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Abstract

We review 28 uniform partitions of 3-space in order to �nd out which of them

have graphs (skeletons) embeddable isometrically (or with scale 2) into some cu-

bic lattice Z

n

. We also consider some relatives of those 28 partitions, including

Achimedean 4-polytopes of Conway-Guy, non-compact uniform partitions, Kelvin

partitions and those with unique vertex �gure (i.e. Delone star). Among last ones

we indicate two continuums of aperiodic tilings by semi-regular 3-prisms with cubes

or with regular tetrahedra and regular octahedra. On the way many new partitions

are added to incomplete cases considered here.

1 Introduction

A polyhedron is called uniform if all its faces are regular polygons and its group of

symmetry is vertex-transitive. A normal partition of 3-space is called uniform if all is

facets (cells) are uniform polyhedra and group of symmetry is vertex-transitive. There are

exactly 28 uniform partitions of 3-space. A short history of this result follows. Andreini

in 1905 proposed, as the complete list, 25 such partitions. But one of them (13

0

, in his

notation) turns out to be not uniform; it seems, that Coxeter [Cox35], page 334 was the

�rst to realize it. Also Andreini missed partitions 25-28 (in our numeration given below).

Till recent years, mathematical literature was abundant with incomplete lists of those

partitions. See, for example, [Cri70], [Wil72] and [Pea78] (all of them does not contain

24-28) and [Gal89]. The �rst to publish the complete list was Gr�unbaum in [Gr�u94].

But he wrote there that, after obtaining the list, he realized that the manuscript [Joh91]

already contained all 28 partitions. We also obtained all 28 partitions independently but,

perhaps, the full classi�cation should be attributed to Andreini-Johnson-Gr�unbaum.

�

This work was supported by the Volkswagen-Stiftung (RiP-program at Oberwolfach) and Russian

fund of fundamental research (grant 98-01-00251).
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We say that given partition P has a l

1

-graph and embeds up to scale � into the cubic

lattice Z

m

, if there exists a mapping f of the vertex-set of the skeleton of P into Z

m

such

that

�d

P

(v

i

; v

j

) = jjf(v

i

); f(v

j

)jj

l

1

=

X

1�k�m

jf

k

(v

i

)� f

k

(v

j

)j for all vertices v

i

; v

j

:

We take, of course, the smallest such number �.

Call an l

1

-partition l

1

-rigid, if all its embeddings (as above) into cubic lattices are

pairwise equivalent. All embeddable partitions in this paper turn out to be l

1

-rigid and so

having scale 1 or 2. Those embeddings were obtained by constructing a complete system

of alternated zones; see [CDG97], [DSt96], [DSt97], [DSt98].

The following 5-gonal inequality [Dez60] is an important necessary condition for em-

bedding of graphs:

d

xy

+ (d

ab

+ d

ac

+ d

bc

) � (d

xa

+ d

xb

+ d

xc

) + (d

ya

+ d

yb

+ d

yc

)

for distances between any �ve its vertices a; b; c; x; y. It turns out that all non-embeddable

partitions considered in this paper are, moreover, not 5-gonal.

Denote by De(T ) and V o(T ) the Delone and Voronoi partitions of 3-space associated

with given set of points T . By an abuse of language, we will use same notation for the

graph, i.e. the skeleton of a partition. The Voronoi and Delone partitions are dual one to

each other (not only combinatorially, but metrically). Denote by P

�

the partition dual to

partition P ; it should not be confounded with the same notation for dual lattice.

2 28 uniform partitions

In the Table 1 of 28 partitions, the meaning of the column is:

1. the number which we give to the partition;

2. its number in [And05] if any;

3. its number in [Gr�u94];

4. a characterization (if any) of the partition;

5. tiles of partition and their numbers in Delone star;

5

�

. tiles of its dual;

6. embeddability (if any) of partition;

6

�

. embeddability (if any) of its dual.

Notation

1

2

Z

m

in columns 6, 6

�

means that the embedding is isometric up tp scale 2.

