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The famous Deuxieme mémoire of Voronoi (1908, 1909) in Crelle Journal contains,
between other things, deep study of two dual partitions of R" related to an n-dimensional
lattice A. In modern terms, they are called Voronoi partition and Delone partition (Voronoi
himself called the second one L-partition). Both partitions coincide for the cubic lattice;
we denote by 7, the skeleton of the cubic n-dimensional lattice. Denote by Vo(A), De(A)
skeletons of Voronoi and Delone partitions for lattice A. So, edges of these graphs are edges
of the Voronoi parallelotope and of the Delone polytopes of A; any minimal vector of A is
an edge of De(A) but not vice versa, in general.

We are interested whether infinite graph G, where G = Vo(A) or De(A), either is
embedded isometrically (or with doubled distances) into a Z,, for some m > n, or not; we
use notation G — Z,, or G — %Zm in the first two cases.

In this note we report what we got, in this direction, for irreducible root lattices, for
two generalizations of the diamond bilattice and for 3-dimensional case.

The validity of the following 5-gonal inequality for distances is known [Dez60] to be
necessary for embedding of any graph (in fact, of any metric space) into some Z,,: for any
vertices a, b, x,y, z we have

d(a,b) +{d(x,y) + d(z,z)) + d(y,z)} <
< {d(avx) + d(avy) + d(a,z)} + {d(bvx) + d(b,y) + d(bvz)}'

It turns out that cases of non-embedding given in this note, came out by violation of this
5-gonal inequality.

Let us start with irreducible root lattices, i.e. A,, D,, E,.

For small dimension n, we have: De(Ay) = (3°) — %Z:)), Vo(Az) = (6%) — Z3 ([As81]);
Dy =7y, A5 = Ay, D3 = As.

Theorem 1.

(i) De(FE,) is not 5-gonal for n = 6,7,8;

(ii) for n > 3, we have: De(A,) — % nt1s Vo(An) = Znta,
Vo(Ar) — Z,, (where m = (”+1)), De(A%) is not 5-gonal;
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(iii) for n >4, we have: De(D,), Vo(D,), De(D%) are not 5-gonal.
Remark that De(Dy) is not embedded, contrary to 2b) of [As81]; take 5 points
a = (0,0,0,0), b=(1,1,0,0),

x=(1,0,1,0), y = (1,0,—1,0), z = (0,1,0,1)

forming non 5-gonal graph K5 — K5. For example, (x,y) is not an edge, since the middle
point of the segment [z,y] is the center of the square (a,z,¢ = (2,0,0,0),y) with edges
(a,2), (x,¢), (¢,y), (y,a) from the graph De(D4). Apropos, De(Dy) is a metric subspace
of De(D,,) for n > 5.

Remark also, that we have isometric embedding of 7, into De(Dy,) and Z; into De(As).

Now we consider 5 types (depending on their Voronoi polyhedron) of 3-dimensional
lattices, obtained by Fedorov [Fel885]. Besides Z3, As=f.c.c. and Aj=b.c.c., there are
two other types of lattices having 6-prism and elongated dodecahedron as the Voronoi
polyhedron. Let us take A, x Z; and, say, A’ as representatives of the lattices of these
two types. Remark that De(Asz), De(A’) coincide as graphs, but the partitions of R® (for
which they are skeletons) are different.

Theorem 2.
(1) DG(AQ X Zl) — %Z4; VO(A2 X Zl) — Z4,'
(ii) De(A') — %Z4, Vo(A') — Zs.

So, Delone partition of unique general lattice A% is only non-embeddable De(A), Vo(A)
for 5 types of 3-dimensional lattices.

In R?, the combinatorial type of a parallelohedron P determines the combinatorial type
of the corresponding tiling by P; also the type of the dual partition is determined by the
type of its star (i.e. the configuration around a vertex). For normal partitions we have 5
types of parallelohedra and 5 dual types of partition (whose skeletons are of 4 types, it was
already in [Fel885]), their embeddings are described in the theorem 2 above. [Sh80] found
all 3 types of convex parallelohedra for essentially non-normal (i.e. non-normalizable)
partitions of R®. Denote them by Sy, S, S3; denote by P(S;), P*(S;) the tiling by S; and
dual partition for :=1, 2, 3. All 5;, =1, 2, 3, are centrally-symmetric 10-hedrons obtained
by a decoration of the parallelepiped; their p-vectors are (ps=10), (ps=6, ps=4), (pa=4,
pe=4, ps=2) respectively. S; is (combinatorially) 35 truncated in 2 opposite vertices; Sz,
S5 have 2-valent vertices [Sh80]. All P*(S;) have the same combinatorial type of skeleton;
they are partitions of R® by non-convex bodies.

Theorem 3.
Fori=1, 2, 3 we have S; — Hsy;, P(S;) — Zyyi and P*(S;) is not 5-gonal.

