
Département de Mathématiques et Informatique

UPERIEURESORMALENECOLE

CNRS URA 1327

Expressiveness and Complexity of

Concurrent Constraint Programming: a

Finite Model Theoretic Approach

Fran�cois FAGES

Sylvain SOLIMAN

Victor VIANU

LIENS - 98 - 14

Expressiveness and Complexity of

Concurrent Constraint Programming: a

Finite Model Theoretic Approach

Fran�cois FAGES

Sylvain SOLIMAN

Victor VIANU

�

LIENS - 98 - 14

December 1998

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 01 44 32 30 00

Adresse �electronique : fages@dmi.ens.fr , soliman@dmi.ens.fr

�

University of California

San Diego, U.S.A.

Adresse �electronique : vianu@cs.ucsd.edu

Expressiveness and Complexity of

Concurrent Constraint Programming:

a Finite Model Theoretic Approach

Fran�cois Fages

�

Sylvain Soliman

�

Victor Vianu

y

Abstract

We study the expressiveness and complexity of con-

current constraint programming languages over �nite

domains. We establish strong connections between

these languages and query languages in �nite model

theory. The bridge to �nite model theory yields new

(and sometimes quite surprising) results on the ex-

pressiveness and complexity of concurrent constraint

languages, including several powerful normal forms.

These results provide new insight into the impact of

various semantics and features of concurrent con-

straint programming languages on their expressive-

ness and complexity.

1 Introduction

Concurrent constraint programming (CC) [Sar87]

emerged as a combination of concurrent logic pro-

gramming and constraint logic programming (CLP)

[JL87]. The basic idea is the one of a set of agents

communicating through a shared store of constraints,

that are logical formulas on the unknowns of the

problem. Each agent can either write a constraint to

the store (tell operation), or synchronize with other

agents by suspending its execution until the store en-

tails some constraint (ask operation). The ask oper-

ation is the main addition of CC to CLP languages,

and generalizes the co-routining facilities of CLP lan-

guages, like the freeze or delay predicates of Prolog.

The class CC(S) of concurrent constraint lan-

guages is parameterized by the constraint system S

which de�nes the logical interpretation of the con-

straints. Of particular interest is the class CC(FD)

of concurrent constraint languages over �nite do-

mains, which is widely used in the area of search

and combinatorial optimization problems [JM94]. In

�

Ecole Normale Sup�erieure, 45, rue d'Ulm, 75005 Paris,

ffages,solimang@ens.fr

y

U.C.San Diego, vianu@cs.ucsd.edu. Work done in part

while visiting ENS.

CC(FD), concurrency primitives are used to express

constraint propagation algorithms and complex reso-

lution methods. Deep guards are a generalization of

the ask operation where the condition, the guard, can

be an arbitrary agent instead of a constraint. Deep

guards are heavily used in the AKL and Oz imple-

mentations [SSW87] to express encapsulated search,

branch&bound optimization and complex search pro-

cedures.

The expressiveness and complexity of concurrent

programming languages, particularly relevant to the

family of CC languages, are largely unexplored. In

particular, it is of interest to understand the impact

on expressiveness and complexity of various seman-

tics and features, such as:

� the choice of observables (success or terminal

store).

� the satisfaction-completeness assumption on the

constraint system (complete or open),

� the type of guards (
at or deep).

In this paper we study the complexity and expres-

siveness of variants of CC(FD) with di�erent features

and semantics, seen as query languages over �nite re-

lational structures. We consider CC(FD) languages

parameterized along the three dimensions mentioned

above: the choice of observables (success vs. termi-

nal store), the satisfaction completeness assumption

(complete vs. open), and the type of guards (no

guards,
at, deep). We begin by establishing con-

nections with query languages in �nite model theory,

such as FO, �xpoint logics, and Datalog

:

. The con-

nections are interesting in their own right, as they

shed new light on the signi�cance of the CC(FD)

parameters from the viewpoint of �nite model the-

ory. For example, the complete constraint systems

generally yield in
ationary query languages

1

whose

complexity is within p, and open constraint systems

yield languages with a powerful combination of nega-

tion and nondeterminism allowing to express higher

1

Intuitively, the term in
ationary refers to the fact that

space used throughout query evaluation is nondecreasing.

complexity classes. A variant of CC based on lin-

ear logic corresponds to a non-in
ationary language.

Such distinctions are important and well understood

in the theory of query languages

2

. As another exam-

ple, guards in CC are closely related to negation in

query languages, and the formal semantics we pro-

vide for deep guards with terminal store observable

is inspired by the well-founded semantics for Datalog

with negation.

More concretely, the bene�ts of the bridge to �nite

model theory are numerous: building upon results

in �nite model theory, we are able to obtain new

results on the relative expressiveness and complex-

ity of the CC(FD) languages. For example, variants

of CC(FD) expressing np, phier, and pspace are

shown. In the presence of order, other fragments cap-

ture p. As an important side e�ect, we obtain several

powerful normal forms for CC(FD) languages. For

example, we show that CC(FD) with deep guards

collapses to CC(FD) with
at guards on ordered do-

mains. The complexity results in the paper are sum-

marized in Figure 1 of the concluding section. Such

results provide new insight into the impact of vari-

ous semantics and features of concurrent constraint

programming languages on their expressiveness and

complexity on �nite domains.

The paper is organized as follows. Preliminaries on

�nite model theory, and basic de�nitions for concur-

rent constraint programming are presented in Sec-

tion 2. CC(FD) languages with success semantics

are studied in Section 3, and Section 4 focuses on

languages with terminal store semantics. The con-

clusion contains a summary of our results and dis-

cusses the impact of various CC(FD) features and

semantics on expressiveness and complexity. Due to

space limitations, many details are omitted. An Ap-

pendix contains additional preliminaries, the formal

speci�cation of CC(FD) semantics, and several proof

sketches.

2 Preliminaries

We brie
y review basic results from �nite model the-

ory used in the paper. Next, we provide basic de�ni-

tions of CC languages and semantics.

2.1 Finite Model Theory

Finite-model theory focuses on �nite relational struc-

tures and logic languages de�ning properties of such

structures or mappings among relational structures

2

See [AHV95] for a discussion of in
ationary and nonin
a-

tionary query languages.

(usually called queries). We recall several languages

that play a central role in �nite-model theory. FO

denotes �rst-order logic over relational vocabulary.

Codd's well-known algebraization of FO and the fact

that FO is in (uniform) AC

0

[Imm87b] (and, thus,

in a reasonable sense, takes constant parallel time)

explain the appeal of FO as a database query lan-

guage. However, FO has well-known limitations in

expressive power: for example, it cannot express the

connectivity of a graph [Fag75, AU79]. To overcome

such shortcomings, various extensions of FO with re-

cursion have been proposed. Although widely vary-

ing paradigms can be used to extend FO (e.g. proce-

dural, logic, or logic programming), most languages

based on the various paradigms are equivalent to ei-

ther the �xpoint or the while queries [CH82]. Some

of these languages, used in the paper, are reviewed

in the Appendix. They include the �xpoint logics

IFP, LFP (expressing �xpoint) and PFP (expressing

while), and languages inspired by Prolog such as Dat-

alog and Datalog

:

with strati�ed and well-founded

semantics.

The expressive power of a logic language is mea-

sured in �nite-model theory by the set of queries

it can express. Two languages are equivalent if

they express the same set of queries. A language

L subsumes L

0

if each query expressible in L

0

is

also expressible in L. Among the �xpoint logics re-

viewed in the Appendix, PFP subsumes IFP and

the equivalent LFP, which in turn strictly subsume

FO. Whether IFP (LFP) and PFP are equivalent

(i.e. whether �xpoint = while) is an open ques-

tion, shown to be equivalent to another open problem

in complexity theory, whether p = pspace [AV95].

Among Datalog

(:)

languages, Datalog

:

(with in
a-

tionary or well-founded semantics) strictly subsumes

strati�able Datalog

:

, which strictly subsumes semi-

positive Datalog

:

, which in turn strictly subsumes

Datalog. It is easy to see that FO is equivalent to non-

recursive strati�able Datalog

:

. More surprisingly,

IFP is equivalent to in
ationary Datalog

:

, which can

be viewed as a syntactically much simpler fragment

of IFP (existential and without nesting of �xpoint

operators). This yields a useful normal form for IFP

queries.

The computational complexity of a problem is the

amount of resources, such as time or space, required

by a machine that solves the problem. Complexity

theory traditionally has focused on the computational

complexity of problems. A more recent branch of

complexity theory, started by Fagin in [Fag74, Fag75]

and developed during the 1980s, focuses on the de-

scriptive complexity of problems, which is the com-

2

plexity of describing problems in some logical formal-

ism [Imm87a]. One of the exciting developments in

complexity theory is the discovery of a very intimate

connection between computational and descriptive

complexity. This intimate connection was �rst dis-

covered by Fagin, who showed that the properties of

complexity np are precisely those expressible in exis-

tential 2nd-order logic [Fag74] (cf. [JS74]). This was

later generalized by showing that full second-order

logic expresses phier, the polynomial hierarchy [S77].

Another demonstration of this connection was shown

by Immerman and Vardi, who discovered that IFP

expresses precisely the set of queries of complexity

p on structures equipped with a total order (hence-

forth called ordered structures) [Imm86, Var82]. Sim-

ilarly, PFP expresses precisely the queries of com-

plexity pspace on ordered structures [Var82]. Note

that the order assumption is crucial: in the absence

of order, both IFP and PFP fail to express \sim-

ple" queries such as parity (i.e. whether the size of

a given unary relation is even or odd). Among the

Datalog languages, semi-positive Datalog

:

expresses

p on ordered structures equipped min and max, and

strati�able Datalog

:

and Datalog

:

(with in
ation-

ary or well-founded semantics) express p on ordered

structures.

