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Abstract

In this paper we present a dataow analysis method for normal constraint

logic programs interpreted with �nite failure or constructive negation. We

apply our method to a well known analysis for logic programs on the Her-

brand Universe: the depth(k) analysis for approximating the set of computed

answer constraints. The analysis is correct w.r.t. SLDNF resolution and op-

timal w.r.t. constructive negation.

1 Introduction

The semantic-based data ow analysis of de�nite constraint logic programs

(CLP) is nowadays standard practice. Several systems have been imple-

mented and proved useful at either helping the programmer to �nd errors,

through type checking and declarative diagnosis, or improving program e�-

ciency, through program transformation and compilation (see e.g. [12, 3, 19]).

Much work has been done in this context using the theory of abstract

interpretation [6] for helping the design of such analyzers and proving their

correctness. A key point in abstract interpretation is the choice of a reference

semantics from which one can abstract the properties of interest. While it is

always possible to use the operational semantics as it contains all informa-

tion, it is possible to get rid of useless details, by choosing a more abstract

semantics as reference semantics. Choosing the most abstract logical least

model semantics of de�nite logic programs limits the analysis to type infer-

ence properties, that approximate the ground success set. Non-ground model

semantics have thus been developed, under the name of the S-semantics ap-

proach [1], and proved useful for a wide variety of goal-independent analysis

ranging from groundness, to sharing, call patterns, etc. All the intermediate

�xpoint semantics of de�nite CLP programs comprised between the most

abstract logical one and the most concrete operational one, form in fact a

hierarchy of semantics related by abstract interpretation, in which one can

de�ne a notion of the best reference semantics [13].

On the other hand, much less work has been done on the analysis of
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normal (constraint) logic programs, although the �nite failure principle, and

hence SLDNF resolution, are standard practice. One reason for this is that

the formal operational semantics of normal logic programs (either SLDNF

resolution [15] or constructive negation [21]) are quite complicated, and the

generalization of the S-semantics, which captures only the set of computed

answer constraints, to normal logic programs has been open for a while [1].

In this paper we present an analysis method for normal CLP programs.

It is based on the generalized S-semantics given in [9] and on the hierarchy

described in [10]. One important contribution of the paper is the de�nition

of a normal form for �rst order constraints on the Herbrand Universe, which

is suitable for analysis. In fact the normal form allows us to de�ne an

abstraction function which is a congruence wrt the equivalence on constraints

induced by the Clark's equality theory. On the domain of constraints in

normal form, we de�ne a depth(k) analysis for normal logic programs which

approximates the constraint answer set for positive and negative atoms. We

show that the analysis is correct and optimal.

This analysis can be compared with other work for the analysis of nor-

mal logic programs. In [18], Marriott and Sondergaard proposed a frame-

work based on Fitting's semantics [11]. Fitting's least three-valued model

semantics is an abstraction (in fact a non recursively enumerable one yet

easier to de�ne) of Kunen's three-valued logical semantics [14] that is more

faithful to SLDNF resolution [15] and complete w.r.t. constructive negation

[21]. Therefore the choice of Fitting's semantics as reference semantics im-

plies de facto a loss of precision in the analysis. Furthermore because these

reference semantics are ground, the analysis based on them are limited to

type inference properties. We give an example of depth(k) analysis which

illustrates the di�erences between both methods.

2 Preliminaries

2.1 Constraints

The �rst-order language of constraints is de�ned on a countably in�nite set

of variables V and on a signature � composed of a set of predicate symbols

containing true and =, and of sets of n-place function symbols for each

arity n (constants are functions with arity 0). A primitive constraint is an

atomic proposition of the form p(t

1

; :::; t

n

), where p is a predicate symbol in

� and the t

i

's are �; V -terms. A constraint is a well-formed �rst-order �; V -

formula. The set of free variables in an expression e is denoted by V ar(e).

Sets of variables will be denoted by X; Y; :::. For a constraint c, we shall use

the notation 9c (resp. 8c) to represent the constraint 9X c (resp. 8X c)

where X = V ar(c). A constraint is in prenex form if all its quanti�ers are

in the head.

