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Abstract

We introduce n-semimetrics as a common extension of n-metrics and

certain recent applied notions like the 2-way distance. The n-semimetrics are

totally symmetric maps from E

n+1

into R

+

satisfying the simplex inequality,

a direct extension of the common triangle inequality. Among the examples we

study in detail certain n-semimetrics on f0; 1g

m

. We give a few constructions

and extend the 2-way distances.

Keywords: metrics, n-metrics, n-semimetrics, simplex inequality, n-way

distance.

MR Classi�cation: 51K05, 05C12



1 Introduction

In this paper we study n-semimetrics and their discrete aspects. They gen-

eralize n-metrics, which directly extend the usual metrics, have been around

for 70 years and whose 1990 bibliography lists over 260 items [G�a 90]. The

motivation for n-metrics camemostly from geometry and so the main interest

has been in their topological aspects. Independently of n-metrics there ap-

peared recently papers on weaker versions of 2-metrics motivated by various

discrete applications e.g. in statistics, see e.g. [Di 96, J-L 95]. Their common

trait seems to be the total symmetry and the simplex inequality. The strong

n-metrics axioms d(x

1

; x

1

; x

2

; :::; x

n

) = 0 and the existence of x

n+1

such that

d(x

1

; :::; x

n+1

) > 0 whenever x

1

; :::; x

n

are distinct, which make perfect sense

in geometry, are too restrictive for applications and hence are substantially

weakened in various ways. For this reason we decided to not postulate them

at all and to only assume the total symmetry and simplex inequality.

In Section 2 we de�ne n-semimetrics. To illustrate them in Section 3 we

study in detail some examples of n-semimetrics on f0; 1g

m

. They can be

naturally expressed in terms of the subsets of M = f1; :::;mg. In particular,

we completely characterize the n-semimetrics 5

K

mn

on P(M) which for any

a

1

; :::; a

n+1

2 P(M) count the number of elements ofM that belong to exactly

i sets a

1

; :::; a

n+1

for some i 2 K whereK is a given family of pairwise disjoint

intervals in [1; n+ 1]. We give a few other examples and constructions of n-

semimetrics.

In Section 4 we extend the two-way distances from [J-L 95] to n-way

distances. Here d(x

1

; :::; x

n

) depends only on the pairwise distinct elements

amongst x

1

; :::; x

n

(and not on their frequencies), satis�es d(x; x; :::; x) = 0

3



and a stronger version of the simplex inequality. We show an up-construction

of an (n+ 1)-way distance from an n-way distance and a down-construction

of a weaker version of (n� 1)-way distance from an n-way distance. Finally

we give such a down-construction from an n-way distance to an (n � 1)-

semimetric provided n > 1 and X is �nite.

The purpose of this paper is to draw attention to n-semimetrics. Many

questions arise. One question is how to classify them, in particular for X

�nite (e.g. in L

1

-n-semimetrics or n-hypersemimetrics). Obviously the n-

semimetrics on X �nite form a cone (Fact 1). What are its facets and rays?

The calculations will be rather complex due to the high dimension of the cone

(even for small jXj); moreover matrices can no longer be used. A version of

covariant maps for n-semimetrics will be the topic of another paper.

2 De�nitions

Recall that a metric or a metric space is a pair (E; d) where E is a nonvoid set

and d : E

2

�! R

+

(the set of nonnegative reals) satis�es for all x; y; z 2 E:

(d1) d(x; y) = 0 () x = y,

(d2) d(x; y) = d(y; x) (symmetry),

(d3) d(x; y) � d(x; z) + d(z; y) (the triangle inequality).

A basic example is (R

2

; d) where d is the Euclidean distance of x and y;

i.e., the length of the segment joining x and y. An immediate extension is

(R

3

; d) where d(x; y; z) is the area of the triangle with vertices x; y and z.

