Ecole Normale Superieure

A Zoo of ℓ_1 -embeddable Polyhedra II

Michel DEZA Viatcheslav GRISHUKHIN

LIENS - 97 - 9

Département de Mathématiques et Informatique

CNRS URA 1327

A Zoo of ℓ_1 -embeddable Polyhedra II

Michel DEZA Viatcheslav GRISHUKHIN*

LIENS - 97 - 9

 ${\bf May}\ 1997$

Laboratoire d'Informatique de l'Ecole Normale Supérieure 45 rue d'Ulm 75230 PARIS Cedex 05

 $^{*}\mathrm{CEMI}$ RAN Moscow Russia

A zoo of l_1 -embeddable polyhedra II

Michel Deza Ecole Normale Supérieure, Paris, France

Viacheslav Grishukhin CEMI, Russian Academy of Sciences, Moscow

Abstract

We complete here the study of l_1 -polyhedra started in our previous paper on this subject, [DeGr97]. New classes are considered, especially small polyhedra, some operations on Platonic solids and k-valent polyhedra with only two types of faces.

1 Introduction

We use definitions and notation from [DeGr97]. Call a polyhedron $P \ l_1$ -polyhedron (or l_1 -embeddable if its skeleton is embedded isometrically (or with doubled distance) into an *m*-cube, and use the notation $P \to H_m$ (or $P \to \frac{1}{2}H_m$, respectively).

In this paper we group, in compact form, many results specifying l_1 -polyhedra in the classes defined in the titles of sections. All proofs are obtained by the techniques of [CDGr97], [DeGr97] and by direct check.

We remind only the following necessary condition (called 5-gonal inequality) for embedding of a graph which is sufficient for any bipartite and "many" planar graphs:

$$F(x, y; a, b, c) := d_{xy} + (d_{ab} + d_{bc} + d_{ac}) - \sum_{p=x, y; q=a, b, c} d_{pq} \le 0$$

for any distinct vertices x, y, a, b, c of the graph.

Moreover: (i) $F(x, y; a, b, c) \ge 4 - 6\max_{p=x,y;q=a,b,c}d_{pq}$ with equality, for example, for a graph such that x, y belong to a triangle $K_{x,y,z}$ and a, b, c belong to $K_{a,b,c,d}$, and the triangle and K_4 are joined by a path from z to d.

(ii) $F(x, y; a, b, c) \leq d_{xy}$ with equality iff both x and y lie on a geodesic between each pair (a, b), (a, c), (b, c) (for example, as in $K_{\{x,y\},\{a,b,c\}}$).

(iii) $F(x, y; a, b, c) \leq (d_{ab} + d_{ac} + d_{bc}) - 2d_{xy}$ with equality iff each of a, b, c lies on a geodesic between x and y (for example, as in (snub $APrism_n$)* for any $n \geq 5$, see §5).

2 Small polyhedra

 l_1 -status of all 10 polyhedra with at most 6 faces and their duals is such that they are either l_1 -embeddable or non 5-gonal.

The l_1 -embeddable are

 $\rightarrow \frac{1}{2}H_4: \alpha_3 \simeq \alpha_3^*, Pyr_4 \simeq Pyr_4^*, BPyr_3 = Prism_3^*, \gamma_3^* = \beta_3,$

 $\rightarrow \frac{1}{2}H_5 : Pyr_5 \simeq Pyr_5^*, Prism_3 \simeq BPyr_3^*, (2\text{-truncated }\alpha_3)^*, \text{ a dual with skeleton}$ $K_6 - P_5 \ (\# 43 \text{ in Proposition 2.1});$

 $\rightarrow \frac{1}{2}H_6 : \gamma_3, \text{ 2-truncated } \alpha_3.$

Remaining are: self-dual one with the skeleton $K_6 - P_6$, one with dual skeleton $K_{3\times 2} - e$, its dual (# 44 in Proposition 2.1 below) and one with dual skeleton $K_6 - P_5$.

Proposition 2.1. Between all 34 polyhedra (# # 11-44 on Fig.2) with 7 faces and their duals, we have

 $\begin{array}{l} \rightarrow \frac{1}{2}H_5\colon 20^*,\ 21^*,\ 29^*,\ 35,\ 36^*,\ 38^*,\ 39\simeq 39^*,\ 43;\\ \rightarrow \frac{1}{2}H_6\colon 12^*,\ 14^*,\ 16^*,\ 17^*,\ 18,\ 19\simeq 19^*;\\ \rightarrow \frac{1}{2}H_7\colon 12,\ 20,\ 23;\\ extreme\ hypermetric:\ 13^*=G_4;\\ non\ 7\text{-}gonal:\ 32^*,\ 37^*,\ and\\ non\ 5\text{-}gonal:\ all\ others\ (incl.\ self\ dual\ 34,\ 41\ and\ 40^*=42).\\ \textbf{Remark.} \ (i)\ Between\ above\ l_1\ polyhedra\ only\ \gamma_3\ is\ bipan \ data \ da$

Remark. (i) Between above l_1 -polyhedra only γ_3 is bipartite and only 3 are not l_1 -rigid: $\alpha_3 \simeq \alpha_3^* \rightarrow \frac{1}{2}H_3, \frac{1}{2}H_4, BPyr_3$ and $39 \simeq 39^* \rightarrow \frac{1}{2}H_5, \frac{1}{2}H_6$. All simple ones between above 10+34 polyhedra with at most 7 faces are: $\alpha_3, Prism_3 = 1$ -truncated α_3, γ_3 and 11, 12 (3-truncated $\alpha_3), 13, 20$ (1-truncated $\gamma_3), 23 = Prism_5$.

(ii) 20 between all 44 polyhedra with at most 7 faces are combinatorially equivalent to a space-filler: all 10, except Pyr_5 , with at most 6 faces (including all 3 non 5-gonal) and # # 12, 15, 18, 20, 22, 23, 28, 30, 36, 43, 44 (between them # # 12, 18, 20, 23, 43 are l_1 -graphs).

Proposition 2.2. Between all 27 cubic graphs on up to 10 vertices, 19 are non 5gonal while remaining 8 are l_1 -graphs: non-polytopal Petersen graph $\rightarrow \frac{1}{2}H_6$ and 7 simple polyhedra: i-truncated $\alpha_3 \rightarrow \frac{1}{2}H_{4+i}$ for $0 \le i \le 3$, i-truncated $\gamma_3 \rightarrow \frac{1}{2}H_{6+i}$ for i = 0, 1 and $Prism_5 \rightarrow \frac{1}{2}H_7$.

Proposition 2.3. Between all 14 simple polyhedra with 8 faces (i.e. with 12 vertices) 4 are l_1 -graphs (all are embedded into $\frac{1}{2}H_8$): Prism₆, dual bisdisphenoid, Dürer's octahedron and γ_3 truncated on 2 adjacent vertices. Duals of first two are not 5-gonal and of last two $\rightarrow \frac{1}{2}H_6$. 4-truncated α_3 and γ_3 truncated on 2 vertices at distance 2 are not 5-gonal; their duals $\rightarrow \frac{1}{2}H_7$. 5 polyhedra from Fig.3 are resp. non 5-, 5-, 7-, 7-, 9-gonal; their duals are resp. embeddable into $\frac{1}{2}H_8$, $\frac{1}{2}H_7$, $\frac{1}{2}H_7$, $\frac{1}{2}H_6$, non 5-gonal. Remaining 3 polyhedra and their duals are non 5-gonal.

The Dürer's octahedron above is γ_3 truncated on 2 opposite vertices; it is called so, because it appears in Dürer's "Melancolia", 1514, staying on a triangular face.

Remark. (i) All simple l_1 -polyhedra with $f, f \leq 8$, faces (there are 11 of them) embed into $\frac{1}{2}H_f$; all of them, except α_3 , are l_1 -rigid and $\gamma_3 \to H_3$, $Prism_6 \to H_4$.

(ii) the polyhedron in centre of Fig.3 and one of 3 non 5-gonal simple octahedra, having non 5-gonal duals, are two smallest 3-regular graphs with trivial group of automorphisms.

(iii) Between all 11 simple polyhedra with only k-gons, $k \leq 5$, as faces (duals of all 8 convex deltahedra, 1-truncated α_3 , 1-truncated γ_3 and Dürer's octahedron) only 2 (duals of 3-augmented $Prism_3$ and of 2-capped $APrism_4$) are not l_1 -graphs.

3 Truncations and cappings of Platonic solids

Call by *i*-truncation and *i*-capping the (short) truncation on *i* vertices of a polytope Pand, respectively, adding a pyramid on *i* its faces. A triakis (tetrakis, pentakis, hexakis) *i*-capping is an *i*-capping only on 3-faces (4-,5-,6-faces, respectively).

