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More icosahedral fulleroids

Olaf Delgado Friedrichs and Michel Deza

Abstract. Generalized fullerenes | or fulleroids | containing faces of degree

larger than 6, are beginning to gain some interest in theoretical chemistry. Us-

ing the theory of Delaney symbols, we construct some relatively small fulleroids

with icosahedral symmetries and without hexagons and which are unique with

respect to their p-vectors and symmetries. We also obtain several in�nite series

of icosahedral fulleroids.

1. Introduction

Dress and Brinkmann [DB96] introduce Fowler's Phantasmagorical Fulleroids

as the two unique planar polyhedral maps (or tilings of the sphere) with p-vector

(p

5

; p

7

) = (72; 60) and icosahedral symmetry. Their proof that no other such struc-

tures exist exempli�es the power and beauty of the method of Delaney symbols.

Although for larger structures, the necessary case analysis becomes rather tedious

and requires the help of a computer (cf. [Hus93]), a number of similar classi�cation

results come up even more easily by the same general scheme.

The structures found by Dress and Brinkmann as well as the ones we will

describe here can be constructed from certain well-known icosahedral fullerenes

using simple subdivision operations. By applying such operations to in�nite series

of fullerenes, one obtains corresponding in�nite series of fulleroids.

We will use the terminology of [DB96] plus the following de�nitions: a fulleroid

is a tiling of the sphere such that all of its vertices have degree 3 while all of its

faces have degree 5 or larger. A �-fulleroid is a fulleroid on which the group � acts

as a group of symmetries. In particular, an I-fulleroid is one which has the same

proper (i.e., orientation preserving) symmetries as the icosahedron. The p-vector

(c.f. [Gr�u67]) of a tiling is a vector (p

i

)

i2N

such that p

i

denotes the number of

faces of degree i in that tiling.

We will say that a given I-fulleroid F is of type (a; b) or an I(a; b)-fulleroid ,

if p

i

(F ) is nonzero if and only if i 2 fa; bg. See [DG97] for a more general study

of such bifaced polyhedra. Let a = 5. The case b < 5 is not possible. For

a = b = 5, the only possible I-fulleroid is the dodecahedron. The case (a; b) = (5; 6)

is the classical fullerene case. There is a well-known classi�cation result for I(5; 6)-

fulleroids, i.e. fullerenes of icosahedral symmetry ([Gol37] and [Cox71]). The

smallest possible I(5; 7)-fulleroids are described in [DB96]. Here, we will look at

the smallest I(5; n)-fulleroids for some numbers n > 7.

We will proceed as follows: in Section 2, we will describe and tabulate the

new structures. All I-fulleroids known so far can be conveniently described as the

1
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result of regularily \decorating" certain well-known fullerenes. In Section 3, we

will describe these decorations and introduce some in�nite series of fulleroids which

are obtained this way. Most remarkably, we will show that there are in�nitely

many I(5; 7)- and I(5; 8)-fulleroids. Then, in Section 4, we will derive a necessary

condition on the p-vectors which implies that �ve of the new I-fulleroids are minimal

for their respective values of n. Finally, in Section 5, we will apply the method of

Delaney-symbols by A. Dress to establish the uniqueness of �ve of the new fulleroids

and the minimality of the one not handled by Section 4.

2. Results

For later reference, we will start by describing the four smallest icosahedral

fullerenes apart from the dodecahedron. The �rst one is C

60

(I

h

), the bucky-ball

or buckminsterfullerene. The second one is C

80

(I

h

), the `chamfered' dodecahedron,

obtained from the dodecahedron by capping each face with a pentagonal prism,

then removing all original edges. The other two are C

140

(I) and, �nally, C

180

(I

h

),

the `leap-frog' of the bucky-ball, obtained from the dual of C

60

(I

h

) by truncating

all the vertices. For reference, we show the �rst three of these well-known fullerenes

in Figure 1. We use a simpli�ed version of the conventional naming for fullerenes

here, where C

n

(�) stands for a `carbon molecule' with n atoms (i.e. a three-regular

graph with n vertices) and full combinatorial symmetry group �. Although this

notation is not generally unique, it will su�ce for our purpose.