2.2 Concurrent constraint program-

ming

We assume a �rst-order language over a countably

in�nite set V of variables, a set � of function and

relation symbols, and the usual logical connectives.

The set of variables (resp. free variables) occurring

in a formulaA is written v(A) (resp. fv(A)). Lists of

variables (resp. terms) are written ~x (resp.

~

t), �[

~

t=~x]

denotes the formula � in which variables ~x have been

replaced by terms

~

t.

Constraint systems A constraint language C is a

fragment of �rst-order logic containing True, False

and closed under renaming, conjunction and existen-

tial quanti�cation. A constraint system S is given by

a constraint language C and a �rst-order logical the-

ory, i.e. a recursive set of axioms over the signature.

We will only consider constraint systems for which

entailment and consistency are decidable. That is,

given a constraint system S with constraint language

C, it is decidable whether

3

S; c ` d where c; d are con-

straints in C. In particular constraint consistency, i.e.

3

By slight abuse of notation, we write S ` c to mean that

c is provable from the axioms of S by logical axioms and rules

(provability is independent of C).

whether S; c ` False, is decidable. When it is clear

form the context we shall omit S in the entailment

relation.

An essential distinguishing characteristic among

constraint systems is the satisfaction-completeness

property introduced in [JL87] for CLP languages:

De�nition 2.1 A constraint sys-

tem S is satisfaction-complete if for any constraint

c 2 C, either S ` 9(c) or S ` :9(c).

Note that in a satisfaction-complete constraint sys-

tem, a constraint c is satis�able, S ` 9(c), i� c is

realizable in any model M of S, M j= 9(c) (all

models of a satisfaction-complete constraint system

are equivalent with respect to constraint realizabil-

ity). Therefore one can see a satisfaction-complete

constraint system as a description of constraint real-

izability in a �xed interpretation.

We shall consider both cases of satisfaction-

complete constraint systems (complete in short) and

open constraint systems which do not �x the inter-

pretation of all relation symbols.

FD constraint systems In this paper we shall

be concerned with constraint systems over �nite do-

mains FD. In this case we assume a �nite alphabet

of constants fa

1

; :::; a

n

g, the equality predicate =, a

�nite set of relation symbols r

1

; :::; r

k

and an in�nite

alphabet of variables.

Unless speci�ed otherwise, the FD constraint lan-

guage we consider is the least set containing the

atomic constraints formed over =, r, and :r, closed

by conjunction and existential quanti�cation.

The FD constraint systems we consider are pre-

sented with the following strong equality axioms i)-

iv):

i) 8x x = x

ii) 8x; y; ~z x = y ^ r(x; ~z)) r(y; ~z)

for every relation symbol r

iii) 8x; y; z x = y ^ y = z) x = z

iv) a

i

6= a

j

for i 6= j

the domain closure axiom v):

v) 8x x = a

1

_ :::_ x = a

n

plus axioms specifying (completely or partially) the

truth tables of the relation symbols:

vi) r

p

(a

i

; a

j

); :::;:r

q

(a

k

; a

l

); :::

Note that the axioms i)-iv) are the same for all

FD constraint systems. Axiom v) speci�es a �nite

domain. The axioms in vi) specify completely or par-

tially a �nite relational structure over that domain.

In the �rst case the constraint system is complete;

otherwise, it is open. Indeed, it is easy to see that an

FD constraint system is complete i� for each pair of

3

constants a

i

; a

j

in the �nite domain, either r(a

i

; a

j

)

or :r(a

i

; a

j

) is an axiom.

We shall consider also totally ordered FD

�

con-

straint systems formed with the binary predicate �,

and possibly unary predicates min and max specify-

ing the least and greatest constants.

Note that one can also introduce function symbols,

together with equality axioms with constants, so that

the intended domain of interpretation is still �nite

and axiom v) is preserved. One way to achieve this

is to translate a function symbol f(x; y) as a relation

r

f

(z; x; y) standing for z = f(x; y), and presented

with axioms of the form in vi).

CC(FD) programs We next present the syntax

and semantics of CC(FD) programs. Informally, a

program consists of a set of declarations de�ning pro-

cedures by agents and a call to one initial agent or

procedure. We �rst de�ne agents, then declarations,

and �nally programs. We assume �xed an FD con-

straint system S with constraint language C. Agents

are denoted by A;B; : : :The syntax of agents is given

by the following grammar:

A ::= p(~x) j tell(c) j A k A j A+A j 9xA j 8~x(A! A)

where:

� ~x is a list of distinct variables,

� c is a constraint in C,

� k stands for parallel composition,

� + represents nondeterministic choice,

� 9 stands for variable hiding,

� ! denotes blocking ask.

In an ask agent, the agent at the left of the arrow

is called the guard. The ask agents are written with

an universal quanti�er to indicate the variables which

are bound in the guard (this is often implicit in CC

notations [Sar87]). Deep guards allow any agent to

be in a guard. Flat guards allow only constraints in

the guards: the guarding agent is a tell agent, as in

tell(c) ! A which, as expected, reduces to A if the

store entails c and suspends otherwise (see the oper-

ational semantics below). The atomic agents p(~x) : : :

are called process names or procedure names. Note

that, formally, atomic agents are always written with

distinct variable arguments, the equalities between

arguments are expressed by an accompanying set of

constraints. By abuse of notation however, we will

write p(a) for 9x (tell(x = a) k p(x)).

The syntax of declarations D is given by the fol-

lowing grammar:

D ::= p(~x) :: A

D ::= � j [D]

�

;D

where A is an agent, and [D]

�

denotes the congruence

class of declaration D up to variable renaming. As

usual, we assume that in a declaration D = p(~x) :: A,

all the free variables occurring in A occur in the head

~x. [D]

�

is thus the class of D up to the renaming of

the variables in the head of D. A program D:A is a

list of declarations D together with an agent A.

Operational semantics The operational seman-

tics of CC(FD) programs is de�ned on con�gura-

tions (rather than agents). A con�guration is a triple

(~x; c; �), where ~x is a set of hidden (existentially quan-

ti�ed) variables, c is a constraint (the store), and �

is a list of agents. K will denote the set of con�gura-

tions, and Set the complement in K of a set of con-

�gurations Set. The store of a con�guration (~x; c; �)

is the constraint 9~xc.

The operational semantics is de�ned using a transi-

tion system which does not take into account speci�c

evaluation strategies. We distinguish a congruence

relation � (between con�gurations and expressions)

from the transition relation �! (between con�gura-

tion congruence classes

4

). We will consider two pos-

sible ways for a computation to succeed from a given

store:

(i) by reaching a success con�guration, that is a

con�guration where no agents are pending and

whose store is consistent; and

(ii) by reaching a terminal con�guration, that is a

con�guration from which no further transitions

can be made although there may be pending

agents, and whose store is again consistent.

We will consider �rst the success semantics (i),

which is the classical semantics for CC in presence

of deep guards. Then, motivated by computational

limitations of the success semantics, we will consider

the terminal store semantics (ii). Note that the tran-

sition relation among con�gurations will have to be

de�ned di�erently for (ii), in order to make the con-

dition of success of a deep guard consistent with the

terminal store semantics.

4

By abuse of notation, we shall keep the same notations for

the con�gurations and their congruence classes modulo �.

4

Queries de�ned by CC(FD) programs The fo-

cus of this paper is on the ability of CC(FD) pro-

grams to de�ne properties and queries on �nite struc-

tures. This will allow us to compare various classes of

CC(FD) programs among each other and with logic

languages from �nite model theory. It will also allow

us to evaluate classes of CC(FD) programs in terms

of the complexity of properties or queries they de�ne.

Viewing CC(FD) programs as query de�ning

mechanisms is quite natural [KG94]. As discussed

earlier, complete FD constraint systems completely

specify a �nite structure over a relational vocabu-

lary. Let I be a �nite structure over �xed relational

vocabulary � and let S

I

denote the complete FD con-

straint system with relational vocabulary � de�ning

I. When dealing with open constraint systems, we

shall assume that the constraint system S is a con-

servative extension of S

I

. Let D:A be a CC(FD) pro-

gram, where fv(A) = x

1

: : :x

k

. The query de�ned by

D:A and S is the mapping associating to each �nite

structure I over � the k-ary relation consisting of all

tuples ha

1

; : : :a

k

i for which there exists a terminal or

success store

5

d for D:A with initial store True such

that

6

(x

1

= a

1

^ : : :^ x

k

= a

k

) ^ d is S-satis�able.

A class L of CC(FD) programs is subsumed by an-

other class L

0

of CC(FD) programs if for every pro-

gram P in L there exists a program P

0

in L

0

de�ning

the same query. Two classes of CC(FD) programs

are equivalent if they subsume each other, i.e. they

de�ne the same set of queries. Similar comparisons

can be made to any query-de�ning language, such as

FO, Datalog, Datalog

:

, etc. Similarly, we will say

that a class L of CC(FD) programs expresses a com-

plexity class c of queries if L expresses precisely the

set of queries of complexity c.

3 CC(FD) with Success Seman-

tics

We �rst de�ne the operational semantics of CC(FD)

with success semantics. CC(FD) programs equipped

with this semantics are denoted by CC

s

(FD). We

then consider the expressiveness and complexity of

CC

s

(FD) with complete and open constraint sys-

tems, and within each the fragments with no guards,

at guards, and deep guards. We also brie
y consider

a variant of CC

s

(FD) based on linear logic constraint

systems, denoted LCC(FD).

5

Depending on which the semantics requires.

6

In a complete constraint system (i.e. if S = S

I

) that con-

dition is equivalent to (x

1

= a

1

^ : : :^ x

k

= a

k

);S ` d.

3.1 The success semantics

A success con�guration for an agent A and an ini-

tial store c is a con�guration (~x; d; �) such that

(;; c;A) �!