Proposition 3.1.

(i) *i*-truncated $\alpha_3 \rightarrow \frac{1}{2}H_{4+i}$, $0 \le i \le 3$; 4-truncated α_3 is not 5-gonal;

dual *i*-truncated $\alpha_3 = i$ -capped $\alpha_3 \rightarrow \frac{1}{2}H_{3+i}, 0 \leq i \leq 4$;

(ii) i-truncated $\beta_3 \rightarrow \frac{1}{2}H_4$, $\frac{1}{2}H_6$, H_4 , H_6 for i = 0, 1, 2 (on opposite vertices), 6(=all), non 7-gonal if only 2 vertices of an edge are not truncated; non 5-gonal otherwise.

dual i-truncated $\beta_3 = i$ -capped $\gamma_3 \rightarrow \frac{1}{2}H_6$ if $i \leq 2$ or i = 3 and any 2 capped faces of γ_3 are not opposite; otherwise non 5-gonal.

(iii) i-truncated $\gamma_3 \rightarrow \frac{1}{2}H_{6+i}$ if i = 0, 1, 2 (truncated vertices are at distance 1 or 3), 3 (they form P_3), 4 (they form C_4), otherwise non 5-gonal;

dual *i*-truncated $\gamma_3 = i$ -capped $\beta_3 \rightarrow \frac{1}{2}H_{4+i}$ for $0 \le i \le 8$.

(iv) i-capped Icosahedron $\rightarrow \frac{1}{2}H_{6+i}$ for $0 \le i \le 20$;

i-capped Dodecahedron $\rightarrow \frac{1}{2}H_{10}$ for $0 \leq i \leq 12$.

Remark. (i) Between above l_1 -graphs only non l_1 -rigid one is $\alpha_3 \rightarrow \frac{1}{2}H_3$, $\frac{1}{2}H_4$.

(ii) 4-truncated γ_3 , on 4 non-adjacent vertices and on 4 vertices forming 2 opposite edges, are $Cham(\alpha_3)$ and twisted $Cham(\alpha_3)$, respectively. Remaining 4 ways to 4-truncate γ_3 are when these 4 vertices induce one of the graphs C_4 , P_4 , $P_3 + K_1$ and $K_{1,3}$. All 3 ways to 3-truncate γ_3 are on P_3 , $P_2 + K_1$ and $3K_1$.

Consider now capping of some almost regular l_1 -polyhedra on 3- and 4-gonal faces.

Clearly, any triakis *i*-capping of an l_1 -polyhedron P embeds into $\frac{1}{2}H_{m+i}$ if $P \to \frac{1}{2}H_m$.

1) i-capped $Pyr_4 \rightarrow \begin{cases} \frac{1}{2}H_{4+i} & \text{if the 4-face is truncated}, \\ \frac{1}{2}H_{3+i} & \text{otherwise}; \end{cases}$ 1-truncated Pyr_4 (=dual 1-capped Pyr_4)= γ_3 if the apex is truncated, or # 43*

otherwise; (so, non 5-gonal).

2) *i*-augmented $Prism_m$ is $Prism_m$ capped on *i* (4-gonal) faces, which are not 2 base faces. *i*-augmented $Prism_m(m=3,4) \rightarrow \frac{1}{2}H_{m+2}$ for i=0,1,2, non l_1 for $i \geq 3$.

3) Snub cube $\rightarrow \frac{1}{2}H_9$ but any tetrakis *i*-capping of it is non 5-gonal.

4) Rhombicuboctahedron $\rightarrow \frac{1}{2}H_{10}$. Only 5-gonal tetrakis *i*-capping of it (which, moreover, embeds into $\frac{1}{2}H_{10}$) is capping on at most 2 or on 3 non-opposite 4-faces, chosen between 6 4-faces adjacent only to 4-faces. Remark similarity with cappings of γ_3 (Proposition 3.1 (ii)).

5) Tetrakis omni-capping of truncated $\beta_3 \rightarrow \frac{1}{2}H_{12}$.

6) Omni-cappings of α_3 (the $3^*_{12}(T_d)$), of truncated α_3 (the $3^*_{36}(T_d)$) $\rightarrow \frac{1}{2}H_7, \frac{1}{2}H_{11},$ respectively, but omni-cappings of $3_{36}(T_d)$ (the $3^*_{108}(T_d)$) and of truncated cube are not l_1 .

Chamfering of Platonic solids 4

Cham P denotes the *chamfering* of the polyhedron P. It is obtained by putting prisms on all faces of P and deleting original edges; see also §6.

Proposition 4.1 Let P be one of five Platonic solids and $t \ge 1$. Then $Cham_tP$ or its dual is l_1 -graph only in the following cases:

(i) $(Cham\alpha_3)^* \rightarrow \frac{1}{2}H_8$,

(ii) $Cham\gamma_3 \rightarrow H_7$ (zonohedron, generated by $e_1, e_2, e_3, e_1 \pm e_2, e_1 \pm e_3$),

(*iii*) $Cham(Dodecahedron) \rightarrow \frac{1}{2}H_{22}$

Remark.

(i) *ChamP* is partially truncated zonohedron in the following cases:

 $Cham\alpha_3 = \gamma_3$, truncated on 4 non-adjacent vertices;

 $Cham\beta_3$, $Cham\gamma_3$ are rhombic dodecahedra truncated on all 3-valent (resp., all 4-valent) vertices,

Cham(*Icosahedron*), *Cham*(*Dodecahedron*) are triacontrahedra truncated on all 3-valent (resp., all 5-valent) vertices.

(ii) Moreover, we have $Cham_t\alpha_3$ (t = 1, 2), $Cham_t\beta_3$ (t = 1, 2), $Cham_t\gamma_3$ $(t \ge 2)$, $Cham_2(Icosahedron)$, $(Cham_t\beta_3)^*$ $(t \ge 1)$, $(Cham\gamma_3)^*$, $(Cham(Icosahedron))^*$, $(Cham(Dodecahedron))^*$ are not 5-gonal. Example of proving it: ChamP is not 5-gonal if the polyhedron P contains induced $K_4 - e$, because then ChamP contains isometric non 5-gonal graph G_{11} consisting of the cycle C_{10} with a new point adjacent only to the points 1,5,6 of the cycle C_{10} .

(iii) $Cham(Prism_6)$, Cham(Rhombic Dodecahedron) are not 5-gonal.

Iterated chamferings and their duals are used in the image compressing; for example, $(Cham_t\gamma_3)^*$ appears there as (t+1)-th approximation of some fractal distribution on β_3 .

The notion of chamfering can be extended on non-polyhedral graphs. For example, $Prism_m$ can be seen as the chamfering of the cycle C_m . On the other hand, this notion can be extended naturally for a simple *n*-polytope *P*. Denote by *Cham P* the dual of the convex hull of all verices of P^* and of the mid-points of all edges of P^* . As a generalization of Proposition 4.1(i), we get $(Cham \alpha_n)^* \rightarrow \frac{1}{2}H_{2n+2}$. Remark that $\alpha_n \rightarrow \frac{1}{2}H_{n+1}$, ambo $\alpha_n \rightarrow \frac{1}{2}H_{n+1}$ (see §6) and $(Cham \alpha_n)^* = \operatorname{conv}(V(\alpha_n) \cup V(ambo \alpha_n))$.

5 Bifaced polyhedra

Denote by $(k; a, b; p_a, p_b)$ and call *bifaced* any k-valent polyhedron whose faces are only p_a a-gons and p_b b-gons, where $3 \leq a < b$ and $p_a > 0 \leq p_b$. Any bifaced polyhedron $(k; a, b; p_a, p_b)$ with n vertices has $kv/2 = (ap_a + bp_b)/2$ edges and satisfies the Euler relation $n - k\frac{n}{2} + (p_a + p_b) = 2$, i.e. $n = 2(p_a + p_b - 2)/(k - 2)$ and

(*) $p_a(2k - a(k - 2)) + p_b(2k - b(k - 2)) = 4k.$

So, a < 2k/(k-2) and only possible (k, a) are (3,5), (3,4), (3,3), (4,3), (5,3).

