellated 120-cell and

5

2

is the stellated

dodecahedron, i.e. all face-planes are extended until their intersections form a pyramid

on each face. P has 120 vertices, as 600-cell; namely, the centers of all 120 (dodecahedral)

cells of 120cell. For any vertex s of P , denote by Do(s) the corresponding dodecahedron.

P has (as 120-cell) 1200 edges, 720 faces and 120 cells; its density is 4. Any edge (s; t) of P

goes through interiors of Do(s), Do(t) and the edge of 120-cell, linking those dodecahedra;

(s; t) is a continuation of this edge in both directions till the centers of dodecahedra

Do(s),Do(t).

Consider now Fig. 3. Take as vertices a and b (for future contre-example for 5-gonal

inequality,given before of Theorem 3) some two vertices of

5

2

5 (a cell of P ), which are

centers of two face-adjacent dodecahedral cells of 120-cell. Let Q = (q

1

; q

2

; q

3

; q

4

; q

5

) be

this face of adjacency, presented by the 5-cycle of its vertices. For any q

i

there is unique

star-5-gon (a; d

i

; b; d

0

i

; d

00

i

), such that sides (b; d

0

i

) and (d

00

i

; a) intersect in the point q

i

. Now,

D := (d

1

; d

2

; d

3

; d

4

; d

5

) is a 5-cycle in P , because each (d

i�1

; d

i

) is an edge in one of �ve

cells

5

2

5 of P , containing vertices a and b. Put x := d

1

, y := d

2

, z := d

4

and check 5-gonal

inequality for �ve vertices a; b; x; y; z of P .

9



In fact, d

xy

= 1 = d

ax

= d

ay

= d

az

= d

bx

= d

by

= d

bz

, because of the presence of

corresponding edges in P . Therefore, d

xz

; d

yz

and d

ab

are at most 2. So, the absence

of edges (x,z), (y,z) and (a,b) will complete the proof of the Theorem. The edge (a; b)

does not exist, because Do(a) is face-adjacent to Do(b). The edge (x; z) does not exists,

because the line, linking vertices x and z, goes, besides Do(x) and Do(z), through two

other dodecahedra (such that their stellations are

5

2

5, containing vertices a; b; d

2

; d

3

or

a; b; d

3

; d

4

. By symmetry, the edge (y; z) does not exist also. We are done.

Corollary None of four star honeycombs in hyperbolic 4-space is embeddable

Proof of Corollary

In fact,

5

2

533 has cell which contains (because of Theorem 3), as an induced subgraph,

non-5-gonal graph K

5

�K

3

. But any induced graph of diameter 2 is isometric; so

5

2

533

is not 5-gonal. 335

5

2

has cell 335 = 600-cell. Two other have cells which are isomorphic

to 600-cell. But 600-cell (seen by Gosset's construction as capping of all 24 icosahedral

cells of snub 24-cell) contains also a forbidden induced graph of diameter 2: pyramid

on icosahedron (it violates 7-gonal inequality, which is also necessary for embedding;

see [Dez60], [DSt96]). So, three other star-4-polytopes are also non-7-gonal and non-

embeddable.
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5 Regular tilings of dimension d � 3

The Tables 3-5 below present all of them and also all regular honeycombs in the dimensions

3, 4, 5; for higher dimensions, (d+1)-simplices �

d+1

, (d+1)-cross-polytopes �

d+1

, (d+1)-

cubes 


d+1

and cubic lattices �

d

are only regular ones.

In those Tables, 24�, 600�, 120� are regular spherical 4-polytopes 343, 335, 533

with indicated number of cells and De(D

4

), V o(D

4

) are regular partitions 3343, 3433 of

Euclidean 4-space, which are also Delaunay (Voronoi, respectively) partitions associated

with point lattice D

4

.

All cases of embeddability are marked be the star * in the Tables.

Table 3. 3-dimensional regular tilings and honeycombs.

�

3




3

�

3

Do Ico �

2

63 36 3

5

2

5

2

3 5

5

2

5

2

5

�

3

�

4

� �

4

� 600� 336 33

5

2

�

3

24� 344




3




4

� �

3

� 435� 436�

Ico 353 35

5

2

Do 120� 534 535 536 53

5

2

�

2

443� 444�

36 363

63 633� 634� 635� 636�

5

2

3

5

2

33

5

2

35

3

5

2

3

5

2

5

5

2

5

5

2

53

5

2

5

5

2

5

5

2

5

5

2

3 5

5

2

5

Table 4. 4-dimensional regular tilings and honeycombs.