�

(~x; d; �) and d is consistent with S. The

operational semantics of a program D:A is thus de-

�ned relatively to an initial store c and an FD con-

straint system S, as the input/output relation pro-

vided by the success stores, that is:

O(D:A; c) = f9~xd 2 C j (;; c;A) �!

�

(~x; d; �);

d is consistent with Sg

The structural congruence � is the least congru-

ence satisfying the rules of Table 1 in Appendix. The

transition relation �!2 K �K is de�ned as usual in

Table 2 in Appendix.

Intuitively, a deep guard A is satis�ed in a store c if

there is a �nite derivation from A in c with a success

store equivalent to c. In particular a
at guard, i.e.

the agent tell(d) in an ask agent tell(d) ! A, is sat-

is�ed if the constraint d is entailed by the current

store.

3.2 CC

s

(FD) with complete FD con-

straint systems

In this section we consider several classes of CC

s

(FD)

programs with complete constraint systems. These

di�er in the power of the guards used in their block-

ing ask constructs. As we shall see, the type of guards

(
at or deep) has a signi�cant impact on the ex-

pressiveness and complexity of CC

s

(FD) programs.

We will also consider the special case of CC

s

(FD

�

)

programs. Recall that these are CC

s

(FD) programs

whose constraint system S speci�es a total order �

on the �nite domain. We obtain three kinds of re-

sults: (i) equivalences with Datalog(

:

) languages, (ii)

complexity characterizations, and (iii) comparisons

among CC

s

(FD) languages and normal forms.

CC

s

(FD) and Datalog

(:)

Our �rst result relates

CC

s

(FD) with various types of guards to Datalog

(:)

languages. All FD constraint systems are assumed

complete.

Theorem 3.1 (i) CC

s

(FD) without guards is equiv-

alent to semi-positive Datalog

:

.

(ii) CC

s

(FD) with
at guards strictly subsumes semi-

positive Datalog

:

.

(iii) CC

s

(FD) with deep guards is subsumed by Fix-

point (and Datalog

:

).

Proof. (i) The simulation of semi-positive

Datalog

:

is very straightforward, as negation in semi-

positive Datalog

:

only relates to edb relations, which

5

are completely de�ned in the constraint system. For

example, the following program

t(x; y) :r(x; y)

t(x; y) :r(x; z); t(z; y)

computing transitive closure on the complement is

simulated by the CC

s

(FD) program without guards

D:A where A :: t(x; y) and D contains the declaration

t(x; y) :: tell(:r(x; y)) + 9z(tell(:r(x; z)) k t(z; y)):

The simulation of CC

s

(FD) programs without

guards by semi-positive Datalog

:

is equally straight-

forward.

(ii) As CC

s

(FD) with
at guards subsumes

CC

s

(FD) without guards, the same translation ap-

plies.

An example of a query expressible by CC

s

(FD)

programs with
at guards but not by semi-positive

Datalog

:

is �nding the minimum and maximum ele-

ments of a totally ordered �nite domain. For exam-

ple, the minimum is de�ned by min(x) :: 9y(tell(y �

x) ! tell(True)).

(iii) The inclusion in �xpoint is straightforward,

using the denotational semantics for CC

s

(FD) with

deep guards, given in Table 3 in Appendix. 2

Complexity Theorem 3.1 in conjunction with

known results from �nite-model theory yields con-

nections between classes of CC

s

(FD) programs and

complexity classes of queries. In the presence of or-

der, we obtain the following expressiveness results.

Theorem 3.2 The following classes of CC

s

(FD

�

)

programs with complete constraint systems express

precisely the queries over ordered domains computable

in polynomial time:

(i) CC

s

(FD

�

) with
at guards.

(ii) CC

s

(FD

�

) with deep guards.

Proof. The inclusion of p in CC

s

(FD

�

) with
at

guards follows from the fact that the latter subsumes

semi-positive Datalog

:

and can de�ne min and max

of an ordered domain (see proof of Theorem 3.1), and

the fact that semi-positive Datalog

:

de�nes p on or-

dered domains equipped with min and max. The

inclusion of CC

s

(FD

�

) with deep guards in p fol-

lows from from Theorem 3.1 (iii), and the fact the

�xpoint queries are in p. 2

Theorem 3.2 shows, in particular, that CC

s

(FD

�

)

with
at guards and CC

s

(FD

�

) with deep guards

collapse on ordered domains. This yields a strong

normal form for CC

s

(FD

�

):

Corollary 3.3 Every CC

s

(FD

�

) program with deep

guards is equivalent to some CC

s

(FD

�

) program with

at guards.

3.3 CC

s

(FD) with open FD constraint

systems

In this section we consider the expressiveness and

complexity of CC

s

(FD) programs with open FD con-

straint systems. As earlier, we consider constraint

system with equality and a relational vocabulary.

Among relations in the vocabulary, we distinguish a

set of input relations which hold the �nite structure

input to the program. Since the constraint system is

open, the input �nite structure may be incompletely

speci�ed.

CC

s

(FD) programs without guards on open con-

straint systems turn out to be equivalent to semi pos-

itive Datalog:. Therefore, we only consider in this

section programs with guards. As in the previous

section we consider programs with
at guards, and

unrestricted deep guards. Our main result provides

exact characterizations of these languages in terms of

complexity classes.

Theorem 3.4 On open constraint systems

CC

s

(FD) with
at guards and CC

s

(FD) with deep

guards are equivalent and expresses precisely the np

queries.

Proof. We use the characterization of np by 9SO

(existential second-order logic). Consider an 9SO for-

mula 9 S '(S) where ' is in FO. This is simulated

by a CC

s

(FD) program with
at guards as follows:

(i) nondeterministically construct a relation S;

(ii) nondeterministically construct a total order � on

the �nite domain.

(iii) simulate the evaluation of '(S).

Once S and� are constructed (this is more detailed

in the appendix), '(S) can be simulated by Theorem

3.2. Indeed, CC

s

(FD) with
at guards and complete

constraint systems expresses p on ordered structures,

and therefore can simulate '(S) making use of �.

For the converse inclusions, note that a CC

s

(FD)

program with deep guards can be executed in np.

Indeed, a successful derivation in CC

s

(FD) with an

open constraint system can be described as a guess of

a completion of the constraint system followed by a

6

successful derivation in the complete constraint sys-

tem which is in p by Theorem 3.2. 2

3.4 LCC(FD) with linear FD con-

straint systems

In this section we study a variant of CC languages

where constraints can be removed from the stores,

thus combining constraint propagation with state

change. We use constraint systems based on Girard's

linear logic [Gir87]. Intuitively, linear logic is a cal-

culus of resource consumption where a linear impli-

cation consumes its premises to establish the conclu-

sion. This naturally models state change in a logical

setting. There have been various proposals to com-

bine CC programming with linear logic (see [SL92],

[Pal97]). We use here the linear concurrent constraint

language LCC described in [FRS98a, FRS98b], and

used for example in [Sch98] to express global con-

straint solvers where non-monotonic imperative data

structures have to be handled.

A linear constraint system is a generalization of a

classical constraint system, where the constraint lan-

guage is a fragment of �rst-order linear logic con-

taining 1 (true), 0 (false), closed under renaming,

tensor product
 (conjunction) and existential quan-

ti�cation, and where the axioms are linear logic for-

mulas. Linear constraint systems generalize classical

constraint systems as the latter can be retrieved from

the usual translation of classical logic into linear logic

(see [Gir87] p. 81): a classical atom A is translated

by pre�xing it with the bang operator !A, signifying

arbitrary duplication of A. Thus, linear deduction

from !A coincides with classical deduction from atom

A.

A linear FD constraint system is de�ned similarly

to the previous sections with the following axioms:

i) !(8x x = x)

ii) !(8x; y; ~z !(x = y)
 r(x; ~z)(r(y; ~z))

for every relation symbol r

iii) !(8x; y; z !(x = y)
!(y = z)(!(x = z))

iv) !(a

i

6= a

j

) for i 6= j

v) !(8x !(x = a

1

)� :::�!(x = a

n

))

vi) r

p

(a

i

; a

j

); :::; r

q

(a

k

; a

l

); :::

vii) 8~x r(~x)
 r(~x)(0

Equality axioms constitute the classical part of the

system, and are thus pre�xed with !, whereas the

other relations can be consumed by linear implica-

tion. Axiom ii) speci�es that the linear relations are

modulo equality. Axioms vi) specify (partially) a �-

nite structure using relation symbol r for the nega-

tion of r, and axiom vii) speci�es that r and r are

inconsistent.

An LCC program is simply a CC program with a

linear constraint system, with
at guards only (deep

guards for LCC programs have not been investigated

yet). The rules for linear tell and ask are provided in

Table 4

The constraints are accumulated in the store by

tensor product, and are consumed by ask agents. In

the case of FD constraint systems, these operations

of tensor product and consumption are in fact simple

multiset operations over the relations modulo equal-

ity. The expressiveness and complexity of LCC(FD)

are characterized by the following:

Theorem 3.5 LCC(FD) expresses the pspace

queries.

Proof. To prove that LCC(FD) expresses all the

pspace queries, we show the following:

(i) using the nondeterminism a�orded by the open

constraint system, LCC(FD) can guess a total order

� of the domain (and can also de�ne its min and max

elements);

(ii) like CC

s

(FD) with
at guards, LCC(FD) can

simulate semi-positive Datalog

:

queries, so can ex-

press p using �, min and max. As a corollary, FO

can be expressed.

(iii) the recursion available in LCC(FD), together

with the nonin
ationary ability provided by linear

logic, allow to simulate PFP.

(iv) the result now follows from the fact that PFP ex-

presses pspace on ordered structures. More details

on the simulation of PFP are provided in Appendix.

2

4 Terminal store semantics

In this section we consider the operational seman-

tics of CC(FD) programs based on the observa-

tion of terminal stores, instead of success store: the

observed output of a program is the set of stores

of the terminal con�gurations, no matter whether

these con�gurations contain suspended agents or not

[SRP91, BGMP97, BGP96].

