
Département de Mathématiques et Informatique

________________________

________________________

UPERIEURESORMALENECOLE

CNRS URA 1327

Prototype proofs in type theory

Giuseppe LONGO

LIENS - 98 - 17



Prototype proofs in type theory

Giuseppe LONGO

LIENS - 98 - 17

December 1998

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 01 44 32 30 00

Adresse �electronique : longo@dmi.ens.fr



Prototype Proofs in Type Theory

Giuseppe Longo

LIENS(CNRS) and DMI

Ecole Normale Sup�erieure

45 rue d'Ulm

75005 Paris, France

http://www.dmi.ens.fr/users/longo

November 10, 1998

Abstract

The proofs of universally quanti�ed statements, in mathematics, are given

as \schemata" or as \prototypes" which may be applied to each speci�c

instance of the quanti�ed variable. Type Theory allows to turn into a

rigorous notion this informal intuition described by many, including Her-

brand. In this constructive approach where propositions are types, proofs

are viewed as terms of ��calculus and act as \proof-schemata", as for

universally quanti�ed types. We examine here the critical case of Impred-

icative Type Theory, i.e. Girard's system F, where type-quanti�cation

ranges over all types. Coherence and decidability properties are proved

for prototype proofs in this impredicative context.

1 Introduction

1.1 Universal Quanti�cation

In universally quanti�ed propositions of everyday mathematics, such as 8xP(x),

x is meant to range on some intended collection of individuals (the reals, the

complex numbers ...). This is a �rst order quanti�cation. How do mathemati-

cians prove a universal proposition of this kind? Assume, for instance, that

in P(x), x is a real number variable. We seek to prove 8xP(x), i.e. that for

any real x, P(x) holds for this speci�c real. Any working mathematician would

prove 8xP(x) by saying: � let x be an arbitrary or \generic" real number, then

observe ...� and would write one single proof, valid for any particular real, as

there is no way to inspect all reals, one by one. In other words, his/her core

(often implicit) remark would be that the proof does not depend on the speci�c

(and arbitrary) real chosen, but only on the assumption that x is a real number.

1



In type-theoretic terms, a sound proof would only depend on the type of x, not

on its value. Thus, if we want to prove P for a speci�c real, � say, we only need

to replace everywhere in our proof, the \generic real" by the speci�c value, �.

This is sound, as we used in the proof only properties that are veri�ed by any

real.

Herbrand called that kind of \uniform" proofs prototype:

�... when we say that a theorem is true for all x, we mean that

for each x individually it is possible to iterate its proof, which may

just be considered a prototype of each individual proof.� (pp. 288-9,

note 5 in [Gold87]).

In conclusion, the proof of a universally quanti�ed statement is not under-

stood by following the naif (tarskian style) interpretation of \8x : : :", as \for all

x : : :": in no way, \8x : : :" is used, in a proof, in the sense of the inspection

of \all instances" in the intended model, yet its meaning and use refer to x as

generic in a prototype proof.

The theory of types of ��calculus provides a sound formal frame for this

informal notion, in particular in the second order case. The reference to Type

Theory and ��calculus is related to the intuitionistic perspective, concerning

truth and provability, which is assumed in this paper. In particular, in the \re-

alizability interpretation" of Intuitionistic Systems, the meaning of a statement

is given by the \set of its realizers" (that is, its possible or candidate proofs - if

any, as this set may be empty). This constructive understanding of logical sys-

tems is also related the so called BHK explanation of the intuistionistic meaning

of the logical connectives, [Troe73], [TroVan73] for both approaches. In either

semantics, one constructively gives meaning to a statement, to a de�ned math-

ematical concept, by discussing its provability, as truth is provability. (Note:

Prototype proofs in Type Theory were introduced in [FruLo98], whose �rst half

is a preliminary version of the present paper. The decidability result in section

6 below is only conjectured in [FruLo98]).

1.2 Impredicative Second Order Quanti�cation

Impredicative de�nitions explicitly show up, when quanti�cation is given over

sets or predicates, not just individuals, as in the �rst order case: in this case the

de�niens may use the de�niendum, which is a set or a predicate. That is, in order

to deal formally with a \totality" of concepts or predicates or sets, one needs

a second order language, namely a formalized language that may represent,

internally, quanti�cations over collections of predicates or sets. Analysis, for

example, may be viewed as second order Arithmetic, since real numbers may

be de�ned as sets of integers.

