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Abstract

Any two-distance space is uniquely up to a multiple represented by a distance

d

G;t

for a graph G such that d

G;t

(ij) is equal to 1 or t depending on (ij) is an

edge or nonedge of G. For a cone C

A

n

of n-point distance spaces, we set t

A

(G) :=

maxft : d

G;t

2 C

A

n

g. We consider the cut cone Cut

n

= C

C

n

, the hypermetric cone

Hyp

n

= C

H

n

, and the cone of negative type Neg

n

= C

N

n

. The values of t

N

(G) (in

other terms) are considered by many authors, and are determined by roots of some

polynomials. We give bounds on t

H

(G), and consider some classes of graphs G with

a given value of t

H

(G), especially for t

H

(G) = 2 and t

H

(G) =

3

2

. The graphs G

with t

H

(G) = 2 are exactly graphs having the hypermetric truncated distance d

�

G

.

1 Introduction

A point set in an m-dimensional Euclidean space R

m

is called a two-distance set if the

pairwise distances between the points take only two distances. We distinguish a two-

distance space as an abstract distance space with two distances.

Two-distance sets have an intrinsic interest. Upper bounds on their cardinality may

depend on the speci�c metric space where they are embedded, on its dimension, and on

actual distances. Two-distance sets attract by their simplicity and their relation to some

combinatorial objects, for example, to spherical designs.

Besides, a use of metric considerations simpli�es combinatorial problems. For example,

it is very interesting to compare the proofs in [16] and [10] of the nonexistance of a 7-point

two-distance set inR

3

. The metric proof of [16] is much simpler of the combinatorial proof

of [10].

There are some optimization problems related to sets V endowed by a distance function

d. For example, the Traveling Salesman Problem is the problem to �nd an order V !

f1; 2; :::; jV jg such that the sum

P

n

i=1

d(i; i+1) (with n+1 � 1) is minimal. This problem

is NP-complete even for two-distance sets, since it is reduced to �nding a Hamiltonian

cycle in a graph. We think that many other problems are equally hard for two-distance

spaces as for general distance spaces.
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Any two-distance is, up to a multiple, the following distance d

G;t

for a graph G and

some nonnegative t:

d

G;t

(ij) =

(

1 if (ij) is an edge of G

t if (ij) is a nonedge of G

Let C

A

n

be a cone of distance spaces (V; d) on n = jV j points. As C

A

n

, we consider

three combinatorially signi�cant cones, namely, the cut cone C

C

n

= Cut

n

, the cone of

l

1

-embeddable semimetrics; the hypermetric cone C

H

n

= Hyp

n

; and the cone C

N

n

= Neg

n

,

the cone of distances of negative type (i.e. squared Euclidean distances). For a given

graph G, we set

t

A

0

(G) = minft : d

G;t

2 C

A

n

g; t

A

(G) = maxft : d

G;t

2 C

A

n

g:

Since d

G;t

= td

G;

1

t

, we obtain

t

A

0

(G)t

A

(G) = t

A

0

(G)t

A

(G) = 1: (1)

So if we know values of t

A

(G) for all G, we know t

A

0

(G), too. Hence we are restricted

ourselves below by studing values of t

A

(G) only. In what follows, t

A

1

(G) in expression of

type t

A

0;1

(G) denotes t

A

(G).

There is the fourth combinatorially important cone C

M

n

= Met

n

, the metric cone.

We could consider the problem of a determination of values t

M

0;1

(G). But this problem is

trivially solvable. In fact, t

M

(G) = 2 if G is not a disjoint sum of complete graphs, and

t

M

(G) =1 otherwise.

In principle, the problem of determining of t

N

(G) is solved by Einhorn and Schoenberg

[16], and this resolution is well known. It relates to roots of a polynomial, namely of the

determinant of the Gram matrix of a representation of the distance space d

G;t

. Other

polinomials related to t

N

(G) were used by Seidel [29], Neumeier [26], Maehara [24].

For a graph G, the distance d

G;2

= d

�

G

is a metric, and it is called the truncated metric

of the graph G. If G is connected and has diameter 2, then d

�

G

is the path metric of the

graph G. For a graph G of diameter 2, the equality t

C

(G) = 2 (t

H

(G) = 2) means that

G is an l

1

-graph (hypermetric, respectively). For example, t

C

(K

m�2

) = t

H

(K

m�2

) = 2,

where K

m�2

is the Cocktail-party graph. Conversely, if a graph G of diameter 2 is not

hypermetric (not l

1

-embeddable), then t

H

(G) < 2 (t

C

(G) < 2, respectively).

In this paper, we apply known properties of hypermetrics and l

1

-metrics to two-

distance spaces.

In Section 2, general properties of distance spaces are considered. In particular, it

is noted that the convex hull P (d) of representing points of d 2 Neg

n

is a polytope

distinct from a simplex i� d belongs to the boundary of the cone Neg

n

. But if d belongs

to the boundary of Hyp

n

, P (d) can remain a simplex. The role of P (d) plays here the

Delaunay polytope P

D

(d). Some properties of t

H;N

(G) are described in Section 3. Taking

in attention that any hypermetric space has a spherical representation, we give, in Section

4, known bounds on t

Q

(G) of such a representation using the smallest eigenvalue of the
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Gram matrix Q. In Sections 5 and 6, we give lower bounds on t

H;N

(G). The bound

on t

N

(G) was known early, but it was not related to t

N

(G). In Section 7, we recall a

relation of two-distance spaces with equiangular lines. We �nd in Section 8 exact values

of t

H

(G) for some classes of bipartite graphs, and describe the corresponding Delaunay

polytopes P

D

(G). In Section 9, we give t

H

(G) and P

D

(G) for G with small number of

vertices. We consider some examples of hypermetric two-distance spaces with t

H

(G) = 2

and t

H

(G) =

3

2

, respectively, in Sections 10 and 11.

2 Distance spaces

A �nite distance space (V; d) is a �nite set V and a matrix D = fd(ij)g or a function d

on the set V

2

of all pairs of V , such that

(1) D is nonnegative, i.e. d(ij) � 0 for all (ij) 2 V

2

,

(2) D is symmetric, d(ij) = d(ji),

(3) D vanishes on diagonal, i.e. d(ii) = 0.

A �nite distance space (V; d) with jV j = n has

�

n

2

�

=

n(n�1)

2

distances d(ij). Hence

d can be considered as a point of the nonnegative orthant R

(

n

2

)

+

of the Euclidean space

R

(

n

2

)

. Let E

n

be the set of all

�

n

2

�

unordered pairs (edges) of distinct points of V . Then

the coordinates of R

(

n

2

)

are indexed by (ij) 2 E

n

, i.e. R

(

n

2

)

= R

E

n

.

There are some subcones in R

(

n

2

)

+

given by linear conditions on the distance d and

tightly related to combinatorics. For example, if d satis�es all triangle inequalities d(ij)+

d(ik) � d(jk) � 0, then d is a semimetric. All semimetrics form the metric cone Met

n

.

The following inequality

X

1�i<j�n

b

i

b

j

d(ij) � 0; b

i

2 Z; 1 � i � n; (2)

where

P

1�i�n

b

i

= 1, is a generalization of the triangle inequality. It is called the hyper-

metric inequality. Since the hypermetric inequality is linear in d, all distances satisfying

(2) for all b

i

2 Z with

P

b

i

= 1 �ll out the hypermetric cone Hyp

n

.

If d satis�es (2) for all b 2 Z

n

with

P

b

i

= 0, then d is called a distance of negative

type. These distances form the negative type cone Neg

n

.

Remark 1. Since the condition

P

n

i=1

b

i

= 0 and the inequalities (2) are homogeneous,

d 2 Neg

n

satis�es (2) for all rational b

i

, and by continuity, for all b 2 R

n

. 2

The cut cone Cut

n

is the convex hull of cut metrics c

S

for S � V . The cut metrics

span the common extreme rays of Cut

n

, Hyp

n

and Met

n

. For S � V , the cut �(S) � E

n

is the set of edges having exactly one vertex in the set S. Then c

S

is the indicator vector

of the cut �(S), i.e. the vector of the space R

E

n

such that

c

S

(ij) =

(

1 if jfijg \ Sj = 1;

0 otherwise.

(3)

Clearly, c

V�S

= c

S

.
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There are important problems on isometrical embedding of a distance space (V; d) into

an Euclidean space with Euclidean and squared Euclidean distances. If (V; d) is embedded

into an m-dimensional Euclidean space, it can be considered as a set of n = jV j points in

R

m

. These points (and the vectors whose endpoints they are) are called a representation

(of dimension m) of the distance space (V; d).

We are interested only in representations in Euclidean spaces with Euclidean and

squared Euclidean distances. The famous result of Schoenberg (1935) says that a distance

space (V; d) is of negative type if and only if it has a representation with d equal to squared

Euclidean distance.

Similarly to t

N

0;1

(G), one can de�ne the values t

E

0;1

(G), i.e. minimal and maximal

values of t such that the distance space (V; d

G;t

) has an Euclidean representation with

distance equal to Euclidean distance. Since (d

G;t

)

2

= d

G;t

2
, both these representations of

a two-distance space are, in a sense, equivalent. Obviously, (t

E

0;1

(G))

2

= t

N

0;1

(G).

An advantage of the representation of (V; d) in R

m

with squared Euclidean distance

is that

there is a one-to-one correspondence between linear dependences on the set of distances

and linear dependences on the set of representing vectors.

Let vectors v

i

2 R

m

, i 2 V , represent a distance space (V; d), d 2 Neg

n

, such that

d(ij) = (v

i

� v

j

)

2

: (4)

For d 2 Neg

n

, let

B(d) = fb 2 R

n

:

X

1�i<j�n

b

i

b

j

d(ij) = 0;

n

X

i=1

b

i

= 0g:

Fact 1. B(d) is a subspace of R

n

.

Proof. If d(ij) = (v

i

� v

j

)

2

, then the inequality (2) with

P

n

i=1

b

i

= 0 takes the form

(

P

n

i=1

b

i

v

i

)

2

� 0. For b 2 B(d), we have the linear equality

P

n

i=1

b

i

v

i

= 0. Since the

condition

P

n

i=1

b

i

= 0 is linear, too, we obtain that

B(d) = fb 2 R

n

:

n

X

i=1

b

i

v

i

= 0;

n

X

i=1

b

i

= 0g

is a subspace of the space R

n

. 2

For d 2 Neg

n

, let P (d) be the convex hull of endpoints of representing vectors v

i

,

i 2 V . It is known that P (d), up to translations and rotations, depends only on d.

Proposition 1 Dimension of P (d) is equal to n� 1� dimB(d). In particular, if d is an

inner point of Neg

n

, then P (d) is an (n� 1)-dimensional simplex.

Proof. Since b

n

= �

P

n�1

i=1

b

i

, we have

n

X

i=1

b

i

v

i

=

n�1

X

i=1

b

i

(v

i

� v

n

):

4



Without loss of generality, we can suppose that the (n � 1) vectors v

i

� v

n

belongs to

R

n�1

. If the point d lies in the interior of the cone Neg

n

, then the sum

P

n�1

i=1

b

i

(v

i

� v

n

)

is not zero for all b 2 R

n

. In other words, the vectors v

i

� v

n

, 1 � i � n� 1, are linearly

independent, and P (d) is an (n � 1)-dimensional simplex.

If d lies on the boundary of Neg

n

, then the space B(d) is not empty, and there are

linear dependencies between vectors v

i

� v

n

. Obviously, dimension of P (d) is equal to

n� 1 � dimB(d). 2

Usually one proves assertions like Proposition 1 using some characteristic determinants

that we consider below.

Let d be an inner point of Neg

n

. Then P (d) is an (n � 1)-dimensional simplex. We

take the vectors v

i

� v

n

, 1 � i � n � 1, as a basis of R

n�1

. Let Gr

n

(d) be the Gram

matrix of these vectors, i.e. (Gr

n

(d))

ij

= (v

i

� v

n

; v

j

� v

n

), 1 � i; j � n� 1. Using (4) it

is easy to see that

(Gr

n

(d))

ij

=

1

2

(d

in

+ d

jn

� d

ij

):

Note that, using the Gram matrix, we can rewrite the inequality (2) b

T

Db � 0 as follows

b

T

Db = �2b

0T

Gr

n

(d)b

0

� 0, i.e. b

0T

Gr

n

(d)b

0

� 0 for any b

0

2 R

n�1

.

Gram matrix is positive semide�nite. It is positive de�nite if the vectors v

i

� v

n

are

linearly independent. In other words, its minimal eigenvalue is positive. When the point

d belongs to the boundary of Neg

n

, then these vectors are linearly dependent and Gram

matrix is positive semide�nite with zero as the smallest eigenvalue. In this case dimension

of P (d) is equal to n� 1� f , where f is the multiplicity of the zero eigenvalue.

