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Abstract

In this paper we settle a logical semantics for the class CC of concurrent

constraint programming languages and for its extension LCC based on

linear constraint systems. Besides the characterization in intuitionistic

logic of the stores of CC computations, we show that both the stores and

the successes of LCC computations can be characterized in intuitionistic

linear logic. We illustrate the usefulness of these results by showing with

examples how the phase semantics of linear logic can be used to give simple

\semantical" proofs of safety properties of LCC programs
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1 Introduction

Constraint programming is an emerging technology that has been proved very

successful for complex system modeling and for solving declaratively combina-

torial search problems [14]. The class CLP(X ) of constraint logic programming

languages, introduced by Ja�ar and Lassez [13], extends logic programming by

combining the pure Horn fragment of �rst-order logic (FOL) for de�ning rela-

tions, with a �xed decidable FOL language of primitive constraints over some

structure X . The logical semantics of logic programming for both successes

and �nite failures extend smoothly to CLP languages, by considering the con-

sequences in classical logic of both the program and the theory of the structure

th(X ). This is achieved in pure CLP for various observable properties of the

execution: the existence of a successful derivation to a query [13], the set of

computed answer constraints [21, 8], �nite failures [13], the set of computed

constraints with constructive negation [33, 6], etc. For example, computed an-

swer constraints (i.e. �nal states of computations) can be observed logically:

any computed constraints entails the initial goal (modulo the logical translation

of the program P

?

and the constraint system C); conversely any constraint c en-

tailing a goal G is covered (again modulo P

?

and C) by a �nite set of computed

constraints c

1

: : : c

n

, i.e. C ` 8(c

1

: : : c

n

) c). This allows for powerful anal-

ysis methods and simple program transformation techniques based on logical

equivalences.

The class CC(X ) of Concurrent Constraint programming languages intro-

duced by Saraswat [29] in 1987 arised as a natural combination of constraint

logic programming and concurrent logic programming, with the introduction

of a synchronization mechanism based on constraint entailment [21]. CC pro-

gramming is a model of concurrent computation, where agents communicate

through a shared store, represented by a constraint, which expresses some par-

tial information on the values of the variables involved in the computation. An

agent may add information c to the store (agent tell(c)), or ask the store to

entail a given constraint (c! A). Communication is asynchronous: agents can

remain idle, and senders (constraints c) are not blocking. The synchronization

mechanism of CC languages gives an account for the co-routining facilities of
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implemented CLP systems, like the freeze predicate of Prolog, the delay mech-

anism of CLP(R) [13], or the constraint propagation schemes of CLP(FD). It

also opens, to some extent, constraint programming to a new �eld of applica-

tions which are traditional in concurrent programming, like reactive systems

and protocol speci�cations.

From the logic programming tradition however, the operational aspects of

CC programming should also be closely connected to a logical semantics for

reasoning about programs at di�erent levels of abstraction, getting rid of use-

less details of the execution. The monotonic evolution of the store during CC

computations provides CC languages with a simple denotational semantics in

which agents are identi�ed to closure operators on the semi-lattice of constraints

[32, 15]. Such denotational semantics are used in [5] to obtain a complete calcu-

lus for partial correctness assertions where the rules of the proof system mirror

the equations of the denotational semantics.

In this article, we explore another route based on Girard's intuitionistic

linear logic (ILL) [10]. We review the semantics of CC languages in the logic

programming paradigm based on linear logic and we investigate the use of the

phase semantics for proving safety properties of CC programs.

Outline of the paper.

Section 2 presents a natural extension of CC languages in this context, namely

Linear CC (LCC) where the constraint system is axiomatized in linear logic.

LCC is an extension of CC, somewhat similar to [3] or [30], but where con-

straints are consumed by ask agents without dependency maintenance or re-

computation. Linear constraint systems have also been proposed in [31] in

a higher-order setting which will not be considered here. From an operational

point of view, LCC extends CC in a fundamental way by introducing some forms

of imperative programming, particularly useful for reactive systems. Classical

CC programs can however be recovered by the usual translation of intuitionistic

logic into linear logic [10].

Section 3 settles the basic soundness and completeness results of CC and

LCC operational semantics w.r.t. intuitionistic linear logic. Results similar to

those of this section are part of the folklore on CC languages [19, 31] but have

not been published. Here we prove that 1) the stores of CC computations can

be characterized in intuitionistic logic, and 2) both the stores and the successes

of CC and LCC computations can be characterized in intuitionistic linear logic.

Completeness results show that ILL can be used to prove liveness properties of

LCC programs, i.e. properties expressing that something good will eventually

happen. This is developed for both \may" and \must" properties.

Then we show in section 4.2 how safety properties of CC and LCC programs

(i.e. that some derivations never happen) can be proved using the phase se-

mantics of linear logic. The method relies on the soundness theorem of LCC

computations w.r.t. linear logic, and on the soundness theorem of linear logic

w.r.t. the phase semantics. Completeness results simply say in this context that

for various classes of observable properties of the program, if the property holds

then such a \phase semantical proof" exists. The method is illustrated with

3



several examples of LCC programs for protocol speci�cations.

Related work.

The connection between CC languages and linear logic is based on the logic

programming paradigm in a broad sense, that identi�es programs-as-formulas

and execution-as-proof-search. This paradigm was applied to linear logic with

the notion of uniform proofs [22, 12] and focusing proofs [1], and further works

on the design of concurrent languages based on proof search in LL [16, 25].

However our approach is analytical in that we study an existing program-

ming language CC, and model CC computations in a fragment of LL. On the

other hand we model properties of in�nite CC computations through the ob-

servation of accessible stores which has no counterpart in the uniform proofs

approach. Therefore both series of results are quite di�erent.

Recently, phase semantics has gained interest in its applications to cut elimi-

nation [24], complexity of provability and decidability [17] (see [18] for a survey).

Section 4.2 presents a new �eld of application of the phase semantics, yet unex-

plored though quite natural in the paradigm of concurrent logic programming.

2 CC operational semantics

2.1 CC

De�nition 2.1 (Intuitionistic constraint system) A constraint system is

a pair (C;`

C

), where:

� C is a set of formulas (the constraints) built from a set V of variables, a

set � of function and relation symbols, with logical operators: 1 (true),

the conjunction ^ and the existential quanti�er 9;

�  is a subset of C�C, which de�nes the non-logical axioms of the constraint

system. Instead of (c; d) 2

C

, we write c 

C

d.

� `

C

is the least subset of C

?

� C containing 

C

and closed by the rules

of intuitionistic logic (IL) for 1, ^ and 9 (fv(A) denotes the set of free

variables occurring in A):

�; c ` c

�; c ` d � ` c

� ` d

` 1

� ` c

�; 1 ` c

�; d; d ` c

�; d ` c

� ` c

�; d ` c

� ` c

� ` 9xc

�; c ` d

x 62 fv(�; d)

�; 9xc ` d

� ` c

1

� ` c

2

� ` c

1

^ c

2

�; c

1

` c

�; c

1

^ c

2

` c

�; c

2

` c

�; c

1

^ c

2

` c

In the following, c; d; e : : : will denote constraints. Note that the intuitionis-

tic logical framework (rather than the classical one) is not essential, it is simply

su�cient, taking into account that the constraints are only built from conjunc-

tions and existential quanti�cations.
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De�nition 2.2 (Agents) The syntax of CC agents is given by the following

grammar:

A ::= p(~x) j tell(c) j (A k A) j A +A j 9xA j 8~x(c! A)

where k stands for parallel composition, + for non-deterministic choice, 9 for

variable hiding and ! for blocking ask. The atomic agents p(~x) : : : are called

process names or procedure names.

Classically, the ask agents are not written with a universal quanti�er [29].

The reason is that in the Herbrand domain, a CC(H) ask agent, like for example

8y; z(x = [y; z] ! A(x; y; z)) for decomposing a list, can be written without

universal quanti�er, by duplicating the constraint in the guard and in the body

of the ask: (9y; z x = [yjz])! (tell(x = [yjz]) k A(x; y; z)). This programming

trick is rather cumbersome however and does not generalize to every constraint

domains nor to linear constraint systems. Therefore we shall not adopt it in

this paper, and we shall make explicit the universal quanti�cation of variables

in ask agents.

Recursion is obtained by declarations:

De�nition 2.3 (Declarations) The syntax of declarations is given by the fol-

lowing grammar:

D ::= � j p(~x) = A j D;D

The set of declarations of a CC program is denoted by D.

De�nition 2.4 (Programs) A program D:A is a declaration D together with

an agent A.

We make the very natural hypothesis that in a declaration p(~x) = A, all the

free variables occurring in A occur in ~x, and that in a relation c

1

: : : c

n



C

c,

all the free variables occurring in c have a free occurrence in c

1

: : : c

n

. Notice

that this is exactly the meaning associated with the Horn clauses in the logic

programming languages, for instance: the variables which are free in the body

but not in the head are considered (implicitly in the syntax, explicitly in the

semantics) as existentially quanti�ed in the body (because universally in the

clause).

The operational semantics is de�ned on con�gurations (rather than agents)

where the store is distinguished from agents:

De�nition 2.5 (Con�gurations) A con�guration is a triple (~x; c; �), where

~x is a set of variables, c is a constraint, and � a multiset of agents.

In a con�guration (~x; c; �), ~x denotes the set of hidden variables and c is

the store. Let A (resp. B) denotes the set of agents (resp. con�gurations).

