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Abstract

Writing parallel programs is not easy, and debugging them is usually a night-

mare. To cope with these difficulties, a structured approach to parallel programs

using skeletons and template based compiler techniques has been developed over

the past years by several researchers, including the P3L group in Pisa.

This approach is based on the use of a set of primitives that are just functionals

implemented via templates exploiting the underlying parallelism, so it is natural

to ask whether marrying a real functional language like Ocaml with the P3L

skeletons can be the basis of a powerful parallel programming environment.

We show that this is the case: our prototype, written entirely in Ocaml using

a limited form of closure passing, allows a very simple and clean programming

style, shows real speed-up over a network of workstations and, as an added

fundamental bonus, allows logical debugging of a user parallel program in a

sequential framework without changing the user code.

Résumé

L’ écriture de programmes parallèles est difficile, et leur mise à point est

souvent un cauchemar. Pour pallier à ces difficultés, dans les dernières années

différents groupes de recherche, dont celui de Pisa, ont developpé un approche

structuré à la programmation parallèle qui se base sur des “squelettes” et des

“modèles” de compilation.

Au coeur de cette approche on trouve un ensemble de primitives (les “squelettes”)

qui sont des vraies fonctions de rang deux, implementèes par des modèles de com-

pilation qui utilisent le parallèlisme de la machine sousjacente. Il est donc naturel

de se demander si le fait de fusionner les squelettes P3L avec un vrai langage

de programamtion fonctionnel comme Ocaml peut fournir un environnement de

developpement parallel avantageux.

Nous montrons ici que c’est bien le cas: notre prototype, écrit entièrement

en Ocaml en utilisant une forme simple de transmission de fermetures sur des

canaux, permet un style de programmation homogène, simple et élegant, exhibe

un vrai speed-up sur un réseau de stations de travail et, en plus, permet la mise à

point du code dans un environnement sequentiel, sans modifications du code écrit

par l’utilisateur.



1 Introduction and Overview

Skeleton based parallel programming models [5, 6, 7, 1] provide to the user/programmer

a set of skeletons, i.e. of second order functionals modeling common parallelism ex-

ploitation patterns. The programmer must use the skeletons to give parallel structure

to his/her application and he/she uses a plain sequential language to express the se-

quential portions of the parallel application as parameters to the skeletons. He/she has

no other way to express parallel activities but skeletons: no explicit process creation,

scheduling, termination, no communication primitives, no shared memory, no notion

of being executing a program onto a parallel architecture at all. All these details relative

to parallel execution are actually dealt with by the skeleton compiler and/or run time

system.

Objective Caml [13] (abbreviated ocaml in the sequel) is a functional language

from the ML family [15]. It supports functions as first-class values: not only code

pointers, but full mathematical functions, which may contain free variables. It is not

a purely functional language, in that it is also equipped with full imperative power,

in particular arrays modifiable in-place. This combination of features makes it well

adapted to skeleton-based programming: skeletons are naturally higher-order functions

(functions taking user-provided functions as arguments), while the sequential parts of

the program are naturally written in the imperative style. Other useful features of

ocaml include a powerful module system, allowing several implementations of the

skeletons to be substituted for one another without recompiling the user code, and a

built-in marshaler, allowing transmission of arbitrary data structures over byte streams,

based on the same structural information used by the ocaml garbage collector.

OcamlP3l is a programming environment that allows to write parallel programs

in ocaml according to the skeleton model supported by the parallel language p3l1,

provides seamless integration of parallel programming and functional programming

and advanced features like sequential logical debugging (i.e. functional debugging of

a parallel program via execution of the parallel code onto a sequential machine) of

parallel programs and strong typing, useful both in teaching parallel programming and

in building full-scale applications2.

In this paper, we will first clearly state the goals of our system design, then briefly

1See URL http://www.di.unipi.it/∼susanna/p3l.html
2In http://qui.di.unipi.it/ocamlp3l.html you will find relevant information, up to

date references, documentation, examples, distribution code and dynamic web pages showcasing the

OcamlP3l features.
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recall the basic notions of the skeleton model for structured parallel programming,

providing an informal parallel semantics as well as a formal sequential semantics. It

will be then time to describe how we achieved our goals using to our advantage the

flexibility of the Ocaml system, and we will conclude with some examples showcasing

the power and flexibility of our approach.

1.1 The system design goals

The main goal of the project was to test the possibility to integrate parallel programming

in a functional language using the skeleton model: after all, as we will briefly see later,

skeletons are just functions, so a functional language should provide the natural setting

for them. We also wanted to preserve the elegance and flexibility of the functional

model, and the strong type system that comes with Ocaml. These goals have been

achieved.

However, during the implementation of the system, it turned out that we could get

more than that: in our implementation, the sequential semantics that is traditionally

used to describe the functional behavior of the skeletons could actually be used to

provide an elementary library allowing to execute the user code in a sequential mode,

exactly as it is. This is a major advantage of the approach: in our system, the user can

easily debug the logic of his/her program running it with the sequential semantics on a

sequential machine using all the traditional techniques (including tracing and step by

step execution which are of no practical use on parallel systems), and when the program

is logically correct he/she is guaranteed (assuming the runtime we provide is correct) to

obtain a correct parallel execution. This is definitely not the case of programs written

using a sequential language and directly calling communication libraries/primitives

such as the Unix socket interface or the MPI or PVM libraries, as the logic of the

program is inextricably intermingled with low level information on data exchange and

process handling.

Following this same idea (no changes to the user code, only different semantics for

the very same skeletons), we also provided a “graphical semantics” that produces as a

result of the execution of the user program a picture of the process network used during

the parallel execution of the user program.

Finally, we wanted a simple way to generate from the user source code the various

executables to be run on the different nodes of a parallel machine: here the high level

of abstraction provided by functional programming, coupled with the ability to send

closures over a channel among copies of the same program provided the key to an
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elementary and robust runtime system that consists of a very limited number of lines

of code.

But let’s first of all introduce the skeleton model.