Gram matrix is not symmetric with respect to indices, the index n is special. But

Gr

n

(d) is tightly related to the Cayley-Menger matrix CM

n

(d) of the order n+ 1, where

CM

n

(d) =

 

0 j

T

n

j

n

D

!

;

and j

n

= (1; :::; 1)

T

is the all-one column. It is known (see, for example, [6]) that

detGr

n

(d) =

(�1)

n

2

n�1

detCM

n

(d):

It is well known (see, for example, [13]) that Cut

n

� Hyp

n

� Neg

n

, and for n �

7 all these inclusions are strict. Obviously, Hyp

n

� Met

n

, but Met

n

and Neg

n

are

not comparable. The cones Cut

n

, Hyp

n

and Met

n

are polyhedral, while Neg

n

is not

polyhedral. Moreover, all extreme rays of Cut

n

are extreme rays of Hyp

n

and Met

n

, and

all facets of Met

n

are facets of Cut

n

and Hyp

n

.

Note that the cones Hyp

n

and Neg

n

both are described by the inequalities (2) with

P

n

i=1

b

i

equal to 1 and 0, respectively. But it is su�cient a �nite number of these in-

equalities for Hyp

n

, while the description of Neg

n

needs in�nite number of inequalities

(2).

Since a hypermetric space (V; d) is of negative type, it has a representation with d

equal to squared Euclidean distance. Assouad (1980) proved that (V; d) is hypermetric

5



if and only if the endpoints of the vectors of this representation lie on an empty sphere

of the lattice a�nely generated by these vectors. An n-dimensional lattice is an Abelian

group of vectors of R

n

integrally generated by n linearly independent vectors. An empty

sphere of a lattice is a sphere such that no lattice point lies in the interior of the sphere.

One considers usually an empty sphere such that the lattice points on the sphere a�nely

generate R

n

. In this case, the convex hull of all lattice points on an empty sphere is a

Delaunay polytope P

D

of the lattice. So P (d) is the convex hull of some vertices of the

Delaunay polytope P

D

. Note that in this case P

D

is uniquely determined by the distance

d (see [13]). Hence we denote it by P

D

(d).

Since l

1

-metric space (V; d) is hypermetric, the set V can be represented as a set of

vertices of a Delaunay polytope P

D

(d). But the l

1

-embeddability implies that P

D

(d) can

be inscribed into a box. A box is a Delaunay polytope of a rectangular lattice generated

by a set of mutually orthogonal vectors. In general, the dimension of the box, where

P

D

(d) is inscribed, is greater than dimension of P

D

(d).

Let (V; d) be hypermetric. Then we can take the center of the corresponding Delaunay

polytope P

D

(d) as origin. Substituting the representation (4) with v

2

i

= r

2

(d), where r(d)

is the radius of P

D

(d), into (2) with

P

n

i=1

b

i

= 1, we obtain

(

n

X

i=1

b

i

v

i

)

2

� r

2

(d):

This means that any a�ne integer combination v(b) �

P

n

i=1

b

i

v

i

of vectors v

i

, being a

point of the lattice a�nely generated by these vectors, does not lie inside the empty

sphere circumscribing P

D

(d).

Similarly to B(d) we can introduce the set

B

H

(d) = fb 2 R

n

:

X

1�i<j�n

b

i

b

j

d(ij) = 0;

n

X

i=1

b

i

= 1g:

Obviously B

H

(d) 6= ; i� d lies on the boundary of Hyp

n

. Substituting the expression (4)

for d, we obtain

B

H

(d) = fb 2 R

n

: (

X

1�i<j�n

b

i

v

i

)

2

= r

2

(d);

n

X

i=1

b

i

= 1g:

In other words, if b 2 B

H

(d), then the point v(b) is a vertex of P

D

(d). There are two

possibilities: either v(b) 2 V , or v(b) is a new vertex of P

D

(d). The �rst case is possible

only if there is an a�ne dependencies between vectors v

i

, when these vectors span an

a�ne space of dimension not greater than n� 2. This means that d lies on the boundary

of Neg

n

, too. Since v

i

generate P

D

(d), the dimension of P

D

(d) is not greater than n� 2.

Hence we have

Proposition 2 If dimP

D

(d) � n � 2, then d lies on both the boundaries of Hyp

n

and

Neg

n

. 2

6



When a point d comes to the boundary of Hyp

n

, then the simplex P

D

(d) is glued with

some other simplexes of the L-partition of the lattice determined by the representation of

d. If d comes to a facet F of Hyp

n

determined by exactly one hypermetric equality, then

the glued simplexes form a special Delaunay polytope called repartitioning polytope. It

is studied in detail in [3].

Let the facet F is determined by a hypermetric equality with b 2 Z

n

,

P

n

i=1

b

i

= 1. Let

V

+

= fi : b

i

> 0g; V

�

= fi : b

i

< 0g; V

0

= fi : b

i

= 0g: (5)

Let vectors v

i

represent d 2 F . Then the vectors v

i

, i 2 V , and the vector v

0

= v(b) =

P

n

i=1

b

i

v

i

represent the repartitioning polytope. It is constructed as follows. Let S

�

be the simplex spanned by endpoints of vecors v

i

for i 2 V

�

[ f0g. Similarly, let S

+

and S

0

be simplexes spanned by v

i

for i 2 V

+

and V

0

, respectively. The simplexes S

+

and S

�

span spaces that intersect in the point v

c

=

1

k

P

i2V

+

b

i

v

i

=

1

k

(v

0

+

P

i2V

�

b

i

v

i

),

where k =

P

i2V

+

b

i

= 1 +

P

i2V

�

jb

i

j. The point v

c

is the common baricenter of both the

simplexes S

+

and S

�

. Let V

n

0

n

+

;n

�

be the convex hull of dimension n

0

of vertices of both

the simplexes S

+

and S

�

, where n

+

= jV

+

j � 1 and n

�

= jV

�

j are dimensions of S

+

and S

�

. The vertices of the simplex S

0

do not belong to the space spanned by V

n

0

n

+

;n

�

.

The repartitioning polytope is the convex hull of vertices of V

n

0

n

+

;n

�

and S

0

. It is denoted

as V

n�2

n

+

;n

�

, where n is the number of its vertices and n � 2 is its dimension. Note that

the notation V

m

p;q

does not describe a concrete polytope, but a class of a�nely equivalent

repartitioning polytopes of dimensionm with simplexes of dimensions p and q intersecting

in the common baricenter.

If the points of a representation lie on a sphere, then the representation is called spher-

ical. We saw that (V; d) has a spherical representation if d belongs to Hyp

n

. Moreover,

since every simplex can be inscribed into a sphere, the distance space has a spherical rep-

resentation if d is an inner point of Neg

n

. In this case the radius r of the circumscribing

P (d) sphere is given (see [6]) by

r

2

(d) = �

1

2

detD

detCM

n

(d)

:

We see that, according to Proposition 1, the only case when P (d) may be not inscribed

into a sphere is the case when d belongs to the boundary of Neg

n

. But there are cases

when P (d) is inscribed into a sphere although d lies on the boundary of Neg

n

.

Call a distance space regular (of strength 1, in terms of [26]) if its distance matrix D

has the all-one vector j

n

as an eigenvector. This means that the sum of all elements of

a row (or a column) of D does not depend on this row (and column). It is well known

that if a regular distance space has a representation, then it has necessarily a spherical

representation, too. In fact, we can take the origin of the representation space in the center

of mass

1

n

P

n

i=1

v

i

of the vectors v

i

such that then

P

n

i=1

v

i

= 0. Let � be the eigenvalue of

D corresponding to the eigenvector j

n

. Then taking in attention (4), we have

(Dj

n

)

i

=

n

X

j=1

(v

i

� v

j

)

2

= nv

2

i

+

n

X

i=1

v

2

j

= �;

7



i.e. v

2

i

does not depend on i, that is all v

i

have the same norm =squared length r

2

.

Setting in the above equality v

2

i

= v

2

j

= r

2

, we obtain the following value of the radius

of the spherical representation of a regular distance space:

r

2

(d) =

1

2n

n

X

j=1

d(ij): (6)

In particular, setting d(ij) = a

2

, we obtain the following very useful formula for the

squared radius of a regular (n� 1)-dimensional simplex with length of edges a

r

2

=

a

2

2

n� 1

n

: (7)

3 Two-distance spaces

For �xed G and varying t, the two-distances d

G;t

form a line in R

(

n

2

)

going through the

point (1; 1; :::; 1) = d

G;1

. For t

k

= t

A

k

, k = 0; 1, the points d

G;t

k

are the endpoints of a

segment of this line lying in the cone C

A

n

. The segments of the line d

G;t

lying in Cut

n

,

Hyp

n

and Neg

n

are contained each in other, respectively.

There are 2

(

n

2

)

� 1 lines d

G;t

, since there are 2

(

n

2

)

� 1 graphs on n vertices distinct

from K

n

. In fact, we consider subsets E of the set E

n

of all unordered pairs (=edges) of

distinct points of V . The (labeled) graph G = G(E) induced by the set E of its edges

is a convenient denotation of the subset E. The set of all labelled n-point graphs is

partitioned into classes of isomorphic graphs. Note that the cones C

A

n

, A = C;H;M;N ,

are invariant under permutations of coordinates. Hence the values of t

A

0;1

are the same for

all isomorphic graphs for all A. So it is natural to consider nonlabeled graphs only.

For the complete graph K

n

, d

K

n

;t

degenerates into the point (1; 1; :::; 1). For the empty

graph K

n

, the line d

K

n

;t

coincides with the central axis (t; t; :::; t) of the cones Cut

n

, Hyp

n

,

Met

n

and Neg

n

. We see, that the graph G determines, in a sense, the angle between the

line d

G;t

and the central axis. The points, where the line d

G;t

intersects the boundary of

the cones Cut

n

and Hyp

n

, are given by t = t

C;H

0;1

(G), respectively.

Since the cut metric c

S

takes only two values 0 and 1, it is the two-distance semimetric

d

K(S;S);0

, where S = V �S and K(S; S) is the complete bipartite graph with the partition

V = S [ S.

Below we use the common notations K

n

, P

n

, C

n

for the complete graph, the path and

the cycle, each on n vertices. K

p;q

is the complete bipartite graph with parts of size p

and q. The direct product G

1

� G

2

of graphs G

1

and G

2

is the graph with the set of all

pairs (v

1

; v

2

), v

1

2 V

1

, v

2

2 V

2

as the set of vertices. Two vertices (v

1

; v

2

) and (u

1

; u

2

) are

adjacent i� one of the coordinates coincide and the other coordinates are adjacent in the

corresponding graph. Denote by G

1

+ G

2

the disjoint union of graphs G

1

and G

2

such

that kG is the disjoint union of k graphs isomorphic to G. The graph K

1

+G is called

suspension of G and is denoted as rG.

Let Q = (q

1

; :::; q

m

) be a sequence of positive integers. Denote by K(Q) the disjoint

sum

P

m

i=1

K

q

i

. The graphs K(Q) play a special role. The distance spaces (V; d

K(Q);t

)

8



are just all ultrametrics in the class of two-distance spaces. An ultrametric is a metric

d satisfying the inequalities d(ij) � maxfd(i; k); d(j; k)g for every k 2 V , and any i; j 2

V . It is proved in [24] that all Euclidean representations of ultrametrics are (jV j � 1)-

dimensional simplexes. This implies, and it is obvious for two-distance spaces (V; d

K(Q);t

),

that

t

N

(K(Q)) =1: (8)

The representation of (V; d

K(Q);t

) for every t is the simplex being the convex hull of m unit

simplices P (d

K

q

i

;t

) spanning mutually orthogonal (q

i

� 1)-dimensional spaces, 1 � i � m.

Moreover, it is easy to verify that the simplex P (d

K(Q);t

) is a Delaunay polytope for all

t � 1. Hence

t

C

(K(Q)) = t

H

(K(Q)) =1:

The following graphs are special cases of K(Q) which is the complete multipartite

graph K

q

1

;:::;q

m

. In particular, if m = 2, K

q

1

;q

2

is the complete bipartite graph. K

1

+K

q

=

rK

q

= K

1;q

is a star, a special case of K

p;q

. If q

i

= q, 1 � i � m, then K

q;:::;q

= K

m�q

is

the completem-partite graph. In particular, if q = 2, K

2;:::;2

= K

m�2

is the Cocktail-party

graph.