Notation for the tiles given in the Table 1 is: trP for truncated polyhedron P ; Prism

n

for semi-regular n-prism; �

3

, �

3

and 

3

for the Platonic tetrahedron, octahedron and

cube; Cbt and Rcbt for Archimedean Cuboctahedron and Rhombicuboctahedron; RoDo,

twRoDo and RoDo � v for Catalan Rhombic Dodecahedron, for its twist and for RoDo

with deleted vertex of valency 3; Pyr

4

and BPyr

3

for corresponding pyramid and bi-

pyramid; BDS

�

for dual bidisphenoid.

Remark that [Cox35] considered 12 of all 28 partitions; namely, No's 8, 7, 18, 2, 16, 23,

9 denoted there as t

A

�

4

for A = f1g, f0; 1g, f0; 2g, f1; 2g, f0; 1; 2g, f0; 1; 3g, f0; 1; 2; 3g,

respectively, and No's 6, 5, 20, 19, 17 denoted as q�

4

, h�

4

, h

2

�

4

, h

3

�

4

, h

2;3

�

4

.
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Table 1. Embedding of uniform partitions and their duals.

1 2 3 4 5 5

�

6 6

�

No tiles of dual emb. dual

1 1 22 De(Z

3

) = V o(Z

3

) 

3

8 

3

Z

3

Z

3

2 3 28 V o(A

�

3

= bcc) tr�

3

4 � �

3

Z

6

�

3 4 11 De(A

2

�Z

1

) Prism

3

12 Prism

6

1

2

Z

4

Z

4

4 5 26 V o(A

2

� Z

1

) Prism

6

6 Prism

3

Z

4

1

2

Z

4

5 2 1 De(A

3

= fcc) �

3

; �

3

8; 6 RoDo

1

2

Z

4

Z

4

6 13 6 F�oppl partition �

3

; tr�

3

2; 6 � 

3

� Z

4

7 14 8 boron CaB

6

�

3

; tr

3

1; 4 Pyr

4

� �

8 15 7 De(J -complex) �

3

; Cbt 2; 4 � �

3

� �

9 22 27 Prism

8

; � �

3

Z

9

�

trCbt 2; 2

10 6 24 De(x(4:8

2

� Z

1

) Prism

8

; 

3

4; 2 � Prism

3

Z

5

�

11 8 18 De(3:6:3:6� Z

1

) Prism

3

; � 

3

� Z

4

Prism

6

4; 4

12 12 17 De(3

4

:6� Z

1

) Prism

3

; � Prism

5

1

2

Z

7

�

Prism

6

8; 2

13 11 13 De(3

3

:4

2

� Z

1

) Prism

3

; 

3

6; 4 � Prism

5

1

2

Z

4

�

14 11

0

14 De(3

2

:4:3:4� Z

1

) Prism

3

; 

3

6; 4 � Prism

5

1

2

Z

5

�

15 7 19 De(3:12

2

� Z

1

) Prism

3

; � Prism

3

�

1

2

Z

1

Prism

12

2; 4

16 18 25 a zeolit 

3

; tr�

3

; trCbt 1; 1; 2 � �

3

Z

9

�

17 20 21 tr�

3

; tr

3

; � �

3

� �

trCbt 1; 1; 2

18 17 9 

3

; Cbt;Rcbt 2; 12 � BPyr

3

� �

19 16 5 �

3

; 

3

; Rcbt 1; 3; 1 � BPyr

3

1

2

Z

7

�

20 21 10 boron UB

20

tr�

3

; tr�

3

; Cbt 2; 1; 2 � Pyr

4

� �

21 9 16 De(3:4:6:4� Z

1

) 

3

; P rism

3

; � 

3

1

2

Z

4

�

Prism

6

4; 2; 2

22 10 23 De(4:6:12 � Z

1

) 

3

; P rism

3

; � Prism

3

Z

7

�

Prism

12

2; 2; 2

23 19 20 

3

; P rism

8

; � Pyr

4

� �

tr

3

; Rcbt 1; 2; 1; 1

24 2

0

2 De(hcp) �

3

; �

3

8; 6 twRoDo � �

25 � 3 De(elong. A

3

) Prism

3

; �

3

; �

3

6; 4; 3 RoDo � v

1

2

Z

4

Z

4

26 � 4 De(elong. hcp) Prism

3

; �

3

; �

3

6; 4; 3 RoDo � v � �

27 � 12 Prism

3

12 BDS

�
1

2

Z

5

�

28 � 15 De(elong. 27) Prism

3

; 

3

6; 4 � Prism

5

1

2

Z

5

�

Remarks on the Table 1:

1. The partition 15

�

is only one embeddable into Z

1

(in fact, with scale 2).