1.2 The skeleton model and P3L

The skeleton parallel programming model supports structured parallel programming

[5, 7, 6]. Using this model, the parallel structure/behavior of an application has to be

expressed by using skeletons picked up from of a set of predefined ones, possibly in

a nested way. Each skeleton models a typical pattern of parallel computation and it

is parametric in the computation performed in parallel. Skeletons can be understood

as second order functionals that model the parallel computation coming out from the

application of a given parallelism exploitation pattern to the parameter functions. As

an example, pipeline and farm have been often considered to be in the skeleton set. A

pipeline models the execution of a number of computations (stages) in cascade over

the input data items. Therefore, the pipeline skeleton models all those computations

where the function f(x) to be computed can be decomposed as a cascade of functions

fn(fn−1(. . . (f2(f1(x))) . . .)) and the computation of fi onto different data items (either

belonging to the input data (in case i = 1), or being the result of a previously evaluated

fi−1) takes place in parallel. A farm models the execution of a given function in parallel

over a number of data items provided in input. Therefore the farm models all those

computations where the same function f(x) has to be computed over n input data items

in parallel.

Using the skeletons, the choice of the form of parallelism to be exploited is com-

pletely in charge of the programmer, while the efficient exploitation of the skeleton

structure of any applications is partially or completely in charge of either the run

time support or the compiler. This means, for instance, that a programmer has no

responsibility in deriving code for creating parallel processes, mapping and schedul-

ing processes on target hardware, establishing communication frameworks (channels,

shared memory locations, etc.) or performing actual interprocess communications.

In some cases, the compiler/run time environment also computes some parameters

such as the parallelism degree or the communication grain needed to optimize the

execution of the skeleton program onto the target hardware [2].

The skeletons we consider in this paper are basically of two kinds:

• control parallel skeletons, modeling parallelism exploited between processing

activities relative to different input data. In this set we have: seq (cf. 1.4.1),
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pipe (cf. 1.4.2), farm (cf. 1.4.3), loop (cf. 1.4.4). Such skeletons correspond to

the usual control parallel skeletons appearing both in p3l and in other skeleton

models [5, 7].

• data parallel skeletons, modeling parallelism exploited between processing ac-

tivities relative to parts of the same input data. In this set, we provide map

(cf. 1.4.6) and reduce (cf. 1.4.5). In the current release, these skeletons are not as

powerful as the corresponding skeletons of p3l; instead, they closely correspond

to the map and reduce functionals of the Bird-Meertens formalism discussed in

[3].

As an example, let us suppose a programmer wants to write an application whose

behavior is clearly divided in two consecutive phases (stages). Therefore, he/she finds

that the pipeline is the proper skeleton modeling this “two phase” behavior, and builds

an OcamlP3l program whose parallel structure (in terms of skeletons) is the following:

pipe

stage1

stage2

Let us also suppose the programmer recognizes that the first stage is computationally

intensive (and corresponds to the function f), but it cannot be further decomposed using

the available skeletons, and that the second stage actually first applies an operation to

all the elements of a (vector) data structure (the function g) and then “sums” up the

results by using an associative and commutative operator h.

By looking at the available skeletons and at their semantics, the programmer un-

derstands that the farm skeleton is useful to enhance the parallelism in the computation

of the “heavy” function f , as well as the map and the reduce skeletons exactly model

the behavior of the second stage. The map skeleton models the parallel application

of a generic function f to all the items of a vector data structure, whereas the reduce

skeleton models the parallel computation folding a generic function f over the items

of a vector data structure.

Therefore the programmer may refine the skeleton structure of his/her application

by using the following skeletons:
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pipe

farm

pipe

map

reduce

g

h

f stage1

stage2

The first stage has been “farmed out” in such a way that it can process input data

exploiting control parallelism, whereas in the second stage further (data) parallelism

has been introduced by introducing the pipeline of a map and a reduce skeletons.

These two "application outlines" (skeleton structures) correspond to the following

(incomplete) OcamlP3l code:

1. let stage1 x = ... ;;

let stage2 x = ... ;;|

let prog () = seq(stage1) ||| seq(stage2);;

2. let f x = ... ;; let g x = ... ;; let h x = ... ;;

let prog () =

seq(farm(seq f),3) ||| (map((seq g),5) ||| reduce(seq h));;

(In the code, the integer parameters to farm and map functions represent the paral-

lelism degree the user requires for the implementation of those skeletons) Section 2.2

will explain how you can develop OcamlP3l programs.

Currently, the user is supposed to explicitly give the number of processors to be

used in each farm and map skeleton. In other words, the choice of the parallelism

degree of such skeletons is up to the programmer. It is foreseeable in a future release

to ask the system to guess optimal values depending on available resources (following

the approach of p3l [2]), but we avoided such complication for the time being.

Applications with a parallel structure given by skeletons (such as the one outlined

above) can be implemented by using implementation templates [16]. An implementa-

tion template is a known, parametric way of exploiting the kind of parallelism modeled

by a skeleton onto a particular target architecture. As an example, a template corre-

sponding to the map skeleton will take some input vector data, it will split the data into

chunks holding one or more data items of the vector, schedule them to a set of “worker”

processes computing the map function f and, finally, collect the results and rebuild

the output vector data structure. All of these operations will be performed by some

processes, using either communications or shared memory for data communication.

Such a template must, as its primary goal, implement in an efficient way the map

skeleton and therefore:
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• it must work with any kind of map function f , i.e. must be parametric with

respect to the input and output data types (’a and ’b, in case the function f has

type ’a→ ’b)

• it must support any reasonable parallelism degree, i.e. it must work (and provide

effective parallelism exploitation) when executed on an arbitrary number of

processing elements.

Although this feature is not currently exploited in the OcamlP3l prototype, im-

plementation templates come in most cases with an associated analytical performance

model able to compute the expected performance of a template once some parameters

are known (both machine dependent ones, such as the communication latency and

bandwidth, and user code dependent, such as the average time spent in computing user

defined (sequential) functions) [18].

In the general case, such models take the amount of processing resources used as a

parameter. Therefore, they can be used by the skeleton language compiler or run time

support to devise the proper values (i.e. those maximizing the speedup) for parameters

such as the parallelism degree of a farm 3.