The distance d

K(Q);t

is a metric for all t such that 0 � t � 2. Moreover, if m = 2, then

K(Q) = K

q;p

and d

K

q;p

;0

is a cut metric and spans an extreme ray of Cut

n

. Otherwise,

d

K(Q);0

is a 0-extension of d

K

m

;1

, and lies on a face of Cut

n

. In all these cases, d

K(Q);0

is

l

1

-metric. Similarly, the metric d

K(Q);2

spans an extreme ray of Met

n

if K(Q) contains

K

2;3

as an induced subgraph. In this case d

K(Q);2

is not hypermetric.

If G 6= K(Q), then d

G;t

is not a metric for t <

1

2

.

The property d

G;t

= td

G;

1

t

implies that d

K(Q);t

is a metric for t �

1

2

but not hypermetric

for t =

1

2

.

Obviously,

t

H

0

(G) � t

C

0

(G) � t

C

(G) � t

H

(G):

By the properties of d

G;t

, and since l

1

-metrics and hypermetrics are metrics, if G 6=

K(Q), then t

C;H

(G) � 2.

(1) and (8) imply that t

N

0

(K(Q)) = 0.

Recall that a subgraph H of G with the set of vertices V

0

� V is called induced

subgraph if edges of H are all edges of G with both ends in V

0

. The following lemma is

useful in what follows.

Lemma 1 If H is an induced subgraph of G, then t

A

(G) � t

A

(H) for A = C;H;N .

Proof. Obviously, any representation of G provides a representation for every induced

subgraph of G. Similarly, if d

G;t

is an l

1

-metric or a hypermetric, then for every induced

subgraph H of G the distance d

H;t

is an l

1

-metric or a hypermetric, respectively. 2

9



4 Vector representations of two-distance spaces

Obviously, detGr

n

(d

G;t

) is a polynomial in t. It was used in [16]. The authors of [20]

use the polynomial P

G

(t) =detCM

n

(d

G;t

) = �(�2)

n�1

detGr

n

(d

G;t

). Maehara [24] con-

siders the polynomial P

0

G

(s) =detCM

n

(d

G;1�s

) = P

G

(1� s) and proves that s

n�1

P

0

G

(

1

s

) =

�(G;�s)� (�1)

n

�(G; s� 1), where �(G; s) = det(sI �A(G)).

When t < t

N

(G), the Gram matrix is not singular and P

G

(t) 6= 0. If t = t

N

(G), there

is a dependency between representing vectors and P

G

(t) = 0. Hence t

N

(G) is the smallest

root of P

G

(t) with t > 1.

Unfortunately, t

H

(G) is not always given by a root of a known polynomial. But, for a

hypermetric distance, we have a spherical representation that simpli�es some considera-

tions.

Using the adjacency matrix A(G) of G, we can express the distance matrix D(G; t) of

the two-distance space (V; d

G;t

) as follows

D(G; t) = A(G) + tA(G) = A(G) + t(J � I �A(G)) = t(J � I) + (1 � t)A(G); (9)

where I is the identity matrix and J is the all-one matrix.

If t is su�cient near to 1, then d

G;t

is hypermetric, sinceHyp

n

� Neg

n

. Hence there is

a Delaunay polytope P

D

(G; t) = P

D

(d

G;t

) such that the set of vertices of G is a subset of

vertices of P

D

(G; t), and the distance is equal to the squared Euclidean distance. When

d

G;t

is an interior point of Hyp

n

, then P (d

G;t

) = P

D

(G; t) is a simplex.

The polytope P

D

(G; 1) is a regular (n � 1)-dimensional simplex P (d

G;1

) with the

length of edges 1. When t encreases (or decreases) such that d

G;t

lies in the interior of the

hypermetric cone Hyp

n

, then P

D

(G; t) continues to be simplex, but not regular. When

d

G;t

goes out on the boundary of Hyp

n

, P

D

(G; t) ceases to be simplex. But there are two

possibilities depending on whether there are a�ne dependencies between representing

points or not: either the set V spans a basic (n � 1)-dimensional simplex of P

D

(G; t) or

P

D

(G; t) has dimension less than n� 1 and V spans a subpolytope of P

D

(G; t). We shall

see later that both these cases occur for bipartite G.

For t = t

H

(G), denote P

D

(G; t) as P

D

(G). Note that the distance space generated by

all vertices of P

D

(G) is not, in general, a two-distance space. For example, the unit cube




n

realizes all distances k, for 1 � k � n. For the star K

1;n

, we have t

H

(K

1;n

) = 2 and

P

D

(K

1;n

) = 


n

.

Let the origin be in the center of P

D

(G; t), and let v

i

represent the vertex i of G. Then

d

G;t

(i; j) = (v

i

� v

j

)

2

(10)

Let r be the radius of the sphere circumscribing P . Then (10) implies

v

i

v

j

=

8

>

<

>

:

r

2

�

1

2

if (ij) 2 E(G);

r

2

�

1

2

t if (ij) 62 E(G);

r

2

if i = j:

(11)

10



Recall that a regular distance space has a spherical representation with radius given

by (6). Of course, a two-distance space (V; d

G;t

) is regular if and only if the graph G is

regular.

Let G be regular of valency q. Then

P

n

j=1

d

G;t

(ij) = q + t(n � 1 � q). Hence, by (6),

for the squared radius of the spherical representation we have

r

2

(G; t) =

q + t(n� 1� q)

2n

: (12)

Of course if a space (V; d) has a spherical representation with a radius r, then it has a

spherical representation with any radius greater than r (may be of dimension one greater).

We note the following useful fact proved in [20].

Fact 2. Let G = G

1

+ G

2

or G = G

1

+G

2

such that V = V

1

[ V

2

. Let the distance

space (V; d

G;t

) have a representation. Then this representation is as follows: for i = 1; 2,

(V

i

; d

G

i

;t

) has a spherical representation such that V

1

and V

2

span orthogonal spaces that

intersect in at most one point. 2

Let the vectors v

i

, 1 � i � n, give a representation of the two-distance space (V; d

G;t

).

The matrix Q(G; t) � (v

i

v

j

)

1�i;j�n

is the Gram matrix of the vectors v

i

, 1 � i � n. If

this representation is spherical, then, according to (11),

Q(G; t) = r

2

J �

t

2

(J � I) +

t� 1

2

A(G) = r

2

J �

t+ 1

4

(J � I)�

t� 1

4

B(G); (13)

where B(G) = (J � I) � 2A(G) is the Seidel (�1)-adjacency matrix of G. Comparing

with (9), we obtain

Q(G; t) = r

2

J �

1

2

D(G; t):

As a Gram matrix,Q(G; t) is positive semide�nite, and all its eigenvalues are nonnegative.

Let �

0

(G; t) be the minimal eigenvalue of Q(G; t). We set

t

Q

0

(G) = minft : �

0

(G; t) � 0g; t

Q

(G) = maxft : �

0

(G; t) � 0g:

Obviously, t

Q

0

(G) � t

H

0

(G), and t

Q

(G) � t

H

(G). These inequalities hold as equalities if the

representation given by Q(G; t) is a hypermetric representation, i.e. the set of endpoints

of vectors v

i

, 1 � i � n, is a subset of vertices of a Delaunay polytope.

IfG is a regular graph of valency q, then one can give explicit values of t

Q

0;1

(G; t). In this

case, the all one vector j is an eigenvector of A(G) with the eigenvalue q. It is easy to see

that j is also an eigenvector of the matrix Q(G; t) with the eigenvalue (r

2

�

t

2

)n+

t

2

+

t�1

2

q.

Note that this eigenvalue is nonnegative only if r

2

� r

2

(G; t), where r

2

(G; t) �

q+t(n�1�q)

2n

is r

2

(d

G;t

) of (6). It is no wonder, since r(G; t), the radius of the sphere with the center

in the center of mass, is the radius of the minimal sphere circumscribing P (G; t).

Let �(G) be the second largest eigenvalue of G and ��(G) be the smallest eigenvalue

of G. The smallest eigenvalue is negative, since all eigenvalues of A(G) are real and the

sum of all eigenvalues equals the trace of A(G), i.e. it is zero. Then

�

0

(G; t) =

(

t

2

� �(G)

1�t

2

if t � 1

t

2

� �(G)

t�1

2

if t � 1

11



It is known that �(G) > 1 if G 6= K(Q) (see, for example, [5], Corollary 3.5.4.). Hence

we have

t

Q

0

(G) =

�(G)

1 + �(G)

; t

Q

(G) =

�(G)

�(G)� 1

(14)

Note that �(G) = k + 1 for the bipartite graph K

k+1;k+1

. Hence t

Q

(K

k+1;k+1

) =

k+1

k

.

The condition (14) is a su�cient condition that the vertices of G have a representation

by points v

i

of a sphere with distances (10). But (14) says nothing about what is the

obtained distance space. Is it a metric, hypermetric or l

1

-space?

Note that the smallest eigenvalue of Q(G; t) is equal to 0 if and only if the vectors v

i

are linearly dependent.

Usually one interests in two-distance sets in an Euclidean space of given dimension m

of maximal possible size n(m). Obviously, the two-distance set with n(1) = 3 collinear

points is given by two points and their mid-point. A regular pentagon provides n(2) = 5

points of the maximal two-distance set in R

2

. It is proved in [16] that two-distance sets

in R

3

with n(3) = 6 points are represented by 6 polyhedrons.

A regular m-dimensional cross-polytope (it is a regular octahedron if m = 3) with

�

m+1

2

�

vertices provide a lower bound on n(m). For m = 6 and m = 22, two-distance sets

are known with

1

2

m(m+ 3) points given by maximal sets of equiangular lines.

The best general upper bound is due to Blokhuis [7] who has shown that n(m) �

�

m+2

2

�

=

m(m+3)

2

+ 1. It was known that this bound is tight for m = 1 and is not

tight for m = 2; 3. Recently, P. Lison�ek [23] found a 8-dimensional two-distance set

with n(8) =

�

8+2

2

�

= 45 points proving that Blokhuis's bound is tight for m = 8, too.

This set consists of vertices of the Johnson polytope PJ(9; 2) and the regular simplex

PJ(9; 1) which is inscribed into PJ(9; 2) such that the vertices of the simplex lie beyond

the boundary of the Johnson polytope PJ(9; 2). This polytope realized the distance d

G;2

,

where G =

~

T (10) is obtained from the triangular graph T (10) by switching a maximal

clique (of size 9).

We can reformulate problem of a maximal two-distance set in a space of given dimen-

sion in terms of t

N

(G) as follows. Let P (G) be P (d

G;t

) for t = t

N

(G), andm(G) =dimP (G).

Let m(n) = min

G

fm(G) : jV (G)j = ng

What is minimal dimension m(n) of polytopes P (G) with n vertices?

The function m(n) is the reciprocal function to n(m).

It is proved in [21] the following striking fact (Theorem 2 in [21]): if n > 2m(G) + 3,

then t

N

(G) =

k+1

k

, the quotient of two neighboring positive integers such that k <

1

2

+

q

1

2

m(G). Neumaier [26] improved this result showing that it is true for n �

maxf5; 2m(G) + 1g. We reformulate this fact as follows:

TheoremA Ifm(G) �

n�1

2

, then t

N

(G) =

k+1

k

for some positive integer k <

1

2

+

q

n�1

4

.
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5 Bounds on t

N

(G)

Schoenberg [28] considered the following problem: �nd a distance space (V; d) with mini-

mal distance 1 such that (V; d) has an (n � 2)-dimensional representation, n = jV j, and

the diameter of d

t

n

= max

(ij)

d(ij)

is minimal. He called these spaces quasiregular. Schoenberg gave bounds for diameter t

n

and conjectured that quasiregular distance spaces are two-distance spaces.

Seidel [29] proved that, for any n, there exists a unique (up to labelings of points)

quasiregular distance space. This implies the validity of Schoenberg's conjecture and that

the bound given by Schoenberg is the exact value of t

n

.

According to Proposition 1, d lies on the boundary of the cone Neg

n

. The following

nice interpretation of this problem given in [28] shows that t

n

is, in fact, a lower bound

on t

N

(G).

Consider a subset B(t) � R

(

n

2

)

of all d such that 1 � d(ij) � t for all (ij). Obviously

B(t) is the convex hull of all points d

G;t

, where G takes all 2

(

n

2

)

values. B(t) is

�

n

2

�

-

dimensional cube whose edges are parallel to the coordinate axes of R

(

n

2

)

, and the vertex

d

K

n

;t

is the point (1,1,...,1). The vertices d

G;t

and d

G;t

are opposite vertices of the cube

B(t). Schoenberg showed that t

n

is the value of t > 1, when a vertex of B(t) touch for

the �rst time the boundary of the cone Neg

n

.

