
Département de Mathématiques et Informatique

UPERIEURESORMALENECOLE

CNRS URA 1327

SVP : a Flexible Micropayment Scheme

Jacques STERN

Serge VAUDENAY

LIENS - 97 - 4

SVP : a Flexible Micropayment Scheme

Jacques STERN

Serge VAUDENAY

LIENS - 97 - 4

March 1997

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 44 32 00 00

Adresse �electronique :@dmi.ens.fr

SVP: a Flexible Micropayment

Scheme

Jacques Stern, Serge Vaudenay

Ecole Normale Sup�erieure | CNRS

fJacques.Stern,Serge.Vaudenayg@ens.fr

Abstract

We propose a cheap micropayment scheme based on reasonable

requirements. It can be used for any payment which is online between

the customer and the vendor and o�ine with the broker. It is
exible

in the sense that many security options are possible depending on

the policy of the involved participants. We avoid large data storage,

heavy computations. The scheme is software based for the customer

and hardware based for the vendor. Possibilities of having software-

based solution for both are also presented.

1 Introduction

In the forthcoming years or even months, it is anticipated that electronic

payments over secure networks are going to expand rapidly. The de�nition

of the SET protocol (see [1]) by a group of credit cards providers is a de�nite

sign of this expected growth. Among the variety of payment schemes that

have been proposed recently, several address the very speci�c question of

micropayments (see [6, 13, 8]). Such payments arise in the context of the

Internet when an individual user is browsing around and wishes to access

resources for which a small payment appears adequate. Of course, this can

be done through some subscription scheme but it is very likely that such

solutions will not meet the needs of the generic Internet user.

As was pointed out by Rivest and Shamir in [13], micropayments require

exceptional e�ciency in order to be economically viable. As a result, the

direct use of public key cryptography appears forbidden. Even conventional

cryptosystems such as DES are questionable. The best choice seems to point

to hash functions, possibly keyed so as to be used as Message Authentication

Codes. We assume that the reader is familiar with these cryptographic tools

and refer to Schneier's book [14] for more information.

1

At this point, it is in order to describe the three parties involved in a

micropayment scheme. They are:

1. the customer who would like to access the resource against a micropay-

ment,

2. the service provider or vendor who o�ers service and needs to be paid

for,

3. the broker who o�ers support for the transaction.

In the micropayment context, we also assume that the communications

with the broker are rare (say daily or weekly-based for the vendors and

monthly-based for the customers). Thus, \expensive" cryptography can be

allowed at this level. On the other hand transactions between customers

and vendors are frequent and, for these communications, we will only use

message authentication codes Mac (and Mac

0

) which are supposed to be

\cheap"; actually, we will also use an unkeyed one-way hash function which

we denote by Hash.

When adopting a cryptographic setting where only \cheap" algorithmic

tools are allowed (in terms of computing power, communication load and

... licenses), it is necessary to closely examine the resulting level of security.

There are two major concerns

1. On the vendor's side, the risk of overspending: a customer might use

the rights granted by the broker in order to buy more than what was

originally agreed.

2. On the customer's side, the risk of having his rights stolen by a \sni�-

ing" attacker and/or of being improperly billed by the broker.

Additionally, robustness criteria shall be considered in the case that a cus-

tomer looses his secret key.

Other proposals also address these problems: in Millicent (see [6]), they

are solved by a systematic use of secret key cryptography, both on the cus-

tomer's side and on the vendor's side. Thus, a key-management rather heav-

ily enters the picture. In Payword([13]), Rivest and Shamir, following a

design independently imagined by many researchers, use public key in order

to sign a chain of iterated hash. Besides using the apparatus of public key,

this has the drawback that the customer has to use a di�erent chain for each

2

vendor. A similar design with trees in place of chains has been considered by

Jutla and Yung ([8]), again using algorithmic tools similar to those studied

by other researchers (see e.g. Vaudenay [16]).

Our setting is quite similar to the one considered by Rivest and Shamir in

Micromint in that overspending is basically \punished" by a form of black-

listing, which is acceptable for micropayments. However, we try to o�er a

stronger guarantee on the customer's side by introducing a challenge-based

payment protocol, which, albeit very simple, protects from fraudulent copies

of the customer's tokens. We do not make use of the clever idea of multiple

collisions but we only need MACs and hash functions, thus introducing a

very \cheap" system which we call SVP as for Small Value Payments.