More formally, a set S is impredicatively de�ned if for some predicate P,

one has S = fy=8X:P(X; y)g, where y is an individual-variable and X is an

set-variable (that is, X is intended to range over sets of individuals). Thus, S is

2



a particular set and, if one wants to check wether a given a is in S, one needs to

consider the property 8XP(X; a), with X ranging over all sets (or predicates),

including S itself. That is, one has to handle, in particular, the \circular" case

P(S; a). One may then wonder if an analysis of 8XP(X; a) is still possible in

terms of \prototype proofs", in the sense given above for �rst order sentences.

In particular, one may wonder what it may mean exactly for an instance of

variable X to be \generic", in the second order case. As a matter of fact, the

\generic" use of X is even more crucial here. Scanning all possible instances of

X would indeed include 8XP(X; a) itself and lead to an unbreakable circularity.

But � : : : the belief that we must run through all individual cases rests on a

confusion of \numerical" generality. [...] We do not establish speci�c generalities

by running through individual cases but by logically deriving certain properties

from certain others. � as pointed out by Carnap in 1931, [Car31].

In our example, assume that S is a set of integers. In order to check whether

n is in S, one should logically derive P(X;n) from the only assumption that

X has the property of \being a set of integers" (i.e. from an assumption on

its type and nothing else); thus, we do not run throughout all sets of integers,

including the one we are de�ning, but we just make a logical derivation based

on the properties of the \type of the sets of integers". In general,

� : : : if we reject the belief that it is necessary to run through indi-

vidual cases and rather make it clear to ourselves that the complete

veri�cation of a statement means nothing more than its logical va-

lidity for an arbitrary property, we will come to the conclusion that

impredicative de�nitions are logically admissible. �, [Car31].

However, some technical questions need to be clari�ed and we will deal with

them within the contructive frame of Girard's System F or II order ��calculus

(see section 2). How can we be sure that the proof given is actually independent

from the speci�c X used throughout the proof? How can we prove that from

the given proof of a speci�c case, we can actually reconstruct uniformly a proof

of the general case, that is of 8X:P(X; a)? Or, is it decidable that X is truely

generic and that the proof is a prototype, in the sense of Herbrand?

Mathematicians solve these questions, in the practice, by handwaving, ex-

perience and a common insight into proofs. This is perfectly sound in the �rst

order case, where the strati�cation of individuals and predicates (or sets) poses

no problem. It is a more delicate point in second order systems, when the issue

of impredicativity actually raises.

Constructive logical systems, Type Theory in particular, by looking at proofs

explicitly, as terms or computations, give a precise answer to these questions,

as a simple corollary of a (di�cult) result, as shown below. In our views, this

may contribute to set on more solid grounds impredicatively given properties.

3



2 System Fc and Impredicativity

System F is known as Impredicative Type Theory, or Polymorphic ��calculus;

it was introduced by Girard, [Gir71] (see [GLT89] for a more recent presentation

and [AL91] for its categorical semantics). It consists of types and terms (well

typed terms). As a key component of its expressive power, the type system of

F allows explicit quanti�cation on type variables (second order quanti�cation);

its proof-theoretic strenght is such as to prove, by the normalization theorem,

the consistency of (II order) Arithmetic.

In system F a type is either a type variable, an arrow type or a universally

quanti�ed (or polymorphic) type. (One may add atomic types, when dealing

with speci�c extension of the \pure theory" presented here; however, most key

predicates for Logic and Computer Science are codable in the pure system, see

[GLT89].) Types then are constructed using the following schemes:

� variables: X;Y ... are types.

� arrow types: � ! � is a type, if � and � are types.

� universal types: 8X:� is a type, if � is a type.

A term is either a variable, an abstraction, an application, a type abstrac-

tion, or a type application. Thus, terms are constructed using the following

schemes:

� variables: x

�

of type � , if � is a type.

� abstraction: �x

�

:M of type � ! �, if � is the type of M (� binds term-

variables in terms, or x

�

is not free in �x

�

:M ).

� application: MN of type �, if M is of type � ! � and N of type � .

� type abstraction: �X:M of type 8X:� , if M is of type � and X is not

free in the type of any free term-variable of M (� binds type-variables in

terms).