The case $p_b = 0$ of above 5 classes is (combinatorially) Dodecahedron, γ_3 , α_3 , β_3 , Icosahedron, respectively. For $p_b = 1$ and for $p_b = 2$, (k, a) = (3, 3), such polyhedra do not exist. For $p_b = 2$ classes (k, a) = (3, 4), (4,3), (3,5), (5,3) consist of a unique polyhedron each: $Prism_b$, $APrism_b$, $Barrel_b := (2\text{-capped } APrism_b)^*$ and $snub \ APrism_b$ consisting of the following 3 circuits: outer $(x_1, ..., x_b)$, middle $(y_1, y'_1, ..., y_b, y'_b)$, and inner $(z_1, ..., z_b)$, where $x_i \sim y_i, y'_i, y_{i+1}$ and $z_i \sim y'_{i-1}, y_i, y'_i$ for all i = 1, ..., b ordered cyclically. The last polyhedron is called $snub \ APrism_b$, since for b = 4 it is (combinatorially) well known regular-faced $snub \ APrism_4$ which is 5-gonal, but not 7-gonal. $Barrel_b$ is an analog of $Prism_b$, where the layer of 4-gons is replaced by two layers of 5-gons; it has 4b vertices. We have

 $\begin{array}{l} \textbf{Proposition 5.1} \hspace{0.1cm} (i) \hspace{0.1cm} Prism_b \rightarrow \frac{1}{2}H_{b+2} \hspace{0.1cm} (moreover, \rightarrow \frac{1}{2}H_{(b+2)/2} \hspace{0.1cm} for \hspace{0.1cm} even \hspace{0.1cm} b), \\ Prism_b^* \rightarrow \frac{1}{2}H_4, \hspace{0.1cm} \frac{1}{2}H_4, \hspace{0.1cm} non \hspace{0.1cm} 5\text{-}gonal \hspace{0.1cm} for \hspace{0.1cm} b=3, 4 \geq 5, \hspace{0.1cm} respectively; \\ (ii) \hspace{0.1cm} APrism_b \rightarrow \frac{1}{2}H_{b+1}, \\ APrism_b^* \rightarrow H_3, \hspace{0.1cm} non \hspace{0.1cm} 5\text{-}gonal \hspace{0.1cm} for \hspace{0.1cm} b=3, \geq 4; \\ (iii) \hspace{0.1cm} Barrel_3 = D \ddot{u}rer's \hspace{0.1cm} octahedron \rightarrow \frac{1}{2}H_8, \hspace{0.1cm} Barrel_3^* \rightarrow \frac{1}{2}H_6, \\ Barrel_5 = Dodecahedron \rightarrow \frac{1}{2}H_{10}, \hspace{0.1cm} Barrel_5^* \rightarrow \frac{1}{2}H_6, \\ Barrel_4 \hspace{0.1cm} is \hspace{0.1cm} non \hspace{0.1cm} 5\text{-}gonal, \hspace{0.1cm} Barrel_4^* \hspace{0.1cm} (a \hspace{0.1cm} convex \hspace{0.1cm} deltahedron) \hspace{0.1cm} is \hspace{0.1cm} an \hspace{0.1cm} extereme \hspace{0.1cm} hypermetric. \\ For \hspace{0.1cm} b>5 \hspace{0.1cm} both \hspace{0.1cm} Barrel_b \hspace{0.1cm} and \hspace{0.1cm} its \hspace{0.1cm} dual \hspace{0.1cm} are \hspace{0.1cm} non \hspace{0.1cm} 5\text{-}gonal; \end{array}$

(iv) snub $APrism_3 = Icosahedron \rightarrow \frac{1}{2}H_6$, its dual $\rightarrow \frac{1}{2}H_{10}$; snub $APrism_4$ is not 7-gonal, its dual is not 5-gonal. For $b \geq 5$ both snub $APrism_b$ and its dual are not 5-gonal.

From now on we consider mainly bifaced polyhedra with $p_b \geq 3$.

Consider first simple bifaced polyhedra, i.e. the case of k = 3. For b < 6 there are only 6 such polyhedra: the Dürer's octahedron (γ_3 truncated on two opposite vertices) and 5 dual deltahedra ($Prism_3$ and duals of $BPyr_5$, of bisdisphenoid, of 3-augmented $Prism_3$, of 2-capped $APrism_4$). Moreover, there are only 11 simple polyhedra with $\sum_{i\geq 3} p_i = p_3 + p_4 + p_5$: 6 above polyhedra, remaining 3 dual deltahedra (α_3 , γ_3 , Dodecahedron) and 1-truncated γ_3 , 2-truncated α_3 , having $(p_3, p_4, p_5) = (1, 3, 3)$, (2,2,2), respectively. The l_1 -status of all these polyhedra and their duals is known (see §2 above).

Simple bifaced *n*-vertex polyhedra with b = 6 will be denoted as 3_n , 4_n , 5_n if a = 3, 4, 5, respectively. They will be considered in the next sections as well as interesting case of $(4; 3, 4; p_3, p_4)$, having constant $p_3 = 8$; denote such a polyhedron by $(3, 4)_n$.

Simple bifaced polyhedra with b > 6 were considered in [Malk70]. Besides Euler's relation $(6-a)p_a = 12 + (b-6)p_b$, we have

if a = 3, then $b \in \{7, 8, 9, 10\}$;

if $a = 4, b \equiv 0 \pmod{8}$, then p_b is even;

if $a = 5, b \equiv 0 \pmod{10}$, then p_b is even.

[Malk70] asserts that above necessary conditions (for existence of such a polyhedron) are sufficient, with only a finite number of exceptions. Polyhedra $(3; 3, b; p_3, p_b)$ with b < 6 are only $Prism_3$ and Dürer's octahedron; both are l_1 -embeddable into $\frac{1}{2}H_5$, $\frac{1}{2}H_8$, respectively. The polyhedra $(3; 3, b; p_3, p_b)$ with b = 6, 8, 10 are non 5-gonal, since they contain (triangles are isolated) isometric non 5-gonal subgraph consisting of a vertex surrounded by a triangle and two even-gons. Examples of l_1 -graphs between their duals are 3 omni-capped Platonic solids α_3 , β_3 , Icosahedron.

Simple bifaced polyhedra were studied in order to find non-Hamiltonian members between them; for example, they exist (J.Zaks) for (a, b) = (5, 8), but do not exist ([Good75], [Good77]) for (a, b) = (3, 6), (4, 6).

Consider now *non-simple* bifaced polyhedra with $b \leq 6$. All possible (k; a, b) are (4;3,6), (4;3,5), (4;3,4), (5;3,6), (5;3,5), (5;3,4). In each of those cases there is an infinity of such polyhedra. Namely, we have

[Fisch75]: $(5; 3, 4; p_3, p_4)$ exists for any $p_4 > 1$,

[Grün67], p.282: $(4; 3, 4; p_3, p_4)$ exists for any $p_4 > 1$,

[Grün96]: an infinity of examples is constructed for each of 4 remaining cases.

Remark that cases (ii), (iii), (i₃) of *ambo* P construction of §6, produce also an infinity of bifaced polyhedra for (k = 4; a = 3, b) with b = 4, 5, 6.

There are only two classes of non-simple bifaced polyhedra, namely, $(4; 3, b; p_3, p_b)$ and $(5; 3, b; p_3, p_b)$. Examples of l_1 -polyhedra between them are Rhombicuboctahedron $\rightarrow \frac{1}{2}H_{10}$ ((4;3,4;8,18)), tetrakis truncated $\beta_3 \rightarrow \frac{1}{2}H_{12}$ ((4;3,6;24,8)), snub $\gamma_3 \rightarrow \frac{1}{2}H_9$ ((5;3,4;32,6)), snub dodecahedron $\rightarrow \frac{1}{2}H_{15}$ ((5;3,5;80,12)), and, between their duals, both Catalan zonohedra. Duals of above six l_1 -polyhedra are non 5-gonal. Only 3 Archimedian polyhedra are not bifaced: Rhombicosidodecahedron $\rightarrow \frac{1}{2}H_9$ and two large zonohedra.

The list of known l_1 -polyhedra between bifaced polyhedra and their duals is given in Tables 2 and 3.

Remark (i) For all l_1 -polyhedra of the tables below (except $Prism_3$, Dürer's octahedron and 2-capped $C_4 \times P_{m+1}$) the dual polyhedra are not 5-gonal.

(ii) For majority of l_1 -polyhedra P from both Tables 2 and 3, $P \to \frac{1}{2}H_{2d}$, where d is the diameter of P. But, for example, the diameter of dual truncated α_3 is 2 and of dual truncated dodecahedron is 4.

(iii) Between triangulations ## 1–12 of Table 3 (and denoting by "<" isometric subgraph) we have: Icosahedron < #4 < #12; $\beta_3 < \#2, \#3 < \#11$; #6 < #5.

