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The famous Deuxi�eme m�emoire of Voronoi (1908, 1909) in Crelle Journal contains,

between other things, deep study of two dual partitions of R

n

related to an n-dimensional

lattice �. In modern terms, they are called Voronoi partition and Delone partition (Voronoi

himself called the second one L-partition). Both partitions coincide for the cubic lattice;

we denote by Z

n

the skeleton of the cubic n-dimensional lattice. Denote by V o(�), De(�)

skeletons of Voronoi and Delone partitions for lattice �. So, edges of these graphs are edges

of the Voronoi parallelotope and of the Delone polytopes of �; any minimal vector of � is

an edge of De(�) but not vice versa, in general.

We are interested whether in�nite graph G, where G = V o(�) or De(�), either is

embedded isometrically (or with doubled distances) into a Z

m

for some m � n, or not; we

use notation G! Z

m

or G!

1

2

Z

m

in the �rst two cases.

In this note we report what we got, in this direction, for irreducible root lattices, for

two generalizations of the diamond bilattice and for 3-dimensional case.

The validity of the following 5-gonal inequality for distances is known [Dez60] to be

necessary for embedding of any graph (in fact, of any metric space) into some Z

m

: for any

vertices a; b; x; y; z we have

d(a; b) + fd(x; y) + d(x; z)) + d(y; z)g �

� fd(a; x) + d(a; y) + d(a; z)g+ fd(b; x) + d(b; y) + d(b; z)g:

It turns out that cases of non-embedding given in this note, came out by violation of this

5-gonal inequality.

Let us start with irreducible root lattices, i.e. A

n

, D

n

, E

n

.

For small dimension n, we have: De(A

2

) = (3

6

)!

1

2

Z

3

, V o(A

2

) = (6

3

)! Z

3

([As81]);

D

2

= Z

2

, A

�

2

= A

2

, D

3

= A

3

.

Theorem 1.

(i) De(E

n

) is not 5-gonal for n = 6; 7; 8;

(ii) for n � 3, we have: De(A

n

)!

1

2

Z

n+1

, V o(A

n

)! Z

n+1

,

V o(A

�

n

)! Z

m

(where m =

�

n+1

2

�

), De(A

�

n

) is not 5-gonal;
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(iii) for n � 4, we have: De(D

n

), V o(D

n

), De(D

�

n

) are not 5-gonal.

Remark that De(D

4

) is not embedded, contrary to 2b) of [As81]; take 5 points

a = (0; 0; 0; 0); b = (1; 1; 0; 0);

x = (1; 0; 1; 0); y = (1; 0;�1; 0); z = (0; 1; 0; 1)

forming non 5-gonal graph K

5

�K

3

. For example, (x; y) is not an edge, since the middle

point of the segment [x; y] is the center of the square (a; x; c = (2; 0; 0; 0); y) with edges

(a; x); (x; c); (c; y); (y; a) from the graph De(D

4

). Apropos, De(D

4

) is a metric subspace

of De(D

n

) for n � 5.

Remark also, that we have isometric embedding of Z

n

intoDe(D

2n

) and Z

2

intoDe(A

3

).

Now we consider 5 types (depending on their Voronoi polyhedron) of 3-dimensional

lattices, obtained by Fedorov [Fe1885]. Besides Z

3

, A

3

=f.c.c. and A

�

3

=b.c.c., there are

two other types of lattices having 6-prism and elongated dodecahedron as the Voronoi

polyhedron. Let us take A

2

� Z

1

and, say, �

0

as representatives of the lattices of these

two types. Remark that De(A

3

), De(�

0

) coincide as graphs, but the partitions of R

3

(for

which they are skeletons) are di�erent.

Theorem 2.

(i) De(A

2

� Z

1

)!

1

2

Z

4

, V o(A

2

� Z

1

)! Z

4

;

(ii) De(�

0

)!

1

2

Z

4

, V o(�

0

)! Z

5

.

So, Delone partition of unique general lattice A

�

3

is only non-embeddable De(�), V o(�)

for 5 types of 3-dimensional lattices.