The intended interpretation of constraints is de�ned by �xing a �-structure

X . An X -valuation for a �; V -expression is a mapping � : V ! X which
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extends by morphism to terms and primitive constraints. Logical connec-

tives and quanti�ers are interpreted as usual, a constraint c is X -solvable i�

X j= 9c.

The only property required on X is that constraints are decidable in X ,

so that X can be presented by an axiomatic theory th(X ) satisfying:

1. (soundness) X j= th(X ),

2. (completeness) for any constraint c th(X ) j= 9c or th(X ) j= :9c.

As a constraint is any �; V -formula, th(X ) is a complete theory, and thus

all models of th(X ) are elementary equivalent.

For instance, Clark's equational theory (CET) provides such a complete

decidable theory for the structure H of the Herbrand domain with �rst-order

equality constraints [17] [14]. In the following all our examples will be given

in this domain.

2.2 Normal CLP(X ) programs

CLP (X ) programs are de�ned using an extra �nite set of predicate symbols

� disjoint from �. An atom has the form p(t

1

; :::; t

n

) where p 2 � and the

t

i

's are �; V -terms. A literal is either an atom (positive literal) or a negated

atom :A (negative literal). A normal (resp. de�nite) CLP (X ) program is a

�nite set of clauses of the form A cjL

1

; :::; L

n

, where n � 0, A is an atom,

called the head, c is a constraint, and L

1

; :::; L

n

are literals (resp. atoms).

The local variables of a program clause is the set of free variables in the

clause which do not occur in the head.

In order to characterize precise operational aspects of CLP programs,

such as sets of computed answer constraints, the formal semantics ofCLP (X )

programs will be de�ned by sets of constrained atoms. With V ar(A) we in-

tend the free variables in the atom A. A constrained atom is a couple cjA

where c is an X -solvable constraint such that V ar(c) � V ar(A). The set of

constrained atoms is denoted by B

X

. A constrained interpretation is a sub-

set of B

X

. A three-valued or partial constrained interpretation is a couple of

constrained interpretations < I

+

; I

�

>, one I

+

representing the true things,

and one I

�

for the false things (note that because of our interest in abstract

interpretations we do not impose any consistency condition).

2.3 Galois insertions and abstract interpretation

Abstract interpretation [6, 7] is a theory developed to reason about the

abstraction relation between two di�erent semantics. The theory requires

the two semantics to be de�ned on domains which are poset. (C;�) (the

concrete domain) is the domain of the concrete semantics, while (A;�) (the

abstract domain) is the domain of the abstract semantics. The partial order

relations reect an approximation relation. The two domains are related
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by a pair of functions � (abstraction) and  (concretization), which form a

Galois insertion.

De�nition 2.1 (Galois insertion) Let (C;�) be the concrete domain and

(A;�) be the abstract domain. A Galois insertion h�; i : (C;�)

*

)
(A;�)

is a pair of maps � : C ! A and  : A ! C such that

1. � and  are monotonic,

2. 8x 2 C: x � ( � �)(x) and

3. 8y 2 A: (� � )(y) = y.

Given a concrete semantics and a Galois insertion between the concrete

and the abstract domain, we want to de�ne an abstract semantics. The

concrete semantics is the least �xpoint of a semantic function F : C ! C. The

abstract semantic function

~

F : A ! A is correct if 8x 2 A: �(F ((x))) �

~

F (x). The abstract semantics is optimal (most precise) if the equality holds.

F is in turn de�ned as "composition" of \primitive" operators. Let

f : C

n

! C be one such an operator and assume that

~

f is its abstract

counterpart. Then

~

f is (locally) correct w.r.t. f if

8x

1

; : : : ; x

n

2 A �(f((x

1

); : : : ; (x

n

))) �

~

f(x

1

; : : : ; x

n

):

According to the theory, for each operator f , there exists an optimal (most

precise) locally correct abstract operator

~

f de�ned as

~

f(y

1

; : : : ; y

n

) = �(f((y

1

); : : : ; (y

n

))).