This leads to the following de�nition [Me 28, Bl 53, Fr 58, G�a 63]: A 2-metric

is a pair (E; d) where E is a nonempty set and d : E

3

�! R

+

satis�es for all
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x; y; z; t 2 E

(d1

0

) d(x; x; y) = 0,

(d1

00

) x 6= y =) d(x; y; u) > 0 for some u 2 E,

(d2) d(x; y; z) is totally symmetric,

(d3) d(x; y; z) � d(t; y; z)+d(x; t; z)+d(x; y; t) (the tetrahedron inequality).

The axiom (d2) means that the value of d(x; yz) is independent of the

order of x; y and z. The axiom (d3) captures that fact that in R

3

the area

of a triangle face of a tetrahedron does not exceed the sum of the areas of

the remaining three faces. Next (d1

0

) states that certain degenerate triangles

have area 0 while (d1

00

) stipulates that each pair of distinct points is on at

least one nondegenerate triangle.

A 2-metric allows the introduction of several geometrical and topological

concepts { e.g. the betweenness, convexity, line and neighborhood { which

lead to interesting results.

For �nite 2-metrics, for their polyhedral aspects and for applications, the

axiom (d1

0

) and (d1

00

) seem to be too restrictive and so we drop them. The

de�nition given below is formulated for an arbitrary positive integer n. A

map d : E

n+1

�! R

+

is totally symmetric if for all x

1

; :::; x

n+1

2 E and every

permutation � of f1; :::; n+ 1g

d(x

�(1)

; :::; x

�(n+1)

) = d(x

1

; :::; x

n+1

):

De�nition. Let n > 0. An n-semimetric is a pair (E; d) where d : E

n+1

�!

R

+

is totally symmetric and satis�es the simplex inequality: For all x

1

; :::; x

n+2

2 E

d(x

1

; :::; x

n+1

) �

n+1

X

i=1

d(x

1

; :::; x

i�1

; x

i+1

; :::; x

n+2

): (1)
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Notice the following immediate:

Fact 1. If (E; d) and (E; d

0

) are n-semimetrics and a; b 2 R

+

then (E; ad+

bd

0

) is an n-semimetric.

Here, as usual, for all x

1

; :::; x

n+1

2 E

(ad+ bd

0

)(x

1

; :::; x

n+1

) := ad(x

1

; :::; x

n+1

) + bd

0

(x

1

; :::; x

n+1

):

We give a few examples of n-semimetrics in the next section.

3 Examples

Given the importance of metric spaces on f0; 1g

m

in the theory of �nite metric

spaces, we consider n-semimetrics on f0; 1g

m

. It will be more convenient

to present them as n-semimetrics on the set P(M) of all subsets of M :=

f1; :::;mg.

For sets a and b the symmetric di�erence is a4 b := (a n b)[ (b n a). The

cardinality of a set a is denoted by jaj.

Example 1. For a; b; c �M set

�(a; b; c) :=

1

2

(ja4 bj+ ja4 cj+ jb4 cj): (2)

We check that P(M); �) is a 2-semimetric. Clearly � is totally symmetric.

To check (1), let a; b; c; d �M . From (2)

�(b; c; d)+�(a; c; d)+�(a; b; d) = ja4dj+jb4dj+jc4dj+�(a; b; c) � �(a; b; c):

(3)

Clearly (3) holds with equality if and only if a = b = c = d. Moreover,

�(a; a; b) = 0 () a = b and therefore � does not satis�es (d1

0

). Clearly if

m > 2 the axiom (d1

00

) holds for �.
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If we represent each a � M by its characteristic zero-one m-vector �

a

=

(a

1

; :::; a

m

) (with a

i

= 1 if i 2 a and a

i

= 0 if i 62 a) then

ja4 bj = ja

1

� b

1

j+ � � �+ ja

m

� b

m

j

is the Hamming distance of �

a

and �

b

. For this reason we could refer to

� as the half-perimeter 2-semimetric. This construction has the following

immediate extension.

Fact 2. Let n > 1 and let d : E

n

�! R

+

be totally symmetric. De�ne the

perimeter map d

�

by setting for all e

1

; :::; e

n+1

2 E

d

�

(e

1

; :::; e

n+1

) :=

1

n

n+1

X

i=1

d(e

1

; :::; e

i�1

; e

i+1

; :::; e

n+1

): (4)

Then d

�

is an n-semimetric.