1.3 The skeletons in OcamlP3l: sequential semantics

We define the sequential semantics of the OcamlP3l skeletons in terms of the interpreter

computing the functional results of an OcamlP3l program using the skeletons. We

assume that a program always begins with a special form startstop corresponding

to the closure of the process network via a start and a stop node which respectively

generate and absorb the data flow of information on the network (i.e. “generate”

(possibly by reading a file) the data items that have to be processed and “display”

(possibly by writing to a file) the data items output by the skeleton process network).

The start and stop processes also take care of computing initialization functions

(on the input data stream, start, and output data stream, stop side) as well as

termination functions (at the output data stream side).

3Currently, the user is supposed to explicitly give the “proper” values for these parameters. We leave

as future work the integration of suitable performance models for the implementation templates used

within OcamlP3l, in such a way that these computations could be performed by the OcamlP3l runtime

system.
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write/consume
output stream
data items
(type ’b)

skeleton program

(’a stream -> ’b stream)

’a stream ’b stream

start process stop process

read/generate
input stream
data items
(type ’a)

This assumption allows us to give the other skeletons a very simple semantics which

describes how they act on a single data item, and not on the stream of items flowing

through it during the execution: all the stream behavior is really concentrated in the

startstop combinator, which simulates the stream of data by repeatedly iterating

the semantics of the network on the items generated by the start node and passing

the results to the stop node.

Hence, even if we will often describe the skeletons as operators over ’a stream,

in our current implementation we will be allowed to assume ’a stream to be just

’a.

Here a formal sequential semantics for the skeletons follows, expressed in ocaml

syntax.

let seq(f) = f;;

let farm (f,n) = f;;

let (|||) f g = fun x -> g (f x);;

let rec loop(c,f) = function x ->

let r = f x in if c r then loop (c,f) r else r ;;

let mapvector (f,n) = (Array.map f);;

let reducevector (f,n) v =

let rec reduce accu idx =

if idx >= Array.length v

then accu

else reduce (f(accu,v.(idx))) (idx+1)

in reduce v.(0) 1;;

let startstop (f1,init1) (f2,init2,finalize) expr =

init1();init2();

try

while true do f2(expr (f1 ())) done

with End_of_file -> finalize();;
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1.4 The skeletons in OcamlP3l: informal parallel semantics

Here we briefly give an informal semantics of the skeletons when executed with the

parallel library of OcamlP3l.

1.4.1 seq

Functionally seq f has type ′a stream →
′b stream provided that the function f has

type ′a →
′b: it is this skeleton that converts a usual sequential function into a process

of the parallel network described by the skeleton structure.

1.4.2 pipe

Functionally, pipe f1 . . . fn has type ′a0 stream →
′an streamprovided that the skele-

tonsf1 . . . fn respectively have type ′a0 stream →
′a1 stream, ′a1 stream→

′a2 stream,· · · ,
′an−1 stream →

′an stream Given the input stream xm : ... : x1 : x0, the n-stage

pipe f1 ||| f2 ||| ... ||| fn computes the output stream

fn(...(f2(f1 xm))...) : ... : fn(...(f2(f1x1))...) : fn(...(f2(f1 x0))...)

In terms of (parallel) processes, a sequence of data appearing onto the input stream of

a pipe is submitted to the first pipeline stage. This stage computes the function f1 onto

every data item appearing onto the input stream. Each output data item computed by

the first stage is submitted to the second stage, computing the function f2 and so on

until the output of the n − 1 stage is submitted to the last stage. Eventually, the last

stage delivers its own output onto the pipeline output channel. The resulting process

network looks like the following:
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���

���
���
���
���
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���

������ ���������������� ������ ������

Input data Output data 

f2 fnf1

stage1 stage2 stagen

where the circles represent processes and the arrows represent communication channels.

1.4.3 farm

Functionally farm f has type ′a stream →
′b stream provided that the skeleton f

has type ′a stream →
′b stream.
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Given the input stream xm : ... : x1 : x0 the farmfarm(f,n) computes the output

stream f(xm) : ... : f(x1) : f(x0) by using n worker processes.

In terms of (parallel) processes, a sequence of data appearing onto the input stream

of a farm is submitted to a set of worker processes. Each worker process applies the

same function to the data items received and delivers the result onto the output stream.

The resulting process network looks like the following:
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Emitter

Collector

Worker processes

Output data 

Input data 

The emitter process takes care of task-to-worker scheduling (possibly taking into

account some load balancing strategies), while the collector process takes care of

reordering the output data items with respect to the input ordering and of delivering

them onto the output data stream.

1.4.4 loop

Functionally, a loop has type ′a stream →
′a stream provided that the skeleton f

has type ′a stream →
′a stream and the function g has type ′a → bool.

Every data item x appearing onto the input stream is processed by a function f.

The result is processed by using another (boolean function) g. If the result of g(f x) is

true, then (f x) is submitted again to the loop input, otherwise, (f x) is delivered onto

the output stream.

Given the input stream xm : ... : x1 : x0 the loop loop(g,f) computes the output

stream f(f(f...(f xm)...)) : ... : f(f...(f x0)...), where the number of times f is

computed onto each stream item depends on the number of times the function g

computed onto the same data holds true.

In terms of (parallel) processes, a sequence of data appearing onto the input stream

of a loop is submitted to a loop-in stage. This stage just merges data coming from

the input channel and from the feedback channel and delivers them to the loop-body

stage. The loop-body stage computes f and delivers results to the loop-end stage.

This latter stage computes g and either delivers (f x) onto the output channel (in case

(g(fx)) turns out to be true) or it delivers the value to the loop-in process along
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the feedback channel ((g(fx)) = false). The resulting process network looks like

the following:
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f g

loop in loop out

1.4.5 reduce

Functionally, reduce g has type ′a array stream →
′a stream provided that the

skeleton g has type ′a stream →
′a stream →

′a stream.

Given the input stream xn : ... : x1 : x0 the reduce reduce(g) computes the output

stream (fold g xn) : ... : (fold g x1) : (fold g x0) where we have

let rec fold g = function

[x] -> x

| x::rx -> g(x (fold g rx));;

In terms of (parallel) processes, a vector data item appearing onto the input stream

of a map is processed by a logical tree of processes. Each one of the processes is able

to compute the function g. The resulting process network looks like the following tree:

g
emitter

worker processes

input data output data

In this case, the emitter process is the one delivering either couples of input vector data

items or couples of sub-vectors of the input vector to the processes belonging to the

tree base. In the former case, log(n) levels of processes are needed in the tree, in the

latter one, any number of process levels can be used, and the number of sub-vectors to

be produced by the emitter can be devised consequently.
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1.4.6 map

Functionally, map f has type ′a array stream →
′b vector stream provided that the

skeleton f has type ′a stream →
′b stream.