2.4 Constructive negation

Constructive negation is a principle of inference introduced by Chan for

normal logic programs in [2], that generalizes smoothly to normal CLP(X )

programs providing them with a sound and complete [21] operational seman-

tics w.r.t. Kunen's logical semantics [14]. In the case of a normal CLP(X )

program, Kunen's semantics is simply the set of three-valued consequences

of the program's completion and the theory th(X ).

The S-semantics of de�nite logic programs [1] has been generalized to

normal CLP(X ) programs in [9] for a version of constructive negation, called

constructive negation by pruning. The idea of the �xpoint operator, which

captures the set of computed answer constraints, is to consider a non-ground

�nitary (hence continuous) version of Fitting's operator. Here we give a

de�nition of the operator T

D

P

which is parametric w.r.t. the domain D of

constrained atoms and the operations on constraints.

De�nition 2.2 Let P be a normal CLP(X ) program. T

D

P

is an operator

over P(B

D

)�P(B

D

) de�ned by
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T

D

P

(I)

+

= fcjp(X) 2 B

D

: there exist a clause in P with local variables Y ,

C = p(X) djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

:

c

1

jA

1

; :::; c

m

jA

m

2 I

+

; c

m+1

jA

m+1

; :::; c

n

jA

n

2 I

�

such that c = 9Y (d ^c

1

^ : : :^c

n

)

is H-satis�ableg

T

D

P

(I)

�

= fcjp(X) 2 B

D

: for each clause de�ning p in P with loc. var. Y

k

,

C

k

= p(X) d

k

jA

k;1

; :::; A

k;m

k

; �

k

:

there exist e

k;1

jA

k;1

; :::; e

k;m

k

jA

k;m

k

2 I

�

,

e

k;m

k

+1

jA

k;m

k

+1

; :::; e

k;n

k

jA

k;n

k

2 I

+

, n

k

� m

k

where for m

k

+ 1 � j � n

k

, :A

k;j

occurs in �

k

,

such that c =

V

8Y

k

(: d

k

_ e

k;1

: : :_ e

k;n

k

),

is H-satis�ableg:

Where the operations 9; 8;:;_;^, are the corresponding operations on the

constraint domain of D.

In the case of a normal CLP(X ) program, the operator T

X

P

de�nes with

its least �xpoint a generalized S-semantics which is fully abstract for the ob-

servation of the set of computed answer constraints with constructive nega-

tion by pruning [9]. By soundness it approximates also the set of computed

answer constraints under the SLDNF resolution rule, or under the Prolog

strategy.

In [10] we have shown that this operator de�nes a hierarchy of reference

semantics related by abstract interpretation, that extends the hierarchy de-

�ned by Giacobazzi for de�nite logic programs [13].

3 Normal forms in CET

In order to de�ne abstractions on constrained atoms we need to de�ne suit-

able normal forms for �rst-order constraints. Given a theory th(X ) we

are interested in working with equivalence classes of constraints w.r.t. the

equivalence of the constraints in th(X ). Namely c is equivalent to c

0

if

th(X ) j= c $ c

0

. This is why we need the abstraction function on the con-

crete constraint domain to be a congruence. This is a necessary property

since it permits to prescind from the syntactic form of the constraints.

We restrict our attention on normal CLP(H) programs and need to

achieve this property in CET. We thus need to introduce a normal form

for �rst-order equality constraints, in a similar way to what has been done

for the analisys of de�nite programs where the normal form is the uni�cation

solved form [16]. Here we shall de�ne a new notion of \false-simpli�ed" nor-

mal forms, where the normal form that we consider is based on Colmerauer's

solved forms for inequalities [4] and Maher's transformations for �rst-order

constraints [17].