In this context the semantics of deep guards is

changed in order to check whether the current store

is a terminal store (not necessarily a success store)

of the guard agent. This simple intuition intro-

duces however some complications in the de�nition

of the transition relation in the presence of recursion

through deep guards.

Intuitively a deep guard A is satis�ed in a store

c if there is a �nite derivation from A in c with a

terminal store equivalent to c. In particular a
at

7

guard, i.e. the agent tell(d) in an ask agent tell(d)!

A, is satis�ed if the constraint d is entailed by the

current store.

The formal di�culty comes from recursion through

deep guards, as in a declaration like

A :: B ! A; B :: A! B:

Intuitively, the problem is similar to giving seman-

tics to Datalog

:

programs where negation is used re-

cursively. As for Datalog

:

, there are many possible

solutions. We adopt a semantics inspired by the well-

founded semantics for Datalog

:

[VGRS91], which re-

sults in intuitively appealing behavior of programs

with deep guards. In particular, the resulting seman-

tics agrees with the usual operational semantics of

CC

ts

for
at guards or strati�ed deep guards.

The key to the semantics of deep guards is to de-

�ne the set of deep guards that succeed. This is done

similarly to the alternating �xpoint computation of

the well-founded semantics [VG89] (see Appendix).

We de�ne �!

GS

, a version of the transition rela-

tion parameterized by a guard success set GS, as the

least transitive relation on con�gurations satisfying

the rules of Table 5. The structural congruence � is

the same as before. �!

GS

is then used to de�ne in-

ductively approximations of the set of guards that

should succeed, GS

2i

being upper approximations

and GS

2i+1

being lower ones, keeping in mind that a

guard succeeds when it leads to a terminal store iden-

tical to the current one. From these we can de�ne �!

as in Table 6, taking the limit GS =

S

i�0

GS

2i+1

as

guard success set, GF =

S

i�0

GS

2i

as guard failure

set, and rewriting to an inconsistent store the ask

agents with a guard in GS [GF (i.e. the unde�ned

part of the well-founded semantics). The computa-

tion is illustrated by three examples provided in Ap-

pendix.

With the transition relation �!2 K�K de�ned as

above (using Tables 5 and 6), we can now complete

the de�nition of the terminal store semantics. A ter-

minal con�guration for an agent A and an initial store

c is a con�guration (~x; d; �) such that (;; c;A) �!

�

(~x; d; �), (~x; d; �) Y�! and d is consistent with S. The

terminal stores operational semantics of a program

D:A is thus de�ned by

O

ts

(D:A; c) = f9~xd 2 C j (;; c;A) �!

�

(~x; d; �) Y�!;

d is consistent with Sg

It is worth noting that reachability of terminal

stores is not monotonic. For example, with decla-

rations

A :: (tell(c) ! tell(e)); B :: (A! tell(d))

the agent B in the empty initial store True reaches

terminal store d, i.e. < ;;True;B >�!< ;; d; � >,

whereas it does not reach a terminal store containing

d from an initial store entailing c:

< ;; c;B >�!< ;; c; (A! tell(d)) > Y�! :

4.1 Complete FD constraint systems

In this section we consider several classes of

CC

ts

(FD) programs with complete constraint sys-

tems. These di�er in the power of the guards used

in their blocking ask constructs. As we shall see, the

type of guards has a signi�cant impact on the ex-

pressiveness and complexity of CC

ts

(FD) programs.

As for the success semantics, we obtain results on

equivalences with Datalog(

:

) languages, complexity

characterizations, and comparisons amongCC

ts

(FD)

languages and normal forms. We will also consider

the special case of CC

ts

(FD

�

) programs.

In addition to programs with
at guards and deep

guards, we consider in this section an intermediate

class of CC

ts

(FD) programs with strati�able deep

guards. These are de�ned using a dependency graph

among the agents of the program. Let D:A be a

CC

ts

(FD) program. The dependency graph associ-

ated with D:A is constructed as follows. The nodes

consist of all agents in D. There is an edge from B

to A if B occurs in the de�nition of A, or if p(~x)

is used in the de�nition of A and p(~x) :: B is in

D. Furthermore, the edge from B to A is labeled

ask if 8~y(B ! C) appears in the de�nition of A. A

CC

ts

(FD) programD:A has strati�able deep guards if

its dependency graph contains no cycle with an edge

labeled ask.

CC

ts

(FD) and Datalog

(:)

Our �rst result re-

lates CC

ts

(FD) with various types of guards to usual

query languages. All FD constraint systems are as-

sumed complete.

Theorem 4.1 (i) CC

ts

(FD) without guards is

equivalent to semi-positive Datalog

:

.

(ii) CC

ts

(FD) with
at guards strictly subsumes

semi-positive Datalog

:

.

(iii) CC

ts

(FD) with strati�able deep guards is equiv-

alent to strati�able Datalog

:

.

(iv) CC

ts

(FD) with deep guards is equivalent to

Datalog

:

with well-founded semantics (and thus ex-

presses the �xpoint queries).

Proof. The simulations involved in (i)-(ii) are

straightforward and similar to those in Theorem

3.1. Negation in strati�able Datalog

:

is simulated in

8

CC

ts

(FD) programs using strati�able deep guards.

Essentially, a rule of the form

r(~x) : : ::p(~y) : : :

is simulated by an agent

A :: : : : k (p(~y)! tell(False)) k : : :

If the Datalog

:

program is semi-positive, only
at

guards are used. If the Datalog

:

program is strat-

i�able, the resulting CC

ts

(FD) program has strat-

i�able deep guards. Some care is however needed,

due to the operational semantics of guards. Indeed,

a guard A with free variables ~x is satis�ed in a con-

�guration with store c if it is satis�ed for all val-

ues of ~x in �

~x

(c). This means, for example, that

the semi-positive program t(x) p(x);:q(x) com-

puting the di�erence of p and q is not equivalent to

t(x) :: p(x) k (q(x) ! tell(False)). To achieve

equivalence, one must force a derivation where x is

instantiated when the guard p(x) is tested. This can

be done by adding an ask agent for enumeration as

follows:

t(x) :: 8y(tell(y = y) ! x = y) k p(x)

k (q(x)! tell(False)):

This idea can be extended to fully simulate semi-

positive and strati�able Datalog

:

programs by

CC

ts

(FD) programs. Conversely, a strati�able

deep guard can be easily simulated in strati�able

Datalog

:

. A
at guard requires three strata. To see

this, note that an agent of the form tell(c) ! A on

store d is logically equivalent to

(8~x(tell(d)! c) ^A) _ 9~x(d ^ :c)

which can be simulated by a strati�able Datalog

:

program with three strata. An example of a query

expressible by CC

ts

(FD) programs with
at guards

but not by semi-positive Datalog

:

is �nding the min-

imum and maximum elements of a totally ordered

�nite domain. For example, the minimum is de�ned

by min(x) :: (tell(9y (y < x)) ! tell(False)).

Consider (iv). The equivalence of CC

ts

(FD) pro-

gram with deep guards and Datalog

:

with well-

founded semantics is straightforward because of the

similarity of the deep guards semantics with the well-

founded semantics. 2

Complexity Theorem 4.1 in conjunction with

known results from �nite-model theory yields con-

nections between classes of CC

ts

(FD) programs and

complexity classes of queries. First, all CC

ts

(FD)

programs with complete constraint systems can be

evaluated in polynomial time. Moreover, in the pres-

ence of order, we obtain the following expressiveness

results.

Theorem 4.2 The following classes of CC

ts

(FD

�

)

programs with complete constraint systems express

precisely the queries over ordered domains computable

in polynomial time:

(i) CC

ts

(FD

�

) with deep guards.

(ii) CC

ts

(FD

�

) with strati�able deep guards; and

(iii) CC

ts

(FD

�

) with
at guards.

Relative expressiveness and normal forms

The previous results allow us to compare di�erent

classes of CC

ts

(FD) programs with complete con-

straint systems. From Theorem 4.1 and known sep-

aration results among Datalog

(:)

languages we have:

Theorem 4.3 (i) CC

ts

(FD) with deep guards

strictly subsumes CC

ts

(FD) with strati�able deep

guards.

(ii) CC

ts

(FD) with strati�able deep guards strictly

subsumes CC

ts

(FD) with
at guards.

(iii) CC

ts

(FD) with
at guards strictly subsumes

CC

ts

(FD) programs with no guards.

In contrast to the separation results of Theorem

4.3, in the general case, all languages with guards

collapse on ordered domains:

Theorem 4.4 The following classes of CC

ts

(FD

�

)

programs are equivalent:

(i) CC

ts

(FD

�

) with deep guards.

(ii) CC

ts

(FD

�

) with strati�able deep guards.

(iii) CC

ts

(FD

�

) with
at guards.

As a side e�ect, as in the case of the success seman-

tics, this yields strong normal forms for CC

ts

(FD

�

)

programs. Most notably:

Corollary 4.5 Every CC

ts

(FD

�

) program with

deep guards is equivalent to a CC

ts

(FD

�

) program

with
at guards.

Deep guards with arithmetic constraints We

have seen that CC

ts

(FD) with deep guards expresses

the �xpoint queries. It is natural to wonder if

there is a variant of CC

ts

(FD) with deep guards

that corresponds to PFP (and so expresses the while

queries). We next present such a language. Con-

sider CC

ts

(FD

ind

) whose declarations include induc-

tive de�nitions of processes. All inductively de�ned

9

processes contain one integer variable and are de�ned

by declarations of the form:

t(~x; 0) :: A

t(~x; i+ 1) :: B(i)

where A contains no inductively de�ned processes,

and B(i) contains inductively de�ned processes

p(~y; i). Declarations of non-inductively de�ned pro-

cesses may use inductively de�ned processes, but all

non-inductively de�ned processes are nonrecursive.