Given the input stream xm : ... : x1 : x0 the map map(f,n) computes the output

stream (Array.map f xm) : ... : (Array.map f x1) : (Array.map f x0) by using n

worker processes.

In terms of (parallel) processes, a vector data item appearing onto the input stream

of a map is split in components and each component is submitted to one worker

computing f . Each worker process applies the same function to the data items received

and delivers the result onto the output stream. The resulting process network looks

like the one of the farm shown above. In this case, however, for every data item

[|x1;...;xm|] appearing onto the emitter input data stream, the emitter may take

different choices relative to data splitting/worker scheduling. As an example:

• it may round robin each xi to the workers ({w1,...wn}). The workers in this

case simply compute the function f :′ a →
′ b over all the elements appearing

onto their input stream (channel).

• it may split the input data vector in exactly n sub-vectors to be delivered one

to each one of the worker processes. The workers in this case compute an

(Array.mapf) over all the elements appearing onto their input stream (channel).

The emitter process takes care of (sub)task-to-worker scheduling (possibly imple-

menting some kind of load balancing policy). The collector process takes care of

rebuilding the vector with the output data items and of delivering the new vector onto

the output data stream. The resulting process network looks like the one for farm, but

here the emitter (and collector) which respectively splits incoming arrays into smaller

packets, dispatches them to the workers and then recomposes data into outgoing arrays.

1.4.7 startstop

Althoughstartstop is not a skeleton,here we discuss its informal parallel semantics,

which is needed in order to understand how OcamlP3l are actually executed.

Functionally, startstop has type (unit →′ a)∗ (unit→′ b) → (′c →′ d)∗ (unit →′

e) ∗ (unit → unit) → (′a →
′ c) → unit where (unit →′ a) is the type of a function

generating the data items of the input data stream of the whole skeleton program,

(′c →′ d) is the type of the function “consuming” (e.g. displaying to screen, writing to
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files) the data items of the output stream of the whole skeleton program, (unit →′ b)

and (unit →′ e) are the types of the initialization functions at the start side and at

the stop side, respectively, (unit → unit) is the type of the finalization (termination)

function computed at the stop side, and finally (′a →
′ c) is the type of the skeleton

program (expression) we want to execute.

init1()

f1()
...
f1()

skeleton expression

expr
...

expr
f2(expr(x))

f2(expr(x))

...

finalize()

ti
m

e init2()

start stop

In terms of (parallel) processes, two processes are executed, beyond the ones

belonging to the skeleton program: the first one, the start process, executes an

initialization function, then starts executing a user supplied function that produces the

data items of the input data stream. The second one, the stop process, executes an

initialization function, then starts receiving and processing the output stream data items

according to a user supplied function.

2 The skeleton syntax in OcamlP3l

We are now in a position to introduce the syntax we choose for writing OcamlP3l

programs.

2.1 Skeleton syntax

Skeletons are denoted as functions:

• farm is denoted by a binary function farm whose first argument is the skeleton

expression computed by the farm workers and whose second argument is the

number of workers that have to be included in the farm.

• pipe is denoted by the binary infix operator |||.
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• map is denoted by a binary function mapvector whose first argument is the

skeleton expression computed by the map workers and whose second argument

is the number of workers that have to be included in the map.

• reduce is denoted by the binary function reducevectorwhose first argument

is the skeleton expression denoting the associative and commutative binary func-

tion that has to be computed by the reduce workers and whose second argument

is the number of workers that have to be included in the reduce logical tree.

2.2 Structure of a program

An OcamlP3l program is syntactically built out of the following items:

• the open directives needed to compile and run the program. The OcamlP3l-

specific directives are the following ones:

– open Seqp3l;;

in case you want sequential execution

– open Parp3l;;

open Nodecode;;

open Template;;

in case you want parallel execution

– open Graphp3l;;

in case you want the graph of the process network

Note that these include directives are the only things you need to change in order

to run the skeleton code sequentially or in parallel.

• the sequential ocaml code defining the functions/data used within the skeleton

code.

• a function that, when applied to the unit element (), computes a legal skeleton

expression, i.e. an expression built out of sequential code and skeleton combina-

tors; the skeleton expression must be enclosed in a startstop combinator.

• a pardo expression applied to the function computing the legal skeleton expres-

sion. The goal of the pardo expression is to evaluate the skeleton expression, in

parallel or sequentially or graphically, according to the modules opened. Since
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in the parallel evaluation the pardo expression is executed by all the nodes par-

ticipating in the computation, it is necessary to ensure that only the root node

performs the actual parsing/mapping/optimization/allocation work hidden be-

hind the skeleton expression. This can be achieved by evaluating the skeleton

expression lazily, which can be easily done here by the usual “freeze/thaw” trick:

pardo takes not the expression directly, but a function that encapsulates the ex-

pression, which is thus “frozen” and can be either “thawn” and executed in the

root node, or thrown away without execution on the other nodes.

2.2.1 An example

Suppose we want to write a parallel OcamlP3l application plotting the Mandelbrot set.