First let us motivate the need of a \false-simpli�ed" form. Let us call

a basic constraint an equality or an inequality between a variable and a

term. The abstraction function will be de�ned inductively on the basic
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constraints, and it will sometimes (e.g. for groundness analysis) abstract to

true some inequalities. Consider, for example, the following constraint d =

(X = f(a) ^X 6= f(a)), which is H-equivalent to false. If the abstraction

of X 6= f(a) is true then the abstraction of d will be the abstraction of

X = a, but that constraint cannot be H-equivalent to the abstraction of

false. Therefore we need to de�ne a normal form where the constraints

which are H-equivalent to false, are eliminated.

De�nition 3.1 Consider a constraint d in prenex disjunctive form, d =

�(_

i

A

i

), where � is a sequence of quanti�ed variables and _

i

A

i

is a �nite

disjunction. d is in a false-simpli�ed form if, either there does not exist a

proper subset I of the i

0

s such that H j= �(_

i

A

i

)$ �(_

i2I

A

i

), or such an I

exists and there exists also a subset K of I, such that _

j 62I

A

j

is H-equivalent

to _

k2K

A

k

.

The latter condition assures that we really eliminate constraints that are H-

equivalent to false and that are not just redundant in the constraint. Now

the existence of a false-simpli�ed form for any constraint can be proved

simply with the following:

Algorithm 3.1 Input: a constraint in prenex disjunctive form d = �(_

i

A

i

).

1. Consider the partition I and J of the A

i

's, such that A

i

2 I if H j=

9�(A

i

), A

i

2 J otherwise.

2. Repeat I := I [ S as long as there exists an S � J such that H j=

9�(_

i2S

A

i

) and for all j 2 S H 6j= 9�(_

i2(Snfjg)

A

i

).

3. Let S 2 JnI be any minimal set such that

H j= 9�(_

s2S

A

s

_

i2I

A

i

) and H j= 9�(_

s2S

A

s

_

i2I

A

i

) $ d, do

I := I [ S ,

4. Output: �(_

i2I

A

i

).

The idea of the algorithm is to �nd a subset of the conjunctions A

i

's (the A

i

with i 2 I) such that �(_

i

A

i

) with i 2 I is in false-simpli�ed form. In the

�rst step we select the A

i

's such that �(A

i

) is H-satis�able. In this case,

in fact, A

i

can not be H-equivalent to false and it can be put it in the set

I . In the second step from the remaining A

i

's we select the set of A

i

's such

that their � quanti�ed disjunction is H-satis�able, since we check that all

the A

i

's are necessary for the quanti�ed disjunction to be H-satis�able, the

considered A

i

's can not be H-equivalent to false. At the end of this process

if the resulting constraint is H-equivalent to the input constraint we stop.

Otherwise we add a minimum number of the not yet selected A

i

's such the

�(_

i

A

i

) for the selected i's is H-equivalent to the input constraint. Since

we add a minimum number of not yet selected A

i

's, we are sure that the

resulting constraint is in false-simpli�ed form.
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Theorem 3.1 For any input constraint c = �(_

i

A

i

), algorithm 3.1 termi-

nates and computes a false-simpli�ed form of c.

Note that all the false-simpli�ed forms of a constraint c are H-equivalent.

Now we can de�ne the normal form, Res(c), of a �rst-order equality con-

straint c, as the result of the following steps:

1. put the constraint c in prenex disjunctive normal form c

1

,

2. compute a uni�cation solved form for each conjunction of equalities

3. for each equality x = t in a conjunction, substitute t to x at each

occurrence of x in the inequalities of the same conjunction.

4. simplify the inequalities by applying the following rules:

(a) replace f(t

1

; : : : ; t

n

) 6= f(s

1

; : : : ; s

n

) by t

1

6= s

1

_ : : :_ t

n

6= s

n

.

(b) replace f(t

1

; : : : ; t

n

) 6= g(s

1

; : : : ; s

n

) by true.

(c) replace t 6= x by x 6= t if t is not a variable.