(a) (1; 1) : C

60

(I

h

) (b) (2; 0) : C

80

(I

h

) (c) (2; 1) : C

140

(I)

Figure 1. The icosahedral fullerenes with parameters (1; 1), (2; 0)

and (2; 1)

The four polyhedra mentioned above have parameters (1; 1), (2; 0), (2; 1) and

(3; 0), respectively, as according to Goldberg [Gol37], while the dodecahedron has
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parameters (1; 0). These parameters refer to the distance vectors w.r.t. the hexag-

onal lattice A

2

between pairs of closest pentagons. We will sometimes use the

notation G

p;q

for an icosahedral fullerene with Goldberg parameters (p; q).

Dress and Brinkmann show that the two I(5; 7)-fulleroids they describe are the

only such structures with the (smallest possible) p-vector (p

5

; p

7

) = (72; 60). We

will generalize their result to I(5; n)-fulleroids, where n = 8; 9; 10; 12; 14; 15.

Note that because of Equation 4.1 below, the numbers p

a

and p

b

in an I(a; b)-

fulleroid are linear functions of each other. This further implies that v, the number

of vertices, is a linear function of any one of them. Therefore, we can use any one

of these three quantities to measure the size of an I(a; b)-fulleroid. However, for

I(5; n)-fulleroids, it will turn out to be most convenient to use p

n

.

Table 1 shows the smallest possible p-vectors for 7 � n � 20 according to

Lemma 4.3 below. The �rst four columns of the table show the quantities n, p

5

, p

n

and v as de�ned above. Note that since all graphs described here are 3-regular (each

vertex has valency three), the number of edges is simply e = 3v=2. The invariants

m

5

, m

n

, k

2

, k

3

and k

5

are described in Section 4. The last three columns, if

applicable, give the number (#) of structures with the given p-vector, the numbers

of the �gures in which they appear and the names by which we will refer to them.

These names are of the form F

a;b

(�), where (a; b) is the type and � is the full

combinatorial symmetry group of the fulleroid. Note that for n = 12, the smallest

p-vector which full�lls the condition of the lemma is not realizable. The smallest

I(5; 12)-fulleroid has as its p-vector the second to smallest one predicted by that

condition, which is also shown.

n p

5

p

n

v m

5

m

n

k

2

k

3

k

5

# Fig: Name(s)

7 72 60 260 1 1 3 2 1 2 (2) F

5;7

(I)a

(3) F

5;7

(I)b

8 72 30 200 1 1 4 2 1 1 (5) F

5;8

(I

h

)

9 72 20 180 1 0 3 3 1 1 (4) F

5;9

(I

h

)

10 60 12 140 1 0 3 2 2 1 (6) F

5;10

(I

h

)

11 312 60 740 5 1 3 2 1 ?

12 132 20 300 2 0 3 4 1 �

12 192 30 440 3 0 6 3 1 1 (8) F

5;12

(I

h

)

13 432 60 980 7 1 3 2 1 ?

14 252 30 560 4 0 7 2 1 1 (9) F

5;14

(I

h

)

15 120 12 260 2 0 3 2 3 1 (7) F

5;15

(I

h

)

16 312 30 680 5 0 8 2 1 ?

17 672 60 1460 11 1 3 2 1 ?

18 252 20 540 4 0 3 6 1 ?

19 792 60 1700 13 1 3 2 1 ?

20 180 12 380 3 0 3 2 4 ?

Table 1. Potential p-vectors and invariants for certain I(5; n)-fulleroids.

Figures 4 to 9 contain Schlegel diagrams and spatial embeddings with about

constant edge lengths of the 6 new fulleroids. For reference, we also include pictures

of the 2 structures from [DB96] as Figures 2 and 3. The coordinates for all of these

�gures where obtained by the algorithms described in [Del98].
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Figure 2. F

5;7

(I)a = P (C

140

(I)); v = 260

Figure 3. F

5;7

(I)b = T

1

(C

180

(I

h

)); v = 260

3. The decoration operations

The six fulleroids shown in the previous section as well as the two described by

Brinkmann and Dress have been found by a systematic investigation of all possible

ways to assemble pentagons and, say, octagons into a structure with the desired

properties. This will be explained in more detail in Section 5. However, it turns

out that all eight structures can be conveniently described as the results of deco-

rating small icosahedral fullerenes with symmetric patches from the dodecahedron.

By applying these decorations to other icosahedral fullerenes, one obtains several

in�nite series of I-fulleroids. The two most interesting of these are an in�nite series

of I(5; 7)-fulleroids and a similar series of I(5; 8)-fulleroids.

