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A zoo of l

1

-embeddable polyhedra II

Michel Deza

Ecole Normale Sup�erieure, Paris, France

Viacheslav Grishukhin

CEMI, Russian Academy of Sciences, Moscow

Abstract

We complete here the study of l

1

-polyhedra started in our previous paper on

this subject, [DeGr97]. New classes are considered, especially small polyhedra,

some operations on Platonic solids and k-valent polyhedra with only two types of

faces.

1 Introduction

We use de�nitions and notation from [DeGr97]. Call a polyhedron P l

1

-polyhedron (or

l

1

-embeddable if its skeleton is embedded isometrically (or with doubled distance) into an

m-cube, and use the notation P ! H

m

(or P !

1

2

H

m

, respectively).

In this paper we group, in compact form, many results specifying l

1

-polyhedra in the

classes de�ned in the titles of sections. All proofs are obtained by the techniques of

[CDGr97], [DeGr97] and by direct check.

We remind only the following necessary condition (called 5-gonal inequality) for em-

bedding of a graph which is su�cient for any bipartite and "many" planar graphs:

F (x; y; a; b; c) := d

xy

+ (d

ab

+ d

bc

+ d

ac

)�

X

p=x;y;q=a;b;c

d

pq

� 0

for any distinct vertices x; y; a; b; c of the graph.

Moreover: (i)F (x; y; a; b; c) � 4 � 6max

p=x;y;q=a;b;c

d

pq

with equality, for example, for

a graph such that x; y belong to a triangle K

x;y;z

and a; b; c belong to K

a;b;c;d

, and the

triangle and K

4

are joined by a path from z to d.

(ii) F (x; y; a; b; c) � d

xy

with equality i� both x and y lie on a geodesic between each

pair (a; b), (a; c), (b; c) (for example, as in K

fx;yg;fa;b;cg

).

(iii) F (x; y; a; b; c) � (d

ab

+ d

ac

+ d

bc

) � 2d

xy

with equality i� each of a; b; c lies on a

geodesic between x and y (for example, as in (snub APrism

n

)

�

for any n � 5, see x5).

2 Small polyhedra

l

1

-status of all 10 polyhedra with at most 6 faces and their duals is such that they are

either l

1

-embeddable or non 5-gonal.
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The l

1

-embeddable are

!

1

2

H

4

: �

3

' �

�

3

, Pyr

4

' Pyr

�

4

, BPyr

3

= Prism

�

3

, 


�

3

= �

3

,

!

1

2

H

5

: Pyr

5

' Pyr

�

5

, Prism

3

' BPyr

�

3

, (2-truncated �

3

)

�

, a dual with skeleton

K

6

� P

5

(# 43 in Proposition 2.1);

!

1

2

H

6

: 


3

, 2-truncated �

3

.

Remaining are: self-dual one with the skeletonK

6

�P

6

, one with dual skeletonK

3�2

�e,

its dual (# 44 in Proposition 2.1 below) and one with dual skeleton K

6

� P

5

.

Proposition 2.1. Between all 34 polyhedra (# # 11{44 on Fig.2) with 7 faces and

their duals, we have

!

1

2

H

5

: 20

�

, 21

�

, 29

�

, 35, 36

�

, 38

�

, 39 ' 39

�

, 43;

!

1

2

H

6

: 12

�

, 14

�

, 16

�

, 17

�

, 18, 19 ' 19

�

;

!

1

2

H

7

: 12, 20, 23;

extreme hypermetric: 13

�

= G

4

;

non 7-gonal: 32

�

, 37

�

, and

non 5-gonal: all others (incl. self-dual 34, 41 and 40

�

= 42).

Remark. (i) Between above l

1

-polyhedra only 


3

is bipartite and only 3 are not

l

1

-rigid: �

3

' �

�

3

!

1

2

H

3

;

1

2

H

4

, BPyr

3

and 39 ' 39

�

!

1

2

H

5

,

1

2

H

6

. All simple ones

between above 10+34 polyhedra with at most 7 faces are: �

3

, Prism

3

=1-truncated �

3

,

2-truncated �

3

, 


3

and 11, 12 (3-truncated �

3

), 13, 20 (1-truncated 


3

), 23=Prism

5

.

(ii) 20 between all 44 polyhedra with at most 7 faces are combinatorially equivalent

to a space-�ller: all 10, except Pyr

5

, with at most 6 faces (including all 3 non 5-gonal)

and # # 12, 15, 18, 20, 22, 23, 28, 30, 36, 43, 44 (between them # # 12, 18, 20, 23, 43

are l

1

-graphs).

Proposition 2.2. Between all 27 cubic graphs on up to 10 vertices, 19 are non 5-

gonal while remaining 8 are l

1

-graphs: non-polytopal Petersen graph !

1

2

H

6

and 7 simple

polyhedra: i-truncated �

3

!

1

2

H

4+i

for 0 � i � 3, i-truncated 


3

!

1

2

H

6+i

for i = 0; 1 and

Prism

5

!

1

2

H

7

.

Proposition 2.3. Between all 14 simple polyhedra with 8 faces (i.e. with 12 vertices) 4

are l

1

-graphs (all are embedded into

1

2

H

8

): Prism

6

, dual bisdisphenoid, D�urer's octahedron

and 


3

truncated on 2 adjacent vertices. Duals of �rst two are not 5-gonal and of last two

!

1

2

H

6

. 4-truncated �

3

and 


3

truncated on 2 vertices at distance 2 are not 5-gonal; their

duals !

1

2

H

7

. 5 polyhedra from Fig.3 are resp. non 5-, 5-, 7-, 7-, 9-gonal; their duals

are resp. embeddable into

1

2

H

8

,

1

2

H

7

,

1

2

H

7

,

1

2

H

6

, non 5-gonal. Remaining 3 polyhedra and

their duals are non 5-gonal.

The D�urer's octahedron above is 


3

truncated on 2 opposite vertices; it is called so,

because it appears in D�urer's "Melancolia", 1514, staying on a triangular face.

Remark. (i) All simple l

1

-polyhedra with f , f � 8, faces (there are 11 of them)

embed into

1

2

H

f

; all of them, except �

3

, are l

1

-rigid and 


3

! H

3

, Prism

6

! H

4

.

(ii) the polyhedron in centre of Fig.3 and one of 3 non 5-gonal simple octahedra, having

non 5-gonal duals, are two smallest 3-regular graphs with trivial group of automorphisms.

(iii) Between all 11 simple polyhedra with only k-gons, k � 5, as faces (duals of all 8

convex deltahedra, 1-truncated �

3

, 1-truncated 


3

and D�urer's octahedron) only 2 (duals

of 3-augmented Prism

3

and of 2-capped APrism

4

) are not l

1

-graphs.
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3 Truncations and cappings of Platonic solids

Call by i-truncation and i-capping the (short) truncation on i vertices of a polytope P

and, respectively, adding a pyramid on i its faces. A triakis (tetrakis, pentakis, hexakis)

i-capping is an i-capping only on 3-faces (4-,5-,6-faces, respectively).

Proposition 3.1.

(i) i-truncated �

3

!

1

2

H

4+i

, 0 � i � 3; 4-truncated �

3

is not 5-gonal;

dual i-truncated �

3

= i-capped �

3

!