Two most interesting lattice complexres in 3-space are bilattices J-complex and D-
complex (D-complex called also diamond or tetrahedral packing and denoted by DI ).



Theorem 4.

(i) De(D-complex) — +Zs, but Vo(D-complex), De(J-complex), Vo(J-complex) are not
5-gonal;

(ii) any Kelvin packing K by as and (5 (except As, but including the bilattice h.c.p.,
i.e. hexagonal close packing) has non 5-gonal De(K), Vo(K).

Between packings of 3-space, considered above, De(Zs), De(Ay x Z1), Vo(As X Z4),
De(A3z), Vo(A3), De(J-complex), De(h.c.p.) are uniform partitions of R® by regular and
semiregular polyhedra. These polyhedra are, respectively: cubes 73, truncated octahedra
B3, 3-prisms, 6-prisms, tetrahedra as with g3, #3 with cuboctahedra, as with #3. The list
of all such partitions and their embedding will be considered in [DGS97].

All embeddings into Z,, (i.e. isometric ones) of skeletons of Voronoi partitions con-
sidered here, except the Theorem 3, were related to Voronoi tilings by a zonotope with
m zones; for example, by the permutahedron for Vo(A>). But the Voronoi partition cor-
responding to As, elongated by layers of 3-prisms, is embedded into Z;. It is a tiling of
R? by a half of the rhombic dodecahedron (i.e. 6-prism with new vertex connected to 3
alternated vertices of a hexagonal face), which is not centrally-symmetric. (An example of
non-zonotopal plane tiling is given by [3%:3%.6?] — Z.,. Apropos, the simplest graph, em-
beddable only into Z.., is the caterpillar with vertices a; = (¢,0), b; = (¢, 1) for ¢ € N and
edges (a;, aiy1), (a;,b;).) It will be interesting to find some non-zonotopal, but embeddable
into Z,,, tiling of R> by centrally-symmetric polyhedrons. It will be an infinite analog of
non representable oriented matroid. Example of non-normal such tiling is P(57), given
in [Sh80]. It is a tiling of R? by centrally-symmetric convex parallelohedrons 43 + v3; the
skeleton of this tiling is Z3, see Theorem 3 above.

Consider now following two bilattices generalizing D-complex
DY :=D,U(d+ D,),
where the new point d is the center of greatest Delone polytope, and
At = A, U (a+ A,),
where the new point « is the center of regular n-simplex, Delone polytope of A,,, see [CS88].
Dt is a lattice if and only if n is even; DY = Z,, Df = Z,, DI = Es; A is al-
ways bilattice. It obtained from A, by the centering of its smallest Delone polytope, the
n-simplex «,,; the centering of all Delone polytopes of A, will give A¥. Remind that
De(AT) = Vo(Ay) = (6°) — Zs, Vo(AT) = (3%) — 373, AT = DT
Theorem 5.
(i) De(DF) — $Zs, Vo(DF) is non 5-gonal, De(D}}) is non 5-gonal for n > 5;
(i1) De(Af) — % w2 forn > 3.

All above results are obtained by techniques given in [CDG97] and [DS96]. For example,
non 5-gonality of De(AY), n > 3, given by 5 points:

a=1(0,0,0,0,...,0),b=(1,1,1,0,...,0),
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x=(1,0,0,0,...0),y = (0,1,0,0,...,0), z = (0,0, 1,0, ..., 0)

in Selling-reduced basis of the lattice; the points a, z, z+y, b are vertices of a face of a
Delone simplex [Del37].

Another example of non-embedding (also generalizing the remark after Theorem 2) is
following:

Theorem 6.
A closed simplicial n-manifold M,, n > 3, is not embedded if it has (n—2)-face which
belongs to at least five n-simplices.

In fact, in the conditions of Theorem 6, the skeleton of M,, contains isometric subgraph
K7 — Cj (i.e. the skeleton of 4-polytope Pyr(Pyrs)) which is 5-gonal but is not embedded.
For example, the regular 4-polytope 600-cell, which is a closed simplicial 3-manifold, has
five tetrahedra on each edge. If, moreover, (n-2)-face from Theorem 6 belongs to at least
stz n-simplices (and so to at least six (n—1)-simplices), then M,, is not 5-gonal, since it
contains isometric subgraph K5 — K3. For example, De( A%) is not 5-gonal, because it has
six tetrahedra on some edges.

See [DGS97], [DS96], [DS97], [DGI7] for embedding of other classes of polyhedral
graphs. See [DLI7] for general theory of isometric embedding into space [{* and, up to
scale, into hypercubes. See [RB79] and [CS88] for notions of lattice theory.

We are grateful to SFB 343 of Bielefeld University, where this work was done, and,
especially, to Walter Deuber for kind invitation, attention and support.
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