2 Description of SVP

In the setting of SVP, we assume that the vendors have been given a tamper

proof device for validating micropayments. For instance, this device can be

a smart card or a PCMCIA card. Each broker may decide to distribute his

speci�c device or to share it with others (e.g. use a device provided by a bank

consortium). This turns out to be a very reasonable assumption since most

stores in the real world already have such a device for bank card payment or

cashier machines. We assume that the device is tamper proof and trusted by

the broker.

In the protocol below, we assume that communications both between the

broker and the vendor's device and between the broker and the customer are

secure (from a con�dentiality and integrity viewpoint). This can be achieved

with strong cryptographic schemes such as digital signatures and encryption

algorithms. We postpone the discussion on this issue to a later section.

We �rst describe the most secure version of our protocol. We assume

that the device has an internal (small) permanent memory and an external

(larger) memory (which does not need to be physically secured). The internal

memory has two registers �

c

B

and �

d

B

which are the global credit and debit

sums of all transactions to be cleared by the broker B. In addition it contains

a few information about previously aborted or failed transaction (to alert for

fraudulent access attempts). This mechanism leads to usual security cares

and will not be detailed here. The external memory has many m

c

T

and m

d

T

registers for all token T which have been used to pay to V (tokens will be

3

de�ned below). Each register has the form

m

i

T

= (date; Id

T

;�

i

T

;Mac

k

B

(date; Id

T

;�

i

T

))

where \date" is the date when the register has last been updated and k

B

is the key of the broker B for the token T . The payment protocol itself is

illustrated on Figure 1.

Vendor initialization The broker B �xes its own secret key k

B

and com-

municates it in a secure way to the device of each vendor. The device ini-

tializes its registers to zero and clears the external memory.

Withdrawal protocol In order to allow a customer C to pay, B generates

a \token" T which is a bitstring with the form

Id

T

= [token numberjjexpiration datejjId

B

]

together with a spending key k

T

= Mac

k

B

(token; Id

T

). Here \token" is a

�xed bitstring which is used to avoid bad interactions between several Mac

computations with di�erent types. The string Id

B

is an identi�er of the

broker. By doing this, the broker authorizes the customer to spend a given

amount of money with the key k

T

. As was already mentioned, the relation-

ship between the broker and the customer is trust-based, so the control of

the amount spent is left to the customer. Furthermore, it must be such that

systematic fraud can be detected and the dishonest customer black-listed.

So, the token T shall be (privately) associated to the customer C in the

Broker's database.

Payment protocol When willing to spend an amount a to a vendor V , the

customer introduces himself as having a token T to the vendor. The customer

also chooses a random number r

C

and communicates it to the vendor. Then,

the vendor gives (Id

T

; a; r

C

) to his device which outputs a random challenge

r

V

to be sent to C. (The device shall records that a transaction happened to

start with (Id

T

; a; r

C

; r

V

) in order to later on detect if it aborted or not.) The

vendor also send the identi�cation string Id

D

of his device. The customer

then reveals a \purchase"

p = Mac

0

k

T

(purchase; Id

T

; Id

D

; a; r

C

; r

V

)

4

Vendor V Customer C

Id

T

;r

C

 ���������������� r

C

random

r

V

random

Id

D

;r

V

����������������!

Device D checks

p

 ���������������� compute p

p = Mac

0

k

T

(purchase; Id

T

; Id

D

; a; r

C

; r

V

)

Figure 1: Payment protocol for amount a

where \purchase" is a �xed pattern string and the vendor queries his device

with (Id

T

; p) which checks whether

p =Mac

0

Mac

k

B

(token;Id

T

)

(purchase; Id

T

; Id

D

; a; r

C

; r

V

)

or not (the values a, r

C

and r

V

are read from memory). If the payment is

successful, the register �

c

B

is increased by a and the record m

c

T

is requested to

the memory. If it does not exist, the device shall create a new one initialized

to zero. The register �

c

T

is then increased by a by the device and saved in

the external memory.

Cancellation Similarly, a purchase from token T can be cancelled by the

vendor by using a cancellation key. In this case the device increase �

d

B

and

�

d

T

by a in a similar way.