Self-dual polyhedron with $p = (p_a, p_b)$, $3 \le a < b$, exists, applying [Juco70] iff a = 3, all $p_i = v_i$ and $p_a = p_3 = n - p_b$, $p_b = \frac{n-4}{b-3}$. So, it is α_3 , Pyr_b for $p_b = 0, 1$. For b = 4, the subcase $n \equiv 1 \pmod{4}$ is realized by k-elongated Pyr_4 having $p = (p_3 = 4, p_4 = 4k + 1)$. All above polyhedra are embedded into a half-cube. But the polyhedra with b = 4 and n = 6, 7, 8 are not 5-gonal. Also the gyrobifastigum (a regular-faced polyhedron) has $p = (p_3, p_4) = v = (v_3, v_4) = (4, 4)$, but it is not self-dual; it and its dual are non 5-gonal. **Table 1.** All k-valent polyhedra with only a-gonal and b-gonal faces,

 $3 \le a < b \le 6, p_a > 0 < p_b.$

$(a,b) \setminus k$	3	4	5
(5,6)	5_n (fullerene) exists iff $p_6 \ge 2$		
(4, 6)	4_n exists iff $p_6 \ge 2$		
(3,6)	3_n exists iff $p_6 \ge 4$, even	$p_3 = 8 + 2p_6,$	$p_3 = 20 + 8p_6,$
		$n = 6 + 3p_6$	$n = 12 + 6p_6$
(4,5)	only 4 dual deltahedra		
(3,5)	only Dürer's octahedron	$p_3 = 8 + p_5,$	$p_3 = 20 + 5p_5,$
		$n = 6 + 2p_5$	$n = 12 + 4p_5$
(3,4)	only $Prism_3$	$p_3 = 8,$	$p_3 = 20 + 2p_4,$
		$n = 6 + p_4$	$n = 12 + 2p_4$
		exists iff $p_4 \ge 2$	exists iff $p_4 \ge 2$

k	a, b	p_a, p_b	polyhedron	embeds into
3	4, 6	6, 8	truncated β_3	H_6
3	4, 6	6, 12	chamfered γ_3	H_7
3	4, 6	6, 12	twisted chamfered γ_3	H_7
3	5, 6	12, 3	fullerene $5_{26}(D_{3h})$	$\frac{1}{2}H_{12}$
3	5, 6	12, 12	fullerene $5_{44}(T_d)$	$\frac{1}{2}H_{16}$
3	5, 6	12, 30	chamfered Dodecahedron	$\frac{1}{2}H_{22}$
3	3, 5	2, 6	Dürer's octahedron	$\frac{1}{2}H_8$
3	4, 5	4, 4	dual bisdisphenoid	$\frac{1}{2}H_8$
3	4, b	b, 2	Prism_b (incl. $b = 3$)	$\frac{1}{2}H_{b+2}$
4	3, b	2b, 2	$\operatorname{APrism}_{b}$	$\frac{\tilde{1}}{2}H_{b+1}$
4	3,4	8,4m	2-capped $(C_4 \times P_{m+1})$	$\frac{1}{2}H_{2m+4}$
4	3,4	8,3	ambo $Prism_3$	$\frac{1}{2}H_{6}$
4	3,4	8, 18	${ m Rhombicuboctahedron}$	$\frac{1}{2}H_{10}$
4	3, 6	24, 8	tetrakis truncated β_3	$\frac{1}{2}H_{12}$
5	3,4	32, 6	snub γ_3	$\frac{1}{2}H_9$
5	3.5	80, 12	snub dodecahedron	$rac{1}{2}H_{15}$

Table 2. Known l_1 -polyhedra between bifaced polyhedra

Table 3. Known l_1 -polyhedra between dual bifaced polyhedra

k	a, b	p_a, p_b	$\operatorname{polyhedron}$	embeds into
3	3, 6	4, 4	truncated α_3	$\frac{1}{2}H_7$
3	3, 6	4, 6	chamfered α_3	$\frac{1}{2}H_8$
3	3, 6	4, 6	twisted chamfered α_3	$\frac{1}{2}H_8$
3	3, 6	4.12	4-truncated Dodecahedron	$\frac{1}{2}H_{10}$
3	3, 6	4.18	truncated omnicapped α_3	$\frac{\overline{1}}{2}H_{11}$
3	5, 6	12, 4	fullerene $5_{28}(T_d)$	$\frac{1}{2}H_7$
3	5, 6	12, 8	fullerene $5_{36}(D_{6h})$	$\frac{1}{2}H_8$
3	5, 6	12, 20	$5_{60} = \text{truncated Icosahedron}$	$\frac{1}{2}H_{10}$
3	3,4	2, 4	Prism_3	$\frac{1}{2}H_4$
3	3, 5	2, 6	Dürer's octahedron	$\frac{1}{2}H_4$
3	3,8	8, 6	truncated γ_3	$\frac{1}{2}H_{12}$
3	3, 10	20, 12	truncated Dodecahedron	$rac{ ilde{1}}{2}H_{26}$
4	3.4	8, 6	$\operatorname{Cuboctahedron}$	${}^{}H_4$
4	3.5	20, 12	${ m Icosido decahedron}$	H_6
4	3,4	8,4m	$2 \cdot (C_4 \times P_{m+1}) = (C_4 \times P_{m+2})^*$	H_{m+3}

6 Constructions of bifaced polyhedra

Consider some operations on a bifaced polyhedron P with parameters $(k; a, b; p_a, p_b)$. If b = 2k, then the dual of omnicapped P, called *leapfrog* of P in [Fowl93], has parameters $(3; a, b; p_a, p_b + |V(P)|)$ and k|V(P)| vertices. If b = 2k = 6, then the *chamfering* of P (replace all edges by hexagons) has parameters $(3; a, b; p_a, p_b + |E(P)|)$ and 4|V(P)| vertices.

All 5_n , 4_n , 3_n with icosahedral, octahedral, tetrahedral symmetry, respectively, are characterized in [Gold37]. They have $n = 20(a^2 + ab + b^2)$, $8(a^2 + ab + b^2)$, $4(a^2 + ab + b^2)$, resp. for $a \ge b \ge 0$ (in Coxeter notation they are $\{m+,3\}_{a,b}$ for m = 5,4,3) and cases b = 0 and a = b correspond to full such symmetry I_h , O_h , T_d . The leapfrog (and chamfering) of Dodecahedron, γ_3 , α_3 correspond to the case a = b = 1 (a = 2, b = 0, resp.); above leapfrogs are truncated Icosahedron, β_3 , α_3 , respectively. Clearly, each of classes of all 5_n , 4_n , 3_n is closed under operations of leapfrog and chamfering.

Let P, P' be two Platonic polyhedra having (k, l, n, f) and (k' = k, l', n', f') resp. as size of faces, valency, the number of vertices and the number of faces. Consider the convex polyhedron P + fP' obtained by adjoining a copy of P' on each face of P. Then $(P + fP')^*$ is a bifaced polyhedron with parameters (k; l', l(l' - 1); f(n' - k), n). The case $P' = \alpha_3$ corresponds to omnicapping of simplicial P. While, clearly, $\alpha_3 + i\alpha_3, \beta_3 + i\alpha_3$ are l_1 -embeddable for $0 \le i \le f, \alpha_3 + i\beta_3$ for $2 \le i \le 4$ and $\beta_3 + i\beta_3$ for $1 \le i \le 8$ are not l_1 .

Given a polyhedron P, let $P + Pyr_3$ ($P + Prism_q$, respectively) be the polyhedron defined by join of new vertex to all vertices of a triangular face (respectively, join of $Prism_q$ to a q-face). It is easy to check the following

Proposition 6.1 (i) $P + Pyr_3$ is l_1 -embeddable iff P is l_1 -embeddable;

(ii) $P + Prism_q$ is l_1 -embeddable iff P is l_1 -embeddable.