� type application: M� of type � [�=X], if M is of type 8X:� (where � [�=X]

is the result of the replacement of all free occurrences of X by � in � .)

Reduction rules

(�x

�

:M )N

�

1

�!M [N=x] �x

�

:(Mx)

�

1

�!M if x is not free in M

(�X:M )�

�

2

�!M [�=X] �X:(MX)

�

2

�!M if X is not free in M

We will write

F

�! for the reexive and transitive closure of the union of these

reductions, and =

F

for the symetric closure of

F

�!.

4



Second order quanti�cation is explicitly given by the rule of type abstrac-

tion, which binds second order variables, both in types and terms. Thus, 8X:�

is de�ned, as a type, by a quanti�cation over the collection of all types, which

includes 8X:� , the \de�niendum". Moreover, by virtue of the Curry-Howard

isomorphism, polymorphic types can be viewed as second order logical proposi-

tions. Under this \interpretation", a type of the form 8X:� \means" that the

property � is possessed by all types (in particular, by 8X:� itself). Finally, the

terms of system F compute functions, either on terms (see the �

1

axiom) or on

types (see the �

2

axiom). In particular, a polymorphic term, i.e. a term in a

universally quanti�ed type, takes types as inputs (including, possibly, its own

type) and gives terms as outputs, by �

2

. Here is then a the typical form of

impredicativity, namely a type-theoretic formalization of the \vicious circle". It

even shows up at two levels, for types and for terms. However, exactly because

of this constructive frame, where proofs are seen as computations (are coded by

terms), it will be possible to look closely at the nature of \prototype proofs".

Indeed, prototype proofs in system F have strong \coherence" and decidability

properties.

Axiom C and its meaning

The key point of our analysis relies on the observation that all types in system

F are \generic", in the sense to be speci�ed, and that, from a computational

point of view, they act like variables. In short, in the constructive frame of

second order Type Theory, outputs do not depend on inputs, when the input

is a type: in this case, only the type of the output may depend on the input,

not its \value" (see below). This is blatantly false for �rst order terms, in Type

Theory or everywhere in mathematics: functions and computations do depend

on inputs as �rst order individuals, as soon as a su�ciently expressive system

is given.

This observation will be established in two steps. First, in this section, by

a simple remark on the compatibility of an axiomatic extension of system F ;

later on, by the Genericity Theorem.

The �rst remark is inspired by a result in [Gir71]: in system F , there is

no de�nable term that discriminates between types. That is, there is no term

J

�

such that J

�

applied to type � is 1 if � = �, and is 0 if � 6= �. In other

words, there is no term whose output values are all in the same type (the type

of integers, or any other type with at least two elements) and depend on the

input type. This idea was taken up in [LMS93] by extending system F with the

following axiom, some sort of a \generalized dual" of Girard's result

1

:

Axiom C: If M : 8X:� and X 62 FV (�) then for all � , �

0

,M� = M�

0

: �.

1

Independently of Girard's remark, in [CMMS91] a similar extension was proposed, for the

purposes of subtyping, a notion motivated by programming (see also [CGL95]).

5



Axiom C intuitively means that an input type (� ), which is not used to

establish the type (as � does not depend on X) of the corresponding output

value (M� ), bears no information as input. So if M has the type 8X:� and

X is not free in the type � (i.e. � is not a function of X), then it does not

matter whether one applies M to � or �

0

and one may consider both results

to be equal. Equivalently, since there are no type discriminators by Girard's

remark, Axiom C forces terms of universally quanti�ed type, whose outputs live

in the same type, to be constant. Informally, this is sound, because we are in a

constructive frame and types have the intended meaning of a possibly in�nite

domain of interpretation. Thus a term, as e�ective computation, cannot com-

pare nor discriminate on the grounds of possibly in�nite information. Or,to put

it otherwise, Girard's result above or Axiom C are not limitations or \negative"

properties of system F : they instead soundly stress the constructive nature of

this intuitionistic system whose computations handle possibly in�nite inputs

like \blackboxes".

We write Fc for the extension of F by Axiom C and =

Fc

for the correspond-

ing extension of =

F

. Axiom C is not derivable in system F . Indeed, let x : 8X:�

and X 62 FV (�) then for any � and �

0

, x� is a normal form, di�erent from x�

0

.