5. Return a false-simpli�ed form of the resulting constraint .

Note that all these steps preserve H-equivalence, the fourth step is Colmer-

auer's simpli�cation algorithm for inequalities [4] and the �rst three trans-

forms are usual for CET formulas [17], hence we get:

Proposition 3.1 H j= �$ Res(�)

Our concrete constraints domain NC will be the subset of constraints in C

which are in normal form. The concrete logical operations on NC will be

thus de�ned with normal forms:

De�nition 3.2 Let c

1

; c

2

2 NC,

c

1

~

^c

2

= Res(c

1

^ c

2

) c

1

~

_c

2

= Res(c

1

_ c

2

)

~:c

1

= Res(:c

1

)

~

9Xc

1

= 9Xc

1

~

8Xc

1

= 8Xc

1

We denote by B the set of constrained atoms with constraints in NC, and

by (I;�) the complete lattice of partial constrained interpretations, not

necessarily consistent, formed over B.

4 Depth k analysis for constructive negation

The idea of depth k analysis was �rst introduced in [20], by Sako e Tamaki.

The domain of depth k analysis was then used in order to approximate

the ground successful and failure set for normal program in [18] and to

approximate the computed answer constraints set for positive programs in

[5]. As in [5], we want to approximate an in�nite set of computed answer

constraints by means of a constraints depth(k) cut, i.e. constraints where
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the equalities and inequalities are between variables and cut terms which

have a depth no greater than k.

Since the result of an abstract conjunction is a \more general" constraint

than the abstraction of the conjunction of the concrete constraints, we need

to identify on the abstract domain, sets of constrained atoms which have the

same downward closure.

Our concrete domain is the complete lattice (I;�), of the previous sec-

tion. Since our aim is to approximate the computed answer constraints, the

�xpoint semantics we choose in the hierarchy [10] is the one which general-

izes the S-semantics to normal CLP programs, de�ned by the T

H

P

operator

(cf def. 2.2). The version we take here is the one de�ned with the concrete

operations in NC:

~

^;

~

_; ~:;

~

9;

~

8.

4.1 The abstract domain

Terms are cut by replacing each-subterm rooted at depth greater than k with

a new fresh variable taken from a set

~

V , (disjoint from V ). The depth(k)

terms represent each term obtained by instantiating the variables of

~

V with

terms built over V .

Consider the function jj : Term! Term such that

jtj =

(

1 if t is a constant or a variable

maxfjt

1

j; : : : ; jt

n

jg+ 1 if t = f(t

1

; : : : ; t

n

)

and a given positive integer k. �

k

(t) represents the term which can be

obtained from the concrete one by substituting a fresh variable (belonging

to

~

V ) to each subterm t

0

in t, such that jtj � jt

0

j = k.

Consider now the abstract basic constraints

ANC =

8

>

<

>

:

c j c is a constraint built with

the logical connectives _, ^, 8 and 9 on the

ABasicConstraints, which is in normal form

9

>

=

>

;

and the abstract constraint built with the abstract basic constraints

ANC =

8

>

<

>

:

c j c is a constraint built with

the logical connectives _, ^, 8 and 9 on the

ABasicConstraints, which is in normal form

9

>

=

>

;

De�nition 4.1 An abstract constrained atom is a couple cjA such that c 2

ANC and c is a H�solvable constraint, A is an atom and V ar(c) � V ar(A).

With B

a

we intend the set of constrained atoms.

The abstract domain will be the set of partial interpretation on abstract

constrained atoms. A partial abstract constrained interpretation for a pro-

gram, is a couple of set of abstract constrained atoms, I

a

=< I

a

+

; I

a

�

>, not

necessary consistent. We consider I

a

= fI

a

j I

a

is a partial interpretation g.
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Respect to the case of de�nite logic programs [5], we need to de�ne a

di�erent order on the abstract constraint domain.

One problem is the fact that the result of an abstract and operation on the

abstract constraint domain will be \more general" than the abstraction of

the result of the corresponding concrete operation.

The order on the abstract domain has to be faithful to the idea that the

answer constraint that we can compute on the abstract domain is an ap-

proximation (where here approximation means \is implied under H") of the

abstraction of the one calculated on the concrete domain.