In particular, $P \to \frac{1}{2}H_m$ implies $P + Pyr_3 \to \frac{1}{2}H_{m+1}$, but, for example, for $P = Prism_3 \to \frac{1}{2}H_5$, we have $P + Pyr_3 \to \frac{1}{2}H_6$ and $\frac{1}{2}H_5$, also. While $\alpha_3 + iPyr_3 \to \frac{1}{2}H_{3+i}$ $(1 \leq i \leq 4)$ and $Prism_3$ are l_1 -rigid, we have $\alpha_3 + iPrism_3 \to \frac{1}{2}H_{3+2i}, \frac{1}{2}H_{4+2i}$ ($0 \leq i \leq 4$). Now, $P \to \frac{1}{2}H_m$ implies $P + Prism_m \to \frac{1}{2}H_{m+2}$. The case (i) above implies that for a planar triangulation T, the subgraph T_1 induced by all vertices of degree ≥ 4 is an isometric triangulation and T is embeddable iff T_1 is embeddable. Remark that $APrism_n \to \frac{1}{2}H_{n+1}$ but $APrism_n + APrism_n$ is not 5-gonal. The golden dodecahedron of [HiPe89], i.e. Dodecahedron+ $12APrism_5$ is not 5-gonal. The property (ii) above implies the following embeddings. Let P be a polyhedron with a vertex v such that $P - v \to \frac{1}{2}H_m$. Then P, truncated on the vertex v, is embedded into $\frac{1}{2}H_{m+2}$. For example, this truncation of P on two opposite caps is embedded into: $\frac{1}{2}H_{10}$ if P is the icosahedron (i.e. 2-capped $APrism_5$); $\frac{1}{2}H_9$ if P is 2-capped $APrism_4$ (which is an extreme hypermetric); H_4 if P is $\beta_3 = APrism_3$; $\frac{1}{2}H_{11}$ if P is 5^*_{24} (i.e. 2-capped $APrism_6$, which is not 5-gonal).

Among 92 regular-faced polyhedra, 19 are *elongated* P (i.e. obtained from P by adjoining or inserting a prism), 27 are *i*-*augmented* P i.e. *i*-cappings of P. For example, pentakis of $APrism_5$ and of the Dodecahedron are embeddable, pentakis of 5-Pyramid and of $Prism_5$ are not 5-gonal, tetrakis of $Prism_3$ and of $APrism_4$ are extreme hypermetrics.

The following constructions produce bifaced polyhedra from columns of prisms and antiprisms. Denote by $Prism_n^t$, $APrism_n^t$ the column of t n-prisms (resp. of t n-antiprisms) pilled up on their n-gonal faces. Denote by $2\text{-}Prism_n^t$, $2\text{-}APrism_n^t$ their cappings on both external n-gonal faces. Remark that $2\text{-}Prism_n^t = (Prism_n^{t+1})^*$, that $APrism_n^t$ can be seen as a helix and that identifying of both external faces in $Prism_n^t$, $APrism_n^t$ gives a realization of maps (4⁴), (3⁶) on the torus. Now $(APrism_3^t)^*$, $(2-APrism_5^t)^*$, $(2\text{-}APrism_6^t)^*$ are 4_{6t+2} , 5_{10t+10} , 5_{12t+12} (all are non 5-gonal for t > 1) and $(Prism_4^t)^*$ is a $(3, 4)_{4t+2} \rightarrow \frac{1}{2}H_{2t+2}$ (its dual $\rightarrow H_{t+2}$). (An example of use of such columns of prisms and antiprisms in Chemistry is that $APrism_3^t$ ($t = 1, 2, 3, \infty$) and $Prism_3^t$ (t=1,2), $2\text{-}Prism_5^2$ are metal cluster polyhedra for molybdenum sulfides $Mo_6 S_8^{4-}$, $Mo_9 S_{11}^{4-}$, $Mo_1 S_{14}^{6-}$, $(Mo_6 S_6)_{\infty}^{2-}$ and for platinum carbonils $Pt_6(CO)_{12}^{2-}$, $Pt_9(CO)_{18}^{2-}$, $Pt_{19}(CO)_{22}^{4-}$, respectively; see [King87)].)

The next construction of bifaced polyhedra is based on the notion of an ambo-polytope. For given polytope P, denote by ambo P the convex hull of the midpoints of all edges of P; i.e. ambo P is the mid-edge truncation of P. Sometimes, moreover, the skeleton of ambo P is the line graph of the skeleton of P; in such a case we write ambo P = L(P). For example, ambo $\alpha_n = L(\alpha_n) \rightarrow \frac{1}{2}H_{n+1}$, ambo $\alpha_3 = \beta_3$, ambo $\beta_4 = 24$ -cell, ambo $\gamma_3 = L(\gamma_3) =$ Cuboctahedron=ambo β_3 , ambo Dodecahedron = L(Dodecahedron) =*Icosidodecahedron* = ambo *Icosahedron*, L(Cuboctahedron) = Rhombicuboctahedron.

Clearly, ambo P, if P is a polyhedron $(k, a, b; p_a, p_b)$ with n vertices, is a 4-valent polyhedron with p_a a-faces, p_b b-faces and, in addition, n k-faces. So, ambo P is bifaced iff $k \in \{a, b\}$; all possible cases for its parameters are:

- (i) k = a = 3, 4, 5,
- (ii) $(3,4)_{2n}$ if $P = (3,4)_n$,
- (iii) $(4; 3, 5; 20 + 5p_5, 12 + 5p_5)$ if P has parameters $(5; 3, 5; p_3, p_5)$.
- If we consider only P with $b \leq 6$, then (see Table 1) we have, in addition to (ii), (iii): (i₁) $(3, 4)_9$ if $P = Prism_3$,
- (i_2) (4;3,5;14,6) if P is the Dürer's octahedron,
- (i₃) $(4; 3, 6; n + 4, \frac{n}{2} 2)$ if $P = 3_n$.

Finally, we give two constructions (by O. Delgado and M. Deza) generalizing two smallest fulleroids (it will mean here simple polyhedra with $p = (p_5, p_7)$ and of the icosahedral symmetry) the existence and unicity of which is proved in [DrBr96]. Clearly, $p_7 = p_5$ -12 and divisible by 60; a fulleroid has $v = 4(p_7 + 5)$ vertices. For any positive integer m, we get a fulleroid with v = 120m(m + 1) + 20 from the $5_{20(2m+1)^2}(I_h)$ by the triacon decoration of some $\frac{p_6}{4} = 10m(m + 1)$ of its hexagonal faces with no pentagonal neighbors. (The triacon means adding a vertex connected to 3 alternated mid-edges of the hexagon.) Also we get simple polyhedra of the icosahedral symmetry and with $p = (p_5 = 72, p_7 = 60)$, $(p_5 = 72, p_8 = 30)$, $(p_5 = 72, p_9 = 20)$, from the icosahedral fullerenes $5_{140}, 5_{80}, 5_{60}$, respectively, by following decoration of each of 12 pentagonal faces. Add the 5-cycle of new vertices u_1, \ldots, u_5 to the 5-cycle of vertices v_1, \ldots, v_5 of above face; then connect each u_i to the mid-point of corresponding edge (v_i, v_{i+1}) . Those polyhedra have, respectively, 260,200,180 vertices.

7 Polyhedra 3_n

Theorem 2 of [GrMo63] gives that 3_n exists for any $n \equiv 0 \pmod{4}$, except n = 8, and provides complete description of their skeletons. [Good77] showed that all 3_n are Hamiltonian.

 $3_4 = \alpha_3 \rightarrow \frac{1}{2}H_3$, $\frac{1}{2}H_4$ is not l_1 -rigid. The "would-be" 3_8 is not 3-connected and non 5-gonal.

There are exactly $N_3(n)$ polyhedra 3_n ([Dill96]) for $1 \leq \frac{n}{4} \leq 7$, where $N_3(n)$ is given below

Clearly, α_3 is unique 3_n with abutting triangles. So, any 3_n , n > 4, is not 5-gonal since it contains an isometric subgraph G_{11} given in §4.

We know six l_1 -polyhedra 3_n^* (no other exists for $n \leq 28$): $3_4^* \to \frac{1}{2}H_3$ (and $\to \frac{1}{2}H_4$), $3_{12}^* \to \frac{1}{2}H_7$, both $3_{16}^* \to \frac{1}{2}H_8$, a $3_{28}^* \to \frac{1}{2}H_{10}$, a $3_{36}^* \to \frac{1}{2}H_{11}$; last 5 are 4-capped α_3 , β_3 , β_3 , 5_{20}^* (on disjoint faces), $5_{28}^*(T_d)$ = hexakis (truncated α_3), respectively.

Except α_3 and unique 3_{12} =truncated α_3 , any 3_n is a 4-vertex truncation of a simple poyhedron with $\sum_{i\geq 3} p_i = p_4 + p_5 + p_6$ (so $p_5 = 12 - p_4$ from the well-known equality $\sum_{i\geq 3}(6-i)p_i = 12$) and n-8 vertices (so $n = 28 + 2p_6 - 2p_4$). In particular, 3_n is 4-vertex truncation of a fullerene 5_{n-8} iff this 5_{n-8} has 4 vertices of type (5,5,5) at pairwise distance at least 3; so any pair of triangles is separated by more than one hexagon. Such 5_{n-8} has either 4 isolated triples of pentagons, or two isolated clusters of 6 pentagons. $3_n^* \rightarrow \frac{1}{2}H_m$ iff $5_{n-8}^* \rightarrow \frac{1}{2}H_{m-4}$.