Let G

0

be the graph corresponding to the vertex of B(t

n

) touching the boundary of

Neg

n

. Obviously, t

n

= t

N

(G

0

) � t

N

(G). In fact, if G is not isomorphic to G

0

, we have

here a strict inequality, and this fact Schoenberg proved also. The graph G

0

is isomorphic

to one of the bipartite graphs K

k;k

or K

k;k+1

depending on n = 2k or n = 2k + 1.

The same bound was found also in [14], where metric transforms of a distance space

were considered. In particular, a value of c

n

was given, where c

n

is the largest c such

that the metric transform d

c

G;2

= d

G;2

c

of the truncated metric d

G;2

has an Euclidean

representation for all n-points graphs G. It was shown in [14] that, for the bipartite graphs

K

k;k

and K

k;k+1

the value of c

n

is exact. In our terms, we have d

G;2

2c

n

2 Neg

n

for all G,

and d

G

0

;2

2c

n

belongs to the boundary of Neg

n

, i.e. t

N

(G

0

) = 2

2c

n

, or c

n

=

1

2

log

2

t

N

(G

0

).

We give once more proof of this fact using the inequalities (2) of negative type.

Denote by h

G

(t; b) the left hand side of the inequality (2) with d = d

G;t

. According

to Remark 1, we consider rational b

i

, and suppose that

P

n

i=1

jb

i

j = 2. Let V

+

(b) =

fi 2 V : b

i

> 0g, V

�

(b) = fi 2 V : b

i

< 0g, and V (b) = V

+

(b) [ V

�

(b) � V . Note

that

P

i2V

+

(b)

b

i

=

P

i2V

�

(b)

jb

i

j = 1. Let G(b) be the subgraph of G induced on the set

V (b). Let K(b) be the complete bipartite graph K

p;q

on the set V (b) with the partition

(V

+

(b); V

�

(b)), i.e. p = jV

+

(b)j, q = jV

�

(b)j. Let E

b

(G) = E(G(b))�E(K(b)) be the

symmetric di�erence between the sets of edges of the graphs G(b) and K(b).

Similarly as it was shown in [3], one can show that

h

G

(b; t) = (t� 1) �

t

2

n

X

i=1

b

2

i

� (t� 1)

X

(ij)2E

b

(G)

jb

i

jjb

j

j: (15)
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If we set

h

G

(t) = max

b

h

G

(b; t);

then

t

N

(G) = maxft : h

G

(t) � 0g:

Proposition 3 We set

f

n

(k) =

(

k

k�1

if n = 2k,

2k(k+1)

2k

2

�1

if n = 2k + 1.

(16)

Then

f

n

(k) � t

N

(G) � 2 +

p

3

with an equality in the left hand side if G = K

k;k

or G = K

k;k+1

.

Proof. We show that h

G

(b; t) � 0 for t equal to values given in the right hand side of (16)

for all b with

P

b

i

= 0. Obviously, maximum of h

G

(b; t) is achived for b 2 R

n

such that

the second and the third terms of (15) are minimal in absolute value. The sum

P

n

i=1

b

2

i

with

P

i2V

+

(b)

b

i

=

P

i2V

�

(b)

jb

i

j = 1 takes its minimal value when b

i

's are almost equal for

all i.

If n = 2k, then the sum

P

n

i=1

b

2

i

takes the minimal value

2

k

for jb

i

j =

1

k

. Hence we have

h

G

(b; t) � (t� 1)�

t

2

2

k

=

k � 1

k

(t�

k

k � 1

):

This implies that h

G

(b;

k

k�1

) � 0 for all b if n = 2k.

Now, let n = 2k + 1. Then the sum

P

n

i=1

b

2

i

takes the minimal value

2k+1

k(k+1)

when b

i

=

jV

+

(b)j

�1

for i 2 V

+

(b), b

i

= �jV

�

(b)j

�1

for i 2 V

�

(b), and either jV

+

(b)j = jV

�

(b)j�1 = k

or jV

+

(b)j � 1 = jV

�

(b)j = k. In these cases

h

G

(b; t) � (t� 1)�

t

2

(2k + 1)

k(k + 1)

=

2k

2

� 1

2k(k + 1)

(t�

2k(k + 1)

2k

2

� 1

):

This implies that h

G

(b;

2k(k+1)

2k

2

�1

) � 0 for all b if n = 2k + 1.

Let G = K

k;k

with the partition V = V

1

[ V

2

such that jV

1

j = jV

2

j = k. Then for b

such that b

i

=

1

k

for i 2 V

1

, and b

i

= �

1

k

for i 2 V

2

, we have h

G

(b;

k

k�1

) = 0.

If G = K

k;k+1

with the partition V = V

1

[ V

2

such that jV

1

j = k and jV

2

j = k + 1, we

set b

i

=

1

k

for i 2 V

1

and b

i

= �

1

k+1

for i 2 V

2

, we have h

G

(b;

2k(k+1)

2k

2

�1

) = 0.

Hence the above bound is tight for G = K

k;k

and G = K

k;k+1

.

One can reformulate Theorem 1 of [19] as the inequality

t

N

(G) � 2 +

p

3

valid for n � 4, i.e. as an upper bound on t

N

(G). This bound is implied by the follow-

ing. If n � 4, then any representation of (V; d

G;t

) contains a representation of a 4-point

14



distance space (V

4

; d

G;t

). But examples of all 4-points distance spaces (see below) show

that t

N

(G) � t

N

(P

3

+K

1

) = 2 +

p

3 if t

N

(G) 6=1. 2

Note that the upper bound of Proposition 3 does not depend on the dimension m(G)

of the corresponding representation of G. One can �nd in [20] more exact upper bounds

depending on m(G). We reformulate Theorems 1, 2 and 3 of [20] as follows.

Theorem B Let m(G) be dimension of a representation of d

G;t

for t = t

N

(G). Then

1. If m(G) = n � 2, then t

N

(G) � t

N

(P

3

+K

n�3

) =

9(n�3)�1+

p

33(n�3)

2

+14(n�3)+1

4(n�3)

;

2. If

2

3

n � m(G) � n� 3, then t

N

(G) � 2 +

p

2;

3. If

n

2

� m(G) <

2

3

n, then t

N

(G) � �

2

. 2

Recall here Theorem A which says that t

N

(G) =

k+1

k

if m(G) �

n�1

2

.

The polytope P (G; t) for G = K

k;k

or G = K

k;k+1

and t = t

N

(G) has dimension

n� 2. For G = K

k;k

, it is a special case of the repartitioning polytope, and is a Delaunay

polytope.

Recall that t

M

(K

k;k

) = t

M

(K

k;k+1

) = 2, what is greater than t

N

(K

k;k

) and t

N

(K

k;k+1

).

Since there are graphs with t

N

(G) > 2, we have examples exhibiting incomparability of

the cones Met

n

and Neg

n

.

6 Bounds on t

H

(G)

Let b determine a (2q+1)-gonal hypermetric inequality, i.e.

P

n

i=1

jb

i

j = 2q+1. Note that

since

P

n

i=1

jb

i

j �

P

n

i=1

b

i

= 1 (mod 2), the �rst sum here is odd. Note that

P

i2V

+

(b)

b

i

=

P

i2V

�

(b)

jb

i

j+ 1 = q + 1.

It is shown in [3] that

h

G

(b; t) = q

2

(t�

q + 1

q

)�

t

2

n

X

i=1

jb

i

j(jb

i

j � 1)� (t� 1)

X

(ij)2E

b

(G)

jb

i

jjb

j

j; (17)

where E

b

(G) is de�ned in the previous section.

Proposition 4 Let n = 2k + 1 or n = 2k + 2 and G be not a sum of complete graphs.

Then

k + 1

k

� t

H

(G) � 2;

with an equality in the left hand side if G = K

k;k+1

or G = K

k+1;k+1

, and an equality in

the right hand side if the truncated distance d

�

G

is hypermetric.

Proof. Let

h

G

(q; t) = maxfh

G

(b; t) :

n

X

i=1

jb

i

j = 2q + 1g:

We show that h

G

(q; t) � 0 for t =

k+1

k

and all q � 1. Obviously,

P

(ij)2E

b

(G)

jb

i

jjb

j

j � 0.

Similarly

P

n

i=1

jb

i

j(jb

i

j � 1) � 0, since x(x � 1) � 0 for all integer x. Hence max

b

h

G

(b; t)
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is achieved for b 2 Z

n

such that the second and the third terms of (17) are minimal in

absolute value.

Let a = b

2q+1

n

c. The sum

P

n

i=1

jb

i

j(jb

i

j � 1) with

P

n

i=1

jb

i

j = 2q + 1 takes its minimal

value when jb

i

j's are almost equal for all i. This means that either jb

i

j = a or jb

i

j = a+1. If

jb

i

j = a for x values of i, then jb

i

j = a+1 for n�x values of i. We have xa+(n�x)(a+1) =

2q+ 1, i.e. x = n(a+1)� (2q+ 1). In this case

P

n

i=1

jb

i

j(jb

i

j � 1) = a(2q+ 1�

n

2

(a+ 1)),

and therefore

h

G

(q; t) � q

2

(t�

q + 1

q

)� ta(2q + 1 �

n

2

(a+ 1)):

We have 2q + 1 = an + s, where 0 � s � n � 1. If a = 0, then 2q + 1 � n � 1 � 2k + 1,

i.e. q � k. Since

k+1

k

�

q+1

q

for q � k, we prove that

h

G

(q;

k + 1

k

) � 0 for 2q + 1 < n:

Hence we suppose below that a � 1.

We have q =

1

2

(an+s�1). Substituting q in the above inequality with a by this value,

we obtain

h

G

(q; t) � t[(

1

4

(an+ s� 1)

2

� a(an+ s�

n

2

(a+ 1)]�

1

4

((an+ s)

2

� 1):

Setting f(a; n; s) = a(n� 2)(an+ 2s) + (s� 1)

2

, one can rewrite the above inequality as

follows

h

G

(q; t) �

1

4

f(a; n; s)

"

t�

n

n � 2

�

2(s� 1)(n� 1 � s)

(n � 2)f(a; n; s)

#

:

Since f(a; n; s) � 0, the inequality h

G

(q; t) � 0 is valid if the expression in the square

parantheses is not greater than zero. If s > 0, then (s�1)(n�1�s) � 0. In particular, if

n is even, then s 6= 0. Hence, for n = 2k+2 even, the expression in the square parantheses

takes the maximal value t�

n

n�2

= t�

k+1

k

for s = 1 or for s = n� 1. For n = 2k+1 odd,

the expression in the square parantheses takes the maximal value

t�

n

n� 2

+

2

(n� 2)(n � 1)

= t�

n+ 1

n� 1

= t�

k + 1

k

for s = 0 and a = 1 when f(1; n; 0) = (n � 1)

2

. In both these cases we obtain that

h

G

(q; t) � 0 for t =

k+1

k

and all q.

It is not di�cult to verify that for G = K

k;k+1

and G = K

k+1;k+1

this bound is tight.

Since a hypermetric is a metric, there is an obvious upper bound t

H

(G) � 2 if G 6=

K(Q). Obviously this bound is achived if the truncated distance d

�

G

is hypermetric. 2

We reformulate here Proposition 2 for a two-distance space. Recall that P

D

(G) is the

Delaunay polytope of the distance space (V; d

G;t

) for t = t

H

(G).

Proposition 5 If dimP

D

(G) � n � 2, then t

N

(G) = t

H

(G). 2
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Note that P

D

(K

k+1;k+1

) is a special case of the class of repartitioning polytopes V

2k

k;k

of dimension 2k = 2(k + 1) � 2 = n � 2. Hence Proposition 5 explains why we have

t

N

(K

k;k

) = t

H

(K

k;k

) in both Propositions 3 and 4.

The repartitioning polytope P

D

(K

k+1;k+1

) is important for what follows. It is the

convex hull of two regular k-dimensional simplexes S

1

and S

2

, spanning orthogonal spaces

and intersecting in the common center. The edges of both these simplexes S

i

have norm

t

N

(K

k+1;k+1

) = t

H

(K

k+1;k+1

) =

k+1

k

. We denote this polytope shortly as B

k

. So, the

2k-dimensional polytope B

k

has 2k + 2 vertices and (k + 1)

2

facets. Each facet is a

simplex and is obtained by deleting by a vertex from both the simplexes S

1

and S

2

. By

construction the set of vertices of B

k

form a two-distance space with distances 1 and

k+1

k

.

Note that the right hand side of Proposition 4 also has the form

k+1

k

for k = 1. It is

worth to recall Theorem A. Taking in attention Theorem A and Proposition 2, we give

the following conjectures.

Conjecture 1. In the case when the conditions of Theorem A hold, the distance d

G;t

N

lies on the boundary of Hyp

n

.