However, Axiom C is formally compatible with F , as there are models of Fc. As

a matter of fact, all known and non-trivial models (e.g. not term-models nor

models of Type:Type) realize Axiom C, see [Lon95]. In short, all \parametric"

models of F , in the sense of Reynolds, [MR92], the coherent domains, [Gir86],

and the PER models are all models of Fc

2

. It is also possible to extend system

F by a reduction relation which is strongly normalizing, Church-Rosser and

induces exactly the Fc-equality (which is thus decidable, see [Bel97]).

The soundness of Fc gives the �rst hint towards the \generic" nature of types

as inputs, in system F . That is, we may consistently consider each type exactly

as a variable, at least under the special circumstances that it is an input for a

term M of type 8X:�, where X 62 FV (�). The Genericity Theorem extends

this remark to all universally quanti�ed types and their terms.

3 The Genericity Theorem.

In [LMS93], Axiom C was introduced in order to prove the Genericity Theorem

below (note that there is no restriction on �).

Theorem (Genericity). Let M and N have type 8X:�. Then:

(Exists �; M� =

Fc

N� ) =)M =

Fc

N .

This theorem shows that two polymorphic terms that are equal on one input

2

The categorical signi�cance of the PER models, i.e. the meaning of \quanti�cation as

product" as well as the meaning of Axiom C are both given by the validity in the E�ective

Topos of the Uniformity Principle, see [Lon87], [LM91].

6



type are equal on any input type. In other words, the behaviour of polymorphic

terms is so \uniform" that one can reduce Fc equality on every possible types

to Fc equality on one single type � (no matter which one!). That is, if (M� =

Fc

N� ) then MX =

Fc

NX. The proof is far from obvious.

With reference to very di�erent matters, as an analogy, one may remember

the \regular behaviour" of analytic functions of complex variable: when known

on the border of a regular shape, they are known everywhere inside. Thus, if

two of these functions coincide on the border, they coincide everywhere [Rud80].

This regularity or uniformity could be surprising, and perhaps it is, but this

is actually what makes second order impredicative Type Theory become safe

and interesting, as a constructive theory, similarly as the regularities of analytic

functions make them relevant.

For the purposes of our forthcoming application, observe that the Genericity

Theorem in [LMS93] is actually shown by proving the following Main Lemma:

Main Lemma (to Genericity Theorem). Let M and N have type �. Then:

(Exists �; [�=X]M =

Fc

[�=X]N ) =)M =

Fc

N .

Recall now that, if M is a polymorphic term, it can take as input any type,

and in particular types that are more complex that its own type. One can then

wonder what happens in these \circular" cases. The informal answer inspired

by the Genericity theorem is, so far: \It happens the same as on a simpler input

type, because the computational behaviour of M \in extenso" is determined by

its behaviour on a single type". In this precise and strong sense, the term or

computation does not depend on the input type, as possibly \carrying" in�nite

information.

As shown in [FruLo98], the proof of Genericity is (di�cult but) \elemen-

tary". More precisely, it is possible to code it into PRA (Primitive Recursive

Arithmetic), provided that the Church-Rosser property for system F is assumed

(but its proof is elementary and easy). Indeed, PRA is an elementary arithmetic

theory, where one can handle basic mathematical computations and deductions.

Thus, in spite of the circularity generated by polymorphism, a strong \regular-

ity" property of terms in system Fc is established by the Genericity Theorem

and the proof of this regularity is elementary, i.e. logicaly complex reasonings

are not necessary to deal with this key property of the impredicativity of Fc.

Moreover, in [FruLo98] some hints are given on how Genericity may help to

understand technically the surprising \uniformities" in the Normalization The-

orem for system F , the core of this system: it displays why (sets of) candidates

of reducibility let the proof work � : : :as if the rule of universal [second order]

abstraction (which forms functions de�ned for arbitrary types) were so uniform

that it operates without any information at all about its arguments.�

[GLT89], [p.115]. (The compatibility of Axiom C and) the Genericity Theorem

show, precisely, in which sense functions de�ned for arbitrary types operate

without any information about their arguments.