For small values of n we have (see Fig. 4; marked 4 vertices indicate truncation):

1) exactly seven of 3_n come as 4-vertex truncation of dual deltahedra: unique 3_{12} from α_3 , both 3_{16} (chamfered and twisted chamfered α_3) from γ_3 , unique 3_{20} from dual bisdisphenoid, both 3_{24} from dual 2-capped $APrism_4$ and one (of two) 3_{28} from the (pentagonal) dodecahedron. The second one 3_{28} comes from a simple dodecahedron with $p = (p_4, p_5, p_6) = (4, 4, 4)$.

2) exactly six 3_n come as 4-vertex truncation of fullerenes 5_m , $20 \le m \le 36$: one 3_{28} from 5_{20} , a 3_{32} from 5_{24} , a 3_{36} from $5_{28}(D_2)$, another 3_{36} from $5_{28}(T_d)$, a 3_{40} from $5_{32}(D_2)$, a 3_{44} from $5_{36}(D_2)$; each of these 6 fullerenes has a unique, up to a symmetry, set of 4 vertices at pairwise distance ≥ 3 .

The class of 5_{n-8} with 4 isolated triples of pentagons contains all tetrahedral 5_{n-8} ; those have (using [Gold37]) $n = 4(a^2 + ab + b^2)$ with $a \ge b \ge 0$, $a \ge 2$. In particular, $Cham_t\alpha_3$, $t \ge 2$, comes from $5_{4^{t+1}-8}(T_d)$. (But already $5_{56}^*(T_d)$ is not l_1 ; so this 3_{64}^* is not l_1 implying that $(Cham_t\alpha_3)^*$ is l_1 iff t = 1.) But such fullerenes 5_{n-8} exist also for n-8 = 40, 44, 56 (unique for each), 68. On the other hand, for n = 40, 44, 48, 52, 68 there are 5_{n-8} with two isolated groups of 6 pentagons (3 such fullerenes for n = 48, unique for others) such that a 4-vertex truncation of them is a 3_n (see, for example, last 3 on Fig. 4).

8 Polyhedra 4_n

Theorem 1 of [GrMo63] gives that 4_n exists for any even $n \ge 8$ except n = 10. [Good75] showed that all 4_n are Hamiltonian. Clearly, 4_n is bipartite, and there is an infinity of centrally symmetric 4_n . Hence it either $\rightarrow H_m$ or is non 5-gonal. For $4 \le \frac{n}{2} \le 22$, there are $N_4(n)$ polyhedra 4_n ([Dill96]), where $N_4(n)$ is given in the table below.

Unique l_1 -polyhedron between 4_n^* is $4_8^* = \beta_3 \rightarrow \frac{1}{2}H_4$, since other 4_n^* contain the following non 5-gonal isometric subgraph G_7 : $Cyc_{1,\dots,6}$ with chordes (1,3), (4,6) plus a new vertex connected with vertices 1,3,4,6. Clearly $4_8 = \gamma_3$, $4_{12} = Prism_6$, truncated β_3 is 4_{24} (one of 3), two 4_{32} are $Cham\gamma_3$ and twisted $Cham\gamma_3$ (see Fig. 5). Those 5 polyhedra are all known l_1 - 4_n . They are embedded into H_3 , H_4 , H_6 , H_7 , H_7 , respectively. The first 3 are Voronoi polyhedra, $Cham\gamma_3$ is non space-filling zonohedron, twisted one is not centrally symmetric.

 $Cham_t\gamma_3$ is l_1 iff t = 1. For $n \equiv 2 \pmod{6}$ the dual of column of $\frac{n-2}{6}$ octahedra $\beta_3 = APrism_3$ gives a 4_n ; for n > 8, it and its dual are not 5-gonal. Examples of 4_n without abutting pairs of 4-gons are $Cham_t\gamma_3$, $t \ge 1$) and duals of tetrakis cube, Cuboctahedron, triangular ortobicupola ("anticuboctahedron"), giroelongated triangular bicupola and snub cube, having, respectively $8a^2$ ($a \ge 2$), 24, 32, 32, 44, 60 vertices. Last two are non 5-gonal. "Dual tetrakis" above, means a truncation on six 4-valent vertices of the dual polyhedra.

On the other hand, any 4_n with each pair of 4-gons separated by at least 3 edges (for example, $Cham_t\gamma_3$, $t \ge 2$) comes as 6-edge truncation (put 4-gons instead of edges) of a fullerene 5_{n-12} . Hence such a 4_n has no abutting pair of 4-gons and, moreover, the corresponding 5_{n-12} has 6 pairs of pentagons separated by only one edge. Many 4_n come as 6-edge truncation of 5_n under weaker conditions: $Cham \gamma_3$ from 5_{20} , truncated β_3 from α_3 . Also truncated β_3 is 6-(disjoint) edges truncation of $4_{12} = Prism_6$, $Prism_6$ is 2-(disjoint) edges truncation of $4_8 = \gamma_3$, γ_3 is 2-(disjoint) edges truncation of α_3 . Suitable 6-(disjoint) edges truncation of 5_{24} (dual 2-capped $APrism_6$) gives a 4_{36} and so on (see Fig. 5).

9 Polyhedra 5_n

Theorem 1 of [GrMo63] gives that 5_n exists for any even $n \ge 20$ except n = 22. The polyhedra 5_n , i.e. the bifaced polyhedra $(3; 5, 6; 12, p_6)$, are called *fullerenes* in Chemistry; see, for example, [Fowl93], [DDGr96] for a sample of vast literature on them. In fact, all 5_n are the cases $f = 2 + \frac{n}{2} \ge 12$ of *medial* polyhedra, introduced in [Gold35] as putative best (isoperimetrically) approximation of a sphere within the class of polyhedra having given number f of faces. A medial polyhedron with f faces is a bifaced polyhedron $(3; a = \lfloor 6 - \frac{12}{f} \rfloor, b = a + 1; p_a, p_b = f - p_a)$; it exists for any $f \ge 4$, except f = 11, 13. For f = 4, ..., 10, 12 they are exactly 8 dual convex deltahedra: α_3 , $Prism_3$, γ_3 , $Prism_5$, dual bisdisphenoid, dual 3-augmented $Prism_3$, dual 2-capped $APrism_4$ and the Dodecahedron (see the case k = 3 of Table 1 above).

All known l_1 - 5_n are the Dodecahedron $5_{20} \rightarrow \frac{1}{2}H_{10}$, $5_{26} \rightarrow \frac{1}{2}H_{12}$, $5_{44}(T) \rightarrow \frac{1}{2}H_{16}$ and the chamfered Dodecahedron $5_{80}(I_h) \rightarrow \frac{1}{2}H_{22}$. The last one is dual pentakis Icosidodecahedron; its twisted version is not l_1 . All known l_1 - 5_n^* are the Icosahedron $5_{20}^* \rightarrow \frac{1}{2}H_6$, hexakis(truncated α_3) = $5_{28}(T_d) \rightarrow \frac{1}{2}H_7$, hexakis($APrism_6^2$) = $5_{36}^*(D_{6h}) \rightarrow \frac{1}{2}H_8$ and pentakis Dodecahedron $5_{60}^*(I_h) \rightarrow \frac{1}{2}H_{10}$. In fact, no other l_1 - 5_n , l_1 - 5_n^* exist for n < 60 (see [DDGr96]) and they are not expected for other n.

Some interesting classes of 5_n were mentioned above: $5_{10(t+1)} = (2 - APrism_5^t)^*$, $5_{12(t+1)} = (2 - APrism_6^t)^*$ and those (with 4 isolated triples of pentagons) coming from collapsing of 4 triangles in some 3_n . Let us consider a generalization of the last 2 classes.