The operational semantics is de�ned by a transition system which does not

take into account speci�c evaluation strategies. The transitions system is given

in the style of the CHAM [2] (see also [26]). We distinguish a congruence

relation (between con�gurations) from the very transition relation (between

con�gurations):
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De�nition 2.6 (Transitions) The structural congruence � is the least con-

gruence satisfying the rules of table 1.

�-Conversion

z 62 v(A)

9yA � 9zA[z=y]

Parallel composition (~x; c;A k B;�) � (~x; c;A;B;�)

Hiding

y 62 ~x [ fv(c;�)

(~x; c; 9yA;�)� (~x; y; c;A;�)

y 62 fv(c;�)

(~x; y; c; �)� (~x; c; �)

Table 1: Structural congruence

The transition relation �!

CC

is the least transitive relation on con�gura-

tions satisfying the rules of table 2.

Tell (~x; c; tell(d);�)�!

CC

(~x; c ^ d; �)

Ask

c `

C

d[

~

t=~y]

(~x; c; 8~y(d! A);�) �!

CC

(~x; c;A[

~

t=~y];�)

Procedure calls

(p(~y) = A) 2 P

(~x; c; p(~y);�) �!

CC

(~x; c;A;�)

�

(~x; c; �) � (~x

0

; c

0

; �

0

) �!

CC

(~y

0

; d

0

; �

0

) � (~y; d; �)

(~x; c; �) �!

CC

(~y; d; �)

Blind choice (~x; c;A+ B;�) �!

CC

(~x; c;A;�)

(~x; c;A+ B;�) �!

CC

(~x; c;B;�)

Table 2: CC transition relation

where �[

~

t=~x] denotes the formula � in which variables ~x have been replaced by

terms

~

t.

The reexive closure of �!

CC

is denoted by �!

�

CC

.

CC programs are parameterized by a constraint system. In general the

constraint system C will be implicit in our presentation, both in the transition

system and the constraint entailment. Similarly the set of declarations D will

be kept implicit.

The agents and declarations without + are said deterministic. This name

is justi�ed by the following proposition:

6



Proposition 2.7 (Conuence [32]) For any deterministic con�guration �

with deterministic declarations, if � �!

CC

�

1

and � �!

CC

�

2

, then there

exists a deterministic con�guration �

0

such that �

1

�!

�

CC

�

0

and �

2

�!

�

CC

�

0

.

Another property of CC programs is that the execution is extensive and

monotonic:

Proposition 2.8 (Extensivity [32])

If (~x; c; �) �!

CC

(~y; d; �) then 9~yd `

C

9~xc.

Proposition 2.9 (Monotonicity [32])

If (~x; c; �) �!

CC

(~y; d; �), then for every multiset of agents � and every con-

straint e, (~x; c ^ e; �;�) �!

CC

(~y; d^ e; �;�).

As usual, the precise operational semantics depends on the choice of observ-

ables. We shall consider stores, successes and suspensions:

De�nition 2.10 (Observables) The store of a con�guration (~x; c; �) is the

constraint 9~xc. We will say that 9~xd is an accessible store from the agent

A and the initial store c, if there exists a multiset of formulas � such that

(;; c;A)�!

�

CC

(~x; d; �).

A success store (resp. a success) for an agent A and an initial store c

is a constraint 9~xd (resp. a con�guration (~x; d; ;)) such that (;; c;A) �!

�

CC

(~x; d; ;).

A suspension for A and initial store c is a con�guration (~x; d; d

1

! A

1

; : : : ; d

n

!

A

n

) such that n � 0, (;; c;A) �!

�

CC

(~x; d; d

1

! A

1

; : : : ; d

n

! A

n

) and for no

i, d `

C

d

i

.

It is easy to see that, by the monotonicity and extensivity properties of CC

programs, the operational behavior of CC programs under these observables is

completely characterized by their behavior on agents with an empty initial store.

Namely the accessible stores from A with initial store c are the conjunctions

of c and of the accessible stores from A k (tell c) with the empty initial store

(prop. 2.9), the success stores from A with c are the success stores of A k

tell(c) with the empty initial store, and similarly for suspensions. Therefore

the operational semantics can be de�ned by:

De�nition 2.11 (Operational semantics)

O

store

CC

(D:A) = f9~xd 2 C j (;; 1;A)�!

�

CC

(~x; d; �)g

O

term

CC

(D:A) = f9~xd 2 C j (;; 1;A)�!

�

CC

(~x; d; �) 6�!

CC

g

O

success

CC

(D:A) = f9~xd 2 C j (;; 1;A)�!

�

CC

(~x; d; ;)g

Remark on non-determinism.

In the transition system, we have adopted the blind-choice rule: the non-

deterministic agent A + B can behave either like A or like B. Replacing the

blind choice rule (also called "internal choice") by the rules for the one-step

guarded choice (also called "external choice"):
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(~x; c;A;�) �!

CC

(~y; d;�)

(~x; c;A+B;�) �!

CC

(~y; d;�)

and

(~x; c;B;�) �!

CC

(~y; d;�)

(~x; c;A+ B;�) �!

CC

(~y; d;�)

.

would obviously change the suspensions of a program. For instance, let � =

(;; c; (c! tell(1))+ (d! tell(1))) with c 6`

C

d, then for the blind choice, � has

two possible derivations: � �!

CC

(;; c; c! tell(1))�!

CC

(;; c; tell(1))�!

CC

(;; c; ;) and � �!

CC

(;; c; d ! tell(1)) 6�!

CC

, whereas the second derivation

is not accepted by the one-step choice. It is worth noting however that the set

of successes, as well as the set of accessible stores remain the same under both

interpretations. For the sake of simplicity we have not explicitly treated here

all forms of non-determinism, but the results presented in this paper remain

valid as long as only accessible stores and successes are observed.

Proposition 2.12 Let O

store

CC

0

and O

success

CC

0

denote the operational semantics

de�ned above with the one-step guarded choice rules instead of the blind choice

rules. Let A be a CC agent, we have:

O

store

CC

(D:A) = O

store

CC

0

(D:A) and O

success

CC

(D:A) = O

success

CC

0

(D:A)

Proof. Obvious induction: let �!

CC

0

be the transition relation with the

one-step guarded choice rules, consider a �!

CC

derivation, it diverges from a

�!

CC

0
derivation when it stops after a transition with the blind choice rule, but

then: 1) the observed store has not changed, and 2) the terminal con�guration

is not a success. 2

The monotonicity and extensivity properties provide CC with a denotational

semantics, where the agents are seen as closure operators on the semi-lattice of

constraints [32, 15]. In this paper however, we shall also be concerned with a

variant of CC languages where constraints are formulas in linear logic [10] and

where extensivity is dropped.

2.2 Linear CC

Roughly speaking, there are two reasons to consider linear constraints:

{ on one hand, as we shall see in section 3.2, linear logic enables the charac-

terization of �ner observables than intuitionistic logic, and is therefore a natural

semantics for CC;

{ on the other hand, variants of CC, where the constraints can be con-

sumed by ask agents and thus removed from the store, have been introduced

by Saraswat and Lincoln [31], then further studied in [3, 34]: these variants

enhance signi�cantly the expressive power of CC (see the examples of commu-

nication protocol programs in section 2.2.3) and the constraints are naturally

modeled as formulas of linear logic.

In this section we present such a version, LCC, and give a translation from

CC into LCC respecting the transition system, so that LCC is a re�nement

of CC, and the logical characterization that we will make on the operational

behavior of LCC is also correct for CC.

8



2.2.1 Syntax

As for CC, we de�ne the constraint systems, the agents, the con�gurations

and the transition system. The essential di�erence with CC is that constraints

are formulas of linear logic and that communication (the ask rule) consumes

information.

De�nition 2.13 (Linear constraint system) A linear constraint system is

a pair (C;`

C

), where:

� C is a set of formulas (the linear constraints) built from a set V of vari-

ables, a set � of function and relation symbols, with logical operators: the

multiplicative conjunction 
, its neutral element 1, the existential quan-

ti�er 9 and the exponential connective !;

� 

C

is a subset of C � C which de�nes the non-logical axioms of the con-

straint system.

� `

C

is the least subset of C

?

� C containing 

C

and closed by the following

rules (fv(A) denotes the set of free variables occurring in A):

c ` c

�; c ` d � ` c

�;� ` d

` 1

� ` c

�; 1 ` c

�; c

1

; c

2

` c

�; c

1


 c

2

` c

� ` c

1

� ` c

2

�;� ` c

1


 c

2

� ` c

� ` 9xc

�; c ` d

x 62 fv(�; d)

�; 9xc ` d

�; c ` d

�; !c ` d

!� ` d

!� `!d

� ` d

�; !c ` d

�; !c; !c ` d

�; !c ` d

These are the rules of intuitionistic linear logic (ILL) for 1, 
, 9 and ! (see

appendix A).

Note that the intuitionistic constraint systems of the previous section can

be recovered by writing all constraints under a !, as in the usual translation of

intuitionistic logic into linear logic [10]. We have chosen to limitate the use of !

to constraints only, because the usual replication operator of process calculi (like

the �-calculus [23], where it is also noted !) does not have the same behavior as

the exponential connective: it allows replication (!A �!

LCC

(!A k!A)) but not

erasing (!A 6�!

LCC

;).

In general, linear constraints are not erasable in the sense that d 6` 1. One

de�nes the following subsumption preorder between linear constraints:

De�nition 2.14 The subsumption preorder > is de�ned by: c > d i� c `

C

d
>.

Recall that > is the \true" connective of linear logic (see appendix A):

therefore c > d i� there exists a formula A s.t. c `

C

d
 A.