We need the following four decoration operations producing pentagons:
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Figure 4. F

5;9

(I

h

) = P (C

60

(I

h

)); v = 180

Figure 5. F

5;8

(I

h

) = P (C

80

(I

h

)); v = 200

Triacon of �rst order: Split a hexagon into three pentagons by connecting

midpoints of three pairwise nonadjacent sides to the face center.

Pentacon: Split a pentagon into �ve quadrangles by connecting midpoints of

all sides to the face center, then truncate the central vertex to obtain six

pentagons.

Triacon of second order: Split a hexagon into three quadrangles and a hex-

agon by three new edges parallel to pairwise nonadjacent sides, then apply

the triacon of �rst order to the new hexagon, using midpoints of new edges,

to obtain altogether six pentagons.

Triacon of third order: Split a triangle into three new triangles and a hex-

agon by \cutting o�" the vertices, then apply the triacon of second order to

the hexagon to obtain altogether nine pentagons.
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Figure 6. F

5;10

(I

h

) = T

1

(C

60

(I

h

)); v = 140

Figure 7. F

5;15

(I

h

) = T

2

(C

60

(I

h

)); v = 260

Note that these operations retain the full rotational symmetry of the face they

are applied to, but that the �rst two triacon operations will destroy mirror sym-

metries in case a mirror plane intersects the decorated hexagon at two opposite

vertices.

In Table 2, we summarize the relations between small icosahedral fullerenes

and fulleroids in terms of the four decoration operations. For that purpose, we

denote the application of the pentacon operation to a complete set of 12 pentagons

containing a 5-fold symmetry axis each by the letter P . We denote the application

of the �rst two triacon operations to sets of 20 faces containing a 3-fold rotational

axis each by T

1

and T

2

, respectively. If for some base structure the 3-fold axes

meet vertices, then we denote the operation of truncating all 20 such vertices and

applying the triacon of third order to the resulting triangles by T

3

.
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Figure 8. F

5;12

(I

h

) = T

3

(C

80

(I

h

)); v = 440

Figure 9. F

5;14

(I

h

) = P (F

5;12

(I

h

)); v = 560

F

5;7

(I)a = P (C

140

(I))

F

5;7

(I)b = T

1

(C

180

(I

h

))

F

5;8

(I

h

) = P (C

80

(I

h

))

F

5;9

(I

h

) = P (C

60

(I

h

))

F

5;10

(I

h

) = T

1

(C

60

(I

h

))

F

5;12

(I

h

) = T

3

(C

80

(I

h

))

F

5;14

(I

h

) = P (F

5;12

(I

h

)) = T

3

(F

5;8

(I

h

))

F

5;15

(I

h

) = T

2

(C

60

(I

h

))

Table 2. Description of fulleroids as decorated fullerenes

Note that the triacon of C

180

(I

h

) has only I-symmetry due to the fact that the

triacon operations do not always retain mirror symmetries. Also note that F

5;14

(I

h

)

is obtained from C

80

(I

h

) by applying both P and T

3

, in any order.
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Figure 10. Fundamental domains for the I(5; 7)-fulleroids H

1

to

H

4

(dotted lines).

In�nitely many I-fulleroids can be obtained by applying the pentacon and

triacon operations to the icosahedral fullerenes. In particular, the P operation

can be applied to any icosahedral fullerene except G

1;0

(the dodecahedron). The

resulting fulleroid will be of type (5; 6; 7) except for G

1;1

= C

60

(I

h

), G

2;0

= C

80

(I

h

)

and G

2;1

= C

140

(I), namely the three cases appearing in Table 2. In a similar

way, either one of T

1

and T

2

or T

3

can be applied to any icosahedral fullerene,

depending on whether the 3-fold rotational axes meet (hexagonal) faces or vertices,

respectively. This gives rise to three additional in�nite families of fulleroids, but

again all except �nitely many of these fulleroids will be of type (5; 6; n) for some

n > 6.

On the other hand, an in�nite series of I(5; 7)-fulleroids (H

n

)

n>0

is obtained

from the series (G

2n+1;0

)

n>0

by applying T

1

in a regular pattern to one fourth of

all hexagons (instead of just to those hexagons which contain a 3-fold rotational

axis). The pattern is shown in Figure 10 together with fundamental domains for

the �rst four of these I(5; 7)-fulleroids. The fundamental domains are kite-shaped

pieces of di�erent sizes from the modi�ed hexagonal grid. The axes of the 5- and

the 3-fold rotations will go through the leftmost and rightmost vertex, respectively,

of the kite. Note that the �rst I(5; 7)-fulleroid of this series, H

1

, is just F

5;7

(I

h

).