Proof. Clearly d

�

is totally symmetric. To prove the simplicial inequality let

e

1

; :::; e

n+2

2 E. For all 1 � j � n+ 1 from (4)

1

n

d(e

1

; :::; e

j�1

; e

j+1

; :::; e

n+2

) � d

�

(e

1

; :::; e

j�1

; e

j+1

; :::; e

n+2

)

and so by (4)

d

�

(e

1

; :::; e

n+1

) �

n+1

X

j=1

d

�

(e

1

; :::; e

j�1

; e

j+1

; :::; e

n+2

):

�

It can be veri�ed that � from (2) counts the number of elements that

belong to exactly i sets amongst a; b; c where 1 � i � 2. This is extended in

the next lemma.

Lemma 3. Let m > 1;M := f1; :::;mg and

1 � r � s � n+ 1; r � n; � := min(n+ 1� r; s): (5)

7



For all (not necessarily pairwise distinct) subsets a

1

; :::; a

n+1

of M denote by

5

rs

mn

(a

1

; :::; a

n+1

), shortly by 5(a

1

; :::; a

n+1

), the number of elements of M

that belong to exactly i set amongst a

1

; :::; a

n+1

for some r � i � s. Then

(i) for all a

1

; :::; a

n+1

�M

� 5 (a

1

; :::; a

n+1

) �

n+1

X

i=1

5(a

1

; :::; a

i�1

; a

i+1

; :::; a

n+2

); (6)

(ii) The coe�cient � in (6) is the largest possible, and

(iii) 5 is an n-semimetric on P(M).

Proof. (i) Let a

1

; :::; a

n�2

� M . Let x 2 M belonging to exactly t sets

amongst a

1

; :::; a

n+1

. If t < r or t > s then x is not counted in5(a

1

; :::; a

n+1

).

Thus let r � t � s. We can arrange the notation so that

x 2 (a

1

\ ::: \ a

t

) n (a

t+1

[ ::: [ a

n+1

): (7)

For i = 1; :::; n+ 1 set

A

i

:= fa

1

; :::; a

i�1

; a

i+1

; :::; a

n+2

g; d

i

:=5(a

1

; :::; a

i�1

; a

i+1

; :::; a

n+2

): (8)

We distinguish the following cases:

1) Let x 2 a

n+2

. If 1 � i � t then in view of (7) and (8) the element x

belongs to exactly t sets from A

i

(namely a

1

; :::; a

i�1

; a

i+1

; :::; a

t

; a

n+2

) while

for t < i � n+1 the element x belongs to exactly t+1 sets from A

i

(namely

a

1

; :::; a

t

; a

n+2

).

a). Let t < s. Then by the de�nition of 5 the element x contributes

1 to d

i

for all i = 1; :::; n + 2 and hence it contributes n + 1 to the right-

hand side of (6). It contributes � to its left-hand side whereby by hypothesis

� � s � n + 1.

8



b). Thus let t = s. Then x contributes 1 to d

i

exactly if 1 � i � t; this

is due to the fact that t + 1 > t = s and therefore x contributes 0 to d

i

for

i > t. In this case the contribution of x to the left-hand side of (5) is � and

to its right-hand side is t whereby � � s = t.

2) Thus let x 62 a

n+2

. Notice that for every i = t + 1; :::; n, the element x

belongs to exactly t sets from A

i

(namely a

1

; :::; a

t

) while for i = 1; :::; t, it

belongs to exactly t� 1 sets from A

i

(namely a

1

; :::; a

i�1

; a

i+1

; :::; a

t

).

a). Let r < t. Again x contributes � to the left-hand side of (6) and n+1

to the right-hand side whereby � � s � n+ 1.

b). Let t = r. Then x contributes � and n+1�t to the left and right-hand

sides of (6) whereby � � n+ 1� r � n+ 1� t. This proves (i).