We say that a fullerene 5_n is PR_i (pentagon-regular of degree i) if each of 12 pentagons is adjacent to exactly i other pentagons. Clearly, the dodecahedron 5_{20} and the hexagonal barrel $Barrel_6 = 5_{24}$ are unique PR_5 and PR_4 , respectively. RP_0 's are fullerenes with isolated pentagons; chemists call them *preferable* or IP fullerenes. The smallest ones among them are the $5_{60}(I_h)$ and a $5_{70}(D_{5h})$. PR_1 's are those having 6 isolated pairs of abutting pentagons; all 130 of such 5_n with $n \leq 84$ are listed in [Fowl93] the 4 smallest ones are a $5_{50}(D_3)$, a $5_{52}(T)$, the $5_{52}(C_2)$, a $5_{54}(D_3)$. The only PR_3 are the $5_{28}(T_d)$ and the $5_{32}(D_{3h})$. It will be interesting to characterize all fullerenes PR_2 . Their 12 pentagons form isolated k-cycles (k = 3, 6, 9, 12): four 3-cycles (including a $5_{48}(D_2)$ and at least one tetrahedral 5_n for any $n = 4(a^2 + ab + b^2) - 8$, starting with the $5_{40}(T_d)$, the $5_{44}(T)$, the $5_{56}(T_d)$, a $5_{58}(T)$ and so on); two 3-cycles and one 6-cycle; one 3-cycle and one 9-cycle (including the $5_{38}(C_{3v})$); two 6-cycles (including any $5_{12t} = (2-APrism_6^{t-1})^*$ with $t \geq 3$, it has symmetry D_{6h} for odd t and D_{6d} for even t); one 12-cycle. The number of vertices of type (5^3), ($5^2.6$), (5.6^2) for above 5 classes (by faces surrounding a vertex) are (4,12,24), (2,18,18), (1,21,15), (0,24,12), (0,24,12), respectively. We not found PR_2 fullerenes of second class; they are also absent among all 1812 fullerenes 5_{60} . All PR_i with $n \leq 50$ are 15 mentioned above: one for i = 5, 4, 1, two for i = 3 and ten for i = 2. We find that in the third and in the fifth class there are exactly 5 fullerenes of Fig. 6.

Proposition 9.1 All fullerenes with 12-cycle of pentagons are those four given on Fig.6.

In fact, let C_{12} and C'_{12} be the inner and the outer cycles of a belt of 12 adjacent squares. We have to set 12 new vertices on edges of C_{12} and C'_{12} such that the 12 squares of the ring are transformed into 12 pentagons. Let a and a' = 12 - a be the numbers of the new vertices on C_{12} and C'_{12} , respectively. Now we connect the a vertices of C_{12} by lines such that the inner domain of the ring is partitioned into hexagons. Similarly we partition the outer domain. The Euler relation implies that a = a' = 6. If k is the number of new vertices in the inner part (their degree is 3), then the number of hexagons is $\frac{k}{2} + 4$. Hence k is even. Consider a configuration of the six new vertices on C_{12} . Let q be the maximal number of vertices of C_{12} lying between two consecutive new vertices. Then $q \leq 4$, since two consecutive new vertices and q vertices of C_{12} between them belong to a hexagon. It is easy to see that q takes only 3 values: 4, 3 and 2. Not very complicated enumeration of configurations shows the following.

If q = 4, we have a $5_{36}(D_{2d})$ with k = 0 (one of two 5_{36} with symmetry D_{2d}).

If q = 3, we obtain two nonisomorphic fullerenes 5_{44} with k = 4 (with symmetry D_2 , D_{3d}).

If q = 2, we have a homogeneous configuration of 6 new vertices on C_{12} . In this case k = 6, and we obtain a fullerene 5_{48} (D_{6d}) , (unique, except $(2 - APrism_6^3)^*$, $5_{48}(D_{6d})$).

The partitions of the inner and outer domains into hexagons are similar.

Proposition 9.2 There is a unique fullerene with one 3-cycle and one 9-cycle of pentagons, namely the fullerene $5_{38}(C_{3v})$.

Proof. Let C_9 and C'_9 be the inner and the outer cycles of a ring of 9 adjacent squares. We have to set 9 new vertices on edges of C_9 and C'_9 such that the 9 squares of the ring are transformed into 9 pentagons. Let a and a' = 9 - a be the numbers of the new vertices on C_9 and C'_9 , respectively. Let the 3-cycle of pentagons lies in the inner region of C_9 . Hence the outer region of C'_9 has no pentagons. We connect the a' vertices of C'_9 by lines such that the outer region of C'_9 is partitioned into hexagons. The Euler relation implies that a' = 3. Hence a = 9 - 3 = 6. The simple enumeration shows that the 3 new vertices of C'_9 lie uniformly, i.e. there are exactly 3 vertices of C'_9 between two consecutive new vertices. Besides, there is only one other vertex of degree 3. Hence the outer region of C'_9 is partitioned into 3 hexagons.

Consider the inner region of C_9 . We have to connect the 6 vertices of degree 2 of the 3-cycle of pentagons with the 6 new vertices of the cycle C_9 by lines. It is easy to see that if there is one vertex of the 3-cycle and one new vertex of C_9 connected by an edge, then the partition of the inner region of C_9 into hexagons is unique. In this case each new vertex of C_9 is connected by an edge with a vertex of degree 2 of the 3-cycle. The 6 new vertices of C_9 lie uniformly, i.e. there are two and three vertices of C_9 between a new vertex and its left and right neighbours. We obtain the fullerene $5_{38}(C_{3v})$.

If there is no pair of vertices of the 3-cycle and C_9 connected by an edge, then the 3-cycle is circumscribed by a ring of 6 hexagons. The outer cycle C_{15} , including these 6 hexagons, contains 9 vertices of degree 2. It is not difficult to show that it is not possible to connect these 9 vertices of C_{15} with 6 vertices of C_9 and obtain a partition into hexagons.

Similarly, define HR_i (hexagon *i*-regular) be any fullerene such that any hexagon is adjacent to exactly i hexagons. Then all HR_0 are the 5_{24} , the 5_{26} , the $5_{28}(T_d)$ and no HR_6 exists. Examples of HR_1 are the $5_{28}(D_2)$, the $5_{32}(D_3)$; of HR_2 - the $5_{30}(D_{5h})$, the $5_{32}(D_{3d})$, the $5_{32}(D_2)$, the $5_{32}(D_{3h})$; of HR_3 - the $5_{36}(D_2)$, the $5_{60}(I_h)$; of HR_4 - the $5_{50}(D_{5d}) = (2 - APrism_5^3)^*$, the $5_{80}(I_h)$, the $5_{80}(D_{5h})$; of HR_5 - the $5_{140}(I)$. For $n \leq 36$ no other HR_i (than above ten) exists. The only possible (i, n) for preferable fullerenes HR_i are (3, 60), (4, 80), (5, 140), since they have $p_6 = \frac{60}{6-i}$; there are only above two for n = 80. Those four HR_i and PR_0 fullerenes have (see Section 4.4 in [FoMa95] minimal steric strain among PR_0 fullerenes. HR_i has exactly $30 - \frac{p_6(6-i)}{2}$ edges separating two pentagons; so $n \leq 20 + \frac{120}{6-i} \leq 140$. Examples of 5_n which are both PR_i and $HR_{i'}$ are (besides of preferable HR_i) the 5_{24} , the $5_{28}(T_d)$, the $5_{32}(D_{3h})$ for (i, i') = (4, 0), (3, 0), (3, 2), respectively.

The fullerenes 5_n are the case:

1. "at least 20 vertices" of the medial polyhedra [Gold35],

2. "a=5" of simple bifaced polyhedra with $p = (p_a, p_6)$; see Sections 7,8 above,

3. "b=6" of simple bifaced polyhedra with $p = (p_5, p_b)$ (For general b we have $p_5 + p_b(6 - b) = 12$ and it has $2\frac{b-5}{b-6}p_5 - \frac{4b}{b-6}$ vertices; see remark on fulleroids in the end of Section 6.For b = 3, 4 it is the Durer's octahedron, $Prism_5$, respectively.)

3-valent polyhedra with $p = (p_4 = 2, p_5 = 8, p_6)$ with high symmetry were proposed in Chemistry (see [GaHe93]);some are chemically better (i.e. they have smaller number of pairs of adjacent pentagons) than fullerenes with the same number of vertices. 3-valent maps with $p = (p_5, p_6, p_7)$ have $p_5 = p_7 + 12(1 - g), p_6$ any.Many species of plancton (for example, famous Aulonia hexagona of E.Haeckel, 1887) have, as their rigid skeleton, such polyhedral maps. In the chemically important case $p_5 = p_7$, they are realizable on the torus (having the genus g = 1) and they have $4p_5 + 2p_6$ vertices. They are called *toroidal polyhexes* if $p_5 = p_7 = 0$ and *azulenoids* if $p_5 = p_7 > 0$. In many applications 5- and 7gons come by joined pairs, i.e. (in chemical terms) by *azulene* units. Toroidal polyhexes with $p_6 = 3, 7, 8, 12$ are not 5-gonal, but for $p_6 = 4$, it realizes the cube H_3 . Toroidal realizations of 3-valent maps with $p = (p_5, p_6, p_8)$ also used in Chemistry; they have $p_5 = 2p_8, p_6$ any and $3p_5 + 2p_6$ vertices. 3-valent maps with $p = (p_6, p_7, p_8)$ have $p_7 + 2p_8 = 12(g - 1), p_6$ any. They are realized on some minimal surface of negative curvature and are called schwarzites. [King96] gives 4 examples, with the genus g = 3, of chemical relevance having $p = (p_7 = 24)$ (Klein map $\{7^3\}$) on the D surface), $p = (p_6 = 56, p_7 = 24)$ (the leapfrog of the previous one, it is an analog of $5_{60}(I_h)$), $p = (p_6 = 80, p_8 = 12)$ and $p = (p_6 = 80, p_7 = 24)$. They have 56,168,192,216 vertices, respectively, and last two are realized on the the surface P.