A similar series (O

n

)

n>0

of I(5; 8)-fulleroids is obtained from (G

2n+1;0

)

n>0

by

applying T

2

instead of T

1

in the same pattern as shown in Figure 10.

4. Restrictions on the p-vectors

Let us �rst recall the well-known fact that, while the number of hexagons in

a tiling with constant vertex degree 3 is arbitrary, the number of pentagons can

be determined from the number of faces of degree 7 or larger. Indeed, the number

of edges is e =

1

2

P

i � p

i

, the number of vertices is v =

1

3

P

i � p

i

, thus by Euler's
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formula f � e+ v = 2, we obtain

2 =

X

(1�

i

2

+

i

3

)p

i

=

X

(1�

i

6

)p

i

or

0 = 12 +

X

(i� 6)p

i

:(4.1)

For tilings with speci�ed symmetries, much stronger conditions on the potential

p-vectors are obtained by applying some elementary group theory. Let T be some

tiling of the sphere and let G be a subgroup of its full symmetry group. First, note

that the image of an arbitrary face of T by an arbitrary element of G is again a

face of T . Therefore, G can be interpreted as acting by permutations on the set

of faces. By the same argument, G also acts on the set of edges and on the set of

vertices. Recall that the stabilizer of some element x (i.e. some face, edge or vertex)

is the set of operations in G which map it onto itself. The stabilizer of x is always

a subgroup of G and is denoted by G

x

. The orbit G � x of an element x is the set

of images of x under all the operations in G. Obviously, the set of orbits forms a

partition of the set of elements, thus, for example, the set of all face orbits under G

forms a partition of the set of faces, and so on. The following elementary statement

from group theory tells us how many elements these orbits can have.

Lemma 4.1. If G is a �nite group acting on a �nite set S and s is an arbitrary

element of S, then #(G � x) = #G=#G

x

.

Now, consider a tiling T with symmetry group I , the group of orientation

preserving symmetries of the icosahedron. All the elements of I are rotations. If

some rotation maps a face f onto itself, then all the powers of this rotation do so,

too. Moreover, no two rotations of di�erent orders can �x the same face. Thus, the

possible face stabilizers are exactly the groups generated by the rotations of orders

2, 3 and 5.

Another elementary fact is that the stabilizers of two elements in the same

orbit are conjugate to each other, and that, moreover, if some subgroup H of G is

conjugate to a stabilizer G

x

, then H is the stabilizer of some element in the same

orbit as x. Now, since in I , each pair of rotational subgroups of the same order are

conjugate, the following statement holds.

Theorem 4.2. In an I-fulleroid, there is at most one orbit of faces with rota-

tional symmetries of orders 2, 3 and 5 respectively. These orbits, if existent, contain

exactly 30, 20 and 12 faces, respectively. All the other orbits have trivial stabilizers

and contain exactly 60 faces, each.

Table 3 gives an overview of the possible combinations of face orbits.

orbit size 60 30 20 12

number of orbits any � 1 � 1 1

face degree any 2t 3t 5t

Table 3. The possible face orbits of an I-fulleroid.

Now, a rotation of order 2 can never �x a face or vertex of odd degree, So, in

this case, it has to �x either an edge or a face of even degree. Similarly, a rotation of

order 3 must �x either a vertex or a face of some degree divisible by 3. On the other
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hand, a rotation of order 5 must �x a face, since there is no other element it could

possibly �x. We can distinguish two broad classes of I(5; n)-fulleroids depending

on whether or not the 5-fold rotations �x pentagons or larger faces. In the �rst

case, the p-vector will be of the form

A

n;k

: (p

5

; p

n

) =

�

12 + 60k;

60k

n� 6

�

;

where k � 1, n � 6 and p

n

2 N. In the second case, it will be of the form

B

n;k

: (p

5

; p

n

) =

�

60k; 12

5k� 1

n� 6

�

;

where k � 1, n � 10, 5jn and p

n

2 N. In the following, we will give a �ner

parametrization of potential p-vectors.

For a given degree i, let m

i

denote the number of orbits of i-faces (i.e. faces of

degree i) that are not mapped onto themselves by any symmetry but the identity.