9



The de�nition of LCC agents, declarations and con�gurations is the same as

in CC (section 2.1), and we assume again very naturally that in a declaration

p(~x) = A, all the free variables occurring in A have a free occurrence in p, and

that in a relation c

1

: : : c

n



C

c, all the free variables occurring in c have a free

occurrence in c

1

: : : c

n

.

De�nition 2.15 The structural congruence � is the same as for CC (De�ni-

tion 2.6). The transition relation �!

LCC

is de�ned by the same rules as for

CC (De�nition 2.6), except for LinearTell and LinearAsk:

LinearTell

(~x; c; tell(d);�) �!

LCC

(~x; c
 d; �)

LinearAsk

c `

C

d
 e[

~

t=~y]

(~x; c; 8~y(e! A);�) �!

LCC

(~x; d;A[

~

t=~y];�)

The calculus is intrinsically non-deterministic, even without the choice op-

erator +, since several constraints can satisfy the condition of the rule. Of

particular interest in this context are the synchronization constraints which are

linear atomic constraints without entailment. An ask with a synchronization

constraint is thus deterministic. We shall see examples of this in section 2.2.3

with communication protocol programs.

Because constraints are linear formulas, we must slightly modify the de�ni-

tion of suspensions.

De�nition 2.16 (Observables) The successes are de�ned as in CC.

A store accessible from A and the initial store c is a constraint e such that

there exist a constraint d and a multiset � of agents such that (;; c;A)�!

LCC

(;; d; �) and d > e.

A suspension for A with initial store c is a con�guration (~x; d; d

1

! A

1

; : : :,

d

n

! A

n

) such that n � 0, (;; c;A) �!

LCC

(~x; d; d

1

! A

1

; : : : ; d

n

! A

n

) and

for no i, d > d

i

.

An agent A with initial store c suspends with the store d on the con-

straints d

1

; :::; d

n

, if there exist a suspension for A and c of the form (~x; d; d

1

!

A

1

; : : : ; d

n

! A

n

).

It is worth noting that the monotonicity property is still preserved in LCC:

Proposition 2.17 (Monotonicity)

If (~x; c; �) �!

LCC

(~y; d; �), then for every multiset of agents � and every

constraint e, (~x; c
 e; �;�) �!

LCC

(~y; d
 e; �;�).

Similarly to the previous section, the observable properties of LCC com-

putations from an empty initial store su�ce to recover the properties of LCC

computations from a non-empty initial store. The argument is the same for the

10



observation of successes and terminal stores, but is somewhat more tricky for

the observation of accessible stores

2

.

De�nition 2.18 (Operational semantics)

O

store

LCC

(D:A) = f9~xd 2 C j (;; 1;A)�!

�

LCC

(~x; d; �)g

O

term

LCC

(D:A) = f9~xd 2 C j (;; 1;A)�!

�

LCC

(~x; d; �) 6�!

LCC

g

O

success

LCC

(D:A) = f9~xd 2 C j (;; 1;A)�!

�

LCC

(~x; d; ;)g

Proposition 2.19 The set of accessible stores from a con�guration (;; c;A)

is the set of constraints e such that (e 
 d) 2 O

store

LCC

(D:(tell(c
 d 
 d) k (d !

A))nfc
d
dg, where d is a new constraint token not appearing in the constraint

system.

Proof. As d is a new constraint token, the only possible transitions are:

(;; 1; tell(c
 d
 d) k (d! A))

�!

LCC

(;; c
 d
 d; d! A)

�!

LCC

(;; c
 d;A) �!

LCC

� � �

Therefore the accessible stores from (;; c;A) are the accessible stores from

(;; 1; tell(c 
 d 
 d) k (d ! A)) except 1 and c 
 d 
 d which correspond

to the �rst two con�gurations, and where d is removed. 2

2.2.2 Translation from CC to LCC

The LCC languages are a re�nement of usual CC languages. Indeed the exten-

sivity of CC can simply be restored with the exponential connective ! of linear

logic, allowing replication of hypotheses and thus avoiding constraint consump-

tion during an application of the ask rule:

De�nition 2.20 Let (C;

C

) be a constraint system. We de�ne the translation

of (C;

C

), which is the linear constraint system (C;

C

)

�

, as follows, at the same

time as the translation of CC agents to LCC agents:

c

�

=!c, if c is an atomic constraint

(c ^ d)

�

= c

�


 d

�

(9xc)

�

= 9xc

�

tell(c)

�

= tell(c

�

) p(~x)

�

= p(~x)

(A k B)

�

= A

�

k B

�

(A+ B)

�

= A

�

+B

�

(8~x(c! A))

�

= 8~x(c

�

! A

�

) (9xA)

�

= 9xA

�

The entailment relation 

�

C

is de�ned by: c 

C

d i� c

�



�

C

d

�

.

The relation `

C

�

is obtained from 

C

�

by the rules of linear logic for 1, !, 


and 9.

The translation of a CC con�guration (~x; c; �) is the LCC con�guration

(~x; c

�

; �

�

).

2

As an alternative, we could have de�ned the operational semantics of LCC programs with

arbitrary initial stores, all the results of the following section generalize straightforwardly to

this case.
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For constraints, the above translation is a well-known translation of intu-

itionistic logic into linear logic [10, p.81], hence:

Proposition 2.21 Let c and d be constraints: c`

C

d i� c

�

`

C

�

d

�

.

We now check that the translations of con�gurations have the expected

behavior:

Proposition 2.22 Let (~x; c; �) and (~y; d; �) be CC con�gurations:

(i) (~x; c; �)� (~y; d; �) i� (~x; c

�

; �

�

) �

�

(~y; d

�

; �

�

);

(ii) if (~x; c; �)�!

CC

(~y; d; �) then (~x; c

�

; �

�

) �!

LCC

(~y; d

�

; �

�

);

(iii) if (~x; c

�

; �

�

) �!

LCC

(~y; d

�

; �

�

) then (~x; c; �) �!

CC

(~y; e; �), with

e ` d.

Proof. (i) is evident.

For (ii), we proceed by induction on �!

CC

, the only interesting case is the

ask rule: we suppose

(~x; c; 8~y(d! A);�) �!

CC

(~x; c;A[

~

t=~y];�);

using the c `

C

d[

~

t=~y] relation. We thus have c `

C

c ^ d[

~

t=~y], and from

proposition 2.21, c

�

`

C

�

(c ^ d[

~

t=~y])

�

= c

�


 d[

~

t=~y]

�

. As a consequence

(~x; c

�

; 8~y(d

�

! A

�

);�

�

) �!

LCC

(~x; c

�

;A

�

[

~

t=~y];�

�

);

qed.

For (iii), we proceed by induction on �!

LCC

. The only interesting case is

again the ask rule: we suppose

(~x; c

�

; 8~y(d

�

! A

�

);�

�

) �!

LCC

(~x; e

�

;A

�

[

~

t=~y];�

�

);

using the relation c

�

`

C

�

d

�

[

~

t=~y] 
 e

�

= (d ^ e)

�

. Thus from the proposi-

tion 2.21, c `

C

d[

~

t=~y] ^ e `

C

d[

~

t=~y], hence

(~x; c; 8~y(d! A);�) �!

CC

(~x; c;A[

~

t=~y];�);

and c `

C

e, qed. 2

The above translation is correct w.r.t. the observation of the store and of

successes of a CC con�guration (case (i) and (ii) of the proposition 2.22).

2.2.3 Example of LCC program

A classical benchmark of expressiveness for concurrent languages is the dining

philosophers: N philosophers are sitting around a table and alternate thinking

and eating. Each one of them has a fork on his right, and thus also on his left,

and needs these two forks to eat (the chop-sticks version may be more realistic).

As suggested in [3], this problem has an extremely simple solution in LCC.
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The atomic constraints are: fork(I), eat(I,N) for I,N2 N, and N=M,

N 6=M for N,M 2 N; the entailment relation is trivial.

philosopher(I,N) =

fork(I) 
 fork(I+1 mod N) !

(tell(eat(I,N)) k

eat(I,N) !

(tell(fork(I) 
 fork(I+1 mod N)) k

philosopher(I,N))).

recphilo(M,P) =

M 6= P ! (philosopher(M,P) k tell(fork(M)) k

recphilo(M+1,P)) k

M = P ! (philosopher(M,P) k tell(fork(M))).

init(N) = recphilo(1,N).

It is worth noting that contrarily to a classical CC program, the imperative

data structures are encoded directly with linear constraints, instead of streams

[29], and that contrarily to the Linda version of [4] there is no need for intro-

ducing \tickets", as the guard in the ask can be the tensor product of both

forks.

This program enjoys safety and liveness properties: two adjacent philoso-

phers cannot eat at the same time, and at least one philosopher can eat.

A proof of safety of this program is given in section 4, using the phase

semantics of linear logic.

3 Logical semantics

3.1 Characterizing CC stores in intuitionistic logic

Let us �x a constraint system (C;

C

) and a set of declarations D.

De�nition 3.1 Deterministic CC agents are translated into intuitionistic for-

mulas of the following way:

tell(c)

y

= c

p(~x)

y

= p(~x) (9xA)

y

= 9xA

y

(8~x(c! A))

y

= 8~x(c) A

y

) (A k B)

y

= A

y

^ B

y

If � is the multiset of agents (A

1

: : :A

n

), one de�nes �

y

= A

y

1

^ � � � ^A

y

n

. If

� = ; then �

y

= 1.

The translation (~x; c; �)

y

) of a con�guration (~x; c; �) is the formula 9~x(c ^

�

y

).