In R

3

, the combinatorial type of a parallelohedron P determines the combinatorial type

of the corresponding tiling by P ; also the type of the dual partition is determined by the

type of its star (i.e. the con�guration around a vertex). For normal partitions we have 5

types of parallelohedra and 5 dual types of partition (whose skeletons are of 4 types, it was

already in [Fe1885]), their embeddings are described in the theorem 2 above. [Sh80] found

all 3 types of convex parallelohedra for essentially non-normal (i.e. non-normalizable)

partitions of R

3

. Denote them by S

1

, S

2

, S

3

; denote by P (S

i

), P

�

(S

i

) the tiling by S

i

and

dual partition for i=1, 2, 3. All S

i

, i=1, 2, 3, are centrally-symmetric 10-hedrons obtained

by a decoration of the parallelepiped; their p-vectors are (p

4

=10), (p

4

=6, p

6

=4), (p

4

=4,

p

6

=4, p

8

=2) respectively. S

1

is (combinatorially) �

3

truncated in 2 opposite vertices; S

2

,

S

3

have 2-valent vertices [Sh80]. All P

�

(S

i

) have the same combinatorial type of skeleton;

they are partitions of R

3

by non-convex bodies.

Theorem 3.

For i=1, 2, 3 we have S

i

! H

3+i

, P (S

i

)! Z

2+i

and P

�

(S

i

) is not 5-gonal.

Two most interesting lattice complexes in 3-space are bilattices J-complex and D-

complex (D-complex called also diamond or tetrahedral packing and denoted by D

+

3

).
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Theorem 4.

(i) De(D-complex) !

1

2

Z

5

, but Vo(D-complex), De(J-complex), Vo(J-complex) are not

5-gonal;

(ii) any Kelvin packing K by �

3

and �

3

(except A

3

, but including the bilattice h.c.p.,

i.e. hexagonal close packing) has non 5-gonal De(K), V o(K).

Between packings of 3-space, considered above, De(Z

3

), De(A

2

� Z

1

), V o(A

2

� Z

1

),

De(A

3

), V o(A

�

3

), De(J-complex), De(h.c.p.) are uniform partitions of R

3

by regular and

semiregular polyhedra. These polyhedra are, respectively: cubes 

3

, truncated octahedra

�

3

, 3-prisms, 6-prisms, tetrahedra �

3

with �

3

, �

3

with cuboctahedra, �

3

with �

3

. The list

of all such partitions and their embedding will be considered in [DGS97].

All embeddings into Z

m

(i.e. isometric ones) of skeletons of Voronoi partitions con-

sidered here, except the Theorem 3, were related to Voronoi tilings by a zonotope with

m zones; for example, by the permutahedron for V o(A

�

n

): But the Voronoi partition cor-

responding to A

3

, elongated by layers of 3-prisms, is embedded into Z

4

. It is a tiling of

R

3

by a half of the rhombic dodecahedron (i.e. 6-prism with new vertex connected to 3

alternated vertices of a hexagonal face), which is not centrally-symmetric. (An example of

non-zonotopal plane tiling is given by [3

6

; 3

2

:6

2

]! Z

1

. Apropos, the simplest graph, em-

beddable only into Z

1

, is the caterpillar with vertices a

i

= (i; 0), b

i

= (i; 1) for i 2 N and

edges (a

i

; a

i+1

), (a

i

; b

i

).) It will be interesting to �nd some non-zonotopal, but embeddable

into Z

m

, tiling of R

3

by centrally-symmetric polyhedrons. It will be an in�nite analog of

non representable oriented matroid. Example of non-normal such tiling is P (S

1

), given

in [Sh80]. It is a tiling of R

3

by centrally-symmetric convex parallelohedrons 

3

+ 

3

; the

skeleton of this tiling is Z

3

, see Theorem 3 above.

Consider now following two bilattices generalizing D-complex

D

+

n

:= D

n

[ (d+D

n

);

where the new point d is the center of greatest Delone polytope, and

A

+

n

:= A

n

[ (a+A

n

);

where the new point a is the center of regular n-simplex, Delone polytope of A

n

, see [CS88].

D

+

n

is a lattice if and only if n is even; D

+

2

= Z

2

, D

+

4

= Z

4

, D

+

8

= E

8

; A

+

n

is al-

ways bilattice. It obtained from A

n

by the centering of its smallest Delone polytope, the

n-simplex �

n

; the centering of all Delone polytopes of A

n

will give A

�

n

. Remind that

De(A

+

2

) = V o(A

2

) = (6

3

)! Z

3

, V o(A

+

2

) = (3

6

)!

1

2

Z

3

, A

+

3

= D

+

3

.

Theorem 5.

(i) De(D

+

3

)!

1

2

Z

5

, V o(D

+

3

) is non 5-gonal, De(D

+

n

) is non 5-gonal for n � 5;

(ii) De(A

+

n

)!

1

2

Z

n+2

for n � 3.