The predicate + is only used in inductive de�nitions,

as shown above. A CC

ts

(FD

ind

) program is of the

form D:p(~x) where p is non-inductively de�ned.

We can show the following:

Theorem 4.6 (i) CC

ts

(FD

ind

) is equivalent to

PFP.

(ii) CC

ts

(FD

ind

�

) expresses precisely the pspace

queries on ordered domains.

Proof. It is su�cient to show (i), since (ii) follows

from (i) and the fact that PFP expresses pspace on

ordered structures. Consider (i). The simulation of

PFP by CC

ts

(FD

ind

) is straightforward. The con-

verse is harder and uses results on the inductive de-

�nability of FO

k

-types, including a total order on

them [AV95, DLW95, KV92]. More details are pro-

vided in the Appendix. 2

4.2 Open FD constraint systems

In this section we consider the expressiveness and

complexity of CC

ts

(FD) programs with open FD

constraint systems. As earlier, we consider constraint

system with equality and a relational vocabulary.

Among relations in the vocabulary, we distinguish a

set of input relations which hold the �nite structure

input to the program. Since the constraint system is

open, the input �nite structure may be incompletely

speci�ed. To prevent the content of input relations

from changing throughout the evaluation of a pro-

gram, we prohibit programs from including agents of

the form tell(r(~x)) where r is in the input signature,

except within guards.

CC

ts

(FD) programs without guards behave the

same in the case of open constraint systems as in the

case of complete systems already examined { they are

equivalent to Datalog. Therefore, we only consider in

this section programs with guards. As in the previous

section we consider programs with
at guards, strat-

i�able deep guards, and unrestricted deep guards.

Our main result provides exact characterizations of

these languages in terms of complexity classes.

Theorem 4.7 (i) CC

ts

(FD) with
at guards ex-

presses precisely the np queries.

(ii) CC

ts

(FD) with strati�able guards expresses pre-

cisely the phier queries.

(iii) CC

ts

(FD) with deep guards expresses precisely

the pspace queries.

Proof. The upper bounds are mostly straightfor-

ward. The simulations for the lower bounds make use

of the nondeterminismallowed by the open constraint

system and the various forms of negation provided

by the guards. The simulation of pspace queries by

CC

ts

(FD) with deep guards is done using a nonde-

terministic variant of IFP with alternation that ex-

presses aptime (and therefore pspace) on ordered

structures [AVV97]. See Appendix for more details.

2

Note that the relationship between the CC

ts

(FD)

programs with various kinds of guards remains unre-

solved in the case of open constraint systems. More-

over, from Theorem 4.7 it follows that these relation-

ships are equivalent to well-known open problems in

complexity theory.

The results on languages expressing pspace yield

a rather unexpected connection between languages

with complete FD constraint systems and languages

with open FD constraint systems:

Corollary 4.8 The following are equivalent

7

:

(i) CC

ts

(FD

ind

�

) with complete constraint systems.

(ii) CC

ts

(FD) with open constraint systems.

5 Conclusion

The results presented in the paper provide consider-

able information on the expressiveness and complex-

ity of CC(FD) with various semantics and features.

We brie
y summarize what we have learned.

Complexity We were able to exhibit languages ex-

pressing complexity classes from polynomial time to

polynomial space, as shown in Figure 1. Not sur-

prisingly, order is needed in all cases to express p,

whereas higher complexity classes can be expressed

without order. The class pspace is especially inter-

esting, because it is expressed by languages which

seem very di�erent computationally: CC

ts

(FD

ind

�

)

is similar to the while queries, and requires order to

express pspace; LCC(FD) provides a mix of non-

in
ationary computation and the ability to simu-

late order; lastly, CC

ts

(FD) is in
ationary in
avor

7

Ignoring the di�erences in the ordering assumptions.

10

complexity CC(FD)

class constraint system guards language

p complete
at CC

s

(FD

�

) CC

ts

(FD

�

)

deep CC

s

(FD

�

) CC

ts

(FD

�

)

np open
at CC

s

(FD) CC

ts

(FD)

deep CC

s

(FD)

phier open strati�ed CC

ts

(FD)

pspace complete deep CC

ts

(FD

ind

�

)

open deep CC

ts

(FD) LCC(FD)

Figure 1: Complexity classes expressed by CC languages

but expresses pspace due to its ability to simulate

polynomial-time alternation.

Impact of order As in �nite model theory, the

presence of order has drastic consequences on the ex-

pressiveness of CC(FD) languages. Languages with

at or deep guards, success or terminal store seman-

tics, become equivalent on ordered domains (with

complete constraint systems). As a side e�ect, this

yields powerful normal forms for such languages. In

particular, deep guards are not needed for expres-

siveness, although they may considerably facilitate

programming.

Complete and open constraint systems All

CC(FD) languages stay within p in the context of

complete constraint systems (except CC

ts

(FD

ind

�

)).

Thus, open constraint systems are generally needed

to go beyond p. Computationally, open constraint

systems introduce nondeterminism. This allows ex-

pressing np, phier, and pspace (via aptime).

Flat and deep guards In the absence of order,

at guards are generally weaker than deep guards.

Indeed, there is a strong analogy between guards and

negation in query languages. In complete constraint

systems, CC with
at guards generally corresponds

to semi-positive Datalog

:

, and CC with deep guards

is analogous to languages allowing recursion through

negation. In open constraint systems, guards provide

a powerful combination of negation and nondetermin-

ism.

Success and terminal store semantics The two

semantics di�er in the manner and extent to which

negation can be simulated. In the context of complete

constraint systems, the success and terminal store se-

mantics stand to each other in a relationship simi-

lar to LFP and IFP: LFP provides limited negation

on non-inductively de�ned relations, whereas IFP

can explicitly negate inductively de�ned relations.

Nonetheless, LFP is closed under complement and

turns out to be equivalent to IFP [GS86]. Likewise,

CC

s

(FD) and CC

ts

(FD) are equivalent in the con-

text of complete constraint systems. The equivalence

does not however extend to open constraint systems:

CC

s

(FD) is con�ned to np, whereas CC

ts

(FD) can

express pspace.

The results in the paper provide a fairly com-

plete picture of the expressiveness and complexity of

CC(FD) on �nite domains. The connection to �-

nite model theory has proven fruitful, and there re-

main many aspects to be explored. For example, it

may be of interest to transfer known normal forms for

query languages to CC(FD). Furthermore, desirable

computational properties and semantics of query lan-

guages can inspire new variants of CC(FD). The ter-

minal store semantics, suggested by the well-founded

semantics, is one such example. Another possibility

we have considered (but not developed here due to

lack of space), is to study a semantics of CC(FD)

analogous to the certainty and possibility semantics

for nondeterministic query languages (in the sense

that each query can generate several possible answers,

see [ASV90]). Such nondeterminism arises naturally

in CC(FD) with open constraint systems, where a

program can generate di�erent sets of terminal stores

on a given input.

Clearly, the connection between CC(FD) and �nite

model theory is natural and can lead to bene�cial

cross fertilization.

References

[AHV95] S. Abiteboul, R. Hull and V. Vianu.

Foundations of Databases. Addison Wes-

11

ley, 1995.

[ASV90] S.Abiteboul, E. Simon, and V.Vianu.

Non-deterministic Languages to Compute

Deterministic Transformations. In Proc.

ACM SIGACT-SIGMOD-SIGART Symp.

on Principles of Database Systems, 218{

229, 1990.

[AV89] S. Abiteboul and V. Vianu. Fixpoint Ex-

tensions of First-Order Logic and Datalog-

Like Languages. In Proc. Logic in Com-

puter Science, 71-79, 1989.

[AV95] S. Abiteboul and V. Vianu. Computing

with First-Order Logic. J. of Computer

and System Sciences, 50:2, 309-335, 1995.

[AVV97] S. Abiteboul, M. Vardi and V. Vianu.

Fixpoint Logics, Relational Machines, and

Computational Complexity.J. of the ACM

, 44(1), 30-56, 1997.

[AU79] A.V. Aho and J.D. Ullman. Universal-

ity of data retrieval languages. In Proc.

6th ACM Symp. on Principles of Program-

ming Languages, pages 110{117, 1979.

[BGMP97] F.S. de Boer, M. Gabbrielli, E. Marchiori,

and C. Palamidessi. Proving concur-

rent constraint programs correct. ACM-

TOPLAS, 19(5):685{725, 1997.

[BGP96] F.S. de Boer, M. Gab-

brielli and C. Palamidessi. Proving cor-

rectness of constraint logic programs with

dynamic scheduling. Proc. Static Analysis

SAS, Srpinger-Verlag, LNCS 1145, p.83-

97, 1996.

[CH82] A. Chandra and D. Harel. Structure and

complexity of relational queries. Journal

of Computer and System Sciences, 25:99{

128, 1982.

[CKS81] A.K. Chandra, D.C. Kozen and L. Stock-

meyer. Alternation. J. of the ACM 28,

114{133, 1981.

[DLW95] A. Dawar, S. Lindell and S. Weinstein.

In�nitary Logic and Inductive De�nabil-

ity over Finite Structures. Information and

Computation 119(2): 160-175 (1995).

[EF98] H-D. Ebbinghaus and J. Flum. Finite

Model Theory. Springer Verlag, 1995.

[Fag74] R. Fagin. Generalized �rst{order spectra

and polynomial{time recognizable sets. In

R. M. Karp, editor, Complexity of Com-

putation, SIAM-AMS Proceedings, Vol. 7,

pages 43{73, 1974.

[Fag75] R. Fagin. Monadic generalized spec-

tra. Zeitschrift f�ur Mathematische Logik

und Grundlagen der Mathematik, 21:89{

96, 1975.

by Fran�cois Fages, Paul Ruet and Sylvain

Soliman. This is a LIENS research report

R98-5 submitted to a journal in May 98.

It is available as ps and dvi.