IL(C,D) denotes the deduction system obtained by adding to IL:

13



� the non-logical axiom c ` d for every c 

C

d in 

C

,

� the non-logical axiom p(~x) ` A

y

for every declaration p(~x) = A in D.

a` denotes logical equivalence.

Theorem 3.2 (Soundness) Let (~x; c; �) and (~y; d; �) be deterministic CC

con�gurations.

If (~x; c; �) � (~y; d; �) then (~x; c; �)

y

a`

IL(C;D)

(~y; d; �)

y

.

If (~x; c; �) �!

�

CC

(~y; d; �) then (~x; c; �)

y

`

IL(C;D)

(~y; d; �)

y

.

Proof. By induction on � and �!

CC

.

� For parallel composition and �-conversion, it is immediate.

� For hiding, 9x(A ^B) a` A ^ 9xB and 9xA a` A so x 62 fv(A).

� For tell, congruence and declarations, it is immediate.

� For ask, just note that c ^ 8~x(d) A) ` c ^ A[

~

t=~y] if c 

C

d[

~

t=~y], qed.

2

The converse is true for the observation of stores. Let � = (~x; c; �) be a

deterministic CC con�guration, and � be a constraint or a procedure name.

�

�

�! � stands for:

� if � is a constraint: \there exists a con�guration (~y; d; �), such that d `

C

�

and � �!

�

CC

(~y; d; �)",

� if � is a procedure name: \there exists a con�guration (~y; d;�;�), such

that fv(�) \ ~y = ; and � �!

�

CC

(~y; d;�;�)".

Lemma 3.3 Let � and � be two deterministic CC con�gurations such that

�

y

= �

y

, and � a constraint or a procedure name.

�

�

�! � i� �

�

�! �.

Proof. One shows by induction on the formula �

y

= �

y

that �

�

�! � i� �

�

�! �.

� If �

y

= �

y

is atomic, it is clear.

� If �

y

= �

y

= 8~x(c) A

y

), with c a constraint and A an agent, then � and

� are necessarily both equal to (;; 1; 8~x(c! A)).

� If �

y

= �

y

= 9xA

y

, then the only two possibilities for � and � are

(x; ~y; c; �) and (;; 1; 9x9~y(tell(c) k �)). One implication is thus obvious

and the other one a simple corollary of the monotonicity property 2.17.

� If �

y

= �

y

= A

y

^B

y

, then the four possibilities for � and � are: (;; 1; �;�)

(with �

y

= A

y

and �

y

= B

y

), (;; 1;A k B), (;; c;B) (if A

y

= c, a

constraint, i.e. A = c or A = tell(c)) and (;; c ^ d; ;) (if A

y

= c and

B

y

= d, constraints). The induction is useful only in the �rst case, and

the result is evident.
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2

Lemma 3.4 Let � = (~x; c; �) be a deterministic CC con�guration, and � be a

constraint or a procedure name.

If �

y

`

IL(C;D)

�, then �

�

�! �.

Proof. One proves the result for multisets of agents. One shows that if

A

1

y

; : : : ; A

n

y

`

IL(C;D)

�, where the A

i

are agents and � is either a constraint or

a procedure name, then (;; 1;A

1

; : : : ; A

n

)

�

�! �.

It allows one to conclude: indeed let (~x; c; �) be a deterministic CC con-

�guration, and � be a constraint or a procedure name. Note that (~x; c; �)

y

=

9~x(tell(c) k �)

y

. Therefore if (~x; c; �)

y

`

IL(C;D)

�, then (~x; 1; tell(c);�)) �

(;; 1; 9~x(tell(c) k �))

�

�! �. But (~x; 1; tell(c);�))

y

= (~x; c; �))

y

. So according

to lemma 3.3, (~x; c; �))

�

�! �, qed.

Let us proceed by induction on a sequent calculus proof � of A

1

y

; : : : ; A

n

y

`

IL(C;D)

�, where the A

i

's are agents and � is either a constraint or a procedure

name. We shall consider, without loss of generality, that in � the left introduc-

tion of 8 and of) are always consecutive (if it is not the case, it is well-known

that the rules can be permuted to obtain such a proof, see for instance [9]) we

will thus group them as a single rule.

First remark that this induction is meaningful. Indeed, one can assume that

cuts bear only on non-logical axioms, so that they are of one of the following

forms:

� ` p p ` �

� ` �

� ` e e ` f

� ` f

p `  �;  ` �

�; p ` �

e ` f �; f ` �

�; e ` �

So, when traveling up through such a proof, the formula on the right of

a non-axiom sequent remains either a sub-formula of a constraint, thus itself

a constraint, or a procedure name. One the other hand the formulas to the

left remain sub-formulas of translations of agents or constraints or procedure

names, so they are agents. (Remark that the induction hypothesis requires the

result not only for constraints, but also for procedure names.)

Each logical rule simulates a CC transition rule.

� � is an axiom: one uses the reexivity of �!

�

CC

in the case of a logical

axiom, the rule declarations for an axiom p ` q; the case of an axiom

d `

C

e is trivial.

� � ends with a cut: the possible cases are the ones enumerated above. Let

us consider for instance :

�

y

` p p ` �

�

y

` �

15



By induction hypothesis, (;; 1; �)

�

�! p, i.e. there exists a con�guration

(~y; d; p;�) such that fv(p) \ ~y = ; and (;; 1; �) �!

�

CC

(~y; d; p;�). Thus

(;; 1; �) �!

�

CC

(~y; d;�;�), with fv(�) \ ~y = ; as fv(�) � fv(p). If

�

y

= � is a name of procedure, it is �nished. If �

y

is a constraint c, then

� = tell(c) so (;; 1; �)�!

�

CC

(~y; d^ c; �), qed.

The other cases are similar.

� � ends with a left introduction of 1: note that (;; 1; �; tell(1)) �!

�

CC

(;; 1; �). By induction hypothesis, (;; 1; �)

�

�! � thus (;; 1; �; tell(1)

�

�!

�, qed.

� � ends with a weakening:

�

y

` �

�

y

; A

y

` �

By induction hypothesis, (;; 1; �)

�

�! �, thus (;; 1;A;�)

�

�! � thanks to

the monotonicity of �!

CC

(proposition 2.9).

� � ends with a contraction:

�

y

; A

y

; A

y

` �

�

y

; A

y

` �

By induction hypothesis, (;; 1;A;A;�)

�

�! �. In this sequence of transi-

tions, some steps activate some occurrence of A, some others activate a

sub-agent of �. The important point is that for the deterministic agent

A, the next transition in which it can further be active (in other words

the next action that it can perform) is determined (no +). One can thus

assume that in the above execution, each time one activates a sub-agent

of an occurrence of A, the same transition with the other occurrence is

performed just the next moment, it is of course possible thanks to propo-

sition 2.7. Now starting from the con�guration (;; 1;A;�), one simulates

the above execution by applying the same transitions to sub-agents of �

and \contracting" the pairs of transitions for the sub-agents of A: one

applies the rule to one of the two copies, always the same one. One then

obtains an execution (;; 1;A;�)

�

�! �.

� � ends with:

�

y

; A

y

; B

y

` �

�

y

; A

y

^B

y

` �

By induction hypothesis, (;; 1;A;B;�)

�

�! �. If A

y

and B

y

are con-

straints, there is a priori an ambiguity on the agent C whose translation

is A

y

^ B

y

: it can be tell(A ^ B) or tell(A) k tell(B)). However, as the

two con�gurations have the same translation as (;; 1;A;B;�), according

to lemma 3.3, (;; 1;C;�)

�

�! �.
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� � ends with:

�

y

` � �

y

`  

�

y

;�

y

` � ^  

�^  is not atomic, so � and  are constraints. The result is now imme-

diate: starting from the con�guration (;; 1; �;�), one just joins the two

executions (;; 1; �)

�

�! � and (;; 1;�)

�

�!  end to end.

� � ends with a right introduction of 9 (in case � is a constraint): immediate.

� � ends with:

�

y

; A

y

` �

x 62 fv(�; �)

�

y

; 9xA

y

` �

By induction hypothesis, (;; 1;A;�)

�

�! �. As x 62 fv(�),

(;; 1; 9xA;�) � (x; 1;A;�), and moreover x 62 fv(�), so by lemma 3.3,

(;; 1; 9xA;�)

�

�! �, qed.

� � ends with (thanks to the preliminary remark on the permutability of

rules):

�

y

; A

y

[

~

t=~x] ` � �

y

` c[

~

t=~x]

�

y

;�

y

; c[

~

t=~x]) A

y

[

~

t=~x] ` �

�

y

;�

y

; 8~x(c) A

y

) ` �

By induction hypothesis, (;; 1;�)

�

�! c[

~

t=~x], i.e. there exists a con�gu-

ration (~y; d; �), such that d `

C

c[

~

t=~x] and (;; 1;�) �!

�

CC

(~y; d; �). Thus

(;; 1; 8~x(c ! A);�) �!

�

CC

(~y; d; 8~x(c ! A);�) �!

�

CC

(~y; d;A[

~

t=~x];�).

Therefore, (;; 1; 8~x(c ! A);�;�) �!

�

CC

(~y; d;A[

~

t=~x];�;�). Moreover

by induction hypothesis, (;; 1;A[

~

t=~x];�)

�

�! �, whence (;; 1; 8~x(c !

A);�;�)

�

�! �.

2

Now, for a set S of constraints, let us note # S = fc 2 C j 9d 2 S; d `

C

cg,

we get:

Theorem 3.5 (Observation of deterministic stores) Let A be a determin-

istic CC agent, de�ne L

store

(D:A) = fc 2 C j A

y

`

IL(C;D)

cg we have:

L

store

(D:A) = # O

store

CC

(D:A)

Proof. One inclusion is obvious by applying the previous theorem, it is just the

de�nition of an accessible store, the other is a direct consequence of theorem 3.2.