All above results are obtained by techniques given in [CDG97] and [DS96]. For example,

non 5-gonality of De(A

�

n

), n � 3, given by 5 points:

a = (0; 0; 0; 0; :::; 0); b = (1; 1; 1; 0; :::; 0);
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x = (1; 0; 0; 0; :::0); y = (0; 1; 0; 0; :::; 0); z = (0; 0; 1; 0; :::; 0)

in Selling-reduced basis of the lattice; the points a, x, x+y, b are vertices of a face of a

Delone simplex [Del37].

Another example of non-embedding (also generalizing the remark after Theorem 2) is

following:

Theorem 6.

A closed simplicial n-manifold M

n

, n � 3; is not embedded if it has (n{2)-face which

belongs to at least �ve n-simplices.

In fact, in the conditions of Theorem 6, the skeleton of M

n

contains isometric subgraph

K

7

�C

5

(i.e. the skeleton of 4-polytope Pyr(Pyr

5

)) which is 5-gonal but is not embedded.

For example, the regular 4-polytope 600-cell, which is a closed simplicial 3-manifold, has

�ve tetrahedra on each edge. If, moreover, (n-2)-face from Theorem 6 belongs to at least

six n-simplices (and so to at least six (n{1)-simplices), then M

n

is not 5-gonal, since it

contains isometric subgraph K

5

�K

3

. For example, De(A

�

3

) is not 5-gonal, because it has

six tetrahedra on some edges.

See [DGS97], [DS96], [DS97], [DG97] for embedding of other classes of polyhedral

graphs. See [DL97] for general theory of isometric embedding into space l

m

1

and, up to

scale, into hypercubes. See [RB79] and [CS88] for notions of lattice theory.

We are grateful to SFB 343 of Bielefeld University, where this work was done, and,

especially, to Walter Deuber for kind invitation, attention and support.

4



BIBLIOGRAPHY

[As81] P.Assouad, Embeddability of regular polytopes and honeycombes in hypercubes,

The Geometric Vein, the Coxeter Festschrift. Springer-Verlag (1981) 141-147.

[CDG97] V.Chepoi, M.Deza and V.Grishukhin, Clin d'oeil on l

1

-embeddable planar

graphs, Discrete Appl. Math. (1997), to appear.

[CS88] J.H.Conway and N.J.A.Sloane, Sphere Packings, Lattices and Groups, Vol. 290

of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York, 1988.

[Del37] B.N.Delone (=B.N.Delaunay), Geometry of positive quadratic forms (in Rus-

sian), Uspekhi Mat. Nauk 3 (1937) 16-62 and 4 (1938) 102-164.

[Dez60] M.Tylkin (=M.Deza), On Hamming geometry of unitary cubes (in Russian),

Doklady Akademii Nauk SSSR 134 (1960) 1037-1040.

[DG97] M.Deza and V.P.Grishukhin, A zoo of l

1

-embeddable polytopal graphs, Bull.

Inst. Math. Acad. Sinica (1997), to appear.

[DGS97] M.Deza, R.V.Galiulin and M.I.Shtogrin, Uniform semi-regular partitions of

R

3

and their embedding into Z

m

, in preparation.

[DS96] M.Deza and M.I.Shtogrin, Isometric embeddings of semi-regular polyhedra, plane

partitions and duals into hypercubes and cubic lattices (in Russian). Uspekhi Mat. Nauk

51-6 (1996) 199-200.

[DS97] M.Deza and M.I.Shtogrin, Embedding of chemical graphs into hypercubes, sub-

mitted.

[DL97] M.Deza and M.Laurent, Geometry of cuts and metrics, Springer-Verlag, 1997.

[Fe1885] E.S.Fedorov, Introduction in the study of �gures (in Russian), St.Petersbourg,

1885.

[RB79] S.S.Ryshkov and E.P.Baranovski, Classical methods in the theory of lattice pack-

ings, Russian Math. Surveys 34-4 (1979) 1-68.

[Sh80] M.I.Shtogrin, Non-normal partitions of 3-space into convex parallelohedra and

their symmetry (in Russian), Proc. of All-Union Symposium on the Theory of Symmetry

and its Generalitations, Kishinev (1980) 129-130.

[Vo08] G.F.Voronoi, Nouv�elles applications des param�etres continues a la th�eorie des

forms quadratiques, Deuxi�eme m�emoire, J. f�ur die Reine und Angewandte Mathematik

134 (1908) 198-287.

[Vo09] G.F.Voronoi, Nouv�elles applications des param�etres continues a la th�eorie des

forms quadratiques, Deuxi�eme m�emoire, Seconde partie, J. f�ur die Reine und Angewandte

Mathematik 136 (1909) 67-181.

5