1

2

H

3+i

, 0 � i � 4;

(ii) i-truncated �

3

!

1

2

H

4

,

1

2

H

6

, H

4

, H

6

for i = 0; 1; 2 (on opposite vertices), 6(=all),

non 7-gonal if only 2 vertices of an edge are not truncated; non 5-gonal otherwise.

dual i-truncated �

3

= i-capped 


3

!

1

2

H

6

if i � 2 or i = 3 and any 2 capped faces of




3

are not opposite; otherwise non 5-gonal.

(iii) i-truncated 


3

!

1

2

H

6+i

if i = 0; 1; 2 (truncated vertices are at distance 1 or 3), 3

(they form P

3

), 4 (they form C

4

), otherwise non 5-gonal;

dual i-truncated 


3

= i-capped �

3

!

1

2

H

4+i

for 0 � i � 8.

(iv) i-capped Icosahedron !

1

2

H

6+i

for 0 � i � 20;

i-capped Dodecahedron !

1

2

H

10

for 0 � i � 12.

Remark. (i) Between above l

1

-graphs only non l

1

-rigid one is �

3

!

1

2

H

3

,

1

2

H

4

.

(ii) 4-truncated 


3

, on 4 non-adjacent vertices and on 4 vertices forming 2 oppo-

site edges, are Cham(�

3

) and twisted Cham(�

3

), respectively. Remaining 4 ways to

4-truncate 


3

are when these 4 vertices induce one of the graphs C

4

, P

4

, P

3

+K

1

and K

1;3

.

All 3 ways to 3-truncate 


3

are on P

3

, P

2

+K

1

and 3K

1

.

Consider now capping of some almost regular l

1

-polyhedra on 3- and 4-gonal faces.

Clearly, any triakis i-capping of an l

1

-polyhedron P embeds into

1

2

H

m+i

if P !

1

2

H

m

.

1) i-capped Pyr

4

!

(

1

2

H

4+i

if the 4-face is truncated,

1

2

H

3+i

otherwise;

1-truncated Pyr

4

(=dual 1-capped Pyr

4

)= 


3

if the apex is truncated, or # 43

�

otherwise; (so, non 5-gonal).

2) i-augmented Prism

m

is Prism

m

capped on i (4-gonal) faces, which are not 2 base

faces. i-augmented Prism

m

(m = 3; 4)!

1

2

H

m+2

for i = 0; 1; 2, non l

1

for i � 3.

3) Snub cube !

1

2

H

9

but any tetrakis i-capping of it is non 5-gonal.

4) Rhombicuboctahedron!

1

2

H

10

. Only 5-gonal tetrakis i-capping of it (which, more-

over, embeds into

1

2

H

10

) is capping on at most 2 or on 3 non-opposite 4-faces, chosen

between 6 4-faces adjacent only to 4-faces. Remark similarity with cappings of 


3

(Propo-

sition 3.1 (ii)).

5) Tetrakis omni-capping of truncated �

3

!

1

2

H

12

.

6) Omni-cappings of �

3

(the 3

�

12

(T

d

)), of truncated �

3

(the 3

�

36

(T

d

)) !

1

2

H

7

,

1

2

H

11

,

respectively, but omni-cappings of 3

36

(T

d

) (the 3

�

108

(T

d

)) and of truncated cube are not l

1

.

4 Chamfering of Platonic solids

Cham P denotes the chamfering of the polyhedron P . It is obtained by putting prisms

on all faces of P and deleting original edges; see also x6.

3



Proposition 4.1 Let P be one of �ve Platonic solids and t � 1. Then Cham

t

P or

its dual is l

1

-graph only in the following cases:

(i) (Cham�

3

)

�

!

1

2

H

8

,

(ii) Cham


3

! H

7

(zonohedron, generated by e

1

; e

2

; e

3

; e

1

� e

2

; e

1

� e

3

),

(iii) Cham(Dodecahedron)!

1

2

H

22

Remark.

(i) ChamP is partially truncated zonohedron in the following cases:

Cham�

3

= 


3

, truncated on 4 non-adjacent vertices;

Cham�

3

, Cham


3

are rhombic dodecahedra truncated on all 3-valent (resp., all 4-

valent) vertices,

Cham(Icosahedron), Cham(Dodecahedron) are triacontrahedra truncated on all 3-

valent (resp., all 5-valent) vertices.

(ii) Moreover, we have Cham

t

�

3

(t = 1; 2), Cham

t

�

3

(t = 1; 2), Cham

t




3

(t �

2), Cham

2

(Icosahedron), (Cham

t

�

3

)

�

(t � 1), (Cham


3

)

�

, (Cham(Icosahedron))

�

,

(Cham(Dodecahedron))

�

are not 5-gonal. Example of proving it: ChamP is not 5-gonal

if the polyhedron P contains induced K

4

� e, because then ChamP contains isometric

non 5-gonal graph G

11

consisting of the cycle C

10

with a new point adjacent only to the

points 1,5,6 of the cycle C

10

.

(iii) Cham(Prism

6

), Cham(Rhombic Dodecahedron) are not 5-gonal.

Iterated chamferings and their duals are used in the image compressing; for example,

(Cham

t




3

)

�

appears there as (t+ 1)-th approximation of some fractal distribution on �

3

.

The notion of chamfering can be extended on non-polyhedral graphs. For example,

Prism

m

can be seen as the chamfering of the cycle C

m

. On the other hand, this notion

can be extended naturally for a simple n-polytope P . Denote by Cham P the dual

of the convex hull of all verices of P

�

and of the mid-points of all edges of P

�

. As

a generalization of Proposition 4.1(i), we get (Cham �

n

)

�

!

1

2

H

2n+2

. Remark that

�

n

!

1

2

H

n+1

, ambo �

n

!

1

2

H

n+1

(see x6) and (Cham �

n

)

�

= conv(V (�

n

)[V (ambo �

n

)).

5 Bifaced polyhedra

Denote by (k; a; b; p

a

; p

b

) and call bifaced any k-valent polyhedron whose faces are only

p

a

a-gons and p

b

b-gons, where 3 � a < b and p

a

> 0 � p

b

. Any bifaced polyhedron

(k; a; b; p

a

; p

b

) with n vertices has kv=2 = (ap

a

+ bp

b

)=2 edges and satis�es the Euler

relation n� k

n

2

+ (p

a

+ p

b

) = 2, i.e. n = 2(p

a

+ p

b

� 2)=(k � 2) and

(*) p

a

(2k � a(k � 2)) + p

b

(2k � b(k � 2)) = 4k:

So, a < 2k=(k � 2) and only possible (k; a) are (3,5), (3,4), (3,3), (4,3), (5,3).

