Ecole Normale Superieure

Embedding of Skeletons of Voronoi and Delone Partitions into Cubic Lattices

Michel DEZA Mikhail SHTOGRIN

LIENS - 97 - 6

Département de Mathématiques et Informatique

CNRS URA 1327

Embedding of Skeletons of Voronoi and Delone Partitions into Cubic Lattices

Michel DEZA Mikhail SHTOGRIN*

LIENS - 97 - 6

April 1997

Laboratoire d'Informatique de l'Ecole Normale Supérieure 45 rue d'Ulm 75230 PARIS Cedex 05

*Steklov Mathematical Institute Russian Academy of Sciences 117966 Moscow GSP-1, Russia

EMBEDDING OF SKELETONS OF VORONOI AND DELONE PARTITIONS INTO CUBIC LATTICES

Michel DEZA

LIENS, Ecole Normale Supérieure, F-75230 Paris, France

and Mikhail SHTOGRIN

Steklov Mathematical Institute, 117966 Moscow GSP-1, Russia

The famous Deuxième mémoire of Voronoi (1908, 1909) in Crelle Journal contains, between other things, deep study of two dual partitions of \mathbf{R}^n related to an *n*-dimensional lattice Λ . In modern terms, they are called *Voronoi partition* and *Delone partition* (Voronoi himself called the second one *L*-partition). Both partitions coincide for the cubic lattice; we denote by Z_n the skeleton of the cubic *n*-dimensional lattice. Denote by $Vo(\Lambda)$, $De(\Lambda)$ skeletons of Voronoi and Delone partitions for lattice Λ . So, edges of these graphs are edges of the Voronoi parallelotope and of the Delone polytopes of Λ ; any minimal vector of Λ is an edge of $De(\Lambda)$ but not vice versa, in general.

We are interested whether infinite graph G, where $G = Vo(\Lambda)$ or $De(\Lambda)$, either is embedded isometrically (or with doubled distances) into a Z_m for some $m \ge n$, or not; we use notation $G \to Z_m$ or $G \to \frac{1}{2}Z_m$ in the first two cases.

In this note we report what we got, in this direction, for irreducible root lattices, for two generalizations of the diamond bilattice and for 3-dimensional case.

The validity of the following 5-gonal inequality for distances is known [Dez60] to be necessary for embedding of any graph (in fact, of any metric space) into some Z_m : for any vertices a, b, x, y, z we have

$$d(a,b) + \{d(x,y) + d(x,z)\} + d(y,z)\} \le \le \{d(a,x) + d(a,y) + d(a,z)\} + \{d(b,x) + d(b,y) + d(b,z)\}$$

It turns out that cases of non-embedding given in this note, came out by violation of this 5-gonal inequality.

Let us start with irreducible root lattices, i.e. A_n , D_n , E_n . For small dimension n, we have: $De(A_2) = (3^6) \rightarrow \frac{1}{2}Z_3$, $Vo(A_2) = (6^3) \rightarrow Z_3$ ([As81]); $D_2 = Z_2$, $A_2^* = A_2$, $D_3 = A_3$.

Theorem 1.

(i) $De(E_n)$ is not 5-gonal for n = 6, 7, 8;(ii) for $n \ge 3$, we have: $De(A_n) \to \frac{1}{2}Z_{n+1}, Vo(A_n) \to Z_{n+1},$ $Vo(A_n^*) \to Z_m \text{ (where } m = \binom{n+1}{2}), De(A_n^*) \text{ is not 5-gonal;}$ (iii) for $n \ge 4$, we have: $De(D_n)$, $Vo(D_n)$, $De(D_n^*)$ are not 5-gonal.