(ii) Choose

a

1

= ::: = a

r

:= f1g; a

r�1

= ::: = a

n+2

= ;:

As 5(a

1

; :::; a

n+1

) = 5(f1g; :::; f1g; ;; :::;;) = 1 while d

i

= 1 for r < i � n

and d

i

= 0 for 1 � i � r, the value of � in (6) satis�es � � n+1� r. Finally

choose a

1

= ::: = a

s

= a

n+2

:= f1g and a

s+1

= ::: = a

n�1

:= ;. Proceeding

as above we obtain � � s. This shows that � = min(n+ 1� r; s) is the best

possible and proves (ii).

(iii) From (5) clearly s � 1 and n+1�r � 1 whence � � 1 and the simplicial

law follows from (6). �

Example 4. Consider 5 :=5

1n

mn

. Clearly for all subsets a

1

; :::; a

n+1

of M

5(a

1

; :::; a

n+1

) = j(a

1

[ :::[ a

n+1

) n (a

1

\ ::: \ a

n+1

)j (9)

counts the number of elements that belong to some a

i

but not to all a

i

.

9



Notice that � = n. From (9) it follows that

5(a

1

; :::; a

n+1

= 0 () a

1

= ::: = a

n+1

;

whence the n-semimetric5 satis�es only the weakest variant of (d1

0

). How-

ever, for all a

1

; :::; a

n

�M , there exists u �M such that 5(a

1

; :::; a

n

; u) > 0

and so 5 satis�es the strongest variant of (d1

00

)

For a set A and a nonnegative integer k denote by C(A; k) the family of

all k-element subsets of A. Set K := f1; :::; n+ 1g. For a

1

; :::; a

n+1

� M we

have the following formula

5(a

1

; :::; a

n+1

) =

n+1

X

i=1

(�1)

i�1

X

G2C(K;i)

j

\

g2G

a

g

j

obtained by an inclusion-exclusion based on (9). For n = 1 the metric 5 is

the Hamming distance ja

1

4 a

2

j mentioned in Example 2. The case n = 2

was considered in [Di 77] Ex.3.

Let C � P(M). In [Ba 95] Bassalygo introduced the following \func-

tion of supports" of C. For 0 < n � jCj denote by s

n

the least value of

5

1;n�1

m;n�1

(a

1

; :::; a

n

) for pairwise distinct a

1

; :::; a

n

2 C. We have s

1

� s

2

� :::.

Let d

1

; :::; d

k

denote the longest strictly increasing subsequence of s

1

; s

2

; :::

Bassalygo calls d

j

the j-th generalized Hamming distance of C.

Example 5. Consider 5 := 5

11

mn

(i.e. K = ff1gg). Clearly for all subsets

a

1

; :::; a

n+1

of M the number 5(a

1

; :::; a

n+1

) counts the number of elements

of M that belong to exactly one of the sets a

1

; :::; a

n+1

. Notice that � = 1.

For pairwise disjoint a

1

; :::; a

n+1

and a

n+2

:= a

1

[ ::: [ a

n+1

the simplicial

inequality is sharp. There is again an inclusion-exclusion formula

10



5(a

1

; :::; a

n+1

) =

n+1

X

i=1

(�1)

i�1

X

G2C(K;i)

j

\

g2G

a

g

j

(see e.g. [Ri 68] x1.3). Again 5 was considered in [Di 77] Ex. 2.

The next example settles the case r = s = n + 1 not covered by Lemma

3.

Example 6. 5 :=5

n+1;n+1

mn

is not an n-semimetric.

Indeed, 5(a

1

; :::; a

n+1

) = ja

1

\ ::: \ a

n+1

j. For a

1

= ::: = a

n+1

= f1g and

a

n+2

= ;, the simplicial inequality becomes 1 � 0.

We extend Lemma 3 to a family of disjoint intervals in f1; :::; n+ 1g.