Payment clearing The vendor regularly sends the broker the amount

spent by his customers. He just ask the device to send �

c

B

and �

d

B

, and

the vendor sends all registers m

c

T

and m

d

T

. The broker checks the consistency

of the counters (i.e. that the Mac values are correct, that the register dates

are between the last clearing date and the current date, and that the sum

of all �

c

T

is �

c

B

and the sum of all �

d

T

is �

d

B

). Then the broker pays for

�

c

B

� �

d

B

and increase each of his counter �

T

by �

c

T

� �

d

T

. The counter

�

T

is the money spent by the token T . If the token T has overspent, the

corresponding customer shall be contacted for explanations.

5

3 Additional security protocol

A problem with the above payment scheme is that a customer can overspend

his credit, that his secret key k

T

can be lost (purposedly or not) or stolen.

Revocation of tokens shall thus be performed by an additional security pro-

tocol based on black-lists. The veri�cation that a token Id is not in the last

updated black-list shall be checked upon the responsibility of the vendor (i.e.

clearing for revoked token will be refused by the broker). On the other hand,

payment performed by a token before its revocation date shall be cleared

(with the timestamp of the device) as soon as the vendor realizes the token

has been revoked.

Frauds are still possible during the latency period of the revocation pro-

cess. Another approach (which can be added to reduce the fraud rate) was

suggested by Jarecki and Odlyzko [7] and Yacobi [17]. The main idea is that

the vendor shall probabilistically send a message to the broker (which thus

needs to be online) to check for the credit. The broker may use the received

message to estimate the real credit spent by the customer and send an alert

before discovering e�ective overspending.

We also recall that the relationship between the vendor and the broker,

and the customer and the broker is contract-based. So we don't need a huge

cryptographic system to make frauds impossible. We can only try to make

it hard and detectable.

4 Tamper resistant device without memory

The payment scheme is
exible depending on the vendor/broker policy and

how much they want to pay (in particular for the tamper resistant mod-

ule). Much simpler tamper resistant device without permanent memory are

possible.

In this case we propose two options 1 and 2 (see Figure 2). In the �rst

option (which is less expensive for the vendor), the risk is taken by the vendor:

if a customer is cheating, the vendor will not get paid by the broker. In the

second option, the risk is taken by the broker.

In both options, the random challenge r

V

is generated by the vendor (and

not the device as in the previous protocol).

The �rst option consists in keeping an account balance �

T

for each token

T (as in the previous protocol, but without the secure control of the device).

6

Option 1

Payment: V increases T 's ac-

count �

T

by a.

Clearing: V sends all T 's ac-

counts �

T

to B. B records V in

the list of C's vendors. B pays

if balance T is ok. Otherwise,

B registers a problem between C

and one of its vendors.

Option 2

Payment: V adds (a; r

C

; r

V

; p) in

T 's records.

Clearing: V sends all T 's records

to B. B adds all (Id

D

; r

C

; r

V

)

in T 's records. B checks and

pays for all payments unless

(Id

D

; r

C

; r

V

) has already been

used.

Figure 2: Two options for the vendor

On payment with amount a, the vendor just increase �

T

by a. In the clearing

process, the vendor communicates all �

T

to B. The broker then pays only

if the customer did not overspent with the token. If he did, then either he

cheated or one of his previous vendors cheated. Such a problem shall be

recorded.

In the second option, the vendor keeps (Id

T

; a; r

C

; r

V

; p) in memory. In

the clearing, the broker keeps all (Id

T

; Id

D

; r

C

; r

V

) in memory. He pays

for any valid (Id

T

; Id

D

; a; r

C

; r

V

; p) unless (Id

T

; Id

D

; r

C

; r

V

) is already in

memory.

5 Tamper resistant device with memory

For more security, it is preferable to use tamper-resistant devices with per-

manent memory. For instance, the protocol presented in Section 2 is much

more secure than protocols presented in Figure 2. Additionaly, tamper re-

sistant device shall use there memory in order to detect multiple successive

failures as attempts to use it as an oracle.

If we can a�ord devices with huge memory, the proposed protocol can be

substantially simpli�ed: records which was originally stored in the external

memory can rather be stored in the physically secured internal memory.

Then the Mac in record m

i

T

is not useful any more. We can also use a global

balance register instead of a credit register and a debit register.

7

6 Possible attacks

Assuming the k

B

transmission between the broker and the vendors is secure,

the only way to recover k

B

(which enables to create money) is to deduce it

from the other informations. For instance, (dishonest) customers may try to

get k

B

from the equation k

T

= Mac

k

B

(token; T). The Mac function must

therefore resist to this kind of attack. We recommand a key-length in the

range 80{128 bits for k

B

.