The total number of such faces is then 60m

i

by the above. For j = 2; 3; 5, set

k

j

:= k, if a k � j-face exists which is �xed by a rotation of order j. If none such

face exists for any k, then we set k

j

:= 6=j.

Lemma 4.3. For each I-fulleroid, the equality

X

i

m

i

(i� 6) +

X

j=2;3;5

k

j

= 6

holds.

Proof. Each face orbit has either a trivial stabilizer or is �xed by a rotation

of order 2, 3 or 5. If some face f of degree m has a stabilizer of order j = 2; 3; 5,

then we have m = k

j

� j, and the orbit of f contains exactly 60=j faces. Together

with Equation 4.1, this implies

0 =

X

i

60m

i

(i� 6) +

X

j=2;3;5

60

j

(k

j

� j � 6) + 12:

Note that this equation remains true if for some j, there is no face �xed by a

rotation of order j, because in that case we have k

j

= 6=j, thus k

j

� j � 6 = 0.

We divide both sides by 60 and simplify the second sum, to obtain

0 =

X

i

m

i

(i� 6) +

X

j=2;3;5

k

j

�

X

j=2;3;5

6

j

+

1

5

=

X

i

m

i

(i� 6) +

X

j=2;3;5

k

j

�

6

2

�

6

3

�

6

5

+

1

5

=

X

i

m

i

(i� 6) +

X

j=2;3;5

k

j

� 6:

We �nish this section by giving formulae to calculate the p-vector and the num-

ber of vertices v from the invariants m

i

and k

j

. Since the invariants are insensitive

to the number of hexagons, the following equations hold if and only if the fulleroid
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in question does not contain hexagons. For the p-vector, we have

p

i

= 60 �

0

@

m

i

+

X

j�k

j

=i

1

j

1

A

:(4.2)

The number of vertices is

v =

1

3

X

i

i � p

i

= 20 �

X

i

0

@

i �m

i

+

X

j�k

j

=i

i

j

1

A

= 20 �

X

i

0

@

i �m

i

+

X

j�k

j

=i

k

j

1

A

;

thus

v = 20 �

0

@

X

i

i �m

i

+

X

j�k

j

6=6

k

j

1

A

:(4.3)

5. From the p-vectors to the structures

In the following, we will present a general method for the classi�cation of I-

fulleroids with given parametersm

i

and k

j

. This method easily generalizes to other,

similar problems. We will present proofs for the individual classi�cation results at

di�erent levels of abstraction, starting with an elementary proof of the uniqueness

of F

5;10

(I

h

) and gradually transforming our arguments into purely combinatorial

ones expressed in the language of Delaney symbols. Our intention is to demonstrate

thereby how Delaney symbols capture the essential structural information in a very

natural and convenient way.

Proposition 5.1. The fulleroid F

5;10

(I

h

) is the only I-fulleroid with p-vector

(p

5

; p

10

) = (60; 12) and the smallest I(5; 10)-fulleroid.

Proof. First note that 12 is the smallest possible non-zero value of p

10

, cor-

responding to the parameter values m

10

= 0 and k

5

= 2. This means that there is

exactly one orbit of decagons, each of which is �xed by a rotation of order 5, and

one orbit of pentagons, which have trivial stabilizers. This gives us the additional

information that all the rotation axes of order 2 meet edges and that all the axes

of order 3 meet vertices. Let v

0

be one such vertex and let f

0

be one of the faces

adjacent to it.

Assume f

0

is a decagon. Because of the 5-fold rotation mapping f

0

onto itself,

every second vertex of f

0

must meet a 3-fold axis. The three faces containing

such a vertex must then all be decagons, because they are rotated onto each other.

This means that f

0

ist completely surrounded by decagons, each of them in the

same orbit as f

0

. By induction, all the faces in the connected component which

contains f

0

are decagons. There is only one connected component, so there are only

decagons, a contradiction.

We conclude that v

0

must be adjacent to a pentagon. Again, this implies that

all three faces adjacent to v

0

are pentagons. Let v

1

be a vertex adjacent to any

two of these faces. The third face adjacent to v

1

cannot be a pentagon, since this

pentagon would be in the same orbit as f

0

and thus contain a symmetric image

v

2

of v

0

, i.e., a vertex meeting a 3-fold rotation axis. There are three essentially
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Figure 11. A forced subgraph for an I-fulleroid with p-vector

(p

5

; p

10

) = (60; 12).

di�erent possible positions for v

2

. In each case, by applying all symmetries one

�nds that the resulting structure must be the dodecahedron.