First of all, we will write code that produces the color of a pixel in the plane, provided

the resolution, the plane coordinates and the position of the pixel are provided. The

following functions computes the color of a pixel and the color of a whole row of

pixels:

let color_pixel (x0,y0,x1,y1) n res i j =

let dx = (x1-.x0)/.(float n) and dy = (y1-.y0)/.(float n) in

let zr = ref (y0 +. (dy *. (float i)))

and zi = ref (x0 +. (dx *. (float j))) in

let cr = ref (!zr)

and ci = ref (!zi) and col= ref 0

and comp_col c res = Pervasives.truncate

(((float c)/.(float res))*.(float Graphics.white)) in

begin

for k=0 to (res-1) do

if(!zr *. !zr +. !zi *. !zi <= 4.0)

then begin

zi := 2.0 *. !zr *. !zi *. !ci;

zr := !zr *. !zr -. !zi *. !zi +. !cr;

col:= k

end

done; (comp_col !col)

end;;

let plot_mandel_row (x0,y0,x1,y1) n res j =

let line = Array.create n black in

for k = 0 to n - 1 do

14



line.(k) <- (color_pixel (x0,y0,x1,y1) n res k j) res

done; (j, line);;

Now, in order to compute in parallel the rows that have to be plotted on the screen,

we can set up a function generating a stream of rows to be plotted. The row data type

will include plane coordinates as well as resolution and row index:

let gen_tasks (x0,y0,x1,y1) n res =

let rec gen_tasks0 (x0,y0,x1,y1) n res k =

if(k=(n-1)) then []

else (k,(x0,y0,x1,y1),n,res)

::(gen_tasks0 (x0,y0,x1,y1) n res (k+1))

in gen_tasks0 (x0,y0,x1,y1) n res 0;;

let start =

(* ok: these are just constants drawing a nice picture ... *)

let tasks = ref (gen_tasks (0.704,0.704,0.709,0.709) 500 500)

in function () ->

match !tasks with

(t0::rest) -> (tasks := rest; t0)

| [] -> print_string "Hit return to finish";

print_newline();

let _ = read_line() in raise End_of_file;;

The gen tasks function generates a list of tasks to be computed. Each task represent

a row of pixels that have to be coloured. start return one of these rows at a time

and it is actually used to generate the input stream. The idea is to use such a stream

to feed a farm skeleton, where each worker actually computes the colors that have

to be displayed onto a given row. The following code sets up the farm skeleton

stuff, including the functions used to initialise the start and stop node (start

and stopfinit) and the function called at the stop node when the computation

terminates (stopfinalize):

let compute_a_line (row,interval,n,res) =

(plot_mandel_row interval n res row);;

let display_a_line (j,col) =

draw_image (make_image [| col |]) 0 j;;

let start =

let tasks = ref (gen_tasks (0.704,0.704,0.709,0.709) 500 500)
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in function () ->

match !tasks with

(t0::rest) -> (tasks := rest; t0)

| [] -> print_string "Hit return to finish";

print_newline();

let _ = read_line() in raise End_of_file;;

let stopinitf() = print_string "opening...";

print_newline();open_graph " 500x500";;

let stopfinalize() = Unix.sleep 30;

print_string "finishing... type ENTER to close down";

print_newline(); let _ = read_line() in ();;

let mandelexpr () =

startstop

(start,fun()->())

(display_a_line,stopinitf,stopfinalize)

(farm(seq(compute_a_line),10))

in pardo mandelexpr;;

All these functions may be grouped into a file (mandel3.ml, say) starting with

the usual includes:

open Graphics;;

open Seqp3l;;

and compiled with the command:

ocamlc -custom graphics.cma seqp3l.ml -o mandel3.seq mandel3.ml

-cclib -lgraphics -cclib -L/usr/X11R6/lib -cclib -lX11

in order to get the sequential executable. Note that most of the libraries have to be

linked just because we use the Graphics ocaml library.

In case we want to generate the parallel executable, we change the include line

open Seqp3l;;

to

open Parp3l;;

open Nodecode;;

open Template;;
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and we simply compile again with the command:

ocamlc -custom unix.cma graphics.cma p3lpar.cma -o mandel3.par

mandel3.ml -cclib -lunix -cclib -lgraphics

-cclib -L/usr/X11R6/lib -cclib -lX11

and we get the parallel code mandel3.par. Now, in order to run the sequential code

we simply have to issue the command:

mandel3.seq

whereas in order to run the parallel code we must first issue a:

rsh wsX.my.domain.edu:mandel3.par

command for each one of the workstations (wsXwithin the domainmy.domain.edu)

we want to use (provided the mandel3.par code is accessible via NFS, overwise we

must rcp it explicitly), and then issue the command:

mandel3.par p3lroot ws1.my.domain.edu ... wsN.my.domain.edu

The overall application shows a linear speedup on a small number of workstations

(i.e. on a small number of worker processes in the farm), due to the fact that each

row of the picture takes a long time to be computed. By simultaneously launching the

sequential Mandelbrot code (the one exploiting the sequential skeleton semantics) on

a machine and the parallel one (the one exploiting the parallel skeleton semantics) on

a cluster of workstation the result will look like the following:
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The left graphic display is the one coming out from the parallel execution, while

the right one is the one coming from the sequential code. Sequential and parallel code

only differ for the semantic file include and have been started at the same time4.

One can then look at the performance, i.e. consider the number of workstations

used and the time spent in the computation, and consider if it is the case to vary either

the number of workers appearing in the farm skeleton within the code or the number

of workstations used for executing the parallel code.

In so doing, it is often useful to look at the application process network by linking

the graphical skeleton semantics via a open GrafP3l;; statement. For example,

for the above program the output will be the following (we specified 10 workers in the

farm):

Now, one can ask the following question: as we are actually plotting something

which is a logical vector of lines, why can’t we use a map skeleton instead of the farm

one?

Well in this case we must modify our program in such a way that:

• start delivers a stream of row vector, instead of delivering single row data

structures,

• the stop node displays whole picture instead of displaying rows of a picture,

• skeleton code uses a mapvector call instead of a farm one.

This can be done by simply modifying our previous code as follows:

let gen_tasks interval n res =

let tasks = Array.create n (0, interval, n, res) in

for i = 0 to (n - 1) do

4We can notice that the left display gets filled much faster than the right one. By performing precise

time profile activity, we found a linear speedup of the parallel code with respect to the sequential one

when using up to 4 workstations.
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Array.set tasks i (i,interval,n,res)

done; [tasks];;

let display_image img =

for i = 0 to (Array.length img)-1 do

let (j,col) = img.(i) in

draw_image (make_image [| col |]) 0 j

done;;

let mandelexpr () =

startstop

(start,fun()->())

(display_image,stopinitf,stopfinalize)

(mapvector(seq(compute_a_line),10)) in

pardo mandelexpr;;

By moving from the farm code to the mapvector code, we actually changed

the kind of parallelism exploited in the Mandelbrot picture computation: in the former

case, we artificially built a stream of “rows” to be plotted and we exploited control

parallelism between the computation of each row, whereas in second case we just built

the vector of rows and exploited data parallelism in the computation of the whole

picture5.