A cheater may try to spend money on another customer's account T . If C

kept his key k

T

secret, the cheater only can tap the payment communication.

Then, either he/she cracks k

T

from the equation

p = Mac

0

k

T

(purchase; Id

T

; Id

D

; a; r

C

; r

V

)

or he/she tries to answer to spend without the knowledge of k

T

. But then,

he/she has to answer to a fresh challenge r

V

. Since the real customer picked a

random number r

C

before getting r

V

, the cheater must commit himself to an

r

0

C

number, but his/her knowledge may be limited to a very few (r

V

; p) pairs.

The probability the challenge is one of these is therefore small, and payment

disruption will alert the vendor as a tentative attack. We believe that a

16-bit output is enough for Mac

0

. Similarly, we recommand a keylength of

48{64 bits for k

T

.

A dishonest customer may try to overspend the key, but this will be

detected by the clearing protocol. Additionally, probabilistic polling may

detect it earlier in order to reduce the fraud rate.

A dishonest vendor may try to be paid for fake transactions. Using the

tamper resistant device as an oracle to forge valid payment proof will thus be

detected by the device if it has permanent memory. If not, the device shall be

su�ciently slowed down for such an attack to be infeasible. Other forgeries

are either improbable, or protected by the strength of the Mac function.

A cheater may also try to actively attack the protocol by rerouting the

communication between the customer C and the vendor V towards another

vendor V

0

so that he can bene�t of the services from V

0

by making C pay

for it. This is avoided by the use of the identi�er Id

D

of the real vendor's

device in the p answer. Similarly, the cheater can still bene�t of V 's services

with the payment of C, but then the real customer can complain to V .

8

7 Secret key strengthening

Tamper resistant devices are never totally tamper proof, as publicly discussed

in relation with the recent work on transient fault analysis[2, 4, 5, 10]. What-

ever the real threat is, it might be better not to have a single key k

B

in mass

manufactured devices. Rather we propose to use several keys k

1

B

; : : : ; k

n

B

.

Each vendor has an identi�er which is secretly hashed onto a set of n=2 in-

dices I

D

, which means that a vendor identi�ed by I

D

knows the keys k

i

B

for

i 2 I

D

.

In the payment protocol, the customer pays with

p

i

= Mac

0

Mac

k

i

B

(Id

T

)

(purchase; Id

T

; Id

D

; a; r

C

; r

V

) : i = 1; : : : ; n

The use of sets with size n=2 comes from Sperner's Theorem [15]: the number

of subsets such that any two subsets are not comparable for the inclusion

relation is maximal when we take all the subsets with size n=2. This has

been used for optimizing signature schemes based on hash functions. Those

algorithms have been studied and discovered by several authors including

by one author of the present paper [9, 11, 12, 16, 3]. We can adapt the

last updated combinatorial technics from this area, but this downgrades the

simplicity of the protocol.

8 Secure communications

Communications with the broker must be secure in two ways. Firstly, the

secrecy of the keys (k

B

for the vendor and s for the customer) must be

enforced. For this, we need either encryption, or physical o�-line delivery.

For instance, the key k

B

can be implemented in hardware in the devices

(eventually all the future ones with it), and the key s can be given once for

all when the customer registers with the broker.

Secondly, the authenticity of the clearing process must be achieved from

the vendor to the broker. This can be achieved with the Mac function by

usual protocols.

Secrecy may be required in the clearing process too, in order to protect

the customers' privacy. This can be achieved by encryption.

9

9 Privacy issue

Our protocol however su�ers from the lack of anonymity: the vendor may

records C's identity and communicates its purchases to the broker. This

would harm the customer's privacy. But C can use a \privacy provider" who

shall request and pay for V 's services and provide the service to C and get

paid for.

10 On the use of the tamper resistant device

We can propose guidelines to avoid the use of a tamper resistant device. The

main problem is that dishonest vendors can use their keys k

B

to pay for any

customer. We can solve the problem by adding a proof of payment

t =Mac

0

k

C

(tag; Id

t

; Id

D

; a; r

C

; r

V

)

to be veri�ed only by the broker who shares a secret key k

C

with the customer.