Consequently, the third face meeting v

2

is a decagon, thus the fulleroid in

question must contain the substructure depicted in Figure 11, where the 3- and the

5-fold rotation centers are indicated by a small triangle and pentagon, repectively.

By applying these rotations in a systematic way, one obtains the structure shown

in Figure 6.

Obviously, the argumentation in the above proof is straightforward but|with

all the details worked out|rather tedious. This is partly due to the fact that

instead of individual faces, edges and vertices, we have to deal with whole orbits,

taking all symmetries known so far into account. It is much more convenient to

work in the orbit space of the group I . The orbit space of some group � is de�ned

as the image of a continous function which maps two points p and q of the sphere

onto the same image point if and only if there is some element of � which maps p

to q. The orbit space of I is, topologically, just a sphere with three special points,

namely the images of the three types of rotational centers. A simple way to obtain

the orbit space is to take a fundamental domain and glue together boundary points

which are mapped onto each other by some group element.

The degree of the image of a face in the orbit space depends on the stabilizer

of that face. In general, an (i � j)-face with a rotation center of order j is mapped

to an i-face. Likewise, vertices with non-trivial stabilizers are mapped to vertices

of accordingly smaller degree. Therefore, in the orbit space, we have to consider

special features like 1-gons and vertices of degree 1. Still more strangely, the image

of an edge with 2-fold stabilizer is a \half-edge" with only one endpoint. A loop

edge, one which has two identical endpoints, must be count twice when determining

the vertex degree. Likewise, an edge adjacent to the same face on both sides has

to be count twice when determining the face degree. In both cases, however, a

half-edge is only count once.

Despite these di�culties, we can simplify our arguments considerably by work-

ing in the orbit space. We will call the image of a tiling in the orbit space its orbit

tiling.

Proposition 5.2. The fulleroid F

5;8

(I

h

) is the only I-fulleroid with p-vector

(p

5

; p

8

) = (72; 30) and the smallest I(5; 8)-fulleroid.
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e

(a) (b) (c)

Figure 12. Forced subgraphs for the smallest I(5; 8)-fulleroid.

Figure 13. The orbit space of F

5;9

(I

h

)

Proof. Again, p

8

= 30 is the smallest possible value of p

8

, since 2 is the largest

rotational order occuring in I which divides 8. The p-vector (p

5

; p

8

) = (72; 30)

corresponds to the parameter values

(m

5

;m

8

; k

2

; k

3

; k

5

) = (1; 0; 4; 2; 1):

The orbit tiling consists of a 1-gon (the image of a 5-fold symmetric pentagon), a

5-gon (the image of an asymmetric pentagon) and a 4-gon (the image of a 2-fold

symmetric octagon). Exactly one degree 1 vertex and no half-edge occurs, because

there are 2-fold symmetric, but no 3-fold symmetric faces.

The 1-gon gives rise to the subgraph depicted in Figure 12(a), because of the

free valency at its vertex. The edge e is adjacent to the same face at both sides,

thus if that face is a 4-gon, then the con�guration of Figure 12(b) occurs. Now,

both vertices have degree 3, so there is no possible continuation. We conclude that

the 1-gon must be adjacent to the pentagon, leading to the con�guration of Figure

12(c).

Now, the outer face is a 4-gon and there is exactly one vertex of degree 1, as

required. The con�guration is unique, as shown, and corresponds to the I-fulleroid

F

5;8

(I

h

).

Proposition 5.3. The fulleroid F

5;9

(I

h

) is the only I-fulleroid with p-vector

(p

5

; p

9

) = (72; 20) and the smallest I(5; 9)-fulleroid.

Proof. As above, p

9

= 20 is smallest possible and the parameter values follow

uniquely from the p-vector. The orbit tiling consists of a 1-gon and a pentagon as

above and a triangle corresponding to an orbit of 3-fold symmetric 9-gons. We have

no vertex of degree 1, but a half-edge. As above, the 1-gon must be adjacent to

the pentagon, which in turn must be adjacent to the triangle. The only possible

con�guration is shown in Figure 13, where the half-edge is shown as a \T-shape"

(note that a half-edge counts only once, so the outer face is indeed a triangle).