2
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The characterization of stores for non-deterministic con�gurations is not

obvious in the framework of intuitionistic logic: indeed on one hand the simple

idea of translating the operator of choice + by disjunction _ requires to modify

the operational semantics of + (e.g. for soundness, because A_B 6` A), and on

the other hand the idea of translating + by conjunction preserves the soundness,

but not the characterization of stores because, for instance, the store c ^ d is

not accessible from the con�guration (;; 1; tell(c)+ tell(d)).

However we shall see in the more general framework of linear CC (section

3.3) that a logical characterization of must properties, i.e. properties that are

true in all possible non-deterministic con�gurations, is possible in linear logic.

3.2 Characterizing CC and LCC stores and successes in intu-

itionistic linear logic

The observation of stores is important, however it represents only one aspect

of the operational behavior of CC programs.

Consider the following three programs :

p(x) = x � 1

p(x) = x � 1 k p(x)

p(x) = x � 1 k (false! A):

They de�ne the same stores (x � 1), thus they are equivalent w.r.t. the obser-

vation of stores, whereas the �rst one terminates on a success, the second one

loops and the third one suspends.

As is shown by the following counter-examples, neither the successes nor

the suspensions are characterizables in intuitionistic logic:

� a: In general it is false that A a B (where B is a success or a suspension)

implies (;; 1;A) �!

LCC

(;; 1;B). For instance c ! d a d but c! d can

suspend, and thus have no success. Besides d a d ^ (c! d) and if d does

not imply c, d k (c ! d) is a suspension, whereas the constraint c is not

a suspension.

� `: One has similar problems with `. d^(c) A) ` d whereas d k (c! A)

suspend as soon as d 6` c. Besides d ^ (d ) e) ` d ) e, but d k (d ! e)

has a success (d ^ e) and does not suspend.

� a`: Similarly, for the equivalence a`, let us suppose that d does not imply

c, and let us consider the following equivalence: d ^ (c ) d) a` d. One

cannot conclude anything about the operational behavior of the agents

tell(d) and d k (c! d).

The obstacle is the structural rule of (left) weakening:

18



� ` B

�; A ` B

Girard's linear logic [10] is a re�nement of the contraction and weakening

rules of usual logic. It seems therefore natural to interpret CC programs in

linear logic.

Let us �x a linear constraint system (C;

C

) and a set of declarations D.

De�nition 3.6 LCC agents are translated into formulas in the following way:

tell(c)

z

= c p(~x)

z

= p(~x)

8~y(c! A)

z

= 8~y (c( A

z

) (A k B)

z

= A

z


B

z

(A+ B)

z

= A

z

& B

z

(9xA)

z

= 9xA

z

If � is the multiset of agents (A

1

: : :A

n

), de�ne �

z

= A

z

1


� � �
A

z

n

. If � = ;

then �

z

= 1.

The translation (c;�)

z

of a con�guration (~x; c; �) is the formula 9~x(c
�

z

).

ILL(C,D) denotes the deduction system obtained by adding to ILL:

� the non-logical axiom c ` d for every c 

C

d in 

C

,

� the non-logical axiom p(~x) ` A

z

for every declaration p(~x) = A in D.

Theorem 3.7 (Soundness) Let (~x; c; �) and (~y; d; �) be LCC con�gurations.

If (~x; c; �) � (~y; d; �) then (~x; c; �)

z

a`

ILL(C;D)

(~y; d; �)

z

.

If (~x; c; �) �!

�

LCC

(~y; d; �) then (~x; c; �)

z

`

ILL(C;D)

(~y; d; �)

z

.

Proof. The proof is essentially the same as in intuitionistic logic. Note that for

the operator of choice + translated by the additive conjunction & , A&B ` A

and A &B ` B. 2

Conversely, one can characterize the observation of successes, even in pres-

ence of the operator of explicit choice +:

Notation:

Let � = (~x; c; �) be an LCC con�guration, and � be a constraint or a procedure

name. �

o

�! � stands for:

� if � is a constraint: \there exists a con�guration (~y; d; ;), such that d `

C

�

and � �!

�

LCC

(~y; d; ;)",

� if � is a procedure name: \there exists a con�guration (~y; d;�), such that

fv(�) \ ~y = ;, d `

C

1 and � �!

�

LCC

(~y; d;�)".

Lemma 3.8 Let � and � be two con�gurations LCC such that �

z

= �

z

, and �

be a constraint or a procedure name.

�

o

�! � i� �

o

�! �.
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Proof. Again the proof is essentially the same as in intuitionistic logic, the

di�erence between � and � amounts to non performed tell's, or to tell(c
d) vs

tell(c) k tell(d). 2

Lemma 3.9 Let (;; 1; �) be an LCC con�guration such that (;; 1; �)

o

�! � and

x be a variable such that x 62 fv(�). Then (x; 1; �)

o

�! �

Proof. Let � be the agents obtained by replacing all bounded occurrences of

x in � by a fresh variable z. We have (;; 1; �)� (;; 1;�) thus (;; 1;�)

o

�! �.

If � is a constraint then (;; 1;�)�!

�

(~y; d; ;) with 9~yd `

C

�. One can then

show by an easy induction on this derivation that (x; 1;�)�!

�

(x; ~y; d; ;) (the

only non-trivial case is the use of the Hiding rule, but as x has no bounded

occurrence in �, the same rule can be used in the derivation for (x; ~y; d; ;)). As

x 62 fv(�) we get 9x; ~y d `

C

� so (x; 1;�)

o

�! �. If � is a procedure name we

also get (x; 1;�)

o

�! � in the same manner. The result then follows from the

observation that (x; 1;�)� (x; 1; �). 2

Lemma 3.10 Let � = (~x; c; �) be an LCC con�guration, and � be a constraint

or a procedure name.

If �

y

`

ILL(C;D)

�, then �

o

�! �.

Proof. One proves the result for multisets of agents: if A

1

y

; : : : ; A

n

y

`

ILL(C;D)

�, then (;; 1;A

1

; : : : ; A

n

)

o

�! �.

It allows one to conclude: indeed let (~x; c; �) be a con�guration, and �

be a constraint or a procedure name. Note that (~x; c; �)

y

= 9~x(tell(c) k �)

y

.

Therefore if (~x; c; �)

y

`

ILL(C;D)

�, then (~x; 1; tell(c);�)) � (;; 1; 9~x(tell(c) k

�))

o

�! �. But (~x; 1; tell(c);�))

y

= (~x; c; �))

y

. So according to lemma 3.3,

(~x; c; �)

o

�! �, qed.

One proceeds by induction on a sequent calculus proof � of A

y

1

; : : : ; A

y

n

` �.

We shall consider, without loss of generality, that in � the left introduction of 8

and of( are always consecutive (if it is not the case, the rules can be permuted

to obtain such a proof, see for instance [20], noting that !, that is the only case

of impermutability with 8, appears only in the constraint part and thus not

below a (), we will thus group them as a single rule.

Each logical rule simulates an LCC transition rule (we will group left intro-

ductions of 8 and of ( as in lemma 3.4).

� � is an axiom: one uses the reexivity of �!

�

in the case of a logical

axiom, the rule declarations for an axiom p ` q; the case of an axiom

d `

C

e is trivial.

� � ends with a cut. Let us consider for instance :

�

y

` p p ` �

�

y

` �
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By induction hypothesis, (;; 1; �)

o

�! p, i.e. there exists a con�guration

(~y; d; p) such that fv(p) \ ~y = ;, 9~yd `

C

1 and (;; 1; �) �!

�

(~y; d; p).

Thus (;; 1; �)�!

�

(~y; d;�); fv(�) \ ~y = ; as fv(�) � fv(p). If �

y

= � is

a procedure name, it is �nished. If �

y

is a constraint c, then � = tell(c)

whence (;; 1; �)�!

�

(~y; d
 c; ;) and d
 c `

C

c, qed.

The other cases are similar.

� � ends with a left introduction of 1: note that (;; 1; �; tell(1)) �!

�

(;; 1; �). By induction hypothesis, (;; 1; �)

o

�! � thus (;; 1; �; tell(1)

o

�!

�, qed.

� � ends with:

�

y

; A

y

; B

y

` �

�

y

; A

y


B

y

` �

By induction hypothesis, (;; 1;A;B;�)

o

�! �. If A

y

and B

y

are con-

straints, there is a priori an ambiguity on the agent C whose translation

is A

y


 B

y

: it can be tell(A
 B) or tell(A) k tell(B)). However, as the

two con�gurations have the same translation as (;; 1;A;B;�), according

to lemma 3.3, (;; 1;C;�)

o

�! �.

� � ends with:

�

y

` � �

y

`  

�

y

;�

y

` � 
  

� 
  is not atomic, so � and  are constraints. The result is now

immediate: starting from the con�guration (;; 1; �;�), one just joins the

two executions (;; 1; �)

o

�! � and (;; 1;�)

o

�!  end to end.

� � ends with:

�

y

; A

y

` �

�

y

; A

y

&B

y

` �

By induction hypothesis, (;; 1;A;�)

o

�! �, Now (;; 1;A + B;�) �!

�

(;; 1;A;�), therefore (;; 1;A+B;�)

o

�! �.

� � ends with a right introduction of 9 (in case � is a constraint): immediate.