The case p

b

= 0 of above 5 classes is (combinatorially) Dodecahedron, 


3

, �

3

, �

3

,

Icosahedron, respectively. For p

b

= 1 and for p

b

= 2, (k; a) = (3; 3), such polyhedra do not

exist. For p

b

= 2 classes (k; a) = (3; 4), (4,3), (3,5), (5,3) consist of a unique polyhedron

each: Prism

b

, APrism

b

, Barrel

b

:= (2-capped APrism

b

)

�

and snub APrism

b

consisting

of the following 3 circuits: outer (x

1

; :::; x

b

), middle (y

1

; y

0

1

; :::; y

b

; y

0

b

), and inner (z

1

; :::; z

b

),

where x

i

� y

i

; y

0

i

; y

i+1

and z

i

� y

0

i�1

; y

i

; y

0

i

for all i = 1; :::; b ordered cyclically. The last

polyhedron is called snub APrism

b

, since for b = 4 it is (combinatorially) well known

regular-faced snub APrism

4

which is 5-gonal, but not 7-gonal. Barrel

b

is an analog of

4



Prism

b

, where the layer of 4-gons is replaced by two layers of 5-gons; it has 4b vertices.

We have

Proposition 5.1 (i) Prism

b

!

1

2

H

b+2

(moreover, !

1

2

H

(b+2)=2

for even b),

Prism

�

b

!

1

2

H

4

,

1

2

H

4

, non 5-gonal for b = 3; 4 � 5, respectively;

(ii) APrism

b

!

1

2

H

b+1

,

APrism

�

b

! H

3

, non 5-gonal for b = 3;� 4;

(iii) Barrel

3

=D�urer's octahedron !

1

2

H

8

, Barrel

�

3

!

1

2

H

6

,

Barrel

5

=Dodecahedron !

1

2

H

10

, Barrel

�

5

!

1

2

H

6

,

Barrel

4

is non 5-gonal, Barrel

�

4

(a convex deltahedron) is an extereme hypermetric.

For b > 5 both Barrel

b

and its dual are non 5-gonal;

(iv) snub APrism

3

= Icosahedron!

1

2

H

6

, its dual !

1

2

H

10

;

snub APrism

4

is not 7-gonal, its dual is not 5-gonal.

For b � 5 both snub APrism

b

and its dual are not 5-gonal.

From now on we consider mainly bifaced polyhedra with p

b

� 3.

Consider �rst simple bifaced polyhedra, i.e. the case of k = 3. For b < 6 there are only

6 such polyhedra: the D�urer's octahedron (


3

truncated on two opposite vertices) and 5

dual deltahedra (Prism

3

and duals of BPyr

5

, of bisdisphenoid, of 3-augmented Prism

3

,

of 2-capped APrism

4

). Moreover, there are only 11 simple polyhedra with

P

i�3

p

i

=

p

3

+ p

4

+ p

5

: 6 above polyhedra, remaining 3 dual deltahedra (�

3

, 


3

, Dodecahedron) and

1-truncated 


3

, 2-truncated �

3

, having (p

3

; p

4

; p

5

) = (1; 3; 3), (2,2,2), respectively. The

l

1

-status of all these polyhedra and their duals is known (see x2 above).

Simple bifaced n-vertex polyhedra with b = 6 will be denoted as 3

n

, 4

n

, 5

n

if a = 3; 4; 5,

respectively. They will be considered in the next sections as well as interesting case of

(4; 3; 4; p

3

; p

4

), having constant p

3

= 8; denote such a polyhedron by (3; 4)

n

.

Simple bifaced polyhedra with b > 6 were considered in [Malk70]. Besides Euler's

relation (6� a)p

a

= 12 + (b� 6)p

b

, we have

if a = 3, then b 2 f7; 8; 9; 10g;

if a = 4, b � 0 (mod 8), then p

b

is even;

if a = 5, b � 0 (mod 10), then p

b

is even.

[Malk70] asserts that above necessary conditions (for existence of such a polyhedron)

are su�cient, with only a �nite number of exceptions. Polyhedra (3; 3; b; p

3

; p

b

) with

b < 6 are only Prism

3

and D�urer's octahedron; both are l

1

-embeddable into

1

2

H

5

,

1

2

H

8

,

respectively. The polyhedra (3; 3; b; p

3

; p

b

) with b = 6; 8; 10 are non 5-gonal , since they

contain (triangles are isolated) isometric non 5-gonal subgraph consisting of a vertex

surrounded by a triangle and two even-gons. Examples of l

1

-graphs between their duals

are 3 omni-capped Platonic solids �

3

, �

3

, Icosahedron.

Simple bifaced polyhedra were studied in order to �nd non-Hamiltonian memebers be-

tween them; for example, they exist (J.Zaks) for (a; b) = (5; 8), but do not exist ([Good75],

[Good77]) for (a; b) = (3; 6); (4; 6).

Consider now non-simple bifaced polyhedra with b � 6. All possible (k; a; b) are

(4;3,6), (4;3,5), (4;3,4), (5;3,6), (5;3,5), (5;3,4). In each of those cases there is an in�nity

of such polyhedra. Namely, we have

[Fisch75]: (5; 3; 4; p

3

; p

4

) exists for any p

4

> 1,

[Gr�un67], p.282: (4; 3; 4; p

3

; p

4

)exists for any p

4

> 1,

[Gr�un96]: an in�nity of examples is constructed for each of 4 remaining cases.

5



Remark that cases (ii), (iii), (i

3

) of ambo P construction of x6, produce also an in�nity

of bifaced polyhedra for (k = 4; a = 3; b) with b = 4; 5; 6.

There are only two classes of non-simple bifaced polyhedra, namely, (4; 3; b; p

3

; p

b

)

and (5; 3; b; p

3

; p

b

). Examples of l

1

-polyhedra between them are Rhombicuboctahedron

!

1

2

H

10

((4;3,4;8,18)), tetrakis truncated �

3

!

1

2

H

12

((4;3,6;24,8)), snub 


3

!

1

2

H

9

((5;3,4;32,6)), snub dodecahedron !

1

2

H

15

((5;3,5;80,12)), and, between their duals, both

Catalan zonohedra. Duals of above six l

1

-polyhedra are non 5-gonal. Only 3 Archimedian

polyhedra are not bifaced: Rhombicosidodecahedron !

1

2

H

9

and two large zonohedra.

The list of known l

1

-polyhedra between bifaced polyhedra and their duals is given in

Tables 2 and 3.

Remark (i) For all l

1

-polyhedra of the tables below (except Prism

3

, D�urer's octa-

hedron and 2-capped C

4

� P

m+1

) the dual polyhedra are not 5-gonal.

(ii) For majority of l

1

-polyhedra P from both Tables 2 and 3, P !

1

2

H

2d

, where d is

the diameter of P . But, for example, the diameter of dual truncated �

3

is 2 and of dual

truncated dodecahedron is 4.

(iii) Between triangulations ## 1{12 of Table 3 (and denoting by "<" isometric

subgraph) we have: Icosahedron < #4 < #12; �

3

< # 2;# 3 < # 11; # 6 < # 5.

Self-dual polyhedron with p = (p

a

; p

b

), 3 � a < b, exists, applying [Juco70] i� a = 3,

all p

i

= v

i

and p

a

= p

3

= n� p

b

, p

b

=

n�4

b�3

. So, it is �

3

, Pyr

b

for p

b

= 0; 1. For b = 4, the

subcase n � 1 (mod 4) is realized by k-elongated Pyr

4

having p = (p

3

= 4; p

4

= 4k + 1).