10 Polyhedra $(3,4)_n$

Those are 4-valent bifaced polyhedra with parameters $(4; 3, 4; p_3, p_4)$; so $p_3 = 8$ and $n = 6 + p_4$. Besides $3_n, 4_n, 5_n$ it is the only case of bifaced polyhedra for which p_a is fixed for given (k, b). [Grün67], p.282, gives the existence of $(3, 4)_n$ for any $n \ge 6$, except 7.

From §6 above we have ambo $(3, 4)_n = (3, 4)_{2n}$. Another operation, namely, inserting a ring of m 4-gons into some $(3, 4)_n$, produces a $(3, 4)_{n+m}$; let us call it *m*-elongation. For example, $2\text{-}Prism_4^t = (3, 4)_{4t+6} \rightarrow H_{2t+2}$ is, m times iterated, 4-elongation of $2\text{-}Prism_4$. Already iterated 3-elongations of β_3 , 4-elongations of $APrism_4$ and of $2\text{-}Prism_4$ give $(3, 4)_n$ for n = 6 + 3m, 8 + 4m, 10 + 4m for any m.

First examples of $(3, 4)_n$ are: $\beta_3 = (3, 4)_6 \rightarrow \frac{1}{2}H_4$, $APrism_4 = (3, 4)_8 \rightarrow \frac{1}{2}H_5$, ambo $Prism_3 = 3$ -elongated $\beta_3 = (3, 4)_9 \rightarrow \frac{1}{2}H_6$, 2- $Prism_4 = (3, 4)_{10} \rightarrow \frac{1}{2}H_6$. The six polyhedra on Fig.7 are not 5-gonal: $(3, 4)_{11}$ and 4 polyhedra $(3, 4)_{12}$, (Cuboctahedron= ambo $\beta_3 = 4$ -elongated $APrism_4$, anticuboctahedron, another 2 times 3-elongation of β_3 and another $(3, 4)_{12}$ and ambo $APrism_4 = (3, 4)_{16}$. Now, Rhombicuboctahedron $(3, 4)_{24} \rightarrow \frac{1}{2}H_{10}$ but its twisted version ("14th Archimedian solid") is not 5-gonal; they are 8-elongations of twisted ambo $APrism_4$ which is a $(3, 4)_{16} \rightarrow \frac{1}{2}H_8$, and of ambo $APrism_4$, which is not 5-gonal. Exactly eleven $(3, 4)_n$ are regular-faced: above 4, β_3 , $APrism_4$, 2- $Prism_4$, Cuboctahedron, anticuboctahedron and 6-elongations of last two, which are non 5-gonal $(3, 4)_{18}$.

Between the duals of above $(3, 4)_n$, all embeddable are three zonohedra: $\beta_3^* = \gamma_3$, (Cuboctahedron)^{*} $\rightarrow H_4$ and $(2\text{-}Prism_4^{t})^* = Prism_4^{t+1} \rightarrow H_{t+3}$. Apropos, (ambo $Prism_3 = (3, 4)_9$)^{*} is the smallest convex polyhedron with odd number of faces, all of which are quadrilaterals; it is not 5-gonal.

Acknowledgment.

We are very grateful to Jacques Beigbeder and Catherine Le Bihan for computer artwork for all figures.

References

- [CDGr97] V.Chepoi, M.Deza and V.P.Grishukhin, A clin d'oeil on l_1 -embeddable planar graphs, Discrete Appl. Math. (1997)
- [DeGr97] M.Deza and V.P.Grishukhin, A zoo of l_1 -embeddable polyhedral graphs, Bull. Inst. Math. Acad. Sinica (1997)

- [DDGr96] A.Deza, M.Deza and V.P.Grishukhin, Embedding of fullerenes and coordination polyhedra into half-cubes, Preprint DMA RO 960701, Ecole Polytechnique Fédérale de Lausanne, Suisse (1996).
- [DeLa97] M.Deza and M.Laurent, Geometry of cuts and metrics, Springer-Verlag, 1997.
- [Dill96] M.B.Dillencourt (1996), electronic mail.
- [DrBr96] A.Dress and G.Brinkmann, *Phantasmagorical Fulleroids*, MATCH 33 (1996) 87-100.
- [Eb1891] V.Eberhard, Zur Morphologie der Polyheder, 1891, Leipzig.
- [Fede75] P.J.Federico, Polyhedra with 4 to 8 faces, Geometriae Dedicata 3 (1975) 469–481.
- [Fisch75] J.C.Fischer, Five-valent convex polyhedra with prescribed faces, J. of Comb. Theory A18 (1975) 1–11.
- [Fowl93] P.W.Fowler, Systematics of fullerenes and related clusters, Phil. Trans. R. Soc. London A (1993) 39-51.
- [FoMa95] P.W.Fowler and D.E.Manolopoulos, An Atlas of fullerenes, Clarendon Press, Oxford, 1995
- [GaHe93] Ying-Duo Gao and W.C.Herndon, *Fullerenes with four-memberted rings*, J.Am.Chem.Soc. 115 (1993) 8459-8460
- [Gold35] M.Goldberg, An isoperimetric problem for polyhedra, Tohoku Math. Journal 40 (1935) 226–236.
- [Gold37] M.Goldberg, A class of multisymmetric polyhedra, Tohoku Math. Journal 43 (1937) 104–108.
- [Good75] P.R.Goodey, Hamiltonian circuits in polytopes with even sided faces, Israel J. of Math. 22 (1975) 52–56.
- [Good77] P.R.Goodey, A class of Hamiltonian polytopes, J. of Graph Theory 1 (1977) 181–185.
- [Grün67] B.Grünbaum, Convex polytopes, Interscience, New York, 1967.
- [Grün96] B.Grünbaum (1996), private communication.
- [GrMo63] B.Grünbaum and T.S.Motzkin, The number of hexagons and the simplicity of geodesics on certain polyhedra, Canad. J. of Math. 15 (1963) 744-751.
- [HiPe89] P.Hilton and J.Pedersen, *Duality and the Descartes deficiency*, Computer Math. Applic. **17** (No 1–3) (1989) 73–88.
- [JSK94] Y.Jiang, Y.Shao and E.C.Kirby, *Topology and stability of trivalent polyhedral clusters*, Fullerene Science and Technology **2**(4) (1994) 481–497.

- [Juco70] E.Jucovič, *Characterization of the p-vector of a self-dual 3-polytope*, in: "Comb. structures and their applications", Proc. of Calgary Conference 1969, ed. R.Guy and al. (1970) 185–187.
- [King87)] R.B.King, The dimensionality and topology of chemical bonding manifolds in metal clusters and related compounds, Journal of Math.Chemistry 1(1987)249-265.
- [King96] R.B.King, The chemical applications of topology and group theory. 29. Low density polymeric carbon allotropes based on negative curvature structures, Journal Phys. Chemistry 100(1996)15096-15104
- [Malk70] J.Malkevitch, A survey of 3-valent 3-polytopes with two types of faces, in: "Comb. structures and their applications", Proc. of Calgary Conference 1969, ed. R.Guy and al. (1970) 255-256.

Figure 1: All polyhedra with at most six faces

Figure 2: All polyhedra with seven faces

Figure 3: Some simple octahedra

Figure 4: Some 3_n : "would-be" 3_8 , both 3_{16} , both 3_{28} ; 4-truncations of both 5_{28} , of the $5_{32}(D_2)$, of two 5_{40}

Figure 5: Some 4_n : γ_3 , $Prism_6$, truncated β_3 , a 4_{36} (as edge-truncations); unique 4_{14} , 4_{16} , 4_{18} ; a 4_{20} , twisted Cham γ_3 , Cham γ_3

Figure 6: All pentagon-regular fullerenes with 12- or 9-belt of pentagons: a $5_{36}(D_{2d})$, a $5_{44}(D_{3d})$, a $5_{48}(D_{6d})$, a $5_{44}(D_2)$, the $5_{38}(C_{3v})$

Figure 7: Some $(4,3)_n$: Cuboctahedron, its twist, two other $(3,4)_{12}$, ambo $APrism_4$, its twist, the $(3,4)_{11}$