� � ends with:

�

y

; A

y

` �

�

y

; 9xA

y

` �

x 62 fv(�; �)

By induction hypothesis, (;; 1;A;�)

o

�! �. As x 62 fv(�), (;; 1; 9xA;�)�

(x; 1;A;�), and moreover x 62 fv(�), so by lemma 3.9, (;; 1; 9xA;�)

o

�!

�, qed.

21



� � ends with (thanks to the preliminary remark on the permutability of

rules):

�

y

; A

y

[

~

t=~x] ` � �

y

` c[

~

t=~x]

�

y

;�

y

; (c[

~

t=~x]( A

y

[

~

t=~x]) ` �

�

y

;�

y

; 8~x(c( A

y

) ` �

By induction hypothesis, (;; 1;�)

o

�! c[

~

t=~x], i.e. there exists a con�gura-

tion (~y; d; ;), such that 9~yd `

C

c[

~

t=~x] and (;; 1;�)�!

�

(~y; d; ;). Thus by

applying the ask rule, one obtains (;; 1; 8~x(c! A);�) �!

�

(~y; d; 8~x(c!

A)) �!

�

(~y; 1;A[

~

t=~x]). Therefore, (;; 1; 8~x(c! A);�;�) �!

�

(~y; 1;A[

~

t=~x];�).

Moreover by induction hypothesis, (;; 1;A[

~

t=~x];�)

o

�! �, whence (;; 1; 8~x(c!

A);�;�)

o

�! �.

� � ends with a dereliction:

�

y

; c ` �

�

y

; !c ` �

It is clear, just recall that !c ` c.

� � ends with a promotion: in that case all the formulas are necessarily

constraints, therefore it is immediate.

� � ends with a weakening:

�

y

` �

�

y

; !c ` �

with c a constraint. By induction hypothesis, (;; 1; �)

o

�! �, so

(;; 1; tell(!c);�)

o

�! � (one performs the tell, noting that !c `

C

1).

� � ends with a contraction:

�

y

; !c; !c ` �

�

y

; !c ` �

with c a constraint. By induction hypothesis, (;; 1; tell(!c); tell(!c);�)

o

�!

�. Obviously having two occurrences of the agent tell(!c) changes nothing

because !c
!c a`!c. Therefore (;; 1; tell(!c);�)

o

�! � holds as well.

2

Theorem 3.11 (Observation of successes) Let A be an agent LCC and c

be a linear constraint. De�ne LL

success

(D:A) = fc 2 CjA

z

`

ILL(C;D)

cg. We

have

LL

success

(D:A) =# O

success

LCC

(D:A):
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Proof. Evident by applying the previous lemma to the con�guration (;; 1;A).

2

Recall that > is the additive true constant, which is neutral for & (see the

appendix). Let, for a set S of linear constraints, + S = fc 2 C j 9d 2 S; d > cg.

Theorem 3.12 (Observation of stores) Let A be an LCC agent and c be a

linear constraint. De�ne LL

store

(D:A) = fc 2 CjA

z

`

ILL(C;D)

c
>g. We have

LL

store

(D:A) =+ O

store

LCC

(D:A):

Proof. Simply use theorem 3.11, above the right introduction of the tensor

connective in c
> and note that the property is preserved by left introduction

rules. 2

Thanks to the translation of CC into LCC (section 2.2, proposition 2.22),

this characterization of stores and successes in linear logic holds also for CC.

3.3 Must properties

So far we have been concerned with \May" properties of LCC programs, i.e. prop-

erties that stand for some branch of the derivation tree. \Must" properties,

i.e. properties that are true on all branches of the derivation tree, are also to be

considered, for instance when looking at liveness properties. We show that must

stores and must successes can be characterized logically using disjunction. The

operational semantics has to be adapted to multisets of con�gurations, called

frontiers, which keep track of all the alternatives.

3.3.1 Frontier calculus

A frontier � is a multiset of con�gurations, noted h�

1

; � � � ; �

n

i where each �

i

is a con�guration (~x

i

; c

i

; �

i

). The structural congruence � on con�gurations

is kept unchanged. The transition relation �!

LCC

is extended to a transition

relation =)

LCC

on frontiers in the obvious way, the only di�erence being for

the non-deterministic choice:

De�nition 3.13 (Frontier operational semantics)

O

store

CC

00

(D:A) = fc 2 C j (;; 1;A) =)

�

LCC

h(~x

1

; d

1

; �

1

); � � � ; (~x

n

; d

n

; �

n

)i,

9~x

1

d

1

`

C

c; : : : ; 9~x

n

d

n

`

C

cg

O

store

LCC

00

(D:A) = fc 2 C j (;; 1;A) =)

�

LCC

h(~x

1

; d

1

; �

1

); � � � ; (~x

n

; d

n

; �

n

)i;

9~x

1

d

1

ic; : : : ; 9~x

n

d

n

icg

O

success

LCC

00

(D:A) = fc 2 C j (;; 1;A) =)

�

LCC

h(~x

1

; d

1

; ;); � � � ; (~x

n

; d

n

; ;)i,

9~x

1

d

1

`

C

c; : : : ; 9~x

n

d

n

`

C

cg

The frontier transition relation =)

CC

and the operational semantics O

store

CC

00

and O

success

CC

00

for CC are de�ned similarly with Tell and Ask rules instead of the

LinearTell and LinearAsk rules.
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LinearTell

h(~x; c; tell(d);�);�i =)

LCC

h(~x; c
 d; �);�i

LinearAsk

c `

C

d
 e[

~

t=~y]

h(~x; c; 8~y(e! A);�);�i =)

LCC

h(~x; d;A[

~

t=~y];�);�i

Procedure calls

(p(~y) = A) 2 P

h(~x; c; p(~y);�);�i=)

LCC

h(~x; c;A;�);�i

�

(~x; c; �)� (~x

0

; c

0

; �

0

) =)

LCC

(~y

0

; d

0

; �

0

) � (~y; d; �)

h(~x; c; �);�i=)

LCC

h(~y; d; �);�i

Blind choice

h(~x; c;A+B;�);�i =)

LCC

h(~x; c;A;�); (~x; c;B;�);�i

Table 3: LCC frontier transition relation

3.3.2 Logical semantics.

The translation y (resp. z) of CC (resp. LCC) con�gurations into intuitionis-

tic (resp. linear) formulas is changed for disjunctive agents and extended to

frontiers by:

h�

1

; � � � ; �

n

i

yy

= (�

1

)

yy

_ � � � _ (�

n

)

yy

(A+ B)

yy

= A

yy

_B

yy

tell(c)

yy

= c

p(~x)

yy

= p(~x) (9xA)

yy

= 9xA

yy

(8~x(c! A))

yy

= 8~x(c) A

yy

) (A k B)

yy

= A

yy

^B

yy

h�

1

; � � � ; �

n

i

zz

= (�

1

)

zz

� � � � � (�

n

)

zz

(A+B)

zz

= A

zz

� B

zz

,

tell(c)

zz

= c p(~x)

zz

= p(~x)

8~y(c! A)

zz

= 8~y (c( A

zz

) (A k B)

zz

= A

zz


B

zz

(A+ B)

zz

= A

zz

&B

zz

(9xA)

zz

= 9xA

zz

The soundness of the translation is proved by a simple induction:

Theorem 3.14 (Soundness of frontier transitions) Let � and 	 be two

frontiers. If � =)

CC

	 then �

yy

`

IL(C;D)

	

yy

. If � =)

LCC

	 then �

zz

`

ILL(C;D)

	

zz

.

Theorem 3.15 (Observation of frontier stores in IL) Let A be an LCC

agent, de�ne L

store

(D:A) = fc 2 C j A

yy

`

IL(C;D)

cg we have:

L

store

(D:A) =# O

store

CC

00
(D:A)

Proof. One inclusion is shown by induction on a proof of A

y

`

IL(C;D)

c as in

lemma 3.4. Compared to lemma 3.4, there is just an additional induction step:
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�

yy

; A

yy

` � �

yy

; B

yy

` �

�

yy

; A

yy

_B

yy

` �

By induction hypothesis, (;; 1;A;�)

�

=) � and (;; 1;B;�)

�

=) �. Now

(;; 1;A+B;�) =)

�

h(;; 1;A;�); (;; 1;B;�)i, and therefore (;; 1;A+B;�)

�

=)

�, qed.

As usual, the other inclusion is a direct consequence of the soundness theo-

rem. 2

Theorem 3.16 (Observation of frontier stores and successes in ILL)

Let A be an LCC agent de�ne LL

00

store

(D:A) = fc 2 C j A

zz

`

ILL(C;D)

c
 >g

and LL

00

success

(D:A) = fc 2 C j A

zz

`

ILL(C;D)

cg we have:

LL

00

store

(D:A) =+ O

store

LCC

00

(D:A) LL

00

success

(D:A) =# O

success

LCC

00

(D:A)

Proof. For the �rst inclusion, we �rst prove the result for successes, for stores

we apply the same argument as in the proof of theorem 3.12. Proceed by

induction on a proof of A

zz

`

ILL(C;D)

c as in lemma 3.10. The only di�erence

with the proof of lemma 3.10 is the following induction step:

�

zz

; A

zz

` � �

zz

; B

zz

` �

�

zz

; A

zz

�B

zz

` �

By induction hypothesis, (;; 1;A;�)

o

=) � and (;; 1;B;�)

o

=) �. Now

(;; 1;A+B;�) =)

�

(;; 1;A;�)+(;; 1;B;�), and therefore (;; 1;A+B;�)

o

=) �,

qed. The second inclusion is obtained via soundness. 2

4 Phase semantics

4.1 Phase semantics of intuitionistic linear logic

Phase semantics is the natural provability semantics of linear logic [10]. It will

also reveal useful for proving safety properties of CC programs, through the

links between linear logic and CC. We only need here a fragment of intuitionistic

linear logic (
, & and(, which correspond respectively to the parallel, choice

and blocking ask operators, as shown in section 3.2). Nevertheless it is simpler

to recall Okada's de�nition of the phase semantics for full intuitionistic LL [24]

and to extend it to constants (1, 0, >).