All above polyhedra are embedded into a half-cube. But the polyhedra with b = 4 and

n = 6; 7; 8 are not 5-gonal. Also the gyrobifastigum (a regular-faced polyhedron) has

p = (p

3

; p

4

) = v = (v

3

; v

4

) = (4; 4), but it is not self-dual; it and its dual are non 5-gonal.

Table 1. All k-valent polyhedra with only a-gonal and b-gonal faces,

3 � a < b � 6, p

a

> 0 < p

b

.

(a; b) n k 3 4 5

(5; 6) 5

n

(fullerene) exists i� p

6

� 2 �� ��

(4; 6) 4

n

exists i� p

6

� 2 �� ��

(3; 6) 3

n

exists i� p

6

� 4, even p

3

= 8 + 2p

6

; p

3

= 20 + 8p

6

;

n = 6 + 3p

6

n = 12 + 6p

6

(4; 5) only 4 dual deltahedra �� ��

(3; 5) only D�urer's octahedron p

3

= 8 + p

5

; p

3

= 20 + 5p

5

;

n = 6 + 2p

5

n = 12 + 4p

5

(3; 4) only Prism

3

p

3

= 8; p

3

= 20 + 2p

4

;

n = 6 + p

4

n = 12 + 2p

4

exists i� p

4

� 2 exists i� p

4

� 2

6



Table 2. Known l

1

-polyhedra between bifaced polyhedra

k a; b p

a

; p

b

polyhedron embeds into

3 4; 6 6; 8 truncated �

3

H

6

3 4; 6 6; 12 chamfered 


3

H

7

3 4; 6 6; 12 twisted chamfered 


3

H

7

3 5; 6 12; 3 fullerene 5

26

(D

3h

)

1

2

H

12

3 5; 6 12; 12 fullerene 5

44

(T

d

)

1

2

H

16

3 5; 6 12; 30 chamfered Dodecahedron

1

2

H

22

3 3; 5 2; 6 D�urer's octahedron

1

2

H

8

3 4; 5 4; 4 dual bisdisphenoid

1

2

H

8

3 4; b b; 2 Prism

b

(incl. b = 3)

1

2

H

b+2

4 3; b 2b; 2 APrism

b

1

2

H

b+1

4 3; 4 8; 4m 2-capped (C

4

� P

m+1

)

1

2

H

2m+4

4 3; 4 8; 3 ambo Prism

3

1

2

H

6

4 3; 4 8; 18 Rhombicuboctahedron

1

2

H

10

4 3; 6 24; 8 tetrakis truncated �

3

1

2

H

12

5 3; 4 32; 6 snub 


3

1

2

H

9

5 3:5 80; 12 snub dodecahedron

1

2

H

15

Table 3. Known l

1

-polyhedra between dual bifaced polyhedra

k a; b p

a

; p

b

polyhedron embeds into

3 3; 6 4; 4 truncated �

3

1

2

H

7

3 3; 6 4; 6 chamfered �

3

1

2

H

8

3 3; 6 4; 6 twisted chamfered �

3

1

2

H

8

3 3; 6 4:12 4-truncated Dodecahedron

1

2

H

10

3 3; 6 4:18 truncated omnicapped �

3

1

2

H

11

3 5; 6 12; 4 fullerene 5

28

(T

d

)

1

2

H

7

3 5; 6 12; 8 fullerene 5

36

(D

6h

)

1

2

H

8

3 5; 6 12; 20 5

60

= truncated Icosahedron

1

2

H

10

3 3; 4 2; 4 Prism

3

1

2

H

4

3 3; 5 2; 6 D�urer's octahedron

1

2

H

4

3 3; 8 8; 6 truncated 


3

1

2

H

12

3 3; 10 20; 12 truncated Dodecahedron

1

2

H

26

4 3:4 8; 6 Cuboctahedron H

4

4 3:5 20; 12 Icosidodecahedron H

6

4 3; 4 8; 4m 2-(C

4

� P

m+1

) = (C

4

� P

m+2

)

�

H

m+3

6 Constructions of bifaced polyhedra

Consider some operations on a bifaced polyhedron P with parameters (k; a; b; p

a

; p

b

). If

b = 2k, then the dual of omnicapped P , called leapfrog of P in [Fowl93], has parameters

(3; a; b; p

a

; p

b

+ jV (P )j) and kjV (P )j vertices. If b = 2k = 6, then the chamfering of

P (replace all edges by hexagons) has parameters (3; a; b; p

a

; p

b

+ jE(P )j) and 4jV (P )j

vertices.
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All 5

n

, 4

n

, 3

n

with icosahedral, octahedral, tetrahedral symmetry, respectively, are

characterized in [Gold37]. They have n = 20(a

2

+ab+ b

2

), 8(a

2

+ab+ b

2

), 4(a

2

+ab+ b

2

),

resp. for a � b � 0 (in Coxeter notation they are fm+; 3g

a;b

for m = 5; 4; 3) and

cases b = 0 and a = b correspond to full such symmetry I

h

, O

h

, T

d

. The leapfrog (and

chamfering) of Dodecahedron, 


3

, �

3

correspond to the case a = b = 1 (a = 2, b = 0,

resp.); above leapfrogs are truncated Icosahedron, �

3

, �

3

, respectively. Clearly, each of

classes of all 5

n

, 4

n

, 3

n

is closed under operations of leapfrog and chamfering.

Let P , P

0

be two Platonic polyhedra having (k; l; n; f) and (k

0

= k; l

0

; n

0

; f

0

) resp.

as size of faces, valency, the number of vertices and the number of faces. Consider the

convex polyhedron P + fP

0

obtained by adjoining a copy of P

0

on each face of P . Then

(P + fP

0

)

�

is a bifaced polyhedron with parameters (k; l

0

; l(l

0

� 1); f(n

0

� k); n). The case

P

0

= �

3

corresponds to omnicapping of simplicial P . While, clearly, �

3

+ i�

3

, �

3

+ i�

3

are

l

1

-embeddable for 0 � i � f , �

3

+ i�

3

for 2 � i � 4 and �

3

+ i�

3

for 1 � i � 8 are not l

1

.

Given a polyhedron P , let P + Pyr

3

(P + Prism

q

, respectively) be the polyhedron

de�ned by join of new vertex to all vertices of a triangular face (respectively, join of

Prism

q

to a q-face). It is easy to check the following

Proposition 6.1 (i) P + Pyr

3

is l

1

-embeddable i� P is l

1

-embeddable;

(ii) P + Prism

q

is l

1

-embeddable i� P is l

1

-embeddable.

In particular, P !

1

2

H

m

implies P + Pyr

3

!

1

2

H

m+1

, but, for example, for P =

Prism

3

!

1

2

H

5

, we have P + Pyr

3

!

1

2

H

6

and

1

2

H

5

, also. While �

3

+ iPyr

3

!

1

2

H

3+i

(1 � i � 4) and Prism

3

are l

1

-rigid, we have �

3

+ iP rism

3

!

1

2

H

3+2i

;

1

2

H

4+2i

(0 �

i � 4). Now, P !

1

2

H

m

implies P + Prism

m

!

1

2

H

m+2

. The case (i) above implies

that for a planar triangulation T , the subgraph T

1

induced by all vertices of degree � 4

is an isometric triangulation and T is embeddable i� T

1

is embeddable. Remark that

APrism

n

!