[FRS98a] F. Fages, P. Ruet, S. Soliman. Linear con-

current constraint programming: opera-

tional and phase semantics. Research Re-

port LIENS-98-5, May 1998.

[FRS98b] F. Fages, P. Ruet, S. Soliman. Phase se-

mantics and veri�cation of concurrent con-

straint programs. Logic in Computer Sci-

ence LICS'98, Indianapolis. 1998.

[Gir87] J.Y. Girard. Linear logic. Theoretical

Computer Science, Vol. 50(1), 1987.

[GS86] Gurevich, Y., and S.Shelah. Fixed-point

extensions of �rst-order logic. Annals of

Pure and Applied Logic 32, North Holland

(1986), 265-280. Also in Proc. 26th Symp.

on Found. of Computer Science (1985),

346-353.

[Imm86] N. Immerman. Relational queries com-

putable in polynomial time. Information

and Control, 68:86{104, 1986.

[Imm87a] N. Immerman. Expressibility as a com-

plexity measure: results and directions.

In Second Structure in Complexity Confer-

ence, pages 194{202, 1987.

[Imm87b] N. Immerman. Languages that capture

complexity classes. SIAM Journal of Com-

puting, 16:760{778, 1987.

[JL87] J. Ja�ar and J-L. Lassez. Constraint logic

programming. In Proceedings of the 14th

ACM Symposium on Principles of Pro-

gramming Languages, Munich, Germany,

pages 111{119. ACM, January 1987.

[JM94] J. Ja�ar and M.J. Maher. Constraint logic

programming: a survey. Journal of Logic

Programming, 19-20:503{581, May 1994.

12

[JS74] N. G. Jones and A.L. Selman. Turing ma-

chines and the spectra of �rst-order formu-

las. Journal of Symbolic Logic, 39:139{150,

1974.

[KG94] P. C. Kolaitis and D.Q. . Goldin Con-

straint programming and database query

languages. In Proc. 2nd Symposium The-

oretical Aspects of Computer Software

STACS, Sendai, Japan, Springer-Verlag

LNCS 789, p.96-120, 1994.

[KV92] P. G. Kolaitis and M. Y. Vardi. Fixpoint

Logic vs. In�nitary Logic in Finite-Model

Theory. In Proc. Logic in Computer Sci-

ence ,46-57, 1992.

[Pal97] C. Palamidessi. Concurrent constraint

programming. Invited talk, JFPLC'97,

Orleans, Ed. Herm�es, Paris. 1997.

[Sar87] V.A. Saraswat. Concurrent constraint

programming. ACM Doctoral Dissertation

Awards. MIT Press, 1993.

[Sch98] V. Schachter. Linear concurrent con-

straint programmingover reals. Constraint

Programming CP'98, Pisa. 1998.

[SL92] V.A. Saraswat and P. Lincoln, Higher-

order linear concurrent constraint pro-

gramming, Draft Xerox 1992.

[SRP91] V.A. Saraswat, M. Rinard, and P. Panan-

gaden. Semantic foundations of con-

current constraint programming. In

POPL'91: Proceedings 18th ACM Sympo-

sium on Principles of Programming Lan-

guages, 1991.

[SSW87] C. Schulte and G. Smolka and J. W�urtz.

Encapsulated Search and Constraint Pro-

gramming in Oz. Second Workshop on

Principles and Practice of Constraint Pro-

gramming, A.H. Borning, Orcas Island,

USA, Springer-Verlag LNCS 874, pp.134{

150, May 1994.

[S77] L. Stockmayer. The polynomial hierar-

chy.Theoretical Computer Science, 3:1{22,

1977.

[VG89] A. Van Gelder. The Alternating Fixpoint

of Logic Programs with Negation. In Proc.

ACM Symp. on Principles of Database

systems, 1{11, 1989.

[VGRS91] A. Van Gelder, K.A. Ross and J.S. Schlipf.

The Well-Founded Semantics for General

Logic Programs. J. of the ACM, 38, 620{

650, 1991.

[Var82] M. Y. Vardi. The complexity of rela-

tional query languages. In Proc. 14th ACM

Symp. on Theory of Computing, pages

137{146, 1982.

Appendix

A: Preliminaries on Finite Model The-

ory

We refer to [EF98] for a general exposition of �nite-

model theory. We review here several query lan-

guages used in the paper. A discussion of this mate-

rial in the context of database theory can be found

in [AHV95].

Fixpoint and While One approach to extend-

ing FO with recursion is provided by �xpoint logics.

These allow inductive de�nitions of relations by FO

formulas. Let '(x

1

; : : : ; x

m

; t) be a 1st-order formula

in which t is a m-ary relation symbol (not included in

the input vocabulary) and let I be a �nite structure

over the input vocabulary. The formula'(t) allows to

de�ne inductively the following sequence of relations:

t

0

= ;

t

n+1

= f(a

1

; : : : ; a

m

) j I; t

n

j= '(t)(a

1

; : : : ; a

m

)g

The sequence ft

n

g

n�0

converges if for some k, t

k

=

t

k+1

. Then the limit t

k

of the sequence is denoted

�

t

('(t)). If the limit does not exist, �

t

('(t)) is de-

�ned to be empty. The extension of FO with the oper-

ator �

t

is called partial �xpoint logic (PFP). Note that

the sequence ft

n

g

n�0

de�ned by consecutive applica-

tions of '(t) is not guaranteed to converge. Conver-

gence can be ensured with the following modi�cation

of the de�nition of ft

n

g

n�0

:

t

0

= ;

t

n+1

= t

n

[f(a

1

; : : : ; a

m

) j I; t

n

j=

'(t)(a

1

; : : : ; a

m

)g

Indeed, the sequence is now increasing by de�nition

and so there exists k such that t

k

= t

k+1

. The limit

of the sequence thus de�ned is denoted �

+

t

('(t)), and

FO extended with the operator �

+

t

('(t)) is called in-

ationary �xpoint logic (IFP). For example, the con-

nectivity of a graph given by a binary relation r is

de�ned in IFP by:

8x8y �

t

('(t))(x; y)

13

where '(t) is the FO formula:

r(x; y) _ 9z (r(x; z) ^ t(z; y)):

A variant of IFP is the positive �xpoint logic LFP.

This requires each inductively de�ned predicate to

occur positively in the formula used in the induc-

tive de�nition. Despite this restriction, LFP remains

equivalent to IFP [GS86].

Datalog and Datalog

:

Another popular

paradigm for recursive query languages is based on

logic programming. We consider �rst Datalog, which

can be viewed as a \pure" relational version of Pro-

log. The syntax of Datalog is essentially that of Horn

Clauses. A Datalog rule is an expression of the form :

r

1

(u

1

) r

2

(u

2

); :::; r

n

(u

n

)

where for some n � 1, r

1

; :::; r

n

are relation names,

u

1

; :::; u

n

are tuples of variables or constants of appro-

priate arities. Furthermore, each variable occurring

in the head must also occur in the body. A Datalog

program P is a �nite set of Datalog rules. The rela-

tions occurring in heads of rules are the intensional

relations (idb) of P , and the others are the extensional

relations (edb) of P . Each Datalog program de�nes

a query whose input is a �nite structure over its edb

relations, and whose output is the �nite structure it

de�nes over its idb relations. Datalog can be given

a model-based semantics, a �xpoint semantics, or a

top-down semantics based on SLD-resolution. The

three semantics turn out to be equivalent. With the

model-based semantics, the result of a Datalog pro-

gram is the unique minimal model satisfying the sen-

tences corresponding to the rules in the program, and

containing the input database. The �xpoint seman-

tics consists of �ring the rules of the program with all

applicable valuations until a �xpoint is reached. For

example, the following Datalog program computes

the transitive closure t of the graph whose edges are

given in a binary relation r:

t(x; y) r(x; y)

t(x; y) r(x; z); t(z; y)

Datalog provides recursion, but no negation. In

particular, it is incomparable to FO. Datalog syntax

can be easily extended to include negation in rule

bodies, yielding Datalog

:

. A Datalog

:

rule is an ex-

pression of the form

r(h) b

1

(u

1

); :::; b

n

(u

n

);

where: (i) r is a relation name, (ii) b

i

are relation

names (in which case b

i

is called positive) or :r

i

where

r

i

is a relation name (then b

i

is called negative), (iii)

h and u

i

are tuples of variables or constants of ap-

propriate arities, and (iv) every variable in h occurs

in some positive b

i

(u

i

). A Datalog

:

program is a

�nite set of Datalog

:

rules. We will consider two

syntactic restrictions of Datalog

:

: semi-positive, and

strati�ed. A Datalog

:

program is semi-positive if the

for each negative literal :r

i

(u

i

) occurring in a rule, r

is an edb relation. The semantics of a semi-positive

Datalog

:

program is the same as that of Datalog,

where :r is interpreted as the complement of r. A

Datalog

:

program is strati�able if the natural pred-

icate dependency graph associated to the program

(where edges are labeled : for negative dependen-

cies) contains no cycle with an edge labeled :. The

strati�ability condition allows for an elegant exten-

sion of the semantics of semi-positive Datalog

:

: each

relation is completely de�ned before any negative test

on it is evaluated. Once the relation is de�ned, it is

treated as an edb relation relative to the remaining

rules. Thus, strati�able Datalog

:

programs are eval-

uated by partitioning the rules into \strata" de�ning

one or several relations with no negative dependencies

among each other, then evaluating the strata one by

one in an order consistent with the negative depen-

dencies. Following is a strati�able Datalog

:

program

de�ning in t the complement of the transitive closure

of a graph whose nodes are given in a unary relation

n and whose edges are given in a binary relation r:

t(x; y) r(x; y)

t(x; y) r(x; z); t(z; y)

t(x; y) n(x); n(y);:t(x; y)

Lastly, consider the full Datalog

:

. We con-

sider one semantics called the well-founded semantics

[VGRS91], which extends the semantics of strati�ed

Datalog

:

. The well-founded semantics is based on

the idea that a given program may not necessarily

provide complete information on all facts. Instead,

some facts may simply be indi�erent to it, and the

answer should be allowed to say that the truth value

of those facts is unknown. This yields a 3-valued ap-

proach. We brie
y describe an alternating �xpoint

computation of the set of true and false facts de�ned

by a Datalog

:

under the well-founded semantics. The

idea of the computation is the following. We de�ne an

alternating sequence fI

i

g

i�0

of consecutive approxi-

mations of the true and false facts de�ned by the

program. The intuition behind the construction of

the sequence fI

i

g

i�0

is the following. The sequence

starts with ? (all facts are false), which is an over-

estimate of the negative facts in the answer. From

this overestimate we compute I

1

, which includes all

14

positive facts that can be inferred from ? using an

immediate consequence operator inferring both posi-

tive and negative facts (we omit the de�nition). This

is clearly an overestimate of the positive facts in the

answer, so the set of negative facts in I

1

is an under-

estimate of the negative facts in the answer. Using

this underestimate of the negative facts we compute

I

2

, whose positive facts will now be an underestimate

of the positive facts in the answer. By continuing the

process we see that the even-indexed instances pro-

vide underestimates of the positive facts in the answer

and the odd-indexed ones provide underestimates of

the negative facts in the answer. Then the limit of

the even-indexed instances, denoted I

�

provides the

positive facts in the answer and the limit of the odd-

indexed instances, denoted I

�

, provides the negative

facts in the answer. We illustrate the alternating �x-

point computation with a simple example. Consider

the propositional Datalog

:

program

p :r

q :r; p

s :t

t q;:s

u :t; p; s:

Let us perform the alternating �xpoint compu-

tation described above. We start with I

0

=

f:p;:q;:r;:s;:t;:ug. We obtain the following se-

quence of instances:

I

1

= fp; q;:r; s; t; ug;

I

2

= fp; q;:r;:s;:t;:ug;

I

3

= fp; q;:r; s; t; ug;

I

4

= fp; q;:r;:s;:t;:ug:

Thus, I

�

= I

4

= fp; q;:r;:s;:t;:ug and I

�

= I

3

=

fp; q;:r; s; t; ug. Finally, the set of positive and neg-

ative facts de�ned by the well-founded semantics is

fp; q;:rg. The other facts have unknown truth value.

A more detailed exposition of the well-founded se-

mantics can be found in [AHV95].

B: Proof sketches

Proof of Theorem 3.4 We brie
y describe how

to construct, nondeterministically, a relation S and

then a total order �, with the following CC

s

(FD)

program on open constraint systems:

guess

S

::

(8 ~x (tell(True)! tell(S(~x))) k tell(done

S

(x))

k guess

S

)

+ (8 ~x (tell(True) ! tell(:S(~x)))

k tell(done

S

(x)) k guess

S

)

+ 9x(tell(done

S

(s)) ! order)

where the done

S

relation checks the completeness of

the de�nition of S, and order nondeterministically

constructs a total order � of the domain in a similar

way.

The next step is to guess an order � in the same

way:

order ::

(8 x; y (tell(True) ! tell(� (x; y)))

k tell(done

order

(x; y)) k order)

+ (8 x; y (tell(True)! tell(: � (x; y)))

k tell(done

order

(x; y)) k order)

+ 9x9y(tell(done

order

(x; y))! transitivity)

and to check that it has the expected properties:

transitivity ::

(8 x; y; z (tell(True)! (tell(: � (x; y))

+ tell(: � (y; z)) + tell(� (x; z)))

k tell(done

trans

(x; y; z)) k transitivity)

+ 9x9y9z(tell(done

trans

(x; y; z))! reflexivity)

the other properties are de�ned in the same way.

Proof of Theorem 3.5 We outline the simulation

of PFP by LCC(FD). We describe the simulation

of one application of the partial �xpoint operator,

�

r

(�(r)) where �(r) is in FO (this is su�cient in view

of the normal form for PFP stating that a single ap-

plication of � is su�cient [AV95]).

Consider the CC

s

(FD) program with
at guards

simulating �(r) on ordered structures in open con-

straint systems. An LCC(FD) program simulating

�(r) is obtained by replacing all constraints c by !c ex-

cept r which is de�ned as a linear constraint. We also

have to add a tell(r(~x)) after each ask consuming an

r(~x), and an ask r(~x)! True after each correspond-

ing tell. We thus obtain two procedures phi r(~x) and

notphi r(~x) encoding �(r) and :�(r). We also need

a procedure succ(x; y) de�ning the successor relation

corresponding to �, and its straightforward exten-

sion to tuples of variables. We �nally need a proce-

dure r equal s succeeding if the relations r and s are

equal.

The following LCC(FD) program then simulates

the partial �xpoint operator:

init :: 9~x(min(~x) k s is r(~x))

s is r(~x) :: r(~x)! 9~y(succ(~x; ~y)

k tell(r(~x)
 s(~x))

k s is r(~y))

15

+ r(~x)! 9~y(succ(~x; ~y)

k tell(r(~x)
 s(~x))

k s is r(~y))

+ max(~x) k main

initializes s as r when the �rst parameter given is the

minimum.

main :: 8~y(r(~y)! tell(r(~y)) k loop)

changes one slot of r to be sure it is di�erent of s and

begins the loop.

loop :: r equal s

+ 9~x(min(~x) k r is s(~x))

tests if r and s are equal (end) or loops.

r is s(~x) :: s(~x)
 r(~x)! 9~y(succ(~x; ~y)

k tell(r(~x)
 s(~x)) k r is s(~y))

+ s(~x)
 r(~x)! 9~y(succ(~x; ~y)

k tell(s(~x)
 r(~x)) k r is s(~y))

+ s(~x)
 r(~x)! 9~y(succ(~x; ~y)

k tell(r(~x)
 s(~x)) k r is s(~y))

+ s(~x)
 r(~x)! 9~y(succ(~x; ~y)

k tell(s(~x)
 r(~x)) k r is s(~y))

+ max(~x) k 9~y(min(~y)

k s is phi(~y))

assigns to r the current value of s.

s is phi(~x) :: s(~x)! 9~y(succ(~x; ~y) k phi r(~x)

k tell(s(~x)) k s is phi(~y))

+ s(~x)! 9~y(succ(~x; ~y) k tell(s(~x))

k notphi r(~x) k s is phi(~y))

+ s(~x)! 9~y(succ(~x; ~y) k phi r(~x)

k tell(s(~x)) k s is phi(~y))

+ s(~x)! 9~y(succ(~x; ~y) k tell(s(~x))

k notphi r(~x) k s is phi(~y))

+ max(~x) k loop)

assigns to s the value of �(r) and loops. 2

Proof of Theorem 4.6 It is su�cient to show (i),

since (ii) follows from (i) and the fact that PFP ex-

presses pspace on ordered structures. Consider (i).

The simulation of PFP by CC

ts

(FD

ind

) is straight-

forward. The stages in the evaluation of partial �x-

points are de�ned inductively. A partial �xpoint is

reached if and when two consecutive stages of are

equal. Note that one cannot test directly if two con-

secutive stages of t(~x; i) are the same, since the con-

dition j = i + 1 cannot occur in the de�nition of a

predicate. Instead, a new predicate t(~x; ~y; i) is de-

�ned inductively so that for i > 1, t(~x; ~y; i) holds i�

t(~x; i) and t(~y; i � 1) hold. This allows to test when

two consecutive stages are equal.

Showing that CC

ts

(FD

ind

) is subsumed by PFP is

less straightforward. Let P be a CC

ts

(FD

ind

) pro-

gram. The inductive de�nitions in P are mimicked

by a partial �xpoint. This requires using the Simul-

taneous Induction Lemma [GS86] showing that a si-

multaneous inductive de�nition of multiple relations

can be simulated by an inductive de�nition of a sin-

gle relation. A nontrivial subtlety involves detecting

within PFP when the entire answer to P has been

computed, then forcing convergence. To explain how

this is achieved, we will need the notion of k-size of a

�nite structure, introduced in [AV95]. The k-size of a

�nite structure I is the number of equivalence classes

of tuples of arity at most k over the �nite domain of

I de�ned by: t �

k

t

0

i� I j= '(t) $ I j= '(t

0

) for

every FO formula ' with k variables. Let k be the

number of non-integer variables used in the declara-

tions of P . The simulation is based on the following

key observations:

1. In order to compute the answer to P on input I

it is su�cient to compute the inductively de�ned

processes for integers bounded by an exponential

in the k-size of I.

2. On input I, PFP can simulate a counter up to

an exponential in the k-size of I.

Part (2) is based on a result showing that the equiv-

alence classes of �

k

and a total order on them can

be de�ned by an IFP formula (and therefore by a

PFP formula) [AV95, DLW95, KV92]. The ordered

equivalence classes (whose number recall is the k-size

of I) allows to inductively de�ne a counter up to an

exponential in the k-size of I. The counter allows to

force convergence of the partial �xpoint within the

PFP formula, as desired. 2

Proof of Theorem 4.7 Consider (i), and let D:A

be a CC

ts

(FD) program with
at guards. To show

16

that the query de�ned by D:A can be evaluated in

np, we �rst note that, to compute the answer to the

query on input I it is su�cient to consider deriva-

tions of length polynomial in the size of I. This is

done by choosing an evaluation strategy where con-

secutive executions of non-equivalent tell agents are

separated in the derivation by constant number of

steps. Then it is su�cient to note that there are poly-

nomially many non-equivalent tell agents, and that

the length of derivations following the last tell is also

polynomial, as it is isomorphic to the execution of a

CC

ts

(FD) program with
at guards with a complete

constraint system.