7



4 Prototype Proofs in Type Theory

In Type Theory, or according to the realizability or BHK interpretations, the

constructive meaning of 8X:�, the crucial, impredicatively given type, is de-

�ned as follows. A proof-term M : 8X:� is a computation or function that takes

any type � to a proof M�: [�=X]�. Thus, from a term M : 8X:� one can re-

construct the terms or proofs M� for each speci�c instance [�=X]� of �. Yet,

as already stressed, a proof of 8X:� is not constructed by running through all

speci�c cases or input types �, but by giving a prototype proof, in the sense

of Herbrand, which uniformely works on each instance �. The most obvious

prototype proof and generic case is given by MX:�. However, this does not

save us from the circularity of impredicativity, as variables in Type Theory have

a double \status": they are atomic entities (types in this case) but they also

formally represent the mathematical use of \variables" as arbitrary elements of

the intended domain of variation, since they may be instantiated by any element

of that domain, the collection of all types, in this case. Then, in particular, the

variable X which may occur in � can be instantiated by � or even 8X:�.

Our thesis though, in view of the Genericity Theorem, is that an arbitrary

speci�c instance type, possibly simpler than �, may su�ce to determine a fully

general proof. The idea then is to start from a speci�c instance [�=X]� and

discuss the prototype nature of its proof, if any. In a sense we want to describe

the backwards process, w.r.t. the one described above, as we want to go from a

proof of [�=X]� to one of 8X:�.

Assume then that from a proof N of an instance [�=X]� one tries to re-

construct a proof of the universal proposition 8X:�. In general, this may not

be possible. It is possible, though, when the structure of a speci�c proof N

of [�=X]�, that is of N : [�=X]�, is \parametric" in � or it may be described

uniformely as a substitution of a type variable by �. In that case, we call N a

prototype proof:

De�nition. Given a type �, we say that a type � is generic and a proof

N : [�=X]� is a prototype if there exists M :�, such that X is not free in the

type of a free term variable of M and [�=X]M =

Fc

N : [�=X]�.

Notice that if � and a proof N : [�=X]� are, respectively, generic and proto-

type, by M :�, then �X:M : 8X:�. That is, the construction (existence) of M ,

from the prototype and generic proof and type N and �, immediately gives a

proof of the universal statement. As, by the reduction rule �

2

, the converse

is trivial, i.e. (�X:M )� =

Fc

[�=X]M : [�=X]�, then, given a type, there exist

generic and prototype type and proof if and only if the corresponding universal

statement is provable. Clearly, not any proof nor type of a speci�c instanciated

type need be prototype and generic: for example, [�=X]X has no prototype

proof with � generic, otherwise the universal statement 8X:X, the absurdum or

empty type, would be provable. We prove next the \coherence" of this notion

8



and, in section 6, that, given N ,�, X and �, it is decidable whether N is a

prototype proof with � generic.

5 Coherence for second order Prototype Proofs

We focused on a second order notion of prototype proof and generic type. Of

course, the de�nition can be easily extended to �rst order statements, the more

usual ground of \prototype" proofs in mathematics: if r is an arbitrary real

number and the proof of P (r) = [r=x]P does not depend on r, but only on its

type - the type R of reals - (or r is generic and the proof is a prototype similarly

as in the de�nition above), any mathematicianwould say that we actually proved

8x:P (x). Type-theoretically, but informally here, one should just display the

proof-term [r=x]M = N : [r=x]P , for r:R. (Note that � is generic in a second

order prototype proof N : [�=X]�, if the proof depends only on \� being a type").

As already mentioned, the �rst order case is not problematic at all: indi-

viduals are distinct from propositions and there is no apparent vicious circle.

This is not so in the impredicative case, which motivates the doubts of many

in the use of impredicative second order quanti�cations (and variables). Thus,

the very simple notions of generic types and prototype proof turn out to be a

more delicate issue in impredicative systems.

However, exactly because of the relevant property of System F given by

the Genericity Theorem, we are now able to assure that prototype proofs are

sound, also when the generic type may be as complex as the universal assertion

to be proved. The soundness is given, similarly as in Category Theory, by a

\coherence result", which states the unicity of the reconstruction of the proof

of the universal statement from a speci�c prototype proof and generic type.

Theorem (Coherence). Given a type �, let � and a proof N : [�=X]� be

generic and prototype, respectively. Then,

if [�=X]M =

Fc

N =

Fc

[�=X]M

0

: [�=X]�, one has M =

Fc

M

0

and, thus,

�X:M =

Fc

�X:M

0

: 8X:�.