2. All partitions embeddable with scale 1 are, except 25

�

, zonohedral. The Voronoi tile

of 25

�

is not centrally-symmetric. It will be interesting to �nd a normal tiling of 3-space

3



embeddable with scale 1 such that the tile is centrally-symmetric; such non-normal tiling

is given in [Sht80]: see item 35 in Table 2 below.

3. Embedding of its tiles is necessary but not su�cient for embedding of whole tiling;

for example, 26

�

and 27

�

are not embeddable while their tiles embeddable into H

4

and

1

2

H

8

, respectively.

4. Among all 28 partitions only No's 1, 2, 5, 6, 8 have same surrounding of edges:

polygons (4.4.4.4), (4.6.6), (3.3.3.3), (3.3.6.6), (3.3.4).

5. Partitions 8 and 24 are Delone partitions of lattice complexes: 3-lattice called J-

complex and bi-lattice hcp; the tile of V o(J-complex) has form of jackstone (it explains

the term "J-complex")) and it is combinatorially equivalent to �

3

.

6. Partitions 1, 3, 5 are Delone partitions of lattices Z

3

, A

2

� Z

1

, A

3

=fcc. Partitions

2 and 4 are Voronoi partitions of lattices A

�

3

=bcc and A

2

� Z

1

. No's 10, 11, 12, 13, 14,

15, 21, 22 are Delone prismatic partitions over 8 Archimedean partitions of the plane.

7. Partitions 7 and 20 occur in Chemistry as borons CaB

6

and UB

20

, respectively.

Partition 20 occurs in zeolites.

8. The ratio of tiles in partition is 1:1 for 6, 7, 8, 10; 2:1 for 5, 11, 13, 14, 24, 28; 3:1

for 9; 8:1 for 12; 2:1:1 for 17, 19, 20; 3:1:1 for 16, 18; 3:2:1 for 21, 22, 25, 26; 3:3:1:1 for

23.

3 The table of other partitions

Table 2. Embedding of some other partitions.

29 De(L

5

) �

3

; P yr

4

ElDo

1

2

Z

4

Z

5

30 De(D-complex) �

3

;� �

3

triakis tr�

3

1

2

Z

5

�

31 De(Kelvin) �

3

; �

3

RoDo; twRoDo � �

32 De(Gr�unbaum) Prism

3

Prism

6

; BDS

�
1

2

Z

5

�

33 De(elong. Kelvin) �

3

; �

3

; P rism

3

RoDo � v � �

34 De(elong. Gr�unbaum) Prism

3

; 

3

� Prism

5

1

2

Z

5

�

35 P (S

1

) S

1

Z

3

�

36 P (S

2

) S

2

Z

4

�

37 P (S

3

) S

3

Z

5

�

38 A-19 Prism

1

Z

2

39 Prism

1

Z

2

40 A-20, n even C

n

� P

Z

Z

1

A-20, n odd C

n

� P

Z

1

2

Z

1

41 A-22 Aprism

1

1

2

Z

3

42 A-23 Prism

1

; Aprism

1

1

2

Z

3

43 k �type 

3

; C

4

� P

Z

Z

3

44 ? �type 

3

; C

4

� P

Z

Z

3

45 chess� type 

3

; C

4

� P

Z

Z

3

46 A-13

0

�

3

; tr�

3

R; twisted R � �

In the Table 2 we group some other relevant partitions. Here L

5

denotes a representative

of 5-th Fedorov's type (i.e. by the Voronoi polyhedron) of lattice in 3-space and ElDo

4



denotes its Voronoi polyhedron, called elongated dodecahedron. Remaining four lattices

appeared in the Table 1 as No 1 =De(Z

3

) = V o(Z

3

), No 5 =De(A

3

), No 2 =V o(A

�

3

), No

3 =De(A

2

� Z

1

), No 4 =V o(A

2

� Z

1

). Remark that De(L

5

) and De(A

2

� Z

1

) coincide

as graphs, but di�er as partitions.