Proposition 5.4. The fulleroid F

5;12

(I

h

) is the only I-fulleroid with p-vector

(p

5

; p

12

) = (192; 30) and the smallest I(5; 12)-fulleroid.
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(a) (b) (c)

Figure 14. Forced subgraphs referred to in Proposition 5.4.

Proof. First, we must show that no I-fulleroid with the smaller p-vector

(p

5

; p

12

) = (132; 20) exists. For such a structure, the orbit tiling would contain

a 1-gon, a quadrangle and two pentagon. As in the proof of proposition 5.2, the

1-gon must be adjacent to a pentagon f

0

. The other face adjacent to f

0

cannot be

the quadrangle, since that would lead to the con�guration of Figure 12(c). On the

other hand, if f

0

is adjacent to the second pentagon, the con�guration of Figure

14(a) results, which cannot be continued by a quadrangle. Thus, we have no I-

fulleroid with face-vector (p

5

; p

12

) = (132; 20) and come to check the next possible

p-vector (p

5

; p

12

) = (192; 30).

Here, in the orbit space, we have a 1-gon, a hexagon (the image of the 2-fold

symmetric 12-gon) and three pentagons. We have no half-edge, but a degree 1

vertex. We already know that if the 1-gon is adjacent to a pentagon f

0

, then f

0

can not be adjacent to a second pentagon. Let us assume that f

0

is adjacent to

the hexagon, which we will denote by f

1

. Now, f

1

must be adjacent to a second

pentagon, but has only one vertex with a free valency on its boundary. This enforces

a con�guration as in Figure 14(b), in contradiction to the fact that we must have

a third pentagon.

We conclude that the 1-gon must be adjacent to the hexagon. Again, there is

only one possible continuation, leading to the con�guration in Figure 14(c), which

is legal.

The reader is invited to proof the last 3 propositions in the straightforward

manner of Proposition 5.1. Obviously, working in the orbit space simpli�es things

a lot. On the other hand, strange features like half-edges, loops and dead-end

edges make the necessary case-analysis unintuitive and error-prone. Moreover, for

more complicated tasks, the help of a computer will be indispensable. Therefore,

a convenient combinatorial encoding which naturally includes all the singularities

mentioned above should be most desirable. Such an encoding is provided by the

Delaney symbol, as introduced by A. Dress [Dre84] and inspired by M. Delaney

[Del80].

Delaney symbols habe been treated extensively in several publications (see for

example [DDMP93, DDH95], and, of course, [DB96]). We will only give an

informal introduction here. For a given tiling, connect the center of each face to

each of its vertices by a dotted line and to the midpoint of each of its edges by a

dashed line as in Figure 15.

The result is a triangulation called the barycentric subdivision. Each of its

triangles has exactly one dotted, one dashed and one solid edge. The subdivision

can be performed in such a way that it is invariant under the symmetry group of

the tiling. Then, obviously, the stabilizer of each triangle is trivial. The image of
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Figure 15. A tiling of the plane and its barycentric subdivision.

the barycentric subdivision in the orbit space is a subdivision of the orbit tiling

into triangles such that again each triangle has exactly one dotted, one dashed and

one solid edge. For example, the con�guration of Figure 13 corresponds to the

triangulation of the orbit space shown in Figure 16.

Figure 16. The barycentric triangulation of Figure 13.

Admittedly, this looks much more complicated than the original �gure. It has,

on the other hand, the advantage that the whole structure can be conveniently

encoded by listing adjacent pairs of triangles sorted by the respective type (i.e.

dotted, dashed or solid) of edge they are sharing. Since pairs of triangles can share

more than one edge, a particular pair of triangles may occur more than once. A

simple way to visualize the adjacency relations is to construct the dual graph of

the orbit triangulation as in Figure 17. Here, to each triangle of Figure 16 (shown

in gray), we assign a node, and we connect two nodes by a dotted, dashed or solid

line, respectively, if the corresponding triangles share an edge of the same type. The

resulting regularly edge-labelled graph is called the Delaney graph of the original

tiling. The complete Delaney symbol is obtained by sublementing this graph with

information on the images of the rotational axes. For details, see e.g. [DDMP93].