The proof is immediate corollary to the Genericity Theorem or, more precisely,

of its Main Lemma, stated above. The meaning of this fact should be clear:

it says that no matter how we extract a proof of a universal statement from a

prototype one of a speci�c instance, in any case we obtain just one proof (modulo

\=

Fc

"). Thus, also the type � does not matter, or it is truely generic, since from

the unique proof �X:M of 8X:� we can obtain, uniformely and e�ectively,

proofs for each instance [�

0

=X]�, just by application (�X:M )�

0

. (It is fair to

call this fact a \coherence" property, by an informal analogy to commuting

diagrams, up to \=", in coherence theorems of Category Theory).

The independence of the proof of the universal statement from the speci�c

\structure" of a proof of a speci�c instance, as well as from the generic type

9



used, garanties that, exactly in the \shaky" second order case, the mathematical

soundness of those statements. The system is \coherent" both in the categorical-

technical sense, and in the sense of the possibility of disregarding the complexity

of the instantiating type, since all types are generic and act like variables.

As already mentioned, this garanty is given \exactly" in the critical impred-

icative second order case, as the (obvious variant of the) Genericity Theorem

is clearly (and fortunately) false in the �rst order case (�rst order terms, as

computable functions, must allow lots of computations and strictly depend on

inputs).

6 Decidability

In this section it is shown that it is decidable, given types �, �, X and a term

N , whether � is generic and N is a prototype proof of [�=X]�.

Clearly, one has to to decide if there exists M :�, such that X is not free in

the type of a free term variable of M and

[�=X]M =

Fc

N : [�=X]�.

In [Bel97], it is shown that system Fc is Church-Rosser and (strongly) nor-

malizes, i.e. that each term has a unique normal form (no reduction rules are

applicable). Thus =

Fc

is decidable, as

[�=X]M =

Fc

N =) [�=X]M

0

� N

0

where M

0

and N

0

are the normal forms of M and N , respectively. The reverse

implication is obvious. (Note that [�=X]M

0

is the normal form of [�=X]M , as

replacing a type variable by a type does not changes the redexes, see [Bar90]).

Thus, we have to decide whether there exists an M satisfying a decidable

property. This is a semi-decidable predicate in general; yet, by re-adapting to

terms a notion in [LMS93] for types (the X-contexts), one may reduce it to a

decidable one.

De�nition. M is an X-context of N for �, if [�=X]M � N .

Lemma. Assume that � occurs exactly k-times in N and chose X not free in

N , then there are 2

k

di�erent X-contexts M of N for �.

Proof. Obvious.

Theorem. Given �, �, X and N : [�=X]�, it is decidable whether � is generic

and N is prototype.

Proof. We have to �nd an M :�, if any, such that X is not free in the type

of a free term variable of M and [�=X]M =

Fc

N : [�=X]�. In case such an

M :� exists, let M

0

and N

0

be the (unique) normal forms of M and N . Then

[�=X]M

0

� N

0

and M

0

and N

0

di�er only by, possibly, the occurences of �; that

is, M

0

belongs to the set of X-contexts of N

0

for �. Thus, any witness for a

proof to be prototype (and a type generic) must belong to a �nite set.

10



Recall now that typing for (typed) terms in system F (c) is decidable, i.e.

one can check whether a given term is well-typed and recostruct its (unique)

type, if it exists. Then, the decision algorithm we seek, works as follow:

- reduce N to its normal form N

0

,

- compute its associated �nte set of X-contexts of N

0

for �,

- check whether any of these terms has type � and that X is not free in the type

of one of its free term variables,

if not, N is not prototype and � is not generic; otherwise, the X-context M

0

:�

is the required witness and, by the Coherence Theorem, it is unique, up to =

Fc

.

This concludes the proof (or, more precisely, it gives the guidelines for a ...

prototype proof of the Theorem.)

Conclusion

Within the constructive approach to provability proposed by (impredicative)

Type Theory, we could formalize the informal notion of prototype proof and

generic argument. This formal treatment was then applied to justify impredica-

tive types as propositions, by coherence and decidability properties. As already

pointed out, coherence does not hold for �rst order prototype proofs. Problem:

in the �rst order case, can one have a decidability result, at least? Of course,

the context and the precise conditions should be fully speci�ed: the Calculus of

Constructions could be a suitable environment for this, and one may expect a

negative answer in general, but a positive one in some key cases. The challenge

would be to prove that the positive cases are the ones of mathematical interest.