7 Two-distance spaces and equiangular lines

Suppose that 4r

2

= 1 + t in the spherical representation (11) of the two-distance d

G;t

.

Then v

i

v

j

= �

t�1

2

if i 6= j, i.e. the vectors v

i

span equiangular lines. If G is regular of

valency q, this is possible only if

1+t

4

� r

2

(G; t), i.e. if

t

(

� 1 +

2

n�2q�2

for n � 2q + 2;

� 1�

2

2q+2�n

for n � 2q + 2:

(18)

The last inequality shows that if q �

n�2

2

, then regular G always has a spherical repre-

sentation spanning equiangular lines.

If we replace a vector v

i

by �v

i

, we obtain again a two-distance d

G

sw

;t

. Here the

graph G

sw

is obtained from G by switching of the vertex i. The edges and nonedges of G

incident to the vertex i are interchanged in G

sw

. The switching of G by a set of vertices

is clear. Two graphs are called switching equivalent if one is a switching of other. Clearly,

switching equivalent graphs determine isomorphic sets of eqiangular lines.

According to (13), if r

2

=

1+t

4

, we have

Q(G; t) =

t+ 1

4

I �

t� 1

4

B(G):

This expression shows explicitly that Q(G; t) is related to equiangular lines, since the

Seidel matrix B(G) takes (�1)-values.

We can easy �nd the acute angle � between the corresponding equiangular lines. If

r

2

=

1+t

4

and the maximal inner product v

i

v

j

= r

2

cos� is equal, according to Q(G; t), to

t�1

4

, we have

cos� =

t� 1

t+ 1

: (19)
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Note that, considering equiangular lines, one corresponds usually adjacency to v

i

and

v

j

with negative inner product v

i

v

j

, i.e. one uses the complemented graph G. Following

to Neumaier [26], and using (13), we rewrite Q(G; t) for r

2

=

1+t

4

with A(G):

Q(G; t) =

t� 1

2

(

1

t� 1

I �A(G) +

1

2

J): (20)

Hence if the largest eigenvalue �

max

(G) �

1

t�1

, then Q(G; t) is positive semide�nite, and

we have

Proposition 6 [26]. Let G be a graph which is switching equivalent to a graph H with

�

max

(H) �

1

t�1

. Then d

G;t

is represented by equiangular lines with the angle arcos

t�1

t+1

.

If G is regular, then eigenvalues of G and G are related as �(G) = �(1 + �(G)),

�(G) 6= q(G), and q(G) = n� 1� q(G). Hence the minimal eigenvalue �

min

(G) = ��(G)

corresponds to the second largest eigenvalue �

2

(G) of G.

There are two upper bounds on the number of equiangular lines in an m-dimensional

space. The absolute bound does not depend on the angle between lines:

n � n

a

(m) =

m(m+ 1)

2

:

The special bound is valid for m <

1

cos

2

�

:

n � n

s

(�;m) =

m(cos

�2

�� 1)

cos

�2

� �m

:

In [22], the following analogue of Theorem A is proved.

Theorem C If the number of equiangular lines in R

m

is greater than 2m, then

1

cos�

is an odd integer. 2

Denoting this integer by 2k + 1 we have cos� =

1

2k+1

. According to (19), we have in

this case that

t = t(k) �

k + 1

k

:

For this value of t = t(k), r

2

=

1+t

4

=

2k+1

4k

.

Take along each line two opposite vectors �v of norm v

2

= 2k + 1. Then v

i

v

j

= �1

for i 6= j. It is convenient to denote the pair of opposite vectors (v;�v) as (v; v

�

). The

set V of all these vectors is a special case of an odd system (see [12]). An odd system is a

set V of vectors with odd inner products, and, in particular, having odd norms. Let

L(V) = f

X

v2V

b

v

v :

X

v2V

b

v

= 1 (mod 2)g:

It is proved in [12] that L(V) is a lattice. Let U

k

be an m-dimensional odd system

corresponding to a set of equiangular lines, i.e. U

k

is a set of vectors of norm 2k + 1 with

inner products �1. Let P (U

k

) be the convex hull of all vectors of norm 2k + 1 of the

lattice L(U

k

).
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P (U

k

) is a symmetric m-dimensional polytope and turns out very often to be a sym-

metric Delaunay polytope of the lattice L(U

k

). This implies that the corresponding two-

distance space is hypermetric.

Let Q(G; t) be the Gram matrix of U

k

. If G is not regular, then according to (20)

�

max

(G) � k. If G is regular, then, by (14), t

Q

(G) =

k+1

k

if �(G) = k + 1. This implies

that �

2

(G) = k. The cases k = 1 and k = 2 are especially interesting, since, for these

k, conditions are known when P (U

k

) is a Delaunay polytope. One knows many regular

graphs with the second largest eigenvalue 2. We consider some of them in the last section.

For cos� =

1

2k+1

, the special bound takes the form

n

s

(k;m) =

4k(k + 1)m

(2k + 1)

2

�m

: (21)

Recall that this formula is valid only for m <

1

cos

2

�

= (2k + 1)

2

.

Sets of equiangular lines, where the special bound is attained, are of a special interest.

They are related to so-called regular two-graphs. Obviously, if the special bound is tight,

then n = n

s

(k;m) is an integer. For a given k, there is a number of values of dimension

m such that n

s

(k;m) is an integer.

There is a minimal value of m such that the integer n

s

(k;m) > m. It is easy to �nd

that the minimal value is equal to m = 2k + 1 when

n

s

(k; 2k + 1) = 2(k + 1):

Let U

0

k

be the odd system corresponding to the set of 2(k + 1) eqiangular lines. It

consists of 2k +2 vectors u

i

, 1 � i � 2k+ 2, of norm 2k +1 with pairwise inner products

�1 and of 2k+2 its opposite u

�

i

. It is easy to verify that

P

2k+2

i=1

u

i

= 0. Note that, in any

odd system of norm 2k + 1, every set of vectors with mutual inner products �1 has at

most 2k + 2 vectors.

Let V

0

k

=

1

p

4k

U

0

k

, and v

i

=

1

p

4k

u

i

. Let V = f1; 2; :::; 2k + 1; 2k + 2g, and V = V

1

[ V

2

,

jV

1

j = p, jV

2

j = q, p + q = 2k + 2, be a partition of V . Then the set of vectors fv

i

:

i 2 V

1

; v

�

j

: j 2 V

2

g represents the two-distance d

K

p;q

;t(k)

, where t(k) =

k+1

k

. In the next

section, we show that this representation is exact (i.e. with t = t

H

(G)) if p = k, q = k+2

with t

H

(K

k;k+2

) = t(k).

Baranovski [4] proves (in other terms) that P (V

0

k

) coincides with the convex hull of V

0

k

,

and P (V

0

k

) is a symmetric Delaunay polytope of the lattice L(V

0

k

) which is the Coxeter

lattice A

k+1

2k+1

. He denotes P (V

0

k

) as A

2k+1

.

For a partition V = V

1

[ V

2

, jV

1

j = p, jV

2

j = q, let S

p�1

and S

q�1

be regular simplexes

with edges of norm t(k) such that these simplexes are the convex hulls of v

i

, i 2 V

1

, and

v

�

i

, i 2 V

2

, respectivey. Let S

p;q

(t) be the convex hull of S

p�1

and S

q�1

. The distances

between vertices of S

p;q

(t) from distinct simplexes are eqal to 1. Then A

2k+1

is the convex

hull of both S

p;q

(t) and its opposite with p+q = 2k+2. If q = 0, and p = 2k+2, we obtain

that A

2k+1

is the convex hull of the regular simplex S

2k+1

and its opposite. So, all edges

of A

2k+1

have norm 1 or t(k), and its diagonals have norm 1 + t(k). Each facet of A

2k+1

is the 2k-dimensional repartitioning polytope P

D

(K

k+1;k+1

) = S

k+1;k+1

(t(k)), which we
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denoted in previous section as B

k

. The polytope B

k

is the convex hull of two regular k-

dimensional simplexes spanning orthogonal spaces and intersecting in the common center.

Note that A

3

= 


3

, B

1

= 


2

, where 


n

is the unit n-dimensional cube.

8 Complete bipartite graphs

We saw that the complete bipartite graphs K

k;k+1

and K

k+1;k+1

provides the lower bound

on t

H

(G) for G with the same number of vertices. We obtained that t

H

(K

k;k+1

) =

t

H

(K

k+1;k+1

) = t(k), and P

D

(K

k;k+1

) = P

D

(K

k+1;k+1

) = B

k

. Now we consider the com-

plete bipartite graphs K

p;q

for other values of p and q.

The case p = 1 is special. Recall that 


q

is the unit q-dimensional cube, which is the

unique Delaunay polytope of the lattice Z

q

.

Proposition 7 For q � 2, t

H

(K

1;q

) = 2 and P

D

(K

1;q

) = 


q

.

Proof. The graph K

1;1

is the complete graph K

2

with t

H

(K

2

) = 1. Hence we have to

consider q � 2. By Proposition 4, t

H

(K

1;q

) � 2, for q � 2. The q mutually orthogonal

edges of 


q

give a representation of d

K

1;q

;2

. Obviously this representation generates the

lattice Z

q

. 2

Let V = V

1

[ V

2

, where jV

1

j = p and jV

2

j = q, are the set of vertices of K

p;q

, and let

p � q.

Recall that h

G

(k; t) =max

b

fh

G

(b; t) :

P

n

i=1

jb

i

j = 2k + 1g.

Lemma 2 For G = K

p;q

, h

G

(k; t) = k(k + 1)((1 � f

p;q

(k))t� 1), where

f

p;q

(k) =

b

1

(k �

1

2

(b

1

+ 1)p) + b

2

(k + 1 �

1

2

(b

2

+ 1)q) + k

k(k + 1)

;

and b

1

= b

k

p

c, b

2

= b

k+1

q

c.

Proof. Let b de�ne a hypermetric inequality. Recall that V

+

(b) = fi 2 V : b

i

> 0g,

V

�

(b) = fi 2 V : b

i

< 0g. Let b

0

be such that b

0

j

= b

j

, j 2 V

2

, b

0

i

= b

i

, i 2 V

1

� fi

1

; i

2

g,

b

0

i

1

= b

i

1

� ", b

0

i

2

= b

i

2

+ ", " is a positive integer. Let �h

G

(t) = h

G

(b; t)� h

G

(b

0

; t). Then

�h

G

(t) = t("(b

i

2

� b

i

1

) + "

2

). Obviously if jb

i

2

� b

i

1

j > ", and signs of " and b

i

2

� b

i

1

are

opposite, then h

G

(b

0

; t) > h

G

(b; t). We see that if there are two indexes i; i

0

both in V

1

or

V

2

such that jb

i

�b

i

0

j > 1, then there is a perturbation b! b

0

such that h

G

(b

0

; t) > h

G

(b; t).

Hence, for b with maximal h

G

(b; t), b

i

's of each part di�ers at most on 1. In particular,

the coe�cients of each part have the same sign.

If b de�nes a (2k + 1)-gonal inequality, then j

P

i2V

2

b

j

j is equal either to k or k + 1.

But comparing with (17), we see that if j

P

i2V

2

b

j

j = k+1, i.e. if V

+

(b) � V

2

, then h

G

(b; t)

is not less than h

G

(b; t) for V

+

(b) � V

1

, since q � p.

Let b de�ne a (2k+1)-gonal inequality. Then we saw that max

b

h

G

(b; t) for G = K

p;q

is

achived for b

i

such that

P

i2V

1

b

i

= �k,

P

i2V

2

b

i

= k+1, and jb

i

� b

i

0

j � 1 for i; i

0

from the

same part. Let b

1

= b

k

p

c, b

2

= b

k+1

q

c. Then b

i

= �b

1

for (b

1

+1)p�k values of i 2 V

1

, and
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b

i

= �(b

1

+ 1) for other k � b

1

p values of i 2 V

1

. Similarly, b

j

= b

2

for (b

2

+ 1)q � (k + 1)

values of j 2 V

2

, and b

j

= b

2

+ 1 for other k + 1 � b

2

q values of j 2 V

2

. In other words,

the function h

G

(k; t) takes the form

h

G

(k; t) = (k

2

� kb

1

� (k + 1)b

2

+

1

2

pb

1

(b

1

+ 1) +

1

2

qb

2

(b

2

+ 1))t� k(k + 1):

Introducing the function f

p;q

(k), we obtain the expression of h

G

(k; t) given in the formu-

lation of this lemma. 2

Proposition 8 Let G = K

p;q

with p � q, and q = ps + r, where 1 � r � p. Then

t

H

(K

p;q

) � t(p; q) �

1

1� '(p; q)

; where '(p; q) �

(s+ 1)(q + r � 2)

2q(q � 1)

= f

p;q

(q � 1);

with equality for p = 1; q � 2; q � 1; q, when

t

H

(K

p;q

) = t(p; q) =

8

>

<

>

:

2 for p = 1

q

q�1

for p = q � 1; q

q�1

q�2

for p = q � 2

Proof. Consider a (2k + 1)-gonal inequality with k = q � 1 and b such that h

G

(b; t) =

h

G

(k; t). Then b

2

= 1, and b

1

= b

k

p

c = b

q�1

p

c = b

ps+r�1

p

c = s, since r � 1. For these

values of b

1

and b

2

, f

p;q

(q � 1) = '(p; q).