All we need to know in this context is how certain subgraphs of the Delaney

graph correspond to the vertices, faces and edges of the orbit tiling. Note that
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Figure 17. The triangulated orbit space (thin lines) and the De-

laney graph of F

5;9

(I

h

).

if we remove all edges of a certain type, the remaining subgraph is a collection

of cycles (this is only true if the symmetry group of the original tiling does not

contain re
ections). Each of these cycles corresponds to a constituent of the orbit

tiling. In particular, dotted-dashed cycles correspond to faces, dotted-solid cycles

to vertices and dashed-solid cycles to edges. The length of a dotted-dashed cycle

is twice the degree of the corresponding face. The length of a dotted-solid cycle is

twice the degree of the corresponding vertex. The length of a dashed-solid cycle is

four if that cycle corresponds to an ordinary edge and two if it corresponds to a

half-edge. An additional fact that helps to simplify the necessary case analysis is

that the Delaney graph of a tiling with orientation preserving symmetry group is

always bipartite, i.e. its nodes can be labelled by '+' and '-' in such a way that no

edge connects two nodes with the same label.

Proposition 5.5. The fulleroid F

5;15

(I

h

) is the only I-fulleroid with p-vector

(p

5

; p

15

) = (120; 12) and the smallest I(5; 15)-fulleroid.

Proof. Obviously, the p-vector is smallest possible and corresponds to the

parameter values given in Table 1. Thus, the orbit tiling consists of one triangle

corresponding to an orbit of 3-fold symmetric 15-gons, and two pentagons. In

e�ect, in the Delaney graph, we have one dotted-dashed cycle of length 6 and two

dotted-dashed cycles of length 10. Moreover, all dotted-solid cycles will have length

6 except for one of length 2 (corresponding to an orbit of 3-fold symmetric vertices).

All dashed-solid cycles will have length 4 except for one of length 2 (corresponding

to an orbit of 2-fold symmetric edges). Both nodes belonging to the small dotted-

solid cycle V are contained in the same dotted-dashed cycle F . There are two cases

depending on the length of F .

Let us �rst assume that F has length 6 (see Figure 18). Denote by a the solid

edge in V . The dashed-solid component to which a belongs consists of four nodes

already, so it must be completed to a cycle by a solid edge b. Now, to make the

Delaney graph connected, the cycle F must be connected to one of the dotted-

dashed cycles of length 10 by a solid edge c. Again, to complete a dashed-solid

cycle, a solid edge d is forced. But now, b, c and d belong to a common dotted-solid
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a b

c

d

e

Figure 18. A forced partial Delaney graph.

component with already 6 nodes, which has to be completed by a dotted edge e.

This will produce a dotted-dashed cycle of length 2, which can not occur. The

situation is depicted in Figure 18. We conclude that F can not have length 6.

Now let us assume that F has length 10. Again, denote by a the solid edge in

V . Again, a solid edge b is forced to complete a dashed-solid cycle. Let r be the

dotted neighbour of one of the nodes incident to b. By considering legal lengths of

dotted-solid and dashed-solid cycles again, it can be seen easily that r can not be

connected by a solid line to any other node in F . Therefore, r must be connected

by an edge c to a di�erent dotted-dashed cycle G. We know that the length of G is

at least 6, so we draw G as an incomplete cycle of length 6 in Figure 19. The solid

edges d, e and f in this picture are forced by completion of a dashed-solid cycle, a

dotted-solid cycle and a dashed-solid cycle, respectively.

The two remaining vertices of F can not be connected to each other by a solid

edge, because this would lead to a dotted-solid cycle of length at least 8. Thus,

there are edges g and h as in the picture connecting F to a dotted-dashed cycle

H, of which we don't know yet whether it is the same one as G or not. We only

draw a portion of H containing 4 nodes. The solid edges i and j are enforced by

the completion of dotted-solid cycles. Now, if G has only length 6, i.e. if the dashed

edge k is present, then the dashed edge l is forced, thus H would have length 4,

which is too short. If, on the other hand, H is equal to G, then no connection to the

third dotted-dashed cycle is possible. We conclude that H is di�erent from G and

has length 6, while G has length 10. This enforces edges k, l and m of Figure 20,

which complete the Delaney graph. Obviously, this graph is legal (it contains, for

example, exactly one dashed-solid cycle of length 2, as required), and our discussion

above shows that it is unique.

For F

5;14

(I

h

), the uniqueness proof is rather lengthy, so we will not present it

here, but still manageable without computer support.
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Figure 19. Another forced partial Delaney graph.
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