To see that CC

ts

(FD) with
at guards expresses all

np queries, we use the characterization of np by 9SO

(existential second-order logic). Consider an 9SO for-

mula 9 S '(S) where ' is in FO. This is simulated

by a CC

ts

(FD) program with
at guards as follows:

1. non-deterministically construct a relation S us-

ing tell agents; Additionally,

non-deterministically construct a total order �

on the �nite domain.

2. simulate the evaluation of '(S).

To illustrate (1) note that guessing S can be done by

a program of the form:

t :: (8 ~x (tell(True)! tell(S(~x))) k t) + A

where A uses the S de�ned by the recursion. Guess-

ing an order � is similar, but in addition A must ver-

ify that � is total. Once S and � are constructed, the

remainder of the execution treats them as completely

de�ned structures. By Theorem 4.2, CC

ts

(FD) with

at guards and complete constraint systems expresses

p on ordered structures, and therefore can simulate

'(S) making use of �.

The proof of (ii) is a straightforward extension of

the proof of (i). Whereas
at guards express 9SO,

the nesting provided by strati�ed deep guards allows

to express all of SO. The result then follows from the

fact that SO expresses phier [S77].

Consider (iii). We �rst show that CC

ts

(FD) with

unrestricted deep guards expresses aptime (alternat-

ing polynomial time), then use the result that aptime

= pspace [CKS81]. The simulation of a CC

ts

(FD)

program P with unrestricted deep guards by an ap-

time Turing machine uses the fact that the depth of

nesting of guards in each derivation of P is bounded

by a polynomial in the �nite domain, and that the

number of non-equivalent tell instructions executed

is bounded by the same. This yields the polyno-

mial bound on the number of steps of the alternating

Turing machine needed in the simulation. The al-

ternation is used to simulate the execution of deep

guards. For the converse, we use a result showing

that a certain non-deterministic variant of IFP with

alternation expresses aptime on ordered structures

[AVV97]. The nondeterminism stems from a choice

of one among two FO formulas '

1

; '

2

to be used at

each stage in the de�nition of a �xpoint. The �nal

answer consists of the intersection of all possible �x-

points obtained by the di�erent choices. Note that,

since aptime is closed under complement, we can

equivalently take the semantics to be the union of

the complements of all resulting �xpoints. Let us de-

note this variant of IFP by AIFP. The simulation of

an alternating in
ationary �xpoint de�ned by two FO

in
ationary formulas '

1

; '

2

is done by a CC

ts

(FD)

program D:A where A :: answer(x; y) and D is of the

form

answer(x; y) :: (t(x; y)! tell(False))

t(x; y) :: ('

1

(t)(x; y) + '

2

(t)(x; y)

+'

1

(;)(x; y) + '

2

(;)(x; y)) k t

+ fp(t; '

1

; '

2

)

where '

i

(t)(x; y) is a process simulating '

i

applied

to t, i 2 f1; 2g, and fp(t; '

1

; '

2

) is true i� '

i

(t) = t,

i 2 f1; 2g. 2

C: Semantics of CC

The operational semantics of CC is de�ned in the

paper with references to table 1 for the structural

congruence relation on con�gurations, and table 2, 4

or 5, 6 for the transition system.

The denotational semantics of a CC program D:A

associates to an initial store � 2 C a set of stores

JD:AK 2 P(C). The denotational semantics of ter-

minal stores with
at guards has been studied in

[SRP91, BGMP97, BGP96]. We present here a gen-

eralization to the denotational semantics of CC lan-

guages with deep guards for the observation of both

successes and terminal stores.

We consider the following operations on sets of

stores:

9

x

S = f9x� j � 2 Sg

S

1

^ S

2

= f�

1

^ �

2

j �

1

2 S

1

; �

2

2 S

2

g

The denotational semantics of success stores

(resp. of terminal stores) denoted by JAK�(e) (resp.

JAK

ts

�(e)) of a program D:A is de�ned in Table 3.

17

Parallel (~x; c;�; A k B;�) � (~x; c;�; B k A;�) � (~x; c;�; A;B;�)

Hiding

y 62 ~x[fv(c;�)

(~x; c; 9yA;�) � (~x; y; c;A;�)

y 62 fv(c;�)

(~x; y; c; �) � (~x; c; �)

�-Conversion

z 62 v(A)

9yA � 9zA[z=y]

Table 1: CC(FD) structural congruence

Tell (~x; c; tell(d);�) �! (~x; c^ d; �)

Ask

(~x; c;A[

~

t=~y]) �!

�

(~z; d; �) S ` 9~xc, 9~zd

(~x; c; 8~y(A! B);�) �! (~x; c;B[

~

t=~y];�)

Procedure calls

[p(~y) :: A]

�

2 D

(~x; c; p(~y);�) �! (~x; c;A;�)

�

(~x; c; �) � (~x

0

; c

0

; �

0

) �! (~y

0

; d

0

;�

0

) � (~y; d;�)

(~x; c; �) �! (~y; d;�)

Blind choice (~x; c;A+ B;�) �! (~x; c;A;�)

(~x; c;A+ B;�) �! (~x; c;B;�)

Table 2: CC(FD) transition relation.

Example We illustrate the computation of the suc-

cess set of deep guards with three examples. Consider

�rst:

A :: tell(c) ! B B :: tell(d) !

tell(e)

In this
at guard example one can see that GS

1

will contain any store stronger than e for A and B,

and the expected stores for tell(c) (stronger than

c), and tell(d) (stronger than d). From this lower

approximation (already correct for the
at guards)

we get GS

2

where we reach a �xpoint with the usual

terminating stores: (;;�;A) 2 GS i� � ` c ^ d ^ e or

� 6` c or � 6` d. (;;�;B) 2 GS i� � ` d^ e or � 6` d.

A :: B ! tell(c) B :: tell(d) !

tell(e)

In this strati�ed deep guard example one can see

that GS

1

will contain any store stronger than c

for A and stronger than e for B, and the expected

stores for tell(d). We then get (;;�;A) 2 GS

2

i�

� ` c ^ e or � 6` e. (;;�;B) 2 GS

2

i� � ` d ^ e or

� 6` d. And �nally GS

3

reaches the expected �xpoint:

(;;�;A) 2 GS i� � ` c ^ d ^ e or � ` c and � 6` d

or � ` c and � 6` e. (;;�;B) 2 GS

2

i� � ` d ^ e or

� 6` d.

A :: B ! tell(c) B :: A ! tell(c)

In this non-strati�ed deep guard example one can

see that GS

1

will contain any store stronger than c for

A and B, thus GS

2

is K again and we get GS = GS

1

.

This de�nes �! such that (;; d;A) �!

�

(;; d; �) if

d ` c and (;; d;A) �!

�

(;;False; �) otherwise.

18

JD:tell(c)K(e)� = f� ^ cg

JD:8~x(A! B)K(e)� =

[

f

~

t j �2JD:A[

~

t=~x]K(e)�g

JD:B(

~

t=~x)K(e)�

JD:A k BK(e)� =

[

�

0

2�

JD:AK(e)�

0

\ JD:BK(e)�

0

where � = �	�

and 	(f)� = JAK

ts

(e)f(�) ^ JD:BK

ts

(e)f(�)

J9xAK(e)� = 9

x

JD:AK(e)�

JD:A+BK(e)� = JD:AK(e)� [JD:BK(e)�

JD:p(~x)K(e)� = �	 where 	(f) = JD n fpg:AK(eff=pg)�

JD:p(~x)K(e)� = e(p) if p 62 D

JD:tell(c)K

ts

(e)� = f� ^ cg

JD:8~x(A! B)K

ts

(e)� =

[

~

t

(C n JD:A[

~

t=~x]K

ts

) \ JD:B(

~

t=~x)K

ts

(e)�

JD:A k BK

ts

(e)� = JD:AK

ts

(e)� \ JD:BK

ts

(e)�

J9xAK

ts

(e)� = 9

x

JD:AK

ts

(e)�

JD:A+BK

ts

(e)� = JD:AK

ts

(e)� [JD:BK

ts

(e)�

JD:p(~x)K

ts

(e)� = �	 where 	(f)� = JD n fpg:AK

ts

(eff=pg)�

JD:p(~x)K

ts

(e)� = e(p) if p 62 D

Table 3: CC(FD) denotational semantics for successes and terminal stores.

Linear Tell (~x; c; tell(d);�) �!

LCC

(~x; c
 d; �)

Linear Ask

c `

C

d
 e[

~

t=~y]

(~x; c; 8~y(e! A);�) �!

LCC

(~x; d;A[

~

t=~y];�)

Table 4: Linear tell and ask

19

Tell (~x; c; tell(d);�) �!

GS

(~x; c^ d; �)

Ask

(~x; c;A[

~

t=~y]) 2 GS

(~x; c; 8~y(A! B);�) �!

GS

(~x; c;B[

~

t=~y];�)

Procedure calls

[p(~y) :: A]

�

2 D

(~x; c; p(~y);�) �!

GS

(~x; c;A;�)

�

(~x; c; �) � (~x

0

; c

0

; �

0

) �!

GS

(~y

0

; d

0

;�

0

) � (~y; d;�)

(~x; c; �) �!

GS

(~y; d;�)

Blind choice (~x; c;A+ B;�) �!

GS

(~x; c;A;�)

(~x; c;A+ B;�) �!

GS

(~x; c;B;�)

Table 5: CC

ts

(FD) transition relation relative to a guard success set GS.

GS

0

= K

GS

i

= f(~x; c;A) j (~x; c;A) �!

�

GS

i�1

(~y; d; �) Y�!

GS

i�1

and S ` 9~xc, 9~ydg

GS =

S

i�0

GS

2i+1

GF =

S

i�0

GS

2i

�! = �!

GS

[f(~x; c; 8~y(A! B);�) �! (;;False; �) j 9

~

t (~x; c;A[

~

t=~y]) 2 GS [GFg

Table 6: Inductive de�nition of the transition relation for CC

ts

(FD) with deep guards.

20