An idea of the effect of varying the number of workers included in a skeleton with

respect to varying the number of processing elements used (i.e. of the performance

tuning activity a programmer must perform using the current version of OcamlP3l) is

given in the following pictures. Here, we plotted the time spent in computing eight

different views of the Mandelbrot set, by using the map version of the program just

outlined above.

5At the risk of repeating ourselves, we would like to draw again here the reader’s attention to the fact

that such an apparently elementary modification would require a huge amount of work on a program

written in, say, C plus MPI calls.

19



15

20

25

30

35

40

45

50

55

60

1 2 3 4 5 6

C
o

m
p

le
ti
o

n
 t

im
e

 (
s
e

c
s
.)

Number of workstations

’map3worker.dat’
’map4worker.dat’
’map5worker.dat’
’map7worker.dat’

’map10worker.dat’

15

20

25

30

35

40

45

2 4 6 8 10

C
o

m
p

le
ti
o

n
 t

im
e

 (
s
e

c
s
.)

Number of map workers

’map5pe.dat’
’map3pe.dat’

The left picture shows the completion time of the mandelbrot program with respect to

the number of processing elements (workstations, actually) we used to run the program.

Different plot lines refer to mandelbrot programs specifying different parallelism degree

in the map skeleton. E.g. map3worker.dat plot refers to an instance of the

Mandelbrot program where mandelexpr is defined as:

let mandelexpr () =

startstop

(start,fun()->())

(display_image,stopinitf,stopfinalize)

(mapvector(seq(compute_a_line),3)) in

pardo mandelexpr;;

whereas map10worker.dat plot refers to an instance of the Mandelbrot program

where mandelexpr is defined as:

let mandelexpr () =

startstop

(start,fun()->())

(display_image,stopinitf,stopfinalize)

(mapvector(seq(compute_a_line),10)) in

pardo mandelexpr;;

The right picture shows the effect of varying the amount of workstations used to

execute the Mandelbrot program. In particular, the map5pe.dat plot refers to usage

of 5 workstations and the map3pe.dat plot refers to the usage of 3 workstations.

The program compiled by using the sequential semantics took something like 84.60

secs to complete on a 120 MHz Pentium PC LINUX machine, while it took just 37.41
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secs on a 200 MHz Pentium Pro machine (in both cases we used bytecode compilation,

not the one producing native code). The measures have been taken using PCs during

normal user activity, i.e. when other programs and daemons where running over the

PCs. By looking at the time plot, we see that in general, the best results are achieved

when a number of workers in the map is chosen such that it is slightly higher than the

number of processing elements used. This because different processes belonging to

the implementation template process network can be mapped onto the same machine.

The resulting “parallelism excess” helps hiding the communication latencies that are

particularly high when using Unix sockets.

3 Implementing OcamlP3l

Now, let us point out the peculiar features relative to the implementation of OcamlP3l.

First, we will discuss the mechanism used to implement different processes onto

different nodes, by exploiting a particular form of “closure communication”. Then,

we will point out some details relative to the interprocess communication layer and

we will motivate the choice of the Unix sockets as the OcamlP3l communication

layer. Finally, we will discuss some details of the templates we used to implement the

skeletons provided by OcamlP3l.

3.1 Closure passing as distributed higher order parameterization

A sequential implementation of an OcamlP3l program is quite easy to provide: just

use a library seqp3l.ml containing precisely the definitions given in section 1.36.

The type safety is a direct consequence of the fact that we are not using here anything

from outside the safe core of Ocaml.

Similarly, providing the graphical semantics poses no real challenge.

But what about the parallel semantics? What is the right way to implement such

a thing? We must guarantee the type safety and ensure that the runtime is reasonably

small as to allow the verification of its properties, which will become an important point

in industrial applications. Both points posed problems which we overcame during the

development of the system.

First of all, to ensure that the system is manageable and safe, we immediately

discarded the approach based on parsing the source file to extract the code corresponding

6Indeed, that is the actual code in the system.
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to each node of the network: this would impose to use external tools to perform an

analysis of the user code which is difficult, error prone, and whose semantics would

have a very unclear status.

Instead, we choose to use an SPMD approach: all the nodes of the network will

run the same program (in a sense this is the “template process interpreter code”, as

we will see in while) , which will be the result of the compilation of the full user

code, and a control node7 will dispatch to the rest of the other nodes in the network

the parameterization information needed to specialize it to the particular function it is

really supposed to perform (start node, stop node, emitter, collector, sequential

node running a given function f , etc.).

In order to achieve this behavior, the control node performs the following tasks:

• executes the skeleton expression, which has as a consequence to build a data

structure describing the process network. From this data structure, we compute

behind the scenes the configuration information for each node in the process

network.

• executes the pardo expression: this has the following effect

– maps virtual nodes to the processor pool given on the command line,

– initializes a socket connection with all the participating nodes,

– gets the port addresses from each of them,

– sends out to each node the addresses of its connected neighbors (this step

together with the previous two provides an implementation of a centralized

deadlock free algorithm to interconnect the other nodes into the process

network specified by the skeleton expression),

– sends out to each node the specialization information that consists of the

function it must perform.

This very last task requires a sophisticated operation: sending a function (or a

closure) over a communication channel. This is usually not possible in traditional

functional programming languages, since sending an arbitrary function supposes that

we are able to find on the receiving side the code corresponding to the function name

received or that we can transfer executable code (a feature known as mobility today).

7The control node runs the same program as the others, but it is invoked by the user with a special

designating option -p3lroot.
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Now, mobility is necessary to send closures between arbitrary programs (since two

different programs have no reason to know each other’s function code), but not between

two copies of the same program: in the latter case, it suffices to send what essentially

amounts to a code pointer. Starting from version 1.06, Ocaml contain a modified

marshaling library, originary designed for the OcamlP3l system, that performs closure

sending between copies of the same program (this is checked by means of an MD5

signature of the program code). The ocaml run time system takes care of dealing with

differences in endianness and word size between communicating machines, as well as

flattening tree-shaped data structures.