Proposition 7. Let m > 1;M := f1; :::;mg and let

K :=

k

[

i=1

fr

i

; r

i

+ 1; :::; s

i

g;

where

1 � r

1

� s

1

< ::: < r

k

� s

k

� n+ 1; r

k

� n:

For all (not necessarily distinct) subsets a

1

; :::; a

n+1

of M denote by 5

K

mn

(a

1

;

:::; a

n+1

) (shortly by 5(a

1

; :::; a

n+1

)) the number of elements of M that belong

to exactly i sets amongst a

1

; :::; a

n+1

for some i 2 K. Set � := min(n+ 1 �

r

k

; s

1

). Then

(i) for all a

1

; :::; a

n+2

�M

� 5 (a

1

; :::; a

n+1

) �

n+1

X

i=1

5(a

1

; :::; a

i�1

; a

i+1

; :::; a

n+2

); (10)

(ii) The coe�cient � in (10) is the largest possible, and

(iii) 5 is an n-semimetric on P(M).

Proof. Clearly5 := 5

r

1

s

1

mn

+:::+5

r

k

s

k

mn

and the statement follows from Lemma

3 and Fact 1. �

11



Remark. For �

1

; :::; �

k

2 R

+

the same result holds for 5 := �

1

5

r

1

s

1

mn

+ � � �+ �

k

5

r

k

s

k

mn

.

Example 8. In Proposition 7 set r

1

= s

1

= 1; r

2

= s

2

= 3; :::; r

k

= s

k

=

2k + 1 where k := b

1

2

nc. Then 5

K

mn

(a

1

; :::; a

n+1

) is the number of elements

of M contained in precisely an odd number of sets amongst a

1

; :::; a

n+1

.

The n-semimetric 5

K

mn

has been introduced in [P-T 96]; the paper gives an

inclusion-exclusion type formula for 5

K

mn

and Bonferroni-type inequalities.

The following example extends an example from [C-P-K 96].

Example 9. Let X := f1; :::; n+1g and let d : X

n

�! f0; 1g be de�ned by

setting

d(x

1

; :::; x

n

) :=

8

>

>

>

<

>

>

>

:

0 if x

i

= x

j

for some 1 � i < j � n

or fx

1

; :::; x

n

g = f1; :::; ng,

1 otherwise.

Then d is an (n� 1)-semimetric satisfying for all x

1

; :::; x

n�1

2 X the axioms

(d1

0

) d(x

1

; x

1

; x

2

; :::; x

n�1

) = 0 and (d1

00

) d(x

1

; :::; x

n�1

; n+ 1) > 0 whenever

x

1

, :::; x

n�1

are distinct.

Suppose to the contrary that the simplicial inequality does not hold. Then

there exist x

1

; :::; x

n+1

2 X such that d(x

1

; :::; x

n

) = 1 while for all j = 1; :::; n

d(x

1

; :::; x

j�1

; x

j+1

; :::; x

n+1

) = 0: (11

j

)

These equalities imply that Y := fx

1

; :::; x

n

g satis�es jY j = n and n+1 2 Y .

Without loss of generality we can assume Y = f2; :::; n+1g and (x

1

; :::; x

n

) =

(2; 3; :::; n + 1). The de�nition and (11

n

) show that x

n+1

= 1. From (11

1

)

we obtain d(1; 3; :::; n+ 1) = 0 contrary to the de�nition of d. Thus d is an

(n� 1)-metric. The last statement follows from the de�nition.

12



Example 10. Let d be an (n�1)-semimetric on X. De�ne d

0

: X

n+1

�! R

+

by setting

d

0

(x

1

; :::; x

n+1

) :=

8

>

>

>

<

>

>

>

:

maxfd(x

1

; :::; x

i�1

; x

i+1

; :::; x

n+1

) : 1 � i � n+ 1g

if x

1

; :::; x

n+1

are pairwise distinct,

0 otherwise.

Then d

0

is an n-semimetric on X.

To prove the simplicial inequality let x

1

; :::; x

n+2

2 X be such that � :=

d

0

(x

1

; :::; x

n+1

) > 0. Then � = d(x

1

; :::; x

i�1

; x

i+1

; :::; x

n+1

) for some 1 � i �

n+ 1 and so

� � d

0

(x

1

; :::; x

i�1

; x

i+1

; :::; x

n+2

) �

n+2

X

j=1

d

0

(x

1

; :::; x

j�1

; x

j+1

; :::; x

n+2

):

Let d be an n-semimetric on X. Following an idea from [G�a 63] for

r

1

; :::; r

n

2 X and " 2 R; " > 0 set

B

"

(r

1

; :::; r

n

) := fx 2 X : d(x; r

1

; :::; r

n

) < "g:

For n = 1 the set B

"

(r) is the standard (open) ball with center r and radius

". The sets B

"

(r

1

; :::; r

n

) can be used as a subbase of a topology on X.