�

4




4

�

4

24� 120� 600� �

3

35

5

2

5

2

53 5

5

2

5

�

4

�

5

� �

5

� 3335

�

4

De(D

4

)




4




5

� �

4

� 4335�

24� Vo(D

4

) 3434

600� 335

5

2

120� 5333 5334 5335

�

3

4343�

5

2

53

5

2

533

35

5

2

35

5

2

5

5

5

2

5 5

5

2

53
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Table 5. 5-dimensional regular tilings and honeycombs.

�

5




5

�

5

V o(D

4

) De(D

4

) �

4

�

5

�

6

� �

6

�

�

5

33343




5




6

� �

5

�

De(D

4

) 33433

V o(D

4

) 34333 34334

�

4

43343�

Theorems 1, 2 above show that all regular 2-dimensional tilings and star-honeycombs

are embeddable except

m

2

m for all odd m � 7. The following Theorem decides all remain-

ing regular cases.

Theorem 4 All embeddable regular tilings and honeycombs of dimension d � 3 are

tilings:

(i) either �

d+1

and �

d+1

, or

(ii) all with bipartite skeleton:

(ii-1) all with cell 


d

: 


d+1

, �

d

and 3 hyperbolic ones: 435, 4335, non-compact 436;

(ii-2) all 4 with cell �

d�1

: hyperbolic non-compact 443, 444, 4343, 43343;

(ii-3) all 4 with cell 63: hyperbolic non-compact 633, 634, 635, 636.

All embeddable regular tilings or honeycombs, except any �

n

and (for n � 5) any �

n

(see Remark 2 below) are l

1

-rigid. All bipartite ones are embeddable (with scale 1) tilings;

in particular, all 11 above hyperbolic tilings embed into Z

1

.

Proof of Theorem 4

In fact, we review all cases of Tables 3-5. All compact cases (on �rst 5 rows,columns of

Table 3 and �rst 6 rows,columns of Table 4) were decided in [DSt97]. Non-embeddability

for all 14 star-polytopes and star-honeycombs (in Tables 3, 4) was established in section

3. It remains 11, 2, 5 non-compact tilings of hyperbolic 3-, 4-, 5-space; we will show that

7, 1, 1, respectively, of them are embeddable into Z

1

, while 8 others are not 5-gonal.

The tilings 3434, 34333, 33433, 34334 have non-5-gonal graph K

5

� K

3

as induced

subgraph of the cell. 363 (respectively,344) contain induced K

5

� K

3

, because each its

edge is common to 3 (respectively, to 4) triangles. 336 is a simplicial manifold with 6

triangles on an edge; taking 1-st, 3-rd and 5-th of them, we get again induced K

5

�K

3

.

A particularity of T := 33343 is that the cell �

4

of its vertex �gure De(D

4

) is also the

equatorial section of the cell �

5

of T . All neighbors of a vertex s of T form De(D

4

). Take

an isometric subgraph K

5

�K

3

in De(D

4

), given in [DSt98a]. The vertex s is a neighbor

of each of its �ve vertices; obtained 6-vertex graph is non-5-gonal graph of diameter 2,

which is, using above particularity of T , is an induced subgraph of T . (Compare with

embeddable tiling 43343 by 


5

, having the same vertex �gure.) All seven above tilings

are not 5-gonal, because any induced graph of diameter 2 is isometric. Finally, each edge

of 536 is common to 6 disjoint pentagons; taking 1-st, 3-rd and 5-th of them we obtain

non-5-gonal 11-vertex induced subgraph of diameter 4 of 536; a routine check shows that

it is isometric.
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Other hyperbolic tilings embed into Z

1

, because of Lemma 5 below; it is easy to �nd

re
ections, required by Lemma 5 in each case. It is easy to check l

1

-rigidity (for cases of

embedding) for dimension 2; any bipartite embeddable graph is l

1

-rigid, because it has

scale 1. The proof is complete.