References

[AL91] A. Asperti and G. Longo.

Categories, Types, and Structures. MIT Press, 1991. (Currrently

downloadable from: http://www.dmi.ens.fr/users/longo)

[Bar90] H. Barendregt. The Typed �-calculus. in Handbook of theoreti-

cal computer science. Vol. B : formal models and semantics. van

Leeuwen, Jan (ed.). The MIT Press, 1990.

[Bel97] G. Bell�e. Syntactical properties of an extension of Girard's System

F where types can be taken as \generic" inputs. Preliminary note,

DISI - Universit�a di Genova. E-mail: gbelle@disi.unige.it.

[Car31] R. Carnap. The logicist foundation of mathematics, in P. Benac-

erraf, H. Putnam, Philosophy of mathematics; selected readings,

Prentice-Hall philosophy series, 1964.

[CGL95] G. Castagna, G. Ghelli, and G. Longo. A Calculus for Over-

loaded Functions with Subtyping. Information and Computation,

11



117(1):115{135, February 1995. (Prelim. version: ACM Conference

on LISP and Functional Programming, pp.182-192, San Francisco,

1993).

[CMMS91] L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. An extension

of system F with subtyping. Information and Computation 94, pages

4{56, 1994. First appeared in the proceedings of the Conference on

Theoretical Aspects of Computer Software (Sendai, Japan), T. Ito

and R. Meyer, eds., Lecture Notes in Computer Science 526, pages

750{770, Springer-Verlag, 1991.

[FruLo98] T. Fruchart and G. Longo. Carnap's remarks on Impredicative Def-

initions and the Genericity Theorem. In Logic, Methodology and

Philosophy of Science: Logic in Florence, 1995. Cantini et al. eds.,

Kluwer, 1998.

[Gir71] J.-Y. Girard. Une extension de l'interpr�etation de G�odel �a l'analyse,

et son application �a l'�elimination des coupures dans l'analyse et la

th�eorie des types. Proceedings of the 2nd Scandinavian Logic Sym-

posium, J.E. Fenstad, ed., pages 63{92, North-Holland, 1971.

[Gir86] J.-Y. Girard. The system F of variable types, �fteen years later,

Theoretical Computer Science, vol 45, pages 159{192.

[GLT89] J.-Y. Girard, Y. Lafont and P. Taylor. Proofs and types. Cambridge

Tracts in Theoretical Computer Science 7, Cambridge University

Press, 1989.

[Gold87] H. Goldfarb, Jacques Herbrand: logical writings, 1987.

[Lon87] G. Longo. Some aspects of impredicativity: notes on Weyl's philoso-

phy of Mathematics and on todays Type Theory, Logical Colloquium

87, Studies in Logic (Ebbinghaus et al. eds), North Holland, 1989.

[Lon95] G. Longo. Parametric and type-dependent polymorphism. Funda-

menta Informaticae, 22(1-2):69{92, 1995.

[LM91] G. Longo and E. Moggi. Constructive natural deduction and its

!-set interpretation. Mathematical Structures in Computer Science

vol. 1, pages 215{253, 1991.

[LMS93] G. Longo, K. Milsted, and S. Soloviev. The Genericity Theorem and

the notion of parametricity in the polymorphic �-calculus. Theoret-

ical Computer Science 121, pages 323{349, 1993.

[MR92] Q. Ma and J.C. Reynolds. Types, abstraction, and parametric poly-

morphism, part 2. Proceedings of the Conference on Mathematical

Foundations of Programming Semantics, S. Brookes, M. Main, A.

12



Melton, M. Mislove, and D. Schmidt, eds., Lecture Notes in Com-

puter Science 598, pages 1{40, Springer-Verlag, 1992.

[Rud80] F. Rudin. Real and Complex Analysis, MacGraw Hill, 1980.

[Troe73] A. Troelstra.Metamathematical investigation of intuitionistic arith-

metic and analysis, Lecture Notes in Mathematics 344, Springer

Verlag, 1973.

[TroVan73] A. Troelstra and D. VanDalen. Constructivism in mathematics. Vol.

I and II, North-Holland, 1988.

13