Obviously, h

K

p;q

(q � 1; t) = 0 for t = t(p; q), i.e. the distance d

G;t

, for G = K

p;q

and t = t(p; q) satis�es the above (2q � 1)-gonal hypermetric equality. This implies that

t

H

(K

p;q

) � t(p; q).

Note that if p = 1, then s = q � 1 and r = 1, since r � 1. Hence '(1; q) =

1

2

and

t(1; q) = 2, the result of Proposition 7. Similarly if p = q � 1, then s = r = 1, and if

p = q, then s = 0, r = q. Hence '(q � 1; q) = '(q; q) =

1

q

, and t(p; q) =

q

q�1

� t(q � 1) =

t

H

(K

q�1;q

) = t

H

(K

q;q

), by Proposition 4.

Now we consider p = q � 2, when s = 1, r = 2, and '(q � 2; q) =

1

q�1

=

1

p+1

. Hence

t(p; p+2) =

p+1

p

= t(p). We know from Proposition 4 that t

H

(K

p;p+1

) = t(p). SinceK

p;p+1

is an induced subgraph of K

p;p+2

, by Proposition 4 and Lemma 1, t(p) = t

H

(K

p+1;p+1

) �

t

H

(K

p;p+2

) � t

H

(K

p;p+1

) = t(p), i.e. t

H

(K

p;p+2

) = t(p). 2

Note, that if b

j

= 0 for some j 2 V

2

, then the hypermetric inequality with this b is

applied, in fact, to a graph K

p;q

0

with q

0

< q. Since K

p;q

0

� K

p;q

, t

H

(K

p;q

) � t

H

(K

p;q

0

), by

Lemma 1. Hence, using induction on q, and that '(p; q) � '(p; q

0

), we can suppose that

h

G

(k; t) � 0 for t = t(p; q), G = K

p;q

, and for k � q � 2.

Conjecture 2. t

H

(K

p;q

) = t(p; q) where t(p; q) is given in Proposition 8.

For to prove this conjecture, we have to prove that h

G

(k; t) � 0 for G = K

p;q

, t = t(p; q)

and all integers k � q. In other words, we have to prove that '(p; q) � f

p;q

(k) for all k.

It is not di�cult to verify that '(p; q) � f

p;q

(q). Unfortunately, the function f

p;q

(k) is not

monotone on k and behaves very irregular when k encreases. We computed f

p;q

(k) for

many values of p; q and k. For all these values the inequality '(p; q) � f

p;q

(k) holds.

The di�culty is such that, for given p and q, there is no unique expression of f

p;q

(k)

for all k without the operation of taking integer part. But, for q = ps, we have
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Proposition 9 t

H

(K

p;ps

) = t(p; ps) =

2p(ps�1)

ps(2p�1)�(3p�2)

.

Proof. If q = ps, then r = p. We set k = bq + cp + a, where b � 1, cp + a < q, i.e.

c � s � 1 and a � p� 1. Now we have only two cases:

1) either c � s� 1, a � p� 2, or c � s� 2, a = p � 1, when b

1

= bs+ c, b

2

= b, and

2) c = s� 1, a = p� 1, when b

1

= bs+ c, b

2

= b+ 1.

It is easy to verify that, in the second case, when k = (b+ 1)q � 1,

f

p;ps

((b+ 1)ps � 1) � '(p; ps) =

b(s� 1)

2(ps� 1)((b+ 1)ps � 1)

> 0:

Tedious computations show that the inequality f

p;ps

(k) � '(p; ps) � 0 holds in the �rst

case, too. 2

We describe the Delaunay polytopes P

D

(K

p;ps

) in Proposition 10 below.

For su�cient small t, the distance d

K

p;q

;t

is hypermetric, and P

D

(K

p;q

; t) is a simplex

of the following form (cf. Fact 2 from Section 4). Let S

p�1

, S

q�1

be regular (p � 1)- and

(q�1)-dimensional simplexes with edges of norm t. Let S

p�1

and S

q�1

are imbedded in a

(p + q � 1)-dimensional space as follows. S

p�1

and S

q�1

span nonintersecting orthogonal

spaces, the segment connecting their centers is orthogonal to both these spaces, and the

distance between vertices of distinct simplexes is equal to 1. Then P

D

(K

p;q

; t) is the

convex hull of S

p�1

and S

q�1

. We denote the (p+ q � 1)-dimensional simplex P

D

(K

p;q

; t)

as S

p;q

(t). Obviously S

p�1

and S

q�1

are faces of S

p;q

(t). Moreover, any face of S

p;q

(t) is

either S

p

0

�1

, S

q

0

�1

or S

p

0

;q

0

(t) for some p

0

� p, q

0

� q. Besides S

p

0

;q

0

(t) is the Delaunay

polytope P

D

(K

p

0

;q

0

; t).

Using (7), it can be shown that the squared radius of S

p;q

(t) is equal to

R

2

p;q

(t) =

pq � (p � 1)(q � 1)t

2

4pq � 2(2pq � p� q)t

:

Note that if R

2

p;q

(t) =

1

2

, then the centers of S

p�1

, S

q�1

and S

p;q

(t) coincide, and if

R

2

p;q

(t) >

1

2

, then the center of S

p;q

(t) lies beyond its boundary. For t = 2 and q � 2,

R

2

1;q

(2) =

q

4

is the squared radius of the unit q-dimensional cube 


q

.

Take the center of the sphere circumscribing S

p;q

(t) as origin. Let W

p;q

(t) be p + q

pairs of opposite vectors (w

i

; w

�

i

), i 2 V , of norm R

2

p;q

(t) such that w

i

, i 2 V , represent

vertices of the simplex S

p;q

(t). Denote by D

p;q

(t) the convex hull of vectors of W

p;q

(t). In

other words, similar to A

2k+1

, D

p;q

(t) is the convex hull of S

p;q

(t) and its opposite.

Conjecture 1 and the cases of K

2;2s

and K

k;k+2

, considered below, imply

Conjecture 3 The polytope D

p;ps+2

(t) for t = t(p; ps + 2) is a Delaunay polytope.

Recall that the Delaunay polytope B

k

is de�ned in the previous section. For q = ps,

and p � 3, let D

p;s

be the following polytope. We set a copy of the simplex S

p�1

in

the sphere circumscribing S

p;q

(t) such that its vertices tuch the sphere and the the space

spanned by this copy is parallel to the space spanned by the original simplex S

p�1

.

Set D

2;2s

(t(2; 2s)) = D

2s+1

2;s

.
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Proposition 10 For p � 1, s � 1,

P

D

(K

p;ps

) =

8

>

>

>

<

>

>

>

:




s

if p = 1, s � 2,

B

p�1

if p � 2, s = 1,

D

2s+1

2;s

if p = 2, s � 2,

D

p;s

if p � 3, s � 2.

Proof. The case p = 1 is considered in Proposition 7. It is shown in Proposition 8 that

t

H

(K

p;p

) = t(p; p) (the case s = 1). In previous section we show that P

D

(K

p;p

) = B

p�1

.

Recall that, for G = K

p;ps

, p � 2, the distance d

G;t

satis�es the p equalities with b

j

= 1

for all j 2 V

2

, b

i

= �s, i 2 V

1

�fi

0

g, b

i

0

= �(s� 1). This equalities, for i 2 V

1

, determine

p vectors v(b) = w

0

i

� w

0

+ w

i

, where w

0

�

P

j2V

2

w

j

� s

P

i2V

1

w

i

, and w

i

2 W

p;ps

(t).

Using (11) for G = K

p;ps

, r

2

= R

2

p;ps

(t) and t = t(p; ps), one can show that w

0

= 0

only if s = 1 and w

0

= �

P

i2V

1

w

i

if p = 2.

Hence if s = 1, then w

0

i

= w

i

, and the convex hull of 2p vectors w

i

, i 2 V , is B

p�1

.

If p = 2, s � 2, then w

0

i

= w

�

i

for i 2 V

1

. For t = t(2; 2s), the distance d

K

2;2s

;t

satis�es

additionally 2s (4s � 1)-gonal equalities with b

i

= �s, i 2 V

1

, b

j

= 1, j 2 V

2

� fj

0

g,

b

j

0

= 0. These equalities provide additionally 2s vectors v(b) = w

0

� w

i

= w

�

i

, i 2 V

2

, of

the system W

2;2s

(t(2; 2s)). This implies that D

2s+1

, the convex hull of W

2;2s

(t(2; 2s)), is

the Delaunay polytope P

D

(K

2;2s

).

If p > 2 and s > 1, then w

0

i

6= w

i

; w

�

i

, but w

0

i

� w

0

i

0

= w

i

� w

i

0

for i; i

0

2 V

1

. Hence the

convex hull of endpoints of the p vectors w

0

i

is a copy of S

p�1

parallel to S

p�1

, and the

convex hull of 2p + ps vectors w

j

, j 2 V

2

and w

i

, w

0

i

, i 2 V

1

, is the polytope D

p;s

. 2

We give, in Proposition 11 below, an in�nite sequence of pairs of bipartite graphs

(K

p;p+1

;K

p;p+2

) such that t

H

's of both the graphs of the sequence coincide and the Delau-

nay polytope of the �rst graph is a facet of the Delaunay polytope of the second graph.

Let t

p;s

= t(ps; ps + 2) =

2(ps+1)

2ps�s+1

. Then t

p;1

=

p+1

p

= t(p). For q = ps + 2, we set

D

p;q

(t

p;s

) = D

ps+p+1

p;s

, W

p;sp+2

(t

p;s

) =W

p;s

. Note that D

2p+1

p;1

= A

2p+1

,

Proposition 11 If Conjecture 2 is true for q = ps + 2, then it is true for q = ps + 1,

too, and for p � 2, s � 1, P

D

(K

p;ps+1

) belongs to the class V

ps+p

p;ps

and is a facet of

P

D

(K

p;ps+2

) = D

ps+p�1

.

Remark . Note that Conjecture 2 is true for q = ps+2 and either p = 1 or s = 1. In fact,

the cases p = 1 and s = 1 are noted in Proposition 8. We saw that P

D

(K

p;p+1

) is a facet

of A

2p+1

.

Proof. It is easy to verify that t(p; ps + 1) = t(p; ps + 2) = t

p;s

. Suppose that

t

H

(K

p;ps+2

) = t

p;s

. Since K

p;ps+1

is an induced subgraph of K

p;ps+2

, by Lemma 1, we have

t

H

(K

p;ps+1

) � t

H

(K

p;ps+2

) = t

p;s

. But, by Proposition 8, t

H

(K

p;ps+1

) � t(p; ps+ 1) = t

p;s

.

Hence t

H

(K

p;ps+1

) = t(p; ps + 1) if Conjecture 2 is true for K

p;ps+2

.

Let V = V

1

[ V

2

be the set of vertices of K

p;ps+2

. Suppose that the set of vertices of

K

p;ps+1

is the set V

0

= V

1

[ V

0

2

, where V

0

2

is V

2

without a vertex. Note that the distance

d

K

p;ps+1

;t

, for t = t

p;s

, satis�es the (2ps + 1)-gonal equality with b

i

= �s, i 2 V

1

, b

j

= 1,

j 2 V

0

2

.
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Similarly, for t = t

p;s

, the distance d

K

p;ps+2

;t

satis�es the following p+ps+2 equalities:

1) (2ps + 1)-gonal equalities with b

i

= �s, i 2 V

1

, b

j

= 1, j 2 V

2

� fj

0

g, b

j

0

= 0; we

have ps+ 2 such equalities for j

0

2 V

2

;

2) (2ps + 3)-gonal equalities with b

i

= �s, i 2 V

1

� fi

0

g, b

i

0

= �(s + 1) and b

j

= 1,

j 2 V

2

. We have p such equalities for i

0

2 V

1

.