Remark that $De(D_4)$ is not embedded, contrary to 2b) of [As81]; take 5 points

$$a = (0, 0, 0, 0), b = (1, 1, 0, 0),$$

$$x = (1, 0, 1, 0), y = (1, 0, -1, 0), z = (0, 1, 0, 1)$$

forming non 5-gonal graph $K_5 - K_3$. For example, (x, y) is not an edge, since the middle point of the segment [x, y] is the center of the square (a, x, c = (2, 0, 0, 0), y) with edges (a, x), (x, c), (c, y), (y, a) from the graph $De(D_4)$. Apropos, $De(D_4)$ is a metric subspace of $De(D_n)$ for $n \ge 5$.

Remark also, that we have isometric embedding of Z_n into $De(D_{2n})$ and Z_2 into $De(A_3)$.

Now we consider 5 types (depending on their Voronoi polyhedron) of 3-dimensional lattices, obtained by Fedorov [Fe1885]. Besides Z_3 , $A_3=f.c.c.$ and $A_3^*=b.c.c.$, there are two other types of lattices having 6-prism and elongated dodecahedron as the Voronoi polyhedron. Let us take $A_2 \times Z_1$ and, say, Λ' as representatives of the lattices of these two types. Remark that $De(A_3)$, $De(\Lambda')$ coincide as graphs, but the *partitions* of \mathbb{R}^3 (for which they are skeletons) are different.

Theorem 2.

(i) $De(A_2 \times Z_1) \rightarrow \frac{1}{2}Z_4, Vo(A_2 \times Z_1) \rightarrow Z_4;$ (ii) $De(\Lambda') \rightarrow \frac{1}{2}Z_4, Vo(\Lambda') \rightarrow Z_5.$

So, Delone partition of unique general lattice A_3^* is only non-embeddable $De(\Lambda)$, $Vo(\Lambda)$ for 5 types of 3-dimensional lattices.

In \mathbf{R}^3 , the combinatorial type of a parallelohedron P determines the combinatorial type of the corresponding tiling by P; also the type of the dual partition is determined by the type of its *star* (i.e. the configuration around a vertex). For normal partitions we have 5 types of parallelohedra and 5 dual types of partition (whose skeletons are of 4 types, it was already in [Fe1885]), their embeddings are described in the theorem 2 above. [Sh80] found all 3 types of convex parallelohedra for essentially non-normal (i.e. non-normalizable) partitions of \mathbf{R}^3 . Denote them by S_1 , S_2 , S_3 ; denote by $P(S_i)$, $P^*(S_i)$ the tiling by S_i and dual partition for i=1, 2, 3. All S_i , i=1, 2, 3, are centrally-symmetric 10-hedrons obtained by a decoration of the parallelepiped; their p-vectors are $(p_4=10)$, $(p_4=6, p_6=4)$, $(p_4=4, p_6=4, p_8=2)$ respectively. S_1 is (combinatorially) β_3 truncated in 2 opposite vertices; S_2 , S_3 have 2-valent vertices [Sh80]. All $P^*(S_i)$ have the same combinatorial type of skeleton; they are partitions of \mathbf{R}^3 by non-convex bodies.

Theorem 3.

For i=1, 2, 3 we have $S_i \to H_{3+i}, P(S_i) \to Z_{2+i}$ and $P^*(S_i)$ is not 5-gonal.

Two most interesting *lattice complexes* in 3-space are bilattices *J-complex* and *D-complex* (*D*-complex called also *diamond* or *tetrahedral packing* and denoted by D_3^+).

Theorem 4.

(i) $De(D\text{-}complex) \rightarrow \frac{1}{2}Z_5$, but Vo(D-complex), De(J-complex), Vo(J-complex) are not 5-gonal;

(ii) any Kelvin packing K by α_3 and β_3 (except A_3 , but including the bilattice h.c.p., *i.e.* hexagonal close packing) has non 5-gonal De(K), Vo(K).