For this purpose, �rst, we need to formalize the idea of \ be more general"

between constraints containing equalities between variables and cut terms

(X = f(Y ) with Y 2

~

V ) and constraints containing equalities between vari-

ables and terms which are not cut (X = f(H) with H 2 V ). f(Y ) and f(H)

do not represent the same term on the abstract (and consequently on the

concrete) domain, since the �rst represent a term deeper than k while the

second term represent himself. The order on the abstract domain, should

take into account this di�erence. For this, X = f(Y ) with Y 2

~

V , should

be considered \less general" than X = f(H) with H 2 V . Note that with

inequalities we will not have this problem since they won't contain cut terms.

De�nition 4.2 Let c 2 ANC. Den : ANC ! NC.

Den(c) = fc

0

j c

0

is obtained by c replacing the variable in

~

V

with terms longer than 0 g

We can now de�ne a relation on the abstract constraints domain.

De�nition 4.3 Let c; c

0

2 ANC.

c

~

�

a

c

0

if 8~c 2 Den(c) there exists ~c

0

2 Den(c

0

) such that H j= ~c! ~c

0

we consider the order �

a

induced by the preorder

~

�

a

, namely the order

obtained considering the classes modulo the equivalence induced by

~

�

a

.

We de�ne the downward closure of a couple of sets wrt the �

a

order,

De�nition 4.4 Consider a couple of sets of constrained atoms B.

With #

a

B we mean the downward closure of < B

+

; B

�

>.

cjA 2#

a

B

+

if there exists c

0

jA 2 B

+

and c �

a

c

0

,

cjA 2#

a

B

�

if there exists c

0

jA 2 B

�

and c �

a

c

0

.

We de�ne the preorder

~

� on the domain I

a

.

De�nition 4.5 Consider I; J 2 I

a

.

I

a

~

�J

a

$ 8cjA 2 I

a

+

9c

0

jA 2 J

a

+

such that c �

a

c

0

and

8cjA 2 I

a

�

9c

0

jA 2 J

a

�

such that c �

a

c

0

It is worth noting that I

~

�J i� #

a

I �#

a

J and I

~

�J i� #

a

I =#

a

J .

~

� is a preorder. We consider the order � induced by the preorder

~

�, namely

the order obtained considering the classes modulo the equivalence induced

by

~

�. Then our abstract domain will be the equivalence classes (w.r.t.

~

�)

of I

a

, (I

a

=

~

�

;�).

9



4.2 The abstraction function

Let us now de�ne the abstraction function. To this aim we �rst de�ne the

function �

c

on constraints. The main idea is to de�ne the �

c

on the basic

constraint in the following matter, an equality X = t is abstracted with

X = �

k

(t), while an inequality X 6= t is abstracted with X 6= t if jtj � k and

with true otherwise.

As before, we write �(c) for the constraint c

0

in normal form, with � we

indicate the sequence of quanti�ed variables of c

0

, with c the quanti�er free

part of c

0

.

De�nition 4.6 Let �

c

: NC ! ANC:

�

c

(�(c)) = �;�

0

�

c

(c) where �

0

= 9d

1

; 9d

2

; ::; where d

i

2 (

~

V \ V ar(�

c

(c)))

�

c

(X = t) = (X = �

k

(t)); �

c

(false) = false; �

c

(true) = true;

�

c

(X 6= t) = (X 6= t) if jtj � k; �

c

(X 6= t) = (true) if jtj > k;

�

c

(A ^ B) = �

c

(A) ^ �

c

(B); �

c

(A _ B) = �

c

(A) _ �

c

(B)

The �rst de�nition means that all the new variables introduced by the cut

terms have to be considered existentially quanti�ed.

In order to de�ne the � operator on sets of constrained atoms, we �rst give

a de�nition of an auxiliary ~� function.