On the other side, all the other nodes simply wait for a connection to come in

from the root node, then send out the address of the port they allocate to do further

communication, wait for the list of neighbors and for the specialization function, then

simply perform it until termination.

To summarize, in the implementation the possibility of sending closures allowed us

to obtain a kind of higher order distributed parameterization that kept the runtime code

to a minimum size (the source codes of the full system is less than twenty kilobytes).

3.2 Communication and process support

As far as the general mechanism of closure passing is concerned, no particular require-

ment/restrictions have been posed onto the physical communication implementation.

Even considering the fact that we need to move data between the different processes

making up the parallel implementation of an OcamlP3l program, we derived no par-

ticular constraint onto the communication layer.

Thus, at the very beginning of the OcamlP3l project, we faced the problem of

choosing a suitable communication system. We had as a goal to come out with the

maximum “portability” of OcamlP3l. Furthermore, we wanted to fully demonstrate

the feasibility of integrating the parallel skeleton world within a functional framework.

These two goals had priority over the classical “efficiency and performance” goal one

usually has to achieve when dealing with parallelism.

The result is that we have adopted the plain Unix socket world as the communication

layer. This has some (very) positive consequences on the overall OcamlP3l design:

• the socket communication support is available on any Unix systems, and it turns

out to be available even in the Windows world, even if in this case reliability is

often a problem,
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• no particular customization of the support is needed to match the OcamlP3l

features,

• the point-to-point, connection oriented, stream model provided by Unix sockets

is perfect to model data streams flowing around between the processes belonging

to the process network derived by OcamlP3l to implement the user skeleton

code,

• last but not least, there was an existing and suitable ocaml interface to Unix

system calls, including those relative to sockets.

On the down side, the adoption of Unix sockets presents an evident disadvantage

which is the low performance achieved in communications (a raw synchronization (i.e.

zero length data communication) takes several milliseconds to be performed, even in

those cases when the data transmission media turns out to be free, i.e. no collisions are

detected).

At the moment, we are considering to use in the next version of OcamlP3l a

communication layer based on an optimized communication library such as MPI [14],

as an efficient alternative to the socket communication layer, which will be nevertheless

retained for its ease of deployment, that makes it attractive for programming courses.

This will require some modifications in the template code used within OcamlP3l,

and will not necessarily completely solve the performance problems of the socket

communication layer when run on a network of computers, where most MPI libraries are

still implemented using sockets, but will allow to target real multiprocessor machines

where MPI is efficiently implementes, without touching the code. Also, we will be

able to delegate to the MPI system the administrative tasks involved in copying and

launching the programs on the different machines.

As far as the process model is concerned, we felt happy with the Unix one. All we

need is a mechanism allowing an instance of the template interpreter (the one specialized

by using the closure passing mechanism) to be run onto different workstations belonging

to a local area network. The Unix rsh mechanism matches this requirement. Note

that, as processes are generated and run on different machines just at the beginning of

the OcamlP3l program execution, any considerations about performance in rsh-ing

processing is irrelevant.

3.3 Template implementation

OcamlP3l implements each skeleton appearing in the application code by generating
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a proper instantiation of the corresponding implementation template. In OcamlP3l,

a single implementation template is provided for each one of the skeletons supported.

The implementation templates provided within the current prototype closely resemble

the ones discussed in the informal parallel semantics section (Section 1.4). Actually,

only the reduce template is slightly different, in that the tree discussed in Section 1.4

is actually implemented by a process network similar to the one discussed from the

farm, where partially evaluated data is iteratively passed back from the collector to the

emitter process.

Each template appearing in OcamlP3l:

• is parametric in the parallelism degree exploited As an example the farm template

may accommodate any positive numbers of worker processes. Currently, the

programmer must specify this parameter, which is actually taken from the second

parameter of a farm(F, n) skeleton call.

• is parametric in the function computed as the body of the skeleton For instance,

the farm skeleton accepts as a parameter the function that has to be computed by

the worker processes. This function is to be a skeleton itself. Therefore, either

it is a seq skeleton call, modeling a sequential computation or it is another

skeleton call modeling a parallel computation. In the former case, the skeleton

is implemented by a process network whose workers just perform the sequential

computation f denoted by some seq(f). In the latter case, each worker

process is itself a process network known by the emitter and collector processes

implementing the farm just as channels where data has to be delivered/fetched.

• provides a set of process templates i.e. parametric process specifications that

can be instantiated to get the real process codes building out the implementation

template process network. As an example, consider again the farm template.

The emitter process behavior can be fully specified by the data type of items that

have to be processed, by the channel from which those data items have to be

read and by the set of channels onto which the data items have to be scheduled

(written) to the worker processes, possibly with some “clever” (e.g. achieving

load balancing) scheduling strategy. Such a process can be completely specified

by providing a function

farmetempl (OutChanSel f) ic ocl
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whose first parameter provides the worker scheduling function, the second one

provides the input channel where data has to be fetched and the third one provides

the set of channels used to deliver tasks to be computed to the farm workers. The

type of such a function turns out to be

val farmetempl : (’a, ’b) Parp3l.action -> in_channel ->

out_channel list -> unit

The process template definition in the OcamlP3l code looks like the following:

let farmetempl (OutChanSel f) ic ocl =

while true do

try

let theoc = f ocl in

match (Marshal.from_channel ic) with

UserPacket(p,seqn,tl) ->

Marshal.to_channel

theoc

(UserPacket (p,seqn,Farmtag::tl))

[Marshal.Closures];

flush theoc;

| EndStream ->

List.iter

(fun x -> Marshal.to_channel

x

EndStream

[Marshal.Closures];

flush x)

ocl;

List.iter close_out ocl; close_in ic; exit 0

with End_of_file -> List.iter close_out ocl;

close_in ic

done;;

Therefore the whole compilation process transforming an OcamlP3l skeleton program

into the parallel process network implementing the program can be summarized in the

following steps:
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1. the skeleton code is parsed and transformed into a skeleton tree data structure,

recording all the significant details of the skeleton nesting supplied by the user

code,

2. the skeleton tree is traversed and processes are assigned to each skeleton accord-

ing to the implementation templates. During this phase, processes are denoted

by their input/output channels, identified via a unique number.