1

2

H

n+1

but APrism

n

+APrism

n

is not 5-gonal. The golden dodecahedron of

[HiPe89], i.e. Dodecahedron+12APrism

5

is not 5-gonal. The property (ii) above implies

the following embeddings. Let P be a polyhedron with a vertex v such that P�v !

1

2

H

m

.

Then P , truncated on the vertex v, is embedded into

1

2

H

m+2

. For example, this truncation

of P on two opposite caps is embedded into:

1

2

H

10

if P is the icosahedron (i.e. 2-capped

APrism

5

);

1

2

H

9

if P is 2-capped APrism

4

(which is an extreme hypermetric); H

4

if P is

�

3

= APrism

3

;

1

2

H

11

if P is 5

�

24

(i.e. 2-capped APrism

6

, which is not 5-gonal).

Among 92 regular-faced polyhedra, 19 are elongated P (i.e. obtained from P by adjoin-

ing or inserting a prism), 27 are i-augmented P i.e. i-cappings of P. For example, pentakis

of APrism

5

and of the Dodecahedron are embeddable, pentakis of 5-Pyramid and of

Prism

5

are not 5-gonal, tetrakis of Prism

3

and of APrism

4

are extreme hypermetrics.

The following constructions produce bifaced polyhedra from columns of prisms and an-

tiprisms. Denote by Prism

t

n

, APrism

t

n

the column of t n-prisms (resp. of t n-antiprisms)

pilled up on their n-gonal faces. Denote by 2-Prism

t

n

, 2-APrism

t

n

their cappings on both

external n-gonal faces. Remark that 2-Prism

t

n

= (Prism

t+1

n

)

�

, that APrism

t

n

can be seen

as a helix and that identifying of both external faces in Prism

t

n

, APrism

t

n

gives a realiza-

tion of maps (4

4

), (3

6

) on the torus. Now (APrism

t

3

)

�

, (2�APrism

t

5

)

�

, (2-APrism

t

6

)

�

are

4

6t+2

, 5

10t+10

, 5

12t+12

(all are non 5-gonal for t > 1) and (Prism

t

4

)

�

is a (3; 4)

4t+2

!

1

2

H

2t+2

(its dual! H

t+2

). (An example of use of such columns of prisms and antiprisms in Chem-

istry is that APrism

t

3

(t = 1; 2; 3;1) and Prism

t

3

(t=1,2), 2-Prism

2

5

are metal cluster

polyhedra for molybdenum sul�des Mo

6

S

4�

8

, Mo

9

S

4�

11

, Mo

12

S

6�

14

, (Mo

6

S

6

)

2�

1

and for plat-

8



inum carbonils Pt

6

(CO)

2�

12

, Pt

9

(CO)

2�

18

, Pt

19

(CO)

4�

22

, respectively; see [King87)].)

The next construction of bifaced polyhedra is based on the notion of an ambo-polytope.

For given polytope P , denote by ambo P the convex hull of the midpoints of all edges of

P ; i.e. ambo P is the mid-edge truncation of P . Sometimes, moreover, the skeleton of

ambo P is the line graph of the skeleton of P ; in such a case we write ambo P = L(P ).

For example, ambo �

n

= L(�

n

) !

1

2

H

n+1

, ambo �

3

= �

3

, ambo �

4

=24-cell, ambo




3

= L(


3

) =Cuboctahedron=ambo �

3

, ambo Dodecahedron = L(Dodecahedron) =

Icosidodecahedron = ambo Icosahedron, L(Cuboctahedron) = Rhombicuboctahedron.

Clearly, ambo P , if P is a polyhedron (k; a; b; p

a

; p

b

) with n vertices, is a 4-valent

polyhedron with p

a

a-faces, p

b

b-faces and, in addition, n k-faces. So, ambo P is bifaced

i� k 2 fa; bg; all possible cases for its parameters are:

(i) k = a = 3; 4; 5,

(ii) (3; 4)

2n

if P = (3; 4)

n

,

(iii) (4; 3; 5; 20 + 5p

5

; 12 + 5p

5

) if P has parameters (5; 3; 5; p

3

; p

5

).

If we consider only P with b � 6, then (see Table 1) we have, in addition to (ii), (iii):

(i

1

) (3; 4)

9

if P = Prism

3

,

(i

2

) (4;3,5;14,6) if P is the D�urer's octahedron,

(i

3

) (4; 3; 6;n+ 4;

n

2

� 2) if P = 3

n

.

Finally, we give two constructions (by O. Delgado and M. Deza) generalizing two small-

est fulleroids (it will mean here simple polyhedra with p = (p

5

; p

7

) and of the icosahedral

symmetry) the existence and unicity of which is proved in [DrBr96]. Clearly, p

7

= p

5

-12

and divisible by 60; a fulleroid has v = 4(p

7

+ 5) vertices.For any positive integer m, we

get a fulleroid with v = 120m(m+ 1) + 20 from the 5

20(2m+1)

2

(I

h

) by the triacon decora-

tion of some

p

6

4

= 10m(m + 1) of its hexagonal faces with no pentagonal neighbors. (Th

triacon means adding a vertex connected to 3 alternated mid-edges of the hexagon.) Also

we get simple polyhedra of the icosahedral symmetry and with p = (p

5

= 72; p

7

= 60),

(p

5

= 72; p

8

= 30), (p

5

= 72; p

9

= 20), from the icosahedral fullerenes 5

140

; 5

80

; 5

60

, re-

spectively, by following decoration of each of 12 pentagonal faces.Add the 5-cycle of new

vertices u

1

; : : : ; u

5

to the 5-cycle of vertices v

1

; : : : ; v

5

of above face; then connect each

u

i

to the mid-point of corresponding edge (v

i

; v

i+1

).Those polyhedra have, respectively,

260,200,180 vertices.

7 Polyhedra 3

n

Theorem 2 of [GrMo63] gives that 3

n

exists for any n � 0 (mod 4), except n = 8,

and provides complete description of their skeletons. [Good77] showed that all 3

n

are

Hamiltonian.

3

4

= �

3

!

1

2

H

3

,

1

2

H

4

is not l

1

-rigid. The "would-be" 3

8

is not 3-connected and non

5-gonal.

There are exactly N

3

(n) polyhedra 3

n

([Dill96]) for 1 �

n

4

� 7, where N

3

(n) is given

below

n

4

1 2 3 4 5 6 7

N

3

(n) 1 0 1 2 1 2 2

9



Clearly, �

3

is unique 3

n

with abutting triangles. So, any 3

n

, n > 4, is not 5-gonal since it

contains an isometric subgraph G

11

given in x4.

We know six l

1

-polyhedra 3

�

n

(no other exists for n � 28): 3

�

4

!

1

2

H

3

(and !

1

2

H

4

),

3

�

12

!

1

2

H

7

, both 3

�

16

!

1

2

H

8

, a 3

�

28

!

1

2

H

10

, a 3

�

36

!

1

2

H

11

; last 5 are 4-capped �

3

, �

3

, �

3

,

5

�

20

(on disjoint faces), 5

�

28

(T

d

)= hexakis (truncated �

3

), respectively.