In notation De(Kelvin) below we consider any Kelvin packing by �

3

and �

3

(in pro-

portion 2:1) which is proper, i.e. di�erent from the lattice A

3

=fcc (face-centered lattice)

and the bi-lattice hcp (hexagonal closed packing). Any proper Kelvin partition, as well

as partition 13

0

in [And05] (given as 46 in Table 2 and which Andreini wrongly gave

as uniform one), have exactly two vertex �gures. (The Voronoi tiles of tiling 46 are a

rhombohedron, say, R, i.e. the cube contracted along a diagonal, and twisted R; both

are equivalent to 

3

.) The same is for Gr�unbaum partitions; see Section 5 below for those

notions and items 32{34 of Table 2.

See Section 4 below for items 38{45 of Table 2. D-complex is the diamond bi-lattice;

triakis tr�

3

denotes truncated �

3

with Pyr

3

on each its triangular faces. Partitions 29

and 30 from Table 2 are both vertex-transitive, but they have some non-Archimedean

tiles: Pyr

4

for 29 and non-regular octahedron for 30.

The partitions 35, 36, 37 of Table 2 are all 3 non-normalizable tilings of 3-space by

convex parallelohedron, which where found in [Sht80]. The polyhedra denoted by S

1

, S

2

and S

3

are centrally symmetric 10-hedra obtained by a decoration of the paralelipiped. S

1

is equivalent to �

3

truncated on two opposite vertices. P

�

(S

i

) for i = 1; 2; 3 are di�erent

partitions of 3-space by non-convex bodies, but they have the same skeleton, which is not

5-gonal.

4 Non-compact uniform partitions

[And05] introduced in subsections 19, 20, 22, 23 non-compact uniform partitions, which

we denote A-19, A-20, A-22, A-23 and put in Table 2 as No's 38, 40, 41, 42. Denote by

Prism

1

(Aprism

1

) and C

n

�P

Z

the1-sided prisms (anti-prisms, respectively) and the

cylinder on C

n

.

A-19 is obtained by putting Prism

1

on (4

4

) and so its skeleton is Z

2

. We add, as

item 39, the partition which di�ers from 38 only by other disposition of in�nite prisms

under net (4

4

), i.e. perpendicular to those above it.

A-20 is obtained by putting the cylinders on (4

4

), A-22 by putting Aprism

1

on (3

6

)

and A-23 by putting Prism

1

and Aprism

1

on (3

3

.4

2

).

In subsection 20

0

[And05] mentions also the partition into two half-spaces separated

by some of 10 Archimedean (and one degenerated) nets, i.e. uniform plane partitions.

We can also take two parallel nets (say, T ) and �ll the space between them by usual

prisms (so, the skeleton will be direct product of the graph of T and K

2

) or, for T = (4

4

)

or (3

3

:4

2

), by a combination of usual and in�nite prisms. Similar uniform partitions are

obtained if we will take an in�nity of parallel nets T .

The partitions 43, 44, 45 of Table 2 di�er only by the disposition of cubes and cylinders.

In 43 the layers of cylinders stay parallel (k-type); in 44 they are perpendicular to the

cylinders of each previous layer. In 45 we see (4

4

) as in�nite chess-board; cylinders stay

5



on "white" squares while piles of cubes stay on the "black" ones.

By a decoration of Prism

1

in 38, 39, one can get other non-compact uniform parti-

tions.

5 Almost-uniform partitions

Call a normal partition of the 3-space into Platonic and Archimedean polyhedra, almost-

uniform if the group of symmetry is not vertex-transitive but all vertex �gures are con-

gruent. Gr�unbaum [Gr�u94] gave two in�nite classes of such partitions and indicated that

he do not know other examples. In our terms, given below, they called elongated proper

Kelvin and elongated proper Gr�unbaum partitions. A Kelvin and Gr�unbaum partition is

de�ned uniquely by in�nite binary sequence characterizing the way how layers follow each

other. In Kelvin partition, the layers of �

3

and �

3

follow each other in two di�erent ways

(say, a and b) while in Gr�unbaum partition the layers of Prism

3

follow each other in

parallel or perpendicular mutual disposition of heights. Unproper Kelvin partitions give

uniform partitions 5 and 24 for sequences :::aaa::: (or :::bbb:::) and :::ababab:::, respec-

tively. Proper Kelvin and Gr�unbaum partitions are not almost-uniform; there are even

1-uniform ones (take a non-periodic sequence).