3. once the number and the kind of parallel processes building out the skeleton

code implementation is known, code is generated that either delivers the proper

closures, derived by using the process templates, to the “template interpreter”

instances running on distinct workstations (this happens just on one node, the

“root” one), or waits for a closure and repeatedly computes this closure on the

proper input and output channels until an EndOfFile mark is received.

4 Multivariant semantics and logical debugging

By providing modules that implement the three OcamlP3l skeleton semantics (the

sequential one, the parallel one and the graphical one), we allow the OcamlP3l user

to perform the following parallel application development process:

• develop skeleton code modeling the application at hand. This just requires a full

understanding of the skeleton sequential semantics and usually allows the user

to reuse consistent portions of existing applications written in plain ocaml.

• test the functionality of the new application by supplying relevant input data items

and looking at the results computed using the sequential skeleton semantics. In

case of problems, the user may run the sequential debugging tools to overcome

the problem.

• link the parallel skeleton semantics module and run the application onto the

workstation network. Provided that the application was sequentially correct, no

new errors will be found at this step (we assume that the run time is guaranteed

correct!).

• look at the performance results of running the application on the number of

processing nodes available and possibly adjust the significant performance pa-

rameters, such as the number of workers of the farm, map and reduce. This is
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actually the real problem in the development of an efficient parallel application.

The next version of OcamlP3l will include analytical performance models for

the templates and these models will be used to automatically instantiate the per-

formance parameters in the compiler. During this phase, the programmer may

link the graphic semantic skeleton module and look at the results of the program

execution, i.e. at the resulting process graph, in order to understand where bot-

tlenecks are or which parts of the program must be further decomposed using

skeletons in order to get better performant application code.

Let us spend now some words concerning logical, sequential debugging of OcamlP3l

appplications.

A user developing an OcamlP3l application may link the sequential skeleton

semantics module to his/her code and debug the application by using the plain sequential

debugging tools of ocaml. This debugging activity can be performed on a single

machine, provided the machine supplies ocaml.

Once the application has been debugged, i.e. the user perceives it computes the

expected results, he/she can compile the application in such a way that the parallel

code is obtained, by linking the parallel skeleton semantics. As we guarantee that

the implementation templates for the different skeletons of OcamlP3l are correct

(deadlock free, load-balanced, etc.) and as we guarantee that the process transforming

the skeleton code in the process code is correct, the user does not need to perform any

explicit activities in order to check that the results computed by the parallel code are

correct.

In particular, the user does not need to check that all the processes have been

correctly scheduled for execution, or that the communication channels have been set

up properly between these processes, or that data of type ’a has been never delivered

on channels transmitting data of type ’b. This is a very short list of bad things that

may affect the correct behavior of an explicitly parallel program, indeed. The fact that

the user is not required at all to take them into account is one of the biggest pro’s of the

functional skeleton approach.

5 Related work

Many researchers are currently working on skeletons and most of them are building

some kind of parallel implementation, but our work, as far as we know, is unique in its

combination of a fully functional strongly typed language with the skeleton approach.
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In particular, Darlington’s group at Imperial College in London is actively working

on skeletons. They have explored the problems relative to implementing a skeleton

programming system, but the approach taken uses an imperative language as the

implementation language. Currently there is a “local” prototype implementation but

no public domain implementation of their skeleton approach and they seem deeply

involved in the study of the data-parallel and coordination aspects of skeletons. [9, 8, 1]

A different approach relative to skeleton parallel programming within a functional

framework has been discussed by Bratvold [4]. Bratvold takes into account plain ML

programs and looks for skeletons within them, compiling these skeletons by using

process networks that look like implementation templates. However, both the final

target language and the implementation language are imperative.

Finally, Serot [17], presents an embedding of skeletons within ocaml that seems

to be close to our work, although independently developed. The message passing

is performed by interfacing the MPI library with ocaml. The skeletons taken into

account are different. She considers data-parallel farm, roughly corresponding to

our mapvector skeleton, and two further skeletons, scm and filt. filt is a

plain filter skeleton, canceling data items from a list, while scm (Split, Compute

and Merge) looks like a map skeleton working on lists with explicit, user defined,

decomposition/recomposition functions.

Serot’s implementation of the skeletons within ocaml is quite different from ours

and only allows one skeleton at a time to be realised on the processor networks, thus

preventing skeleton composition (you cannot nest two scm skeletons for example),

and only allowing for a limited form of staging of the parallel computation: you can

perform an scm, then when this is finished, you can reorganize your network and

perform another scm. This way, the mapping of virtual processors to real processors

on the network is a trivial task, and is done inside each skeleton at run-time instead

of beforehand in a specific pass like in OcamlP3l. Serot implements the skeletons

included in the language by providing second order functions that directly call MPI

and realize an SPMD execution model.

As for the relevant effort done in the field of languages for mobile agents, like

for example [12, 11], it should be noted that they address quite a different kind of

problems, but once stable, these languages could form the basis of a next generation

fully fault-tolerant and dynamically load-balanced version of our system.
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6 Conclusions and perspectives

Here we showed how a skeleton parallel programming model such as the one provided

by p3l can be successfully married with the functional programming environments

such as the one provided by ocaml.

In particular, we discussed how skeletons can be embedded withinocaml as second

order functions and how modules implementing both the sequential and the parallel

skeleton semantics can be supplied that allow users to write, functionally debug and

run in parallel skeleton applications using ocaml to express sequential computations

and data types. The whole process preserves the strong typing properties of ocaml.

At the moment, the prototype OcamlP3l implementation is being tested as de-

scribed in this paper and is available from the OcamlP3l project home Web page

http://qui.di.unipi.it/ocamlp3l.html, together with a user manual de-

tailing the tools which are available with the distribution to compile, run and trace

OcamlP3l code.

In the near future we want first of all to include some more skeletons (or variant

of the existing ones) into the prototype. Then we want to have a more efficient

communication layer, by using MPI [14] instead of the Unix socket library. At the

same time, we investigate the feasibility of porting the system on the ubiquitous

Windows boxes, for didactical purposes. Finally, we plan to write some significant

parallel applications in order to fully test the prototype, and then release the prototype

to the public domain.
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