De�nition 4.7 Let ~� : I ! I

a

: ~� =< ~�

+

; ~�

�

>

~�

+

(I) = fcjA j such that there exists c

0

jA 2 I

+

and �

c

(c

0

) = cg

~�

�

(I) = fcjA j such that there exists c

0

jA 2 I

�

and �

c

(c

0

) = cg

To obtain the abstraction function is su�cient to consider the equivalent

classes of ~�(I).

De�nition 4.8 Let � : I ! I

a

=

~

�

:

� =< �

+

; �

�

>, �

+

(I) = [~�

+

(I)]

=

~

�

; �

�

(I) = [~�

�

(I)]

=

~

�

:

Consequently the function  on the sets of abstract constraints is automat-

ically determined as follows:

De�nition 4.9 Let  : I

a

=

~

�

! I:

(I

a

=

~

�

) = [fI j �(I) � I

a

=

~

�

g =

[fI j 8cjA 2 �

+

(I) 9c

0

jA 2 I

a

+

such that c �

a

c

0

and

8cjA 2 �

�

(I) 9c

0

jA 2 I

a

�

such that c �

a

c

0

g =

[fI j #

a

~�(I) �#

a

I

a

g =

[fI j ~�(I) �#

a

I

a

g

< �;  > de�nes a Galois insertion between the concrete domain (I;�) and

the abstract domain (I

a

=

~

�

;�).

Lemma 4.1 � is additive.

Theorem 4.2 < �;  > is a Galois insertion of (I;�) into (I

a

=

~

�

;�).
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4.3 �

c

is a congruence w.r.t. the H-equivalence

As we have already pointed out in section 3, we want to work with H-

equivalence classes of constraints and for this purpose, we need to be sure

that the function �

c

previously de�ned on NC is a congruence w.r.t. the H-

equivalence. This means that if two constraints c; c

0

2 NC are H-equivalent

then also �

c

(c) and �

c

(c

0

) have to be H-equivalent.

Let us now introduce some preliminary notions

De�nition 4.10 ([16]) A solved form equation set E

1

is isomorphic to E

2

if there is a subset fX

1

= Y

1

; : : : ; X

k

= Y

k

g of E

1

where the Y

i

's are distinct

variables such that E

2

= E

1

fX

1

 Y

1

; : : : ; X

k

 Y

k

; Y

1

 X

1

; : : : ; Y

k

 

X

k

g.

Lemma 4.3 ([16]) Let E

1

be a set of equation in solved form. Then E

2

is

an equivalent set of equations in solved form i� E

1

is isomorphic to E

2

.

In order to understand which are the constraints that are H-equivalent is

also useful to state the following result

Lemma 4.4 Consider an arbitrary quanti�edX and a universally quanti�ed

term t. It does not exist arbitrary quanti�ed t

1

; : : : ; t

n

, where t

i

6= t such that

X 6= t is H-equivalent to ^

i

X 6= t

i

.

This is a consequence of the fact that we consider the models of the theory

CET without the DCA axiom.

We can now state the theorem that assure that � is a congruence.

Theorem 4.5 Let c; c

0

2 NC. If H j= c$ c

0

then H j= �

c

(c)$ �

c

(c

0

).

4.4 The abstract �xpoint operator

We now de�ne the abstract operations that will take place instead of the

concrete ones in the de�nition of �xpoint abstract operator. We will show

that the abstract operations are a correct approximation w.r.t. the concrete

operations on constraints.

First we de�ne a new operatorM.

This operator is necessary since the logical and operation between two con-

straint is not in general an abstract constraint (its depth can be greater than

k).

Moreover, in order to assure correctness, theM operator must also substi-

tute with true all the inequality X 6= t[Y nt

0

] where t

0

represent a term longer

than k, namely V ar(t

0

)\

~

V 6= ;. Such inequalities represent on the concrete

domain, inequalities longer than k, which would have been substituted with

true by �.

De�nition 4.11 LetM : NC ! ANC

M(�(c)) = �;�

0

M(c) where �

0

= 9d

1

; 9d

2

; ::, where d

i

2 (

~

V \V ar(�

c

(c))).