Consider now elongation of those partitions, i.e. we add alternatively the layers of

Prism

3

for Kelvin and of cubes for Gr�unbaum partitions.

Remark that RoDo� v (the Voronoi tile of partitions 25, 26, 33) can be seen as a half

of RoDo cut in two, and that twRoDo is obtained from RoDo by a twist (a turn by 90

o

) of

two halves.The Voronoi tiles for proper Kelvin partition 31 are both RoDo and twRoDo

while only one of them remains for two unproper cases 5, 24. Similarly, the Voronoi tile

of 34 (a special 5-prism) can be seen as a half of Prism

6

cut in two, and BDS

�

can be

seen as twisted Prism

6

in similar way. The Voronoi tiles for proper Gr�unbaum partition

32 are both Prism

6

and BDS

�

while only one of them remains for two unproper cases 3,

27.

Besides of two unproper cases 25, 26 (elongation of uniform 5, 24) which are uniform,

we have a continuum of proper elongated Kelvin partitions (denoted 33 in Table 2) which

are almost-uniform. Among them there is a countable number of periodic partitions

corresponding to periodic (a; b)-sequences. Remaining continuum consists of aperiodic

�lings of 3-space by �

3

, �

3

, Prism

3

with very simple rule: each has unique Delone star

consisting of 6 Prism

3

(put together in order to form a 6-prism), 3 �

3

and 3 �

3

(put

alternatively on 6 triangles subdividing the hexagon) and one �

3

�lling remaining space

in the star. Each b in the (a; b)-sequence, de�ning such tiling, corresponds to the twist

interchanging 3 �

3

and 3 �

3

above (i.e. to the turn of the con�guration of 4 �

3

, 3 �

3

by

60

o

).

Similar situation occurs for elongated Gr�unbaum partitions. Besides of two uniform

unproper cases 13, 28 (elongation of uniform 3, 27), we have a continuum of proper

elongated Gr�unbaum partitions (denoted 34 in Table 2) which are almost-uniform. The

aperiodic (a; b)-sequences give a continuum of aperiodic tilings by Prism

3

, 

3

with similar

simple rule: unique Delone star consisting of 4 

3

(put together in order to form a 4-prism),

6



4 Prism

3

put on them and 2 Prism

3

�lling remaining space in the star. Each b in (a; b)-

sequence, de�ning the tiling, corresponds to a turn of all con�guration of 6 Prism

3

by

90

o

.

6 Archimedean 4-polytopes

Finite relatives of uniform partitions of 3-space are 4-dimensional Archimedean polytopes,

i.e. those having vertex-transitive group of symmetry and whose cells are Platonic or

Archimedean polyhedra and prisms or anti-prisms with regular faces. [Con65] enumerated

all of them:

1) 44 polytopes (others than prism on 

3

) obtained by Wytho�'s kaleidoscope con-

struction from 4-dimensional irreducible reexion (point) groups;

2) 17 prisms on Platonic (other than 

3

) and Archimedean solids;

3) Prisms on n-anti-prisms with n > 3;

4) A doubly in�nity of polytopes which are direct products of two regular polygons (if

one of polygons is a square, then we get a prisms on 3-dimensional prisms);

5) Gosset's semi-regular polytope called snub 24-cell;

6) A new polytope, called Grand Anti-prism, having 100 vertices (all from 600-cell),

300 cells �

3

and 20 cells 5-anti-prisms (those anti-prisms form two interlocking tubes).

Using the fact that the direct product of two graphs is l

1

-embeddable if and only

if each of them is, and the characterization of embeddable Archimedean polyhedra in

[DSt96], we can decide about embeddability in cases 2){4). In fact, the answer is "yes"

always in cases 2){4), except prisms on tr�

3

, tr

3

, Cuboctahedron, truncated Icosahedron,

truncated Dodecahedron and Icosidodecahedron, which are all not 5-gonal.

Now, the snub 24-cell embeds into

1

2

H

12

and the Grand Anti-prism (as well as 600-cell

itself) violates 7-gonal inequality, which is necessary for embedding.
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