4 n-way metrics

We extend the three-way distance from [J-L 95] to n-metrics. Let n > 0.

A totally symmetric map d : X

n

�! R

+

is a weak n-way distance if for all

x

1

; :::; x

n+1

2 X

(a) d(x

1

; :::; x

1

) = 0 and

(b) d(x

1

; :::; x

n

) �

n+1

P

i=2

d(x

1

; :::; x

i�1

; x

i+1

; :::; x

n+1

). (12)

13



Notice that (b) is stronger than the simplicial inequality because the sum-

mation only starts at i = 2. Clearly every weak n-way distance determines

an (n� 1)-semimetric. A weak n-way distance d is an n-way distance if for

all x

1

; :::; x

n

2 X

(c) d(x

1

; x

1

; x

3

; :::; x

n

) = d(x

1

; x

3

; x

3

; :::; x

n

) � d(x

1

; x

2

; :::; x

n

). (13)

In view of the total symmetry, (13) implies that d(x

1

; :::; x

n

) only depends on

the k-element set fx

i

1

; :::; x

i

k

g such that fx

1

; :::; x

n

g = fx

i

1

; :::; x

i

k

g (where

1 � i

1

< ::: < i

k

� n). The following extends a concept from [J-L 95].

Example 11. Let � : X �! R

+

and n > 2. The star n�distance d

�

:

X

n

�! R

+

is de�ned as follows. Let x

1

; :::; x

n

2 X and let 0 � i

1

< ::: <

i

k

� n be such that jfx

1

; :::; x

m

gj = jfx

i

1

; :::; x

i

k

gj = k. Set

d

�

(x

1

; :::; x

n

) :=

8

<

:

�(x

i

1

) + � � �+ �(x

i

k

) if k > 1,

0 if k = 1.

Fact 12. 1) The star n-distance d

�

is an n-way distance.

2) d

�

satis�es for all x

1

; :::; x

n+1

2 X

(n� 2)d

�

(x

1

; :::; x

n

) �

n

X

i=2

d

�

(x

1

; :::; x

i�1

; x

i+1

; :::; x

n+1

) (14)

with equality if and only if �(x

i

) > 0 implies both (a) �(x

n+1

) = 0 and (b)

x

i

appears only once amongst x

1

; :::; x

n

(i = 1; :::; n+ 1).

Proof of the Fact. 2) There is nothing to prove if x

1

= ::: = x

n

. Thus we

may assume that the sequence hx

1

; :::; x

n

i is hx

1

; :::; x

1

; :::; x

k

; :::; x

k

i where

x

1

; :::; x

k

are distinct and x

i

appears with the frequency '

i

(i = 1; :::; k).

Suppose �(x

i

) > 0 for some 1 � i � k. If '

i

> 1 or �(x

n+1

) = �(x

i

)

then �(x

i

) appears in each d

�

(x

1

; :::; x

j�1

; x

j+1

; :::; x

n+1

) with 2 � j � n and

hence �(x

i

) appears n�1 times on the right-hand side of (14). If '

i

= 1 and

14



�(x

n+1

) 6= �(x

i

) then �(x

i

) appears only n-2 times on the right hand side of

(14). For the equality in (14) we need the latter case and �(x

n+1

) = 0.

Both (a) and (c) follow from the de�nition of d

�

and (b) from (14). �

The Lemmas 13-15 extend results from [J-L 95].

Lemma 13. Let d be a weak n-way distance on X. De�ne d

0

: X

n+1

�! R

+

by setting for all x

1

; :::; x

n+1

2 X

d

0

(x

1

; :::; x

n+1

) :=

n+1

X

i=1

d(x

1

; :::; x

i�1

; x

i+1

; :::; x

n+1

): (15)

Then d

0

is a weak (n+ 1)-way distance on X.