Using (11) for G = K

p;ps+2

, t = t

p;s

and r

2

= R

2

p;ps+2

, one can show that w

0

=

P

j2V

2

w

j

� s

P

i2V

1

w

i

= 0 for w

i

2 W

p;s

. Then the equalities 1) and 2) provide sp+ p+2

vectors v(b) = w

0

� w

i

= w

�

i

, i 2 V , of the system W

p;s

. This implies that D

ps+p+1

p;s

, the

convex hull of W

p;s

, is the Delaunay polytope P

D

(K

p;ps+2

). The convex hull of vectors w

i

,

i 2 V

0

= V � fj

0

g and w

�

j

0

for j

0

2 V

2

and t = t

p;s

is P

D

(K

p;ps+1

). It is a facet of D

ps+p+1

orthogonal to the vector �

P

i2V

1

w

i

�

P

j2V

2

�fj

0

g

w

j

, where � =

(s�1)(ps+1)

(s�1)p+2

. 2

Corollary t

H

(K

2;2s+1

) = t

H

(K

2;2s+2

) = t(2; 2(s + 1)) =

2(2s+1)

3s+1

. P

D

(K

2;2s+1

) belongs

to the class V

2(s+1)

2;2s

and is a facet of P

D

(K

2;2s+2

) = D

2s+1

.

Proof. We have K

2;2s+2

= K

2;2(s+1)

. By Proposition 10, Conjecture 2 holds for

K

2;2s+2

. Now we can apply Proposition 11. 2

We denote the facet P

D

(K

p;ps+1

) of D

p(s+1)+1

p;s

by F

p(s+1)

p;s

. Note that F

2p

p;1

= B

p

.

The cases of Proposition 7 and the above Corollary cover all complete bipartite graphs

K

p:q

with p + q � 9. In Table below, we write out the values of t

H

(K

p;q

) and P (K

p;q

) for

3 � p+ q � 9, 1 � p � q.

p+ q K

p;q

t

H

(K

p;q

) P

D

(K

p;q

)

3 K

1;2

= P

3

2 


2

= B

1

4 K

1;3

2 


3

= A

3

4 K

2;2

= C

4

2 


2

= B

1

5 K

1;4

2 


4

5 K

2;3

3

2

B

2

6 K

1;5

2 


5

6 K

2;4

3

2

A

5

= D

5

6 K

3;3

3

2

B

2

7 K

1;6

2 


6

7 K

2;5

10

7

F

6

2;2

7 K

3;4

4

3

B

3

8 K

1;7

2 


7

8 K

2;6

10

7

D

7

2;2

8 K

3;5

4

3

A

7

8 K

4;4

4

3

B

3

9 K

1;8

2 


8

9 K

2;7

7

5

F

8

2;3

9 K

3;6

30

23

D

3;2

9 K

4;5

5

4

B

4
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9 Small two-distance sets with n � 7

In [16], the numbers g(n) of n-point graphs G 6= K(Q), i.e. with t

N

(G) < 1, are given

for n = 4; 5; 6; 7. In Table 1 below, we give these numbers together with numbers h(n) of

graphs having t

H

(G) = 2, i.e. with the hypermetric distance d

�

G

, and numbers h

N

(n) of

graphs with t

H

(G) = t

N

(G).

Table 1.

n 4 5 6 7

g(n) 6 27 145 1029

h(n) 6 23 95 ?

h

N

(n) 1 3 ?

We use the Coxeter's notations of some polytopes. Let

�

n

be an n-dimensional regular simplex, with 1-skeleton K

n+1

,

�

n

be an n-dimensional cross-polytope with length of edges 1, with 1-skeleton K

n�2

,




n

be an n-dimensional unite cube, 


n

= 


n

1

, with 1-skeleton K

n

2

.

We denote by PyrB the pyramid with the base B whose lateral edges have length

greater than 1. Then dimPyrB = 1+dimB. The 1-skeleton of PyrB is K

1

+ G, where

G is the 1-skeleton of B. Besides, Pyr

�

(PyrB) denotes a polytope such that apex of the

second pyramid is at distance 1 from the apex of the �rst pyramid.

It is known all combinatorial types of Delaunay polytopes in dimensions 2, 3 and 4.

There are 2, 5 and 19 types in these dimensions, respectively (see [15]).

The 2-dimensional Delaunay polytope distinct from a simplex is a rectangle, of the

combinatorial type 


2

. The combinatorial types of 3-dimensional Delaunay polytopes are

the simplex �

3

, the cross-polytope �

3

, the prism �

2

�


1

, the pyramid Pyr


2

and the cube




3

.

Note that 


2

= P

D

(K

2;2

) is the special case B

1

of the class V

2

1;1

of repartitioning

polytopes. Similarly, Pyr


2

= P

D

(K

1

+K

2;2

) is the special case PyrB

1

of the class V

3

1;1

.

In tables below, we give t

H

(G) and P

D

(G) of graphs G with t

N

(G) < 1. We use

symbols of graphs from [16]. The symbol of a graph G is the triple (n:r:s), where n and

r are the numbers of vertices of G and of edges of G, respectively, and s di�ers distinct

graphs with the same n and r. The symbol (n:r:s)

0

corresponds to the complement G.

(Graphs drawned in [16] have edges of length t, i.e. they are the complements of our

graphs.) The D-simbol is either the Delaunay symbol denoting a Delaunay polytope of

dimensions 3 and 4 in Tables IV and V or the symbol of Table VI taken from [15].

Table 2. 4-point graphs

symbol G t

N

(G) t

H

(G) P

D

(G)

(4:1:1) K

4

� e = rP

3

3 2 �

3

(4:2:1)

0

P

3

+K

1

2 +

p

3 2 �

2

� 


1

(4:2:1) P

3

+K

1

2 +

p

3 2 Pyr


2

= PyrB

1

(4:2:2) C

4

2 2 


2

= B

1

(4:3:1) K

1;3

3 2 


3

(4:3:2) P

4

�

2

2 �

2

� 


1
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Table 3. 5-point graphs

N symbol G t

H

(G) P

D

(G) D-symbol

G with dimP

D

(G) = 3 and t

H

(G) = t

N

(G)

1 (5:2:2) rC

4

2 �

3

F

3

2

2 (5:4:6) P

5

2 �

2

� 


1

F

3

1

3 (5:4:5)

0

K

1

+ C

4

2 Pyr


2

= PyrB

1

F

4

G with P

D

(G) of type V

4

2;2

4 (5:4:4) K

2;3

3

2

B

2

A

5 (5:3:2) r

2

(3K

1

) =

5

3

' V

4

2;2

A

= K

2;3

+ e

0

6 (5:3:4) K

2;3

+ e

5

3

' V

4

2;2

A

7 (5:5:3) K

2;3

� e

5

3

' V

4

2;2

A

G with P

D

(G) = PJ(5; 2)

8 (5:2:1) r

2

(K

2

+K

1

) 2 PJ(5; 2) F

4

4

9 (5:3:1) r(K

3

+K

1

) 2 PJ(5; 2) F

4

4

10 (5:3:3) rP

4

2 PJ(5; 2) F

4

4

11 (5:4:3) K

2;3

� V 2 PJ(5; 2) F

4

4

12 (5:5:4) C

5

2 PJ(5; 2) F

4

4

G with P

D

(G) of type PyrP

13 (5:2:1)

0

2K

1

+ P

3

2 Pyr

2




2

= Pyr

2

B

1

F

8

14 (5:3:1)

0

K

1

+K

1;3

2 Pyr


3

F

6

1

15 (5:3:3)

0

K

1

+ P

4

2 Pyr(�

2

� 


1

) F

7

1

16 (5:4:2)

0

K

1

+K

1

+ P

3

2 Pyr(�

2

� 


1

) F

7

1

17 (5:5:1) K

1

+ (K

4

� e) 2 Pyr�

3

B

18 (5:3:4)

0

K

2

+ P

3

2 Pyr

�

(Pyr


2

F

8

Other graphs

19 (5:1:1) r

3

(2K

1

) = 2 �

4

C

= r(K

4

� e)

20 (5:4:1)

0

K

1;4

2 


4

F

3

6

21 (5:4:2) r(K

1

+ P

3

) 2 �

3

� 


1

F

4

5

22 (5:4:3)

0

K

2;3

� V 2 


4

F

3

6

23 (5:4:5) r(2K

2

) 2 �

2

� �

2

F

5

5

24 (5:4:6) P

5

2 �

2

� �

2

F

5

5

25 (5:5:2) = 2 �

2

� �

2

F

5

5

= (5:5:2)

0

26 (5:5:1)

0

r(2K

1

+K

2

) 2 �

2

� 


2

F

4

1

27 (5:5:3)

0

K

2;3

� e 2 �

3

� 


1

F

6

4

n=3. There is only one graph P

3

= K

1;2

on 3 vertices distict from K(Q), i.e. with

t

N

(G) < 1. We have t

N

(K

1;2

) = 4 and t

H

(K

1;2

) = 2 (see Propositions 3 and 4),

P

D

(K

1;2

) = 


2

= B

1

.

n=4. The values of t

N

(G) are taken from [16]. They can be found also in [20].
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Since Cut

4

= Hyp

4

= Met

4

, we have t

C

(G) = t

H

(G) = 2 for all these six graphs G on 4

vertices with t

N

(G) <1. Moreover, since �

min

(C

4

) = �2, we have t

H

(C

4

) = t

N

(C

4

) = 2

and P

D

(C

4

) = P (d

C

4

;2

) = 


2

.

Besides these 6 four-point two-distance sets in R

2

there is only one another two-

distance set, the pentagon.

n=5. We have Cut

5

= Hyp

5

� Met

5

. Hence t

C

(G) = t

H

(G) for all 27 �ve-point

graphs with t

N

(G) < 1. The values t

N

(G) can be found in [16]. There are 3 �ve-point

graphs having 3-dimensional Delaunay polytopes P

D

(G), i.e. satisfying the conditions of

Proposition 5. Hence for these graphs we have t

H

(G) = t

N

(G) = 2.

Among other 27-3=24 graphs there are additionally 20 graphs with t

H

(G) = 2 <

t

N

(G). The 4 graphs with t

H

(G) < 2 are the 3 nonhypermetric �ve-point graphs (of

diameter 2) and one graph with a nonhypermetric distance d

�

G

. These graphs were found

for the �rst time in [1]. One of these graphs is the complete bipartite graph K

2;3

, the

unique graph of Propositions 3 and 4, giving the minimal values of t

N

(G) and t

H

(G) for

5-point graphs. The edges e

0

and e in K

2;3

+ e

0

and K

2;3

+ e are added to distinct parts

of the bipartite graph K

2;3

. The Delaunay polytopes P

D

(G) of all these 4 graphs are

4-dimensional repartitioning polytopes. But only P

D

(K

2;3

) = B

2

. K

2;3

� V is the graph

K

2;3

without two edges incident to a vertex of the part of size 2.

Besides the graph K

1

+ C

4

, there are 5 graphs of the same type G = K

1

+H.

Note the graph (5:5:4) = (5:5:4)

0

= C

5

, having t

N

(C

5

) = �

2

with a two-dimensional

Euclidean representation. We have t

H

(C

5

) = 2 and P

D

(C

5

) is the Johnson polytope

PJ(5; 2) of dimension 4, whose 1-skeleton is the triangular graph T (5).

The Johnson polytope PJ(n; k) is the section of the cube 


n

by the hyperplane fx :

xj

n

= kg orthogonal to the diagonal of 


n

spanned by the all-one n-dimensional vector

j

n

. We have PJ(n; n� k) = PJ(n; k), PJ(n; 1) = �

n�1

, PJ(4; 2) = �

3

.

n=6. In this case Cut

6

= Hyp

6

. Hence t

C

(G) = t

H

(G). There are 145 six-point

graphs G of not the form K(Q), i.e. with t

N

(G) < 1. It is noted in [1] that d

�

G

is

hypermetric, i.e. t

H

(G) = 2, if either G does not contain one of the four 5-point graphs

with t

H

(G) < 2 (and there are 48 such 6-point graphs), or G is not one of the two 6-point

graphs G

1

and G

2

. Here G

1

= K

2;4

�3e, where all the 3 deleted edges are incident in K

2;4

to the same vertex of the part of size 2. The graph G

2

= K

2;4

� 2e + e

0

, where the two

deleted edges are incident in K

2;4

to the same vertex of the part of size 2, and the edge e

0

connects vertices of degree 2 of the part of size 4 in K

2;4

� 2e.

The distance d

�

G

for G = G

1

and G = G

2

does not satisfy the 7-gonal inequality with

b = (1; 1; 1; 1;�1;�2). For this inequality and G = G

1

; G

2

, h

G

(t; b) = 5t � 9. Hence

h

G

(t; b) � 0 if t �

9

5

. This implies t

H

(G) =

9

5

< 2 for these two graphs.