Between packings of 3-space, considered above, $De(Z_3)$, $De(A_2 \times Z_1)$, $Vo(A_2 \times Z_1)$, $De(A_3)$, $Vo(A_3^*)$, De(J-complex), De(h.c.p.) are uniform partitions of \mathbb{R}^3 by regular and semiregular polyhedra. These polyhedra are, respectively: cubes γ_3 , truncated octahedra β_3 , 3-prisms, 6-prisms, tetrahedra α_3 with β_3 , β_3 with cuboctahedra, α_3 with β_3 . The list of all such partitions and their embedding will be considered in [DGS97].

All embeddings into Z_m (i.e. isometric ones) of skeletons of Voronoi partitions considered here, except the Theorem 3, were related to Voronoi tilings by a zonotope with m zones; for example, by the permutahedron for $Vo(A_n^*)$. But the Voronoi partition corresponding to A_3 , elongated by layers of 3-prisms, is embedded into Z_4 . It is a tiling of \mathbf{R}^3 by a half of the rhombic dodecahedron (i.e. 6-prism with new vertex connected to 3 alternated vertices of a hexagonal face), which is *not* centrally-symmetric. (An example of non-zonotopal plane tiling is given by $[3^6; 3^2.6^2] \rightarrow Z_\infty$. Apropos, the simplest graph, embeddable only into Z_∞ , is the caterpillar with vertices $a_i = (i, 0)$, $b_i = (i, 1)$ for $i \in N$ and edges $(a_i, a_{i+1}), (a_i, b_i)$.) It will be interesting to find some non-zonotopal, but embeddable into Z_m , tiling of \mathbf{R}^3 by centrally-symmetric polyhedrons. It will be an infinite analog of non representable oriented matroid. Example of *non-normal* such tiling is $P(S_1)$, given in [Sh80]. It is a tiling of \mathbf{R}^3 by centrally-symmetric convex parallelohedrons $\gamma_3 + \gamma_3$; the skeleton of this tiling is Z_3 , see Theorem 3 above.

Consider now following two bilattices generalizing *D*-complex

$$D_n^+ := D_n \cup (d + D_n)$$

where the new point d is the center of greatest Delone polytope, and

$$A_n^+ := A_n \cup (a + A_n)$$

where the new point a is the center of regular n-simplex, Delone polytope of A_n , see [CS88].

 D_n^+ is a lattice if and only if *n* is even; $D_2^+ = Z_2$, $D_4^+ = Z_4$, $D_8^+ = E_8$; A_n^+ is always bilattice. It obtained from A_n by the centering of its smallest Delone polytope, the *n*-simplex α_n ; the centering of all Delone polytopes of A_n will give A_n^* . Remind that $De(A_2^+) = Vo(A_2) = (6^3) \rightarrow Z_3$, $Vo(A_2^+) = (3^6) \rightarrow \frac{1}{2}Z_3$, $A_3^+ = D_3^+$.

Theorem 5.

(i)
$$De(D_3^+) \rightarrow \frac{1}{2}Z_5$$
, $Vo(D_3^+)$ is non 5-gonal, $De(D_n^+)$ is non 5-gonal for $n \ge 5$;
(ii) $De(A_n^+) \rightarrow \frac{1}{2}Z_{n+2}$ for $n \ge 3$.

All above results are obtained by techniques given in [CDG97] and [DS96]. For example, non 5-gonality of $De(A_n^*)$, $n \ge 3$, given by 5 points:

$$a = (0, 0, 0, 0, ..., 0), b = (1, 1, 1, 0, ..., 0),$$

$$x = (1, 0, 0, 0, ...0), y = (0, 1, 0, 0, ..., 0), z = (0, 0, 1, 0, ..., 0)$$

in Selling-reduced basis of the lattice; the points a, x, x+y, b are vertices of a face of a Delone simplex [Del37].

Another example of non-embedding (also generalizing the remark after Theorem 2) is following:

Theorem 6.

A closed simplicial n-manifold M_n , $n \ge 3$, is not embedded if it has (n-2)-face which belongs to at least five n-simplices.