Proof. Clearly d

0

is totally symmetric and satis�es (a). To prove (b) let

x

1

; :::; x

n+2

2 X. Then from (15) and (12)

d

0

(x

1

; :::; x

n+1

) = d(x

2

; :::; x

n+1

) +

n+1

P

i=2

d(x

1

; :::; x

i�1

; x

i+1

; :::; x

n+1

)

�

n+1

P

j=3

d(x

2

; :::; x

j�1

; x

j+2

; :::; x

n+2

)

+

n+1

P

i=2

d(x

1

; :::; x

i�1

; x

i+1

; :::; x

n+1

)

�

n+1

P

j=3

d(x

2

; :::; x

j�1

; x

j+2

; :::; x

n+2

)

+2

P

2�k<l�n+1

d(x

1

; :::; x

k�1

; x

k+1

; :::; x

l�1

; x

l+1

; :::; x

n+2

)

�

n+1

P

p=2

(

p�1

P

q=1

d(x

1

; :::; x

q�1

; x

q+1

; :::; x

p�1

; x

p+1

; :::; x

n+2

)

+

n+2

P

q=p+1

d(x

1

; :::; x

p�1

; x

p+1

; :::; x

q�1

; x

q+1

; :::; x

n+2

))

=

n+1

P

p=2

d

0

(x

1

; :::; x

p�1

; x

p+1

; :::; x

n+2

):

�

15



We can also construct an (n � 1)-way distance from an n-way distance.

Lemma 14. Let n > 2 and let d be an n-way distance on X. For all

x

1

; :::; x

n�1

2 X set

d

0

(x

1

; :::; x

n�1

) := d(x

1

; x

1

; x

2

; :::; x

n�1

):

Then d

0

is an (n � 1)-way metric on X.

Proof. (a) is obvious. To prove (b) let x

1

; :::; x

n

2 X. Then applying (c) and

(b) (to x

1

; :::; x

n+1

; x

n+1

) and (c)

d

0

(x

1

; :::; x

n

) = d(x

1

; x

1

; x

2

; :::; x

n

) � d(x

1

; :::; x

n+1

)

�

n+1

P

j=2

d(x

1

; :::; x

j�1

; x

j+1

; :::; x

n+1

; x

n+1

)

=

n+1

P

j=2

d(x

1

; x

1

; x

2

; :::; x

j�1

; x

j+1

; :::; x

n+1

)

=

n+1

P

j=2

d(x

1

; :::; x

j�1

; x

j+1

; :::; x

n+1

):

To show (c) for d

0

let x

1

; :::; x

n

2 X. Then

d

0

(x

1

; x

1

; x

3

; :::; x

n

) = d(x

1

; x

1

; x

1

; x

3

; :::; x

n

) = d(x

1

; x

1

; x

3

; x

3

; :::; x

n

)

� d(x

1

; x

1

; x

2

; :::; x

n

)

and so (c) holds for d

0

. �

The next lemma holds only for X �nite.

Lemma 15. Let n > 1 and let d be an n-way distance on a �nite set X. For

all x

1

; :::; x

n

2 X set

d

0

(x

1

; :::; x

n

) :=

X

x2X

d(x; x

1

; :::; x

n

):

Then d

0

is an (n � 1)-semimetric on X.

16



Proof. To prove the simplicial inequality for d

0

let x

1

; :::; x

n+1

2 X. Applying

the de�nition and (b) we obtain

d

0

(x

1

; :::; x

n

) =

P

x2X

d(x; x

1

; :::; x

n

)

�

P

x2X

n

P

j=1

d(x; x

1

; :::; x

j�1

; x

j+1

; :::; x

n+1

)

=

n

P

j=1

P

x2X

d(x; x

1

; :::; x

j�1

; x

j+1

; :::; x

n+1

)

=

n

P

j=1

d

0

(x

1

; :::; x

j�1

; x

j+1

; :::; x

n+1

):

�
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