Note that among 5 three-dimensional Delaunay polytopes there are two polytopes,

�

3

and �

2

� 


1

, having 6 vertices with two distances between them. Obviously, for the

corresponding graphs (6:3:1)

0

= K

3�2

and (6:6:1)

0

= K

2

� K

3

, we have t

H;N

(K

3�2

) =

t

H;N

(K

2

�K

3

) = 2. As it shown in [16], there are 4 another 6-point two-distance spaces

d

G;t

with a 3-dimensional representations and with the same t

N

(G) = �

2

.

Among 19 four-dimensional Delaunay polytopes, there are two 6-vertex polytopes,

Pyr

2




2

and B

2

, giving two-distance sets d

�

G

with G = 2K

1

+ C

4

and K

3;3

= (6:6:3)

0

,
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respectively. The 4 Delaunay polytopes �

3

, �

2

� 


1

, Pyr

2




2

and B

2

are examples, where

the conditions of Proposition 5 hold. Hence t

H

(2K

1

+ C

4

) = t

N

(2K

1

+ C

4

) = 2, and

t

H

(K

3;3

) = t

N

(K

3;3

) =

3

2

.

n=7. We have Cut

7

6= Hyp

7

, and there are 7-point graphs G with t

C

(G) < t

H

(G).

The �rst such graph was found by Avis [2]. Now, one knows 26 7-point graphs with this

property. These graphs can be found in [11] and [13]. All these graphs lie on extreme rays

of Hyp

7

, and they are subgraphs of the Schl�a
i graph. The corresponding hypermetric

distances are two-distances d

�

G

. They have the commonDelaunay polytope P

D

(G) = P

Schl

.

The polytope P

Schl

is a 6-dimensional asymmetric Delaunay polytope which is the convex

hull of the representation of Schl.

For to �nd t

C

(G), one needs to �nd the facet of Cut

7

, where d

G;t

lies. Obviously, this

facet is not hypermetric.

10 Graphs with t

H

(G) = 2

Recall that d

G;2

= d

�

G

is the truncated distance of the graph G. The equality t

H

(G) = 2

means that the distance d

�

G

is hypermetric. The graphs G having hypermetrc d

�

G

are

studed in [1] and [11]. In particular, it is proved in [11] the following assertion.

Proposition 12 If G is a connected regular graph, then d

�

G

is hypermetric i� �

min

(G) �

�2, where �

min

(G) is the smallest eigenvalue of G.

Recall that �(G) = ��

min

(G) in (14). If �(G) � 2, then (14) shows that t

Q

(G) � 2

with equality only if �(G) = 2. Hence if �

min

(G) > �2, when t

Q

(G) > 2, the Gram

matrix Q(G; 2) is not singular, and P (d

G;2

) is a simplex. But if �

min

(G) = �2, then there

are dependencies between representing vectors, and the conditions of Proposition 2 hold.

Therefore if �(G) = 2, we have t

H

(G) = t

N

(G) = 2.

Note the class of strongly regular graphs with �

min

(G) = �2. These graphs were

classi�ed by Seidel (see [5], Theorem 3.12.4(i)). These graphs are

the triangular graph T (n), n � 5,

the square n� n grid K

n

�K

n

(also called a lattice graph L

2

(n)), n � 3,

the Cocktail party graph K

n�2

, n � 2,

the Petersen Pe, the Clebsh Cle, the Schl�a
i Schl, the Shrikhande Shr, and three

Chang Ch

i

graphs.

If G is a connected regular graph with �

min

(G) > �2, then G is a complete graph or

an odd cycle.

Since all these graphs (except Schl and Ch

i

) are l

1

-graphs, we have that t

C

(G) = 2 if

G is a strongly regular graph with t

H

(G) = 2, G 6= Schl; Ch

i

, 1 � i � 3.

11 Graphs with t

H

(G) =

3

2

In this section we give examples of regular graphs G with t

H

(G) =

3

2

represented by odd

systems of norm 2k + 1 related to equianglar lines. According to (19), the angle between
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these lines is equal to arccos

1

5

, i.e. k = 2.

Let U

2

= fu

i

; u

�

i

: i 2 V g be the odd system of vectors of norm 5 related to the

representation. It is proved in [12] that P (U

2

) is a Delaunay polytope if the odd system

U

2

of norm 5 is not pillar. Recall that the cardinality of a maximal set of vectors of U

2

with mutual inner products �1 is not greater than 6. Let fu

i

: i 2 Cg be such a set with

jCj � 6, and let v 2 U

2

. Then the vector v partitions C into subsets C

+

= fi 2 C : u

i

v =

1g and C

�

= fi 2 C : u

i

v = �1g.

The odd system U

2

is called pillar if this partition does not depend on the vector v.

Let U

+

2

be a subset of U

2

containing from each pair (u

i

; u

�

i

) of opposite vectors exactly one

vector. W.l.o.g., we denote the vector as u

i

. Let G

+

be the graph with V as the set of

vertices. Two vertices i; j of G

+

are adjacent i� u

i

u

j

= �1. If U

2

is not pillar, then there

are two vertices of G

+

having distinct neighborhoods in C, i.e. having distinct partitions

of C.

Note that distance between endpoints of two non-opposite vectors (of norm 5) u; u

0

2

U

2

is equal to 12 if uu

0

= �1 and to 8 if uu

0

= 1. Hence U

+

2

represents the distance space

(8d

G;t

; V ), where G = G

+

and t =

3

2

.

Let G

0

be a regular subgraph of G

+

with n vertices and valency q. It is represented by

a subset of U

+

2

. Using (6), we �nd that the squared radius of the convex hull of endpoints

of vectors of this representation is equal to r

2

= 4 +

2q�4

n

. Since r

2

� 5, we have to have

n � 2q � 4.

We saw in Section 7 that a regular graph G with �

2

(G) = 2 has such a representation if

its valency satis�es inequalities (18). For t =

3

2

, these inequalities take the form n � 2q+6.

For the graph G of valency q = n � q � 1, the last inequality takes the form q �

n+4

2

.

Call a graph G with �

2

(G) = 2 non-pillar if it has the following property. There is a

maximal clique C and two vertices i; j 2 V � C such that the neighborhoods of i and j

in C are distinct, i.e. the partitions of C determined by i and j are distinct.

Proposition 13 Let G be a regular non-pillar graph of valency q �

n+4

2

with �

2

(G) = 2

of multiplicity f � 2. Then t

H

(G) =

3

2

.

Proof. We saw that G has a representation by an odd system U

2

related to equiangular

lines at angle arccos

1

5

if valency q of G satis�es q �

n+4

2

. The condition that G is non-

pillar implies that the odd system U

2

is not pillar. Hence P (U

2

) is a Delaunay polytope.

The dimension of this polytope is equal to n� f � n� 2. By Proposition 2, d

G;

3

2

lies on

the boundary of Hyp

n

. Hence this representation is exact, and t

H

(G) =

3

2

. 2

The most important case relates to equiangular lines corresponding to a regular two-

graph. In table below, we give dimensions m for which one knows sets of n

s

(2;m) =

24m

25�m

(see (21)) equiangular lines corresponding to regular two-graphs. As usual, N is the

number of known nonisomorphic two-graphs, and N denotes that this number is exact

(cf. [12]).

m 5 10 13 15 21 22 23

n

s

(2;m) 6 16 26 36 126 176 276

N 1 1 4 227 1 1 1

29



The minimal set of 6 lines is represented by the 5-dimensional odd system V

0

2

=

1

p

8

U

0

2

.

The Delaunay polytope P (V

0

2

) = A

5

is considered in the end of Section 7.

Now we consider in detail the case m = 10. Let U

1

2

be the corresponding odd system.

It is not pillar. The polytope P (U

1

2

) coincides with the convex hull of U

1

2

and is a Delaunay

polytope.

1

p

2

P (U

1

2

) is the symmetrization of the cut polytope PCut

5

which is the convex

hull of indicator vectors c

S

of all cuts �(S) of K

5

de�ned in Section 2.

The symmetrization of the cut polytope PCut

5

is the convex hull of all indicator

vectors of cuts and their complements in the complete graph K

5

. Let V

5

= f1; 2; :::; 5g

and E

5

= fij : 1 � i < j � 5g be the sets of vertices and edges of K

5

, respectively.

Let j

10

be the all-one vector. Denote by c

�

(S) = j

10

� c(S) the indicator vector of the

complement �

�

(S) = E

5

� �(S) of the cut �(S). Since c(V

5

� S) = c(S), we can use only

S � V

5

with jSj � 2. We set S = fS : S � V

5

; jSj � 2g.

Denote by P

5

the convex hull of all vectors c(S), c

�

(S), S 2 S. It is shown in [18]

that P

5

is, up to a multiple, a Delaunay polytope of the 10-dimensional isodual lattice

Q

10

mentioned in [9].

All the vectors c(S) and c

�

(S) are vertices of the 10-dimensional unit cube B

10

. In

fact the set C

10

of all 32 these (0,1)-vectors is the set of all codewords of a linear binary

code with parameters [n; k; d] = [10; 5; 4].

The set C

10

with the Hamming distance d between its points is an l

1

metric space

(C

10

; d). The distance between points a; b 2 C

10

is equal to the norm (a�b)

2

of the vector

a � b. Since j�(S)j take only two values 4 and 6 for S � E

5

, S 6= ;, E

5

, we obtain that

any subset of (C

10

; d) without pairs of complemented vectors is a two-distance l

1

-space

with distances 4 and 6, i.e. it is 4d

G;

3

2

for some G.

The center of P

5

is

1

2

j

10

, and the squared radius of P

5

is

5

2

. Hence the set of vectors

p

2c(S),

p

2c

�

(S), S 2 S, form the odd system U

1

2

.

We consider graphs on subsets of U

1

2

without opposite vectors such that two vertices

are adjacent i� they are at distance 12. It is easy to verify that the corresponding graph

on 16 vertices

p

2c(S), S 2 S, is the strongly regular Clebsh graph Cle with parameters

(16,10,6,6) and with �

2

(Cle) = 2. By construction, Cle represents the distance space

12d

Cle;

2

3

= 8d

Cle;

3

2

. Using (12) with t =

2

3

, q = 10, n = 16, we �nd that 12r

2

(Cle;

2

3

) = 5,

the norm of U

1

2

. Here Cle spans P

5

.

The switching class of Cle contains another two strongly regular graphs, namely, the

grid L

2

(4) and the Shrikhande graph Shr [5]. It is shown in [18] that L

2

(4) and Shr

de�ne facets of P

5

which are 9-dimensional Delaunay polytopes. Since L

2

(4) and Shr

have n = 16 vertices, by Proposition 5, we have t

H

(L

2

(4)) = t

H

(Shr) =

3

2

. The polytope

P

5

has another facet de�ned by the Petersen graph Pe. Since dimension of the facet

is 9 and Pe = T (5) has 10 vertices, we cannot apply Proposition 5. We have only

t

H

(T (5)) �

3

2

. In fact, we saw in the previous section, that t

H

(T (5)) = 2.

In [5], 3 regular proper subgraphs of Shr are described. These graphs have 6, 10

and 12 vertices. The graphs on 10 and 12 vertices are denoted as G

10

and G

1

12

in [18].

They de�ne 8-dimensional faces of P

5

. There is once more regular 12-vertex subgraph

G

0

12

of Shr determining a 8-dimensional face of P

5

which is a line graph. Again, using

30



Proposition 5, we obtain that t

H

(G) =

3

2

for G = G

10

, G

0

12

, G

1

12

.

There are exactly 15 vertices of P

5

lying at the same distance from a vertex of P

5

.

These 15 vertices a�nely generate a 9-dimensional hyperplaneH and induce the triangular

graph T (6). The graph T (6) is 1-skeleton of a Delaunay polytope which is an intersection

of P

5

by the hyperplane H. By Proposition 5 we obtain that t

H

(T (6)) =

3

2

.

Recall that P

5

is inscribed in the unit cube 


10

. Since t

C

(G) � t

H

(G) for any graph

G, we have that t

C

(G) = t

H

(G) for all above graphs, excluding T (5).

Concluding this section we give some popular non-pillar strongly regular graphs G

with �

2

(G) = 2. A survey of strongly regular graphs with �

2

(G) = 2 is given in [17].

1) The graphs GQ(3; t) corresponding to generalized quadrangles with lines of size

s+ 1 = 4, t = 1; 3; 5; 9. GQ(3; 1) = L

2

(4).

2)The negative Latin square graphs NL

2

(m), 4 � m � 10, m 6= 7. NL

2

(4) = Cle,

NL

2

(8) = GQ(3; 5), NL

2

(10) is the Higman-Sims graph.
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