In fact, in the conditions of Theorem 6, the skeleton of M_n contains isometric subgraph $K_7 - C_5$ (i.e. the skeleton of 4-polytope $Pyr(Pyr_5)$) which is 5-gonal but is not embedded. For example, the regular 4-polytope 600-cell, which is a closed simplicial 3-manifold, has five tetrahedra on each edge. If, moreover, (n-2)-face from Theorem 6 belongs to at least six n-simplices (and so to at least six (n-1)-simplices), then M_n is not 5-gonal, since it contains isometric subgraph $K_5 - K_3$. For example, $De(A_3^*)$ is not 5-gonal, because it has six tetrahedra on some edges.

See [DGS97], [DS96], [DS97], [DG97] for embedding of other classes of polyhedral graphs. See [DL97] for general theory of isometric embedding into space l_1^m and, up to scale, into hypercubes. See [RB79] and [CS88] for notions of lattice theory.

We are grateful to SFB 343 of Bielefeld University, where this work was done, and, especially, to Walter Deuber for kind invitation, attention and support.

BIBLIOGRAPHY

[As81] P.Assouad, Embeddability of regular polytopes and honeycombes in hypercubes, The Geometric Vein, the Coxeter Festschrift. Springer-Verlag (1981) 141-147.

[CDG97] V.Chepoi, M.Deza and V.Grishukhin, *Clin d'oeil on l*₁-embeddable planar graphs, Discrete Appl. Math. (1997), to appear.

[CS88] J.H.Conway and N.J.A.Sloane, *Sphere Packings, Lattices and Groups*, Vol. **290** of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York, 1988.

[Del37] B.N.Delone (=B.N.Delaunay), Geometry of positive quadratic forms (in Russian), Uspekhi Mat. Nauk **3** (1937) 16-62 and **4** (1938) 102-164.

[Dez60] M.Tylkin (=M.Deza), On Hamming geometry of unitary cubes (in Russian), Doklady Akademii Nauk SSSR **134** (1960) 1037-1040.

[DG97] M.Deza and V.P.Grishukhin, A zoo of l_1 -embeddable polytopal graphs, Bull. Inst. Math. Acad. Sinica (1997), to appear.

[DGS97] M.Deza, R.V.Galiulin and M.I.Shtogrin, Uniform semi-regular partitions of \mathbf{R}^3 and their embedding into Z_m , in preparation.

[DS96] M.Deza and M.I.Shtogrin, *Isometric embeddings of semi-regular polyhedra, plane partitions and duals into hypercubes and cubic lattices* (in Russian). Uspekhi Mat. Nauk **51-6** (1996) 199-200.

[DS97] M.Deza and M.I.Shtogrin, *Embedding of chemical graphs into hypercubes*, submitted.

[DL97] M.Deza and M.Laurent, Geometry of cuts and metrics, Springer-Verlag, 1997.

[Fe1885] E.S.Fedorov, Introduction in the study of figures (in Russian), St.Petersbourg, 1885.

[RB79] S.S.Ryshkov and E.P.Baranovski, *Classical methods in the theory of lattice pack*ings, Russian Math. Surveys **34**-4 (1979) 1-68.

[Sh80] M.I.Shtogrin, Non-normal partitions of 3-space into convex parallelohedra and their symmetry (in Russian), Proc. of All-Union Symposium on the Theory of Symmetry and its Generalitations, Kishinev (1980) 129-130.

[Vo08] G.F.Voronoi, Nouvélles applications des paramètres continues a la théorie des forms quadratiques, Deuxième mémoire, J. für die Reine und Angewandte Mathematik **134** (1908) 198-287.

[Vo09] G.F.Voronoi, Nouvélles applications des paramètres continues a la théorie des forms quadratiques, Deuxième mémoire, Seconde partie, J. für die Reine und Angewandte Mathematik **136** (1909) 67-181.