Let T be any (not necessary regular) convex d-polytope or tiling of Euclidean or

hyperbolic d-space by convex polytopes, such that the skeleton is a bipartite graph. (We

admit in�nite cells and, if regular, in�nite vertex �gures.) Then the set of its edges can

be partitioned into zones, i.e. sequences of edges, such that any edge of a sequence is the

opposite to the previous one on an (even necessary) 2-face.

Lemma5. Let T is as above; suppose that the mid-points of edges of each zone lie on

hyperplanes, di�erent for each zone, which are (some of) re
ection hyperplanes of T and

perpendicular to edges of their zones. Then T embeds into Z

m

with m no more than the

number of zones.

Proof of Lemma 5

It follows directly from the fact that each geodesic path (in the skeleton of T ) intersects

any zone in at most one edge.

Remark 1 Embedding of any bipartite regular tiling can be obtained, using Lemma

5. The re
ections, required by Lemma 5 (let us call them zonal re
ections) generate

(because of simple connectedness of T ) a vertex-transitive group of automorphisms of

T (call it zonal group; so T is uniform and the zonal group is generated by the zonal

re
ections of all edges incident to a �xed vertex of T . For any �xed 2k-gonal 2-face of

T , let m

1

,...,m

k

be the zonal re
ections of its edges, considered in the cyclic order. Then

the product m

1

:::m

k

m

1

:::m

k

=< 1 > (i.e. m

1

:::m

k

is an involution) and those relations,

for all 2-faces around a �xed vertex of T , are all de�ning relations for the zonal group of

T . So, the zonal group is not 2-transitive on vertices. For example, the zonal group of

Archimedean truncated �

3

is an 1-transitive subgroup of index 2 of the octahedral group

Aut(T ) = O

h

, which is 2-transitive. Also, a polytope in the conditions of Lemma 5 is not

necessary zonotope. For example, any centrally-symmetric non-Archimedean (by choice

of the length of truncation) truncated �

3

�ts in it; it is a zonohedron in original sense of

Fedorov, but not in usual sense of Minkowski (with all edges of each zone having same

length).

Remark 2

All in�nite families of regular tilings are embeddable. In fact, m-gons, �

n�1

= Z

n

,




n

= H

n

, �

n

, �

n

are embeddable and, moreover, �rst three are l

1

-rigid. But embeddings

of skeletons of �

n

and, for n � 4, �

n

, is more complicate. It is considered in detail (in

terms of corresponding complete graph K

n+1

and Cocktail-Party graph K

n�2

in Chapter

23 [DLa97] and Section 4 of Chapter 7 [DLa97], respectively. Any �

n

; n � 3 is not l

1

-rigid,

i.e. it admits at least two di�erent embeddings. We give now two embeddings of �

n

into

m-cubes with scale � , realizing, respectively, maximum and minimum of

m

�

. The �rst

one is �

n

!

1

2

H

n+1

. Now de�ne m

n

=

2n

n+1

for odd n and =

2n+2

n+2

for even n; de�ne �

n

be the minimal even positive number t such that tm

n

is an integer. Then �

n

embeds into

tm

n

-cube with scale �

n

. Any �

n

, n > 4, is not l

1

-rigid. All embeddings of �

n

are into

2�-cube with any such even scale � that �

n�1

embeds into m-cube, m � 2� with scale

�. For minimal such scale, denote it �

n

, the following is known: n > �

n

� 2d

n

4

e with
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equality in the lower bound for any n � 80 and, in the case of n divisible by 4, if and only

if there exists an Hadamard matrix of order n. In particular, �

3

!

1

2

H

4

, �

4

!

1

2

H

4

(in

fact, they coincide), but �

5

(the smallest non-l

1

-rigid one) embeds only with scale 4 (into

H

8

).

Remark 3

This note �nalizes the study of embeddability for regular tilings done in [DSt96],

[DSt97]; we correct now following misprints there: a) in the sentence \Any l

1

-graph,

not containing K

n

, is l

1

-rigid" on p.199 [DSt96], should be K

4

instead of K

n

; b) in the

sentence, on p.200 [DSt96], about partitions of Euclidean plane, embeddable into Z

m

,

m < 1, should be � instead of <; c) in the sentence about F�oppl partition on p.155

[DSt97], should be �

3

and truncated �

3

instead of �

3

.
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