Except �

3

and unique 3

12

=truncated �

3

, any 3

n

is a 4-vertex truncation of a simple

poyhedron with

P

i�3

p

i

= p

4

+ p

5

+ p

6

(so p

5

= 12 � p

4

from the well-known equality

P

i�3

(6� i)p

i

= 12) and n�8 vertices (so n = 28+2p

6

�2p

4

). In particular, 3

n

is 4-vertex

truncation of a fullerene 5

n�8

i� this 5

n�8

has 4 vertices of type (5,5,5) at pairwise distance

at least 3; so any pair of triangles is separated by more than one hexagon. Such 5

n�8

has

either 4 isolated triples of pentagons, or two isolated clusters of 6 pentagons. 3

�

n

!

1

2

H

m

i� 5

�

n�8

!

1

2

H

m�4

.

For small values of n we have (see Fig. 4; marked 4 vertices indicate truncation):

1) exactly seven of 3

n

come as 4-vertex truncation of dual deltahedra: unique 3

12

from �

3

, both 3

16

(chamfered and twisted chamfered �

3

) from 


3

, unique 3

20

from dual

bisdisphenoid, both 3

24

from dual 2-capped APrism

4

and one (of two) 3

28

from the

(pentagonal) dodecahedron. The second one 3

28

comes from a simple dodecahedron with

p = (p

4

; p

5

; p

6

) = (4; 4; 4).

2) exactly six 3

n

come as 4-vertex truncation of fullerenes 5

m

, 20 � m � 36: one 3

28

from 5

20

, a 3

32

from 5

24

, a 3

36

from 5

28

(D

2

), another 3

36

from 5

28

(T

d

), a 3

40

from 5

32

(D

2

),

a 3

44

from 5

36

(D

2

); each of these 6 fullerenes has a unique, up to a symmetry, set of 4

vertices at pairwise distance � 3.

The class of 5

n�8

with 4 isolated triples of pentagons contains all tetrahedral 5

n�8

;

those have (using [Gold37]) n = 4(a

2

+ ab + b

2

) with a � b � 0, a � 2. In particular,

Cham

t

�

3

, t � 2, comes from 5

4

t+1

�8

(T

d

). (But already 5

�

56

(T

d

) is not l

1

; so this 3

�

64

is

not l

1

implying that (Cham

t

�

3

)

�

is l

1

i� t = 1.) But such fullerenes 5

n�8

exist also for

n�8 = 40; 44; 56 (unique for each), 68. On the other hand, for n = 40; 44; 48; 52; 68 there

are 5

n�8

with two isolated groups of 6 pentagons (3 such fullerenes for n = 48, unique for

others) such that a 4-vertex truncation of them is a 3

n

(see, for example, last 3 on Fig.

4).

8 Polyhedra 4

n

Theorem 1 of [GrMo63] gives that 4

n

exists for any even n � 8 except n = 10. [Good75]

showed that all 4

n

are Hamiltonian. Clearly, 4

n

is bipartite, and there is an in�nity of

centrally symmetric 4

n

. Hence it either ! H

m

or is non 5-gonal. For 4 �

n

2

� 22, there

are N

4

(n) polyhedra 4

n

([Dill96]), where N

4

(n) is given in the table below.

n

2

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N

4

(n) 1 0 1 1 1 1 3 1 3 3 3 2 8 3 7 7 7 5 14

Unique l

1

-polyhedron between 4

�

n

is 4

�

8

= �

3

!

1

2

H

4

, since other 4

�

n

contain the following

non 5-gonal isometric subgraph G

7

: Cyc

1;:::;6

with chordes (1,3), (4,6) plus a new vertex

connected with vertices 1,3,4,6. Clearly 4

8

= 


3

, 4

12

= Prism

6

, truncated �

3

is 4

24

(one

of 3), two 4

32

are Cham


3

and twisted Cham


3

(see Fig. 5). Those 5 polyhedra are all

10



known l

1

-4

n

. They are embedded into H

3

, H

4

, H

6

, H

7

, H

7

, respectively. The �rst 3 are

Voronoi polyhedra, Cham


3

is non space-�lling zonohedron, twisted one is not centrally

symmetric.

Cham

t




3

is l

1

i� t = 1. For n � 2 ((mod 6) the dual of column of

n�2

6

octahedra

�

3

= APrism

3

gives a 4

n

; for n > 8, it and its dual are not 5-gonal. Examples of

4

n

without abutting pairs of 4-gons are Cham

t




3

, t � 1) and duals of tetrakis cube,

Cuboctahedron, triangular ortobicupola ("anticuboctahedron"), giroelongated triangular

bicupola and snub cube, having, respectively 8a

2

(a � 2), 24, 32, 32, 44, 60 vertices. Last

two are non 5-gonal. "Dual tetrakis" above, means a truncation on six 4-valent vertices

of the dual polyhedra.

On the other hand, any 4

n

with each pair of 4-gons separated by at least 3 edges (for

example, Cham

t




3

, t � 2) comes as 6-edge truncation (put 4-gons instead of edges) of

a fullerene 5

n�12

. Hence such a 4

n

has no abutting pair of 4-gons and, moreover, the

corresponding 5

n�12

has 6 pairs of pentagons separated by only one edge. Many 4

n

come

as 6-edge truncation of 5

n

under weaker conditions: Cham 


3

from 5

20

, truncated �

3

from �

3

. Also truncated �

3

is 6-(disjoint) edges truncation of 4

12

= Prism

6

, Prism

6

is

2-(disjoint) edges truncation of 4

8

= 


3

, 


3

is 2-(disjoint) edges truncation of �

3

. Suitable

6-(disjoint) edges truncation of 5

24

(dual 2-capped APrism

6

) gives a 4

36

and so on (see

Fig. 5).

9 Polyhedra 5

n

Theorem 1 of [GrMo63] gives that 5

n

exists for any even n � 20 except n = 22. The

polyhedra 5

n

, i.e. the bifaced polyhedra (3; 5; 6; 12; p

6

), are called fullerenes in Chemistry;

see, for example, [Fowl93], [DDGr96] for a sample of vast literature on them. In fact, all

5

n

are the cases f = 2 +

n

2

� 12 of medial polyhedra, introduced in [Gold35] as putative

best (isoperimetrically) approximation of a sphere within the class of polyhedra having

given number f of faces. A medial polyhedron with f faces is a bifaced polyhedron

(3; a = b6�

12

f

c; b = a+ 1; p

a

; p

b

= f � p

a

); it exists for any f � 4, except f = 11; 13. For

f = 4; :::; 10; 12 they are exactly 8 dual convex deltahedra: �

3

, Prism

3

, 


3

, Prism

5

, dual

bisdisphenoid, dual 3-augmented Prism

3

, dual 2-capped APrism

4

and the Dodecahedron

(see the case k = 3 of Table 1 above).

All known l

1

-5

n

are the Dodecahedron 5

20

!

1

2

H

10

, 5

26

!

1

2

H

12

, 5

44

(T ) !

1

2

H

16

and

the chamfered Dodecahedron 5

80

(I

h

) !