The de�nition of formulas and the sequent calculus are recalled in appendix

A.

De�nition 4.1 A phase space P = (P; �; 1;F) is a commutative monoid (P; �; 1)

together with a set F of subsets of P , whose elements are called facts, such that:

{ F is closed under arbitrary intersection,

{ for all A � P , for all F 2 F , A( F = fx 2 P : 8a 2 A; a � x 2 Fg is a fact.
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As we shall see, facts correspond to ILL formulas and thus to LCC agents

(cf. section 3.2).

Note that facts are closed under linear implication (. Here are a few

noticeable facts: the greatest fact > = P , the smallest fact 0, and 1=

T

fF 2

F : 1 2 Fg.

A parametric fact A is a total function from V toF assigning to each variable

x a fact A(x). Any fact can be seen as a constant parametric fact, and any

operation de�ned on facts can be extended to parametric facts: (A ? B)(x) =

A(x) ? B(x).

Let A;B be (parametric) facts, de�ne the following facts:

A&B = A \ B;

A
B =

\

fF 2 F : A �B � Fg;

A�B =

\

fF 2 F : A [ B � Fg;

9xA =

\

fF 2 F : (

[

x2V

A(x)) � Fg;

8xA =

\

fF 2 F : (

\

x2V

A(x)) � Fg:

De�nition 4.2 An enriched phase space is a phase space (P; �; 1;F) together

with a subset O of F , whose elements are called open facts, such that:

{ O is closed under arbitrary � (in particular there is a greatest open fact),

{ 1 is the greatest open fact,

{ O is closed under �nite 
,

{ 
 is idempotent on O (if A 2 O then A
 A = A).

!A is de�ned as the greatest open fact contained in A.

The set of facts has been provided with operators corresponding to ILL

connectives (and therefore to LCC operators), we now translate formulas into

facts.

De�nition 4.3 Given an enriched phase space, a valuation is a mapping �

from atomic formulas to facts such that �(>) = >, �(1) = 1 and �(0) = 0.

The interpretation �(A) (resp. �(�)) of a formula A (resp. of a context �)

is de�ned inductively in the obvious way:

�(A
B) = �(A)
 �(B);

�(A( B) = �(A)( �(B);

�(!A) = !�(A);

�(A&B) = �(A) & �(B);

�(A�B) = �(A)� �(B);

�((�;�)) = �(�)
 �(�);

�(8xA) = 8x�(A);

�(9xA) = 9x�(A);

�(�) = 1 if � is empty:
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Sequents are interpreted as follows: �(� ` A) = �(�)( �(A). This brings one

to de�ning a notion of validity:

De�nition 4.4 (Validity) De�ne:

P, � j= (� ` A) i� 1 2 �(� ` A), i.e. �(�) � �(A),

P j= (� ` A) i� for every valuation �: P, � j= (� ` A),

j= (� ` A) i� for every phase space P: P j= (� ` A).

This semantics of ILL formulas enjoys the following main properties:

Theorem 4.5 (Soundness [10, 24]) If there is a sequent calculus proof of

� ` A then j= (� ` A).

Theorem 4.6 (Completeness [10, 24]) If j= (� ` A) then there is a sequent

calculus proof of � ` A.

4.2 Proving safety properties of LCC programs with the phase

semantics

Using the phase semantics presented above we will now prove safety properties

of CC programs. We use the soundness of the translation from LCC into ILL

and so require, either to translate CC programs into LCC or to write programs

directly in LCC.

The theorem 4.5 of soundness of the phase semantics w.r.t. ILL is:

� `

ILL

A implies 8P; �; P; � j= (� ` A):

It can easily be extended to ILL

C;D

by imposing to any valuation � to satisfy

the inclusions coming from the non-logical axioms (the axiom c ` d imposes

�(c) � �(d)).

By contrapositive we get:

9P; �; s.t. P; � 6j= (� ` A) implies � 6`

ILL

C;D

A;

which is equivalent to:

9P; �; s.t. �(�) 6� �(A) implies � 6`

ILL

C;D

A:

As the contrapositive of the theorem 3.7 of soundness from LCC to ILL

C;D

is:

(~x; c; �)

y

6`

ILL

C;D

(~y; d; �)

y

implies (~x; c; �) Y�!

LCC

(~y; d; �)

We have:

Proposition 4.7 To prove a safety property of the kind: (~x; c; �) Y�!

LCC

(~y; d; �), it is enough to show that:

9 a phase space P, a valuation �, and an element a 2 �((~x; c; �)

y

) such that

a 62 �((~y; d; �)

y

):
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This proposition allows to reduce the problem of proving safety properties of

CC programs, i.e. proving the non-existence of some derivation, to an existence

problem: �nding a phase structure, an interpretation and a counter-example

for the above inclusion, or even, only proving their existence. Note that only

soundness theorems are used, the second part of the correspondence (complete-

ness) gives a certain certitude that when looking for a semantical proof of a

true safety property, it exists!

4.3 Example 1 - Dining philosophers

As shown in section 2.2 the dining philosophers problem can easily be encoded

in LCC. Let us try to prove, for instance, that this encoding satis�es the safety

property that it does not allow two philosophers to eat with the same fork at

the same time, independently of the number of philosophers.

i) Reformulating the property. We �rst have to express that we don't want

two neighbors to eat together in a safety property of the above form:

8N; 8I; 8c; 8A; (;; 1;init(N)) Y�!

LCC

(;; eat(I); eat(I+1 mod N); c;A)

From the corollary, it is enough to show:

8N; 8I; 9P; 9�; 9x 2 �(init(N)); x 62 �(eat(I)
 eat(I+1 mod N)
>)

where > is the usual constant of linear logic that means \anything" and so

can replace c and A for any c and any A.

ii) Phase space. Consider the following structure P:

� N (with it's usual product and unit) is the monoid,

� F = P(N),

� O = f;; f1gg.

It is de�nitely a phase structure.

iii) Valuation. We need to de�ne a valuation � on fork(I), eat(I,N), N=M,

N 6=M, philosopher(I,N), recphilo(M,P) and init(N). We must not forget

to check that the conditions coming from the declarations (non-logical axioms

which translate into compulsory inclusions) of philosopher(I,N),

recphilo(M,P) and init(N) are satis�ed.

Let us de�ne � as follows:

�(fork(I)) = ff

i

g

�(eat(I,N)) = fe

i;n

g

�(philosopher(I,N)) = fp

i

g

�(recphilo(M,P)) = fx

m;p

� y

m;p

g

�(init(N)) = fx

1;n

� y

1;n

g

�(N = M) =

(

f1g if n = m;

; otherwise;

�(N 6= M) =

(

f1g if n 6= m;

; otherwise;

where the indices (i;m; n; p) are the canonical interpretation of the corre-

sponding integer variables, f

i

and p

i

are distinct prime numbers, and e

i

; x

m;p
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and y

m;p

are de�ned as follows:

e

i;n

= f

i

� f

i+1 mod n

� p

i

x

m;p

=

(

1 if m = p;

p

m

� f

m

� x

m+1;p

� y

m+1;p

otherwise.

y

m;p

=

(

p

m

� f

m

if m = p;

1 otherwise.

The conditions coming from the declarations are:

{ 8i; fp

i

g � E

i;n

where E

i;n

= �(body of philosopher(I,N))

{ 8m; 8p; fx

m;p

� y

m;p

g � F

m;p

where F

m;p

= �(body of recphilo(M,P))

{ 8n; fx

1;n

� y

1;n

g � �(body of init(N)).

One can easily notice that the third condition is implied by the second one.

Remembering that an agent A �!

LCC

B �!

LCC

C �!

LCC

D is interpreted

as fx 2 N : 8y 2 �(A); 8z 2 �(B); 8t 2 �(C); 9u 2 �(D); x � y � z � t = ug, we can

deduce: E

i;n

= fx 2 N : 9y 2 G

i;n

; f

i+1 mod n

� f

i

� x = e

i;n

� yg

with G

i;n

= fy 2 N : e

i;n

� y = f

i

� f

i+1 mod n

� p

i

g

(y represents an element of the interpretation of the part eat(I,N) !

(tell(fork(I) 
 fork(I+1 mod N)) k philosopher(I,N)) in the I

th

philo-

sopher).

Now, observe that the �rst condition 8i; fp

i

g � E

i;n

reduces to show that G

i;n

is non-empty, which is true as 1 2 G

i;n

. The second condition on F

m;p

is veri�ed

with a simple induction on x

m;p

and y

m;p

which have been de�ned on purpose.

The valuation is thus correct.

iv) Counter-example. As �(init(N)) = fx

1;n

� y

1;n

g we must prove:

x

1;n

� y

1;n

62 �(eat(I,N)
 eat(I+1 mod N,N)
>) =

fx 2 N : 9a 2 N; x = e

i;n

� e

i+1 mod n;n

� ag.