(This key may be obtained with a relation like k

C

= Mac

k

(Id

C

) where k is a

master key used by the broker.) This proof t shall be hashed in the v value

to so that no-one can separate them. The broker also needs to check if t has

not been used several times. But then, if this proof is not valid, we cannot

say whether the vendor or the customer is dishonest. We can decide that the

broker will not pay under such circumstances, but the (honest) vendor will

be stopping providing services to the (dishonest) customer. The problem is

solved if we assume that the vendor agrees to lose the corresponding amount

of money.

In this protocol the key k

B

must however be strengthened as in Section

7. There is still a problem with colluding dishonest vendors which shall forge

fake purchases for another vendor. This is solved by the fact that the set of

k

i

B

used by the device is secret: unless the set of colluding vendors recover

all the keys, the probability that a honest vendor accepts a forged payment

is lower than 1=2.

11 Conclusion

We have de�ned a
exible payment system that can be implemented through

very basic cryptographic primitives in a setting where the service providers

10

use a tamper-proof device trusted by the broker. SVP thus o�ers a very

simple solution to the problem of micropayment, while achieving a signi�cant

level of security for the individual customer.

References

[1] Secure Elecronic Transactions (SET) speci�cations. Draft. 17 july 1996

http://www.mastercard.com/set

[2] R. J. Anderson, M. G. Kuhn. Tamper resistance | a cautionary note.

In Proceedings of the 2nd Usenix Workshop on Electronic Commerce,

Oakland, California, U.S.A., pp. 1{21, nov. 1996.

[3] D. Bleichenbacher,U. M.Maurer. Directed acyclic graphs, one-way func-

tions and digital signatures. In Advances in Cryptology CRYPTO'94,

Santa Barbara, California, U.S.A., Lectures Notes in Computer Science

839, pp. 75{82, Springer-Verlag, 1994.

[4] D. Boneh, R. A. deMillo, R. J. Lipton. On the importance of check-

ing computations. Preprint, nov. 1996. To appear in the proceedings of

Eurocrypt'97.

[5] E. Biham, A. Shamir. Research anouncement: a new cryptanalytic at-

tack on DES. Oct. 1996. Presented at the Rump Session of Fast Sofwtare

Encryption'97.

http://jya.com/dfa.htm

[6] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, P. Sobalvarro. The

Millicent protocol for inexpensive electronic commerce. In World Wide

Web Journal, Fourth International World Wide Web Conference Pro-

ceedings, pp. 603{618, O'Reilly, 1995.

[7] S. Jarecki, A. Odlyzko. An e�cientmicropayment system based on prob-

abilistic polling. In these proceedings.

[8] C. S. Jutla, M. Yung. Paytree. \Amortized-signature" for
exible mi-

cropayments. Presented at the Rump Session of ASIACRYPT'96.

http://www.kreonet.re.kr/AC96/AC96.html

11

[9] L. Lamport. Constructing digital signatures from a one way function,

Technical report CSL-98, SRI Intl., 1979.

[10] A. K. Lenstra. Memo on RSA signature generation in the presence of

faults. Sep. 1996. Unpublished.

[11] R. Merkle. A Certi�ed Digital Signature, In Advances in Cryptology

CRYPTO'89, Santa Barbara, California, U.S.A., Lectures Notes in

Computer Science 435, pp. 218{238, Springer-Verlag, 1990.

[12] M. Naor, M. Yung. Universal one-way hash functions and their cryp-

tographic applications. In Proceedings of the 21st ACM Symposium on

Theory of Computing, Seattle, Washington, U.S.A., pp. 33{43, ACM

Press, 1989.

[13] R. L. Rivest, A. Shamir. PayWord and MicroMint: two simple micro-

payments schemes. CryptoBytes, vol. 2, num. 1, pp. 7{11, 1996.

http://theory.lcs.mit.edu/ rivest

[14] B. Schneier. Applied Cryptography, 2nd Edition, John Wiley and

sons,1996.

[15] E. Sperner. Ein Satz �uber Utermengen einer endlichen Menge. Mathe-

matische Zeitschrift, vol. 27, pp. 544{548, 1928.

[16] S. Vaudenay. One-time identi�cation with low memory. In Proc. EU-

ROCODE'92, Udine, Italy, CISM Courses and Lectures 339, pp. 217{

228, Springer-Verlag, 1993.

http://www.dmi.ens.fr/ vaudenay

[17] Y. Yacobi. On the continuum between on-line and o�-line e-cash sys-

tems. In these proceedings.

12