1

2

H

22

. The last one is dual pentakis Icosidodec-

ahedron; its twisted version is not l

1

. All known l

1

-5

�

n

are the Icosahedron 5

�

20

!

1

2

H

6

,

hexakis(truncated �

3

) = 5

28

(T

d

)!

1

2

H

7

, hexakis(APrism

2

6

) = 5

�

36

(D

6h

)!

1

2

H

8

and pen-

takis Dodecahedron 5

�

60

(I

h

) !

1

2

H

10

. In fact, no other l

1

-5

n

, l

1

-5

�

n

exist for n < 60 (see

[DDGr96]) and they are not expected for other n.

Some interesting classes of 5

n

were mentioned above: 5

10(t+1)

= (2-APrism

t

5

)

�

, 5

12(t+1)

=

(2-APrism

t

6

)

�

and those (with 4 isolated triples of pentagons) coming from collapsing of

4 triangles in some 3

n

. Let us consider a generalization of the last 2 classes.

We say that a fullerene 5

n

is PR

i

(pentagon-regular of degree i) if each of 12 pentagons

is adjacent to exactly i other pentagons. Clearly, the dodecahedron 5

20

and the hexagonal

barrel Barrel

6

= 5

24

are unique PR

5

and PR

4

, respectively. RP

0

's are fullerenes with

11



isolated pentagons; chemists call them preferable or IP fullerenes. The smallest ones

among them are the 5

60

(I

h

) and a 5

70

(D

5h

). PR

1

's are those having 6 isolated pairs of

abutting pentagons; all 130 of such 5

n

with n � 84 are listed in [Fowl93] the 4 smallest

ones are a 5

50

(D

3

), a 5

52

(T ), the 5

52

(C

2

), a 5

54

(D

3

). The only PR

3

are the 5

28

(T

d

) and

the 5

32

(D

3h

). It will be interesting to characterize all fullerenes PR

2

. Their 12 pentagons

form isolated k-cycles (k = 3; 6; 9; 12): four 3-cycles (including a 5

48

(D

2

) and at least one

tetrahedral 5

n

for any n = 4(a

2

+ ab + b

2

)� 8, starting with the 5

40

(T

d

), the 5

44

(T ), the

5

56

(T

d

), a 5

58

(T ) and so on); two 3-cycles and one 6-cycle; one 3-cycle and one 9-cycle

(including the 5

38

(C

3v

)); two 6-cycles (including any 5

12t

= (2-APrism

t�1

6

)

�

with t � 3, it

has symmetry D

6h

for odd t and D

6d

for even t); one 12-cycle. The number of vertices of

type (5

3

), (5

2

:6), (5:6

2

) for above 5 classes (by faces surrounding a vertex) are (4,12,24),

(2,18,18), (1,21,15), (0,24,12), (0,24,12), respectively. We not found PR

2

fullerenes of

second class; they are also absent among all 1812 fullerenes 5

60

. All PR

i

with n � 50 are

15 mentioned above: one for i = 5; 4; 1, two for i = 3 and ten for i = 2. We �nd that in

the third and in the �fth class there are exactly 5 fullerenes of Fig. 6.

Proposition 9.1 All fullerenes with 12-cycle of pentagons are those four given on

Fig.6.

In fact, let C

12

and C

0

12

be the inner and the outer cycles of a belt of 12 adjacent

squares. We have to set 12 new vertices on edges of C

12

and C

0

12

such that the 12 squares

of the ring are transformed into 12 pentagons. Let a and a

0

= 12 � a be the numbers

of the new vertices on C

12

and C

0

12

, respectively. Now we connect the a vertices of C

12

by lines such that the inner domain of the ring is partitioned into hexagons. Similarly

we partition the outer domain. The Euler relation implies that a = a

0

= 6. If k is the

number of new vertices in the inner part (their degree is 3), then the number of hexagons

is

k

2

+4. Hence k is even. Consider a con�guration of the six new vertices on C

12

. Let q be

the maximal number of vertices of C

12

lying between two consecutive new vertices. Then

q � 4, since two consecutive new vertices and q vertices of C

12

between them belong to a

hexagon. It is easy to see that q takes only 3 values: 4, 3 and 2. Not very complicated

enumeration of con�gurations shows the following.

If q = 4, we have a 5

36

(D

2d

) with k = 0 (one of two 5

36

with symmetry D

2d

).

If q = 3, we obtain two nonisomorphic fullerenes 5

44

with k = 4 (with symmetry D

2

,

D

3d

).

If q = 2, we have a homogeneous con�guration of 6 new vertices on C

12

. In this case

k = 6, and we obtain a fullerene 5

48

(D

6d

), (unique, except (2-APrism

3

6

)

�

, 5

48

(D

6d

)).

The partitions of the inner and outer domains into hexagons are similar.

Proposition 9.2 There is a unique fullerene with one 3-cycle and one 9-cycle of

pentagons, namely the fullerene 5

38

(C

3v

).

Proof. Let C

9

and C

0

9

be the inner and the outer cycles of a ring of 9 adjacent squares.

We have to set 9 new vertices on edges of C

9

and C

0

9

such that the 9 squares of the ring

are transformed into 9 pentagons. Let a and a

0

= 9�a be the numbers of the new vertices

on C

9

and C

0

9

, respectively. Let the 3-cycle of pentagons lies in the inner region of C

9

.

Hence the outer region of C

0

9

has no pentagons. We connect the a

0

vertices of C

0

9

by lines

such that the outer region of C

0

9

is partitioned into hexagons. The Euler relation implies

that a

0

= 3. Hence a = 9� 3 = 6. The simple enumeration shows that the 3 new vertices

of C

0

9

lie uniformly, i.e. there are exactly 3 vertices of C

0

9

between two consecutive new

12



vertices. Besides, there is only one other vertex of degree 3. Hence the outer region of C

0

9

is partitioned into 3 hexagons.

Consider the inner region of C

9

. We have to connect the 6 vertices of degree 2 of the

3-cycle of pentagons with the 6 new vertices of the cycle C

9

by lines. It is easy to see

that if there is one vertex of the 3-cycle and one new vertex of C

9

connected by an edge,

then the partition of the inner region of C

9

into hexagons is unique. In this case each

new vertex of C

9

is connected by an edge with a vertex of degree 2 of the 3-cycle. The

6 new vertices of C

9

lie uniformly, i.e. there are two and three vertices of C

9

between a

new vertex and its left and right neighbours. We obtain the fullerene 5

38

(C

3v

).

If there is no pair of vertices of the 3-cycle and C

9

connected by an edge, then the

3-cycle is circumscribed by a ring of 6 hexagons. The outer cycle C

15

, including these 6

hexagons, contains 9 vertices of degree 2. It is not di�cult to show that it is not possible to

connect these 9 vertices of C

15

with 6 vertices of C

9

and obtain a partition into hexagons.