First we show by induction that: x

1;n

� y

1;n

= f

1

� : : : � f

n

� p

1

� : : : � p

n

And then proceed Ab absurdum:

if x

1;n

� y

1;n

= e

i;n

� e

i+1 mod n;n

� a then

f

i+1 mod n

� x

1;n

� y

1;n

= e

i;n

� e

i+1 mod n;n

� a � f

i+1 mod n

= f

1

� : : : � f

i�1

� f

i+3

� : : : � f

n

�

p

1

� : : : � p

i�1

� p

i+2

� : : : � p

n

� e

i;n

� e

i+1 mod n;n

hence, simplifying we get

a � f

i+1 mod n

= f

1

� : : : � f

i�1

� f

i+3

� : : : � f

n

�

p

1

� : : : � p

i�1

� p

i+2

� : : : � p

n

which is impossible (prime factors decomposition: f

i+1 mod n

appears on the

left hand of = but not on the right hand, a product of prime numbers), qed.

Remark:
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{ It is worth noting that, although a similar soundness theorem holds for the

translation of agents into intuitionistic logic (IL), if we use that translation

instead of ILL we will not be able to prove anything because from

philosopher(I)^ fork(I) ^ fork(I+1) ` eat(I,N) and

philosopher(I+1)^ fork(I+1) ^ fork(I+2) ` eat(I+1,N)we can infer

philosopher(I) ^ philosopher(I+1)^ fork(I) ^ fork(I+1) ^ fork(I+2) `

eat(I,N)^ eat(I+1,N).

{ The phase structure might seem unnatural, but in this case it can be simply

considered as the free commutative monoid built on the atomic constraints of

the program, interpreted as singletons, and generated by the equalities com-

ing from the non-logical axioms (i.e. inclusions between singletons). Such a

singleton-based phase structure cannot always be used however. For instance

with the following program: P = tell(d), Q = c ! P, a singleton-based phase

structure does not allow one to prove that c is not accessible from P, i.e.

P 6` c
>, as we can deduce �(P) = c � �(Q) from the second declaration.

4.4 Example 2 - Producer/Consumer

The producer/consumer protocol with m producers and k consumers commu-

nicating via a bu�er of size n can be encoded in LCC as follows:

P = dem ! (pro k P)

C = pro ! (dem k C)

init = dem

n

k P

m

k C

k

Let us prove, with the same phase structure as above, that this protocol,

encoded this way, is deadlock free, and safe (the number of units consumed is

always less than the number of units produced).

4.4.1 Deadlock Freeness

The �rst task is to state this safety property in the form (~x; c; �) Y�!

LCC

(~y; d; �). One can easily see that a deadlock may only occur if there is, either

no P left, or no C left, or nothing to consume (dem and pro).

i) We thus want to prove init Y�!

LCC

dem

n

0

k P

m

0

k C

k

0

k pro

l

0

, with either

n

0

= l

0

= 0 or m

0

= 0 or k

0

= 0.

ii) Let us now consider the structure P = N, F = P(N), and O = f;; f1gg, it

is obviously a phase structure.

iii) Let us de�ne the following valuation:

�(dem) = f5g �(pro) = f5g �(P) = f2g �(C) = f3g

�(init) = f2

m

� 3

k

� 5

n

g

We have to check the correctness of �:

8p

1

2 �(P); 9p

2

2 �(P); dem � p

1

= pro � p

2

, hence �(P) � �(body of P).
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The same for C, and �(init) = �(body of init).

iv) Instead of exhibiting a counter-example, we will again prove Ab absurdum

that the inclusion �(init) � �(dem

n

0

k P

m

0

k C

k

0

k pro

l

0

) is impossible.

Suppose �(init) � f5

n

0

� 2

m

0

� 3

k

0

� 5

l

0

g Comparing the power of 5, 3 and

2, anything else than: n

0

+ l

0

= n and m

0

= m and k

0

= k is impossible, and

therefore if there is a deadlock (n

0

+ l

0

= 0 6= n, or m

0

= 0 6= m, or k

0

= 0 6= k)

�(init) is not a subset of its interpretation and thus init does not reduce into

it, qed.

4.4.2 Safety

In order to check that there are never more units consumed than units produced,

the encoding must be slightly modi�ed to make this information directly ob-

servable:

P = dem ! (pro k P k 8X (np=X ! np=X+1))

C = pro ! (dem k C k 8X (nc=X ! nc=X+1))

init = dem

n

k P

m

k C

k

k np=0 k nc=0

This kind of modi�cation, namely adding an \oracle" to observe the prop-

erty of interest, is commonly seen in other veri�cation techniques, for instance

when adding a separate automaton in model checking.

i) We want to prove:

init Y�!

LCC

dem

n

0

k pro

l

0

k P

m

k C

k

k np=np

0

k nc=nc

0

with nc

0

> np

0

.

ii) Once again we can use a quite simple structure, P = Q;F = P(Q); O =

f;; f1gg.

iii) And the following valuation:

�(dem) = f6g �(pro) = f3g �(P) = f5g �(C) = f7g

�(np=X) = f2

x

g �(nc=X) = f2

�x

g

�(init) = f2

n

� 3

n

� 5

m

� 7

k

g

This valuation is correct: 9d = 2 s.t. dem � p = pro � p � d and 8x; 2

x

� d = 2

x+1

hence �(P) � �(body of P).

iv) Now, It su�ces to remark that nc

0

> np

0

and �(init) � f6

n

0

� 3

l

0

� 5

m

� 7

k

�

2

np

0

� 2

�nc

0

g would imply l

0

< 0, which is impossible, qed.

4.5 Example 3 - Mutual exclusion

There is no \;" (sequentiality operator) in the syntax, but it can be added

without losing the soundness properties by translating it as \
" (similarly, the

guarded choice can be translated as \ & "). The following example of mutual

exclusion with semaphores shows an example of LCC + \;" program on which
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one can prove safety properties:

P

i

= sem ! cs k A ; (cs ! sem k P

i

)

init = sem k P

1

k � � � k P

N

i) We want to prove that the two critical sections cs cannot take place at the

same time: 8B; init Y�!

LCC

cs k cs k B i.e. init

z

6` cs
 cs
 >.

ii, iii, iv) The structure P = N and the valuation �(sem) = �(cs) = �(init) =

f2g and �(A) = �(P

i

) = f1g are correct. The proof of existence of a counter-

example (again ab absurdum) is trivial.

This handling of \;", or of the guarded choice, may be quite surprising and

is of course not general. It shows that although these operators have no simple

logical interpretation, it is nevertheless sometimes possible to capture their

operational behavior in the statement of the property. In the previous example

it was enough to show 8B; init Y�!

LCC

cs k cs k B because we know that A

is over when we remove cs from the store; showing 8B; init Y�!

LCC

A k A k B

would not be possible by interpreting \;" as \
".

5 Conclusion and perspectives

Building upon the close correspondence between CC executions and proof search

in LL, we have shown that the semantics of provability (not of proofs) in LL

provides an interesting level of abstraction for reasoning about CC programs,

getting rid of unnecessary execution details. In particular we have shown that

various safety properties of simple protocol CC programs could be proved di-

rectly, simply by exhibiting a phase space and an interpretation of the program

in which the property holds.

These results open also a lot of questions, for instance on the shape of the

simplest phase spaces for proving a given safety property, and on the possibility

of automatizing such \semantical" proofs in a somewhat similar way to model

checking. These issues should serve further investigation.

The method can be generalized to handle more safety properties of LCC

programs. In particular the characterization of LCC suspensions [28] in the

non-commutative logic of the second author [27], can be used to prove deadlock

properties using non-commutative phase spaces.

The extension { induced by the logic { of CC languages to linear constraint

systems is also interesting to study in its own right as it reconciles declarative

programming with some form of imperative programming. We have shown

this on simple examples for protocol speci�cation. As another example, the

rationale reconstruction of CLP(FD) constraint propagators by CC agents given

in [11] could be extended in LCC to cover the propagation algorithms of global

constraintswhich use imperative (backtrackable) data structures. Such a logical

reconstruction with LCC would be thus more faithful to current CLP(FD)

practice.
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A Appendix: Intuitionistic linear sequent calculus

De�nition A.1 (Intuitionistic formulas) The intuitionistic formulas are

built from atoms p; q; : : : with:

{ the multiplicative connectives: 
 (tensor) and implication (,

{ the additive connectives: & (with) and � (plus),

{ the exponential connective ! (of course or bang),

{ the constants: multiplicative 1 and ?, and additive > and 0,

{ the quanti�ers: universal 8 and existential 9.

De�nition A.2 (Intuitionistic sequents) The sequents are of the form � `

A or � `, where A is a formula and � is a multiset of formulas.

The sequent calculus is given by the following rules:

Axiom - Cut

A ` A

� ` A �; A ` B

�;� ` B

Multiplicatives

�; A;B ` C

�; A
B ` C

� ` A � ` B

�;� ` A 
B

� ` A �; B ` C

�;�; A( B ` C

�; A ` B

� ` A( B

Additives
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�; A ` C �; B ` C

�; A� B ` C

� ` A

� ` A� B

� ` B

� ` A �B

� ` A � ` B

� ` A & B

�; B ` C

�; A & B ` C

�; A ` C

�; A & B ` C

Constants

� ` A

�;1 ` A

` 1 ? `

� `

� ` ?

� ` > �;0 ` A

Bang

�; A ` B

�; !A ` B

!� ` A

!� `!A

�; !A; !A ` B

�; !A ` B

� ` B

�; !A ` B

Quanti�ers

�; A[t=x] ` B

�; 8xA ` B

� ` A

x 62 fv(�)

� ` 8xA

�; A ` B

x 62 fv(�; B)

�; 9xA ` B

� ` A[t=x]

� ` 9xA
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