Similarly,de�ne HR

i

(hexagon i-regular) be any fullerene such that any hexagon is

adjacent to exactly i hexagons.Then all HR

0

are the 5

24

, the 5

26

, the 5

28

(T

d

) and no

HR

6

exists. Examples of HR

1

are the 5

28

(D

2

), the 5

32

(D

3

); of HR

2

- the 5

30

(D

5h

), the

5

32

(D

3d

), the 5

32

(D

2

), the 5

32

(D

3h

); of HR

3

- the 5

36

(D

2

), the 5

60

(I

h

); of HR

4

- the

5

50

(D

5d

) = (2 � APrism

3

5

)

�

, the 5

80

(I

h

), the 5

80

(D

5h

); of HR

5

- the 5

140

(I). For n � 36

no other HR

i

(than above ten) exists. The only possible (i; n) for preferable fullerenes

HR

i

are (3; 60); (4; 80); (5; 140), since they have p

6

=

60

6�i

;there are only above two for

n = 80.Those four HR

i

and PR

0

fullerenes have (see Section 4.4 in [FoMa95] minimal

steric strain among PR

0

fullerenes. HR

i

have (see page 79 in [FoMa95] maximal steric

strain among fullerenes.Any 5

n

which is HR

i

has exactly 30�

p

6

(6�i)

2

edges separating two

pentagons; so n � 20 +

120

6�i

� 140. Examples of 5

n

which are both PR

i

and HR

i

0

are

(besides of preferableHR

i

) the 5

24

, the 5

28

(T

d

), the 5

32

(D

3h

) for (i; i

0

) = (4; 0); (3; 0); (3; 2),

respectively.

The fullerenes 5

n

are the case:

1. "at least 20 vertices" of the medial polyhedra [Gold35],

2. "a=5" of simple bifaced polyhedra with p = (p

a

; p

6

); see Sections 7,8 above,

3. "b=6" of simple bifaced polyhedra with p = (p

5

; p

b

) (For general b we have p

5

+ p

b

(6�

b) = 12 and it has 2

b�5

b�6

p

5

�

4b

b�6

vertices; see remark on fulleroids in the end of Section

6.For b = 3; 4 it is the Durer's octahedron, Prism

5

,respectively.)

3-valent polyhedra with p = (p

4

= 2; p

5

= 8; p

6

) with high symmetry were proposed in

Chemistry (see [GaHe93]);some are chemically better (i.e. they have smaller number of

pairs of adjacent pentagons) than fullerenes with the same number of vertices. 3-valent

maps with p = (p

5

; p

6

; p

7

) have p

5

= p

7

+ 12(1� g); p

6

any.Many species of plancton (for

example, famous Aulonia hexagona of E.Haeckel, 1887) have, as their rigid skeleton, such

polyhedral maps. In the chemically important case p

5

= p

7

, they are realizable on the

torus (having the genus g = 1) and they have 4p

5

+ 2p

6

vertices. They are called toroidal

polyhexes if p

5

= p

7

= 0 and azulenoids if p

5

= p

7

> 0. In many applications 5- and 7-

gons come by joined pairs,i.e.(in chemical terms) by azulene units.Toroidal polyhexes with

p

6

= 3; 7; 8; 12 are not 5-gonal, but for p

6

= 4, it realizes the cubeH

3

. Toroidal realizations

of 3-valent maps with p = (p

5

; p

6

; p

8

) also used in Chemistry; they have p

5

= 2p

8

; p

6

any

and 3p

5

+ 2p

6

vertices. 3-valent maps with p = (p

6

; p

7

; p

8

) have p

7

+ 2p

8

= 12(g � 1); p

6

any. They are realized on some minimal surface of negative curvature and are called

13



schwarzites. [King96] gives 4 examples,with the genus g = 3, of chemical relevance having

p = (p

7

= 24) (Klein map f7

3

g) on the D surface), p = (p

6

= 56; p

7

= 24) (the leapfrog of

the previous one,it is an analog of 5

60

(I

h

)); p = (p

6

= 80; p

8

= 12) and p = (p

6

= 80; p

7

=

24). They have 56,168,192,216 vertices, respectively, and last two are realized on the the

surface P.

10 Polyhedra (3; 4)

n

Those are 4-valent bifaced polyhedra with parameters (4; 3; 4; p

3

; p

4

); so p

3

= 8 and n =

6+ p

4

. Besides 3

n

, 4

n

, 5

n

it is the only case of bifaced polyhedra for which p

a

is �xed for

given (k; b). [Gr�un67], p.282, gives the existence of (3; 4)

n

for any n � 6, except 7.

From x6 above we have ambo (3; 4)

n

= (3; 4)

2n

. Another operation, namely, inserting

a ring of m 4-gons into some (3; 4)

n

, produces a (3; 4)

n+m

; let us call it m-elongation. For

example, 2-Prism

t

4

= (3; 4)

4t+6

! H

2t+2

is, m times iterated, 4-elongation of 2-Prism

4

.

Already iterated 3-elongations of �

3

, 4-elongations of APrism

4

and of 2-Prism

4

give

(3; 4)

n

for n = 6 + 3m, 8 + 4m, 10 + 4m for any m.

First examples of (3; 4)

n

are: �

3

= (3; 4)

6

!

1

2

H

4

, APrism

4

= (3; 4)

8

!

1

2

H

5

, ambo

Prism

3

=3-elongated �

3

= (3; 4)

9

!

1

2

H

6

, 2-Prism

4

= (3; 4)

10

!

1

2

H

6

. The six polyhe-

dra on Fig.7 are not 5-gonal: (3; 4)

11

and 4 polyhedra (3; 4)

12

, (Cuboctahedron= ambo

�

3

= 4-elongated APrism

4

, anticuboctahedron, another 2 times 3-elongation of �

3

and an-

other (3; 4)

12

and ambo APrism

4

= (3; 4)

16

. Now, Rhombicuboctahedron (3; 4)

24

!

1

2

H

10

but its twisted version ("14th Archimedian solid") is not 5-gonal; they are 8-elongations

of twisted ambo APrism

4

which is a (3; 4)

16

!

1

2

H

8

, and of ambo APrism

4

which is

not 5-gonal. Exactly eleven (3; 4)

n

are regular-faced: above 4, �

3

, APrism

4

, 2-Prism

4

,

Cuboctahedron, anticuboctahedron and 6-elongations of last two, which are non 5-gonal

(3; 4)

18

.

Between the duals of above (3; 4)

n

, all embeddable are three zonohedra: �

�

3

= 


3

,

(Cuboctahedron)

�

! H

4

and (2-Prism

t

4

)

�

= Prism

t+1

4

! H

t+3

. Apropos, (ambo

Prism

3

= (3; 4)

9

)

�

is the smallest convex polyhedron with odd number of faces, all of

which are quadrilaterals; it is not 5-gonal.
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Figure 1: All polyhedra with at most six faces
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Figure 2: All polyhedra with seven faces
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Figure 3: Some simple octahedra
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n

: 


3

, Prism

6

, truncated �

3

, a 4

36

(as edge-truncations); unique 4

14

, 4

16

,

4

18

; a 4

20

, twisted Cham 


3
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3

Figure 6: All pentagon-regular fullerenes with 12- or 9-belt of pentagons: a 5

36

(D

2d

), a

5

44
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3d

), a 5

48

(D

6d

), a 5

44

(D

2

), the 5

38

(C

3v

)
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Figure 7: Some (4; 3)

n

: Cuboctahedron, its twist, two other (3; 4)

12

, ambo APrism

4

, its

twist, the (3; 4)

11
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