11



M(X = t) = (X = �

k

(t))

M(X 6= t) = (X 6= t) if jtj � k and V ar(t) \

~

V = ;

M(X 6= t) = (true) if jtj > k or V ar(t) \

~

V 6= ;

M(A^ B) = �

c

(A) ^ �

c

(B),M(A_ B) = �

c

(A) _ �

c

(B)

It is immediate to note that the operator M is similar to the � operator,

the only di�erence is that is thatM substitute with true all the inequalities

between variables and cut terms.

Since ANC is a subset of NC the Res form is de�ned also on the abstract

constraints domain.

De�nition 4.12 Let c

1

; c

2

2 ANC

c

1

a

~

^ c

2

=M(Res(c

1

^ c

2

)); c

1

a

~

_ c

2

= Res(c

1

_ c

2

);

~:

a

c

1

=M(Res(:c

1

));

~

9

a

X c

1

= 9Xc

1

;

~

8

a

X c

1

= 8Xc

1

;

The abstract operations

a

~

^;

a

~

_;

~

9

a

;

~

8

a

are corrects w.r.t. the concrete ones.

Now that we have de�ned the abstract \and" operator we can better illus-

trate with an example its behavior.

Example 4.1 Consider the concrete constraints c

1

= 8K((Y = a ^ U 6=

f(f(K)))_ Z = a) and c

2

= (U = f(f(a))) and k = 1.

Now �

c

(c

1

) = (Y = a _ Z = a) and �

c

(c

2

) = 9V U = f(V ).

�

c

(c

1

)

a

~

^ �

c

(c

2

) = 9V ((Y = a ^ U = f(V ))_ (Z = a ^ U = f(V ))).

While �

c

(Res(c

1

^ c

2

)) = 9V (Z = a ^ U = f(V )).

As already pointed out, the abstract \and" gives as result a more general

constraint than the abstraction of the one calculated by the concrete \and".

It should be now more clear why we have chosen such an order on the abstract

constraint domain and on the subset of the constrained atoms domain. In

order to show that the abstract operations are corrects we show a stronger

property.

Theorem 4.6 Let c

1

; c

2

2 NC.

�

c

(c

1

)

a

~

^ �

c

(c

2

) �

a

�

c

(c

1

^c

2

); �

c

(c

1

)

a

~

_�

c

(c

2

) = �

c

(c

1

_c

2

);

~

9

a

x �

c

(c

1

) = �

c

(

~

9x c

1

);

~

8

a

x �

c

(c

1

) = �

c

(

~

8x c

1

):

Unfortunately, the correctness property does not hold for our abstract \not"

considering general constraints.

Example 4.2 Consider c

1

= X 6= f(f(a)) and k = 1.

�

c

(:(c

1

)) = 9Y X = f(Y ) which does not implies :

a

(�

c

(c

1

)).

It is worth noting that a more complex version of the \or" operator can be

de�ned in order to obtain the correctness for general constraints. But since

the not operator is used by the abstract �xpoint operator, only on \simpler \

constraints (conjunctions of equalities between variables and terms, namely

the program constraints), this is not worth it.
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Lemma 4.7 Consider c

1

2 NC such that c

1

=

V

i

X

i

= t

i

. ~:

a

�

c

(c

1

) =

�

c

(~:(c

1

)).

Once that we have de�ned the abstract constraints domain and the ab-

stract operations, we can de�ne the abstract �xpoint operator. Since in the

abstract domain we identify I and J if #

a

I =#

a

J , the abstract operator

applied to an equivalence class I is the equivalent class of the abstract opera-

tor (which uses abstract operations and the abstract version of the program)

working on B

a

, applied to #

a

I

a

.

De�nition 4.13 The abstract �xpoint operator: I

a

=

~

�

! I

a

=

~

�

is de�ned as

follows, T

B

a

S;P

([I

a

]

=

~

�

) = [T

B

a

S;�(P )

(#

a

I

a

)]

=

~

�

; where the operations are

~

9

a

,

~

8

a

,

~:

a

on ANC and

a

~

_;

a

~

^ on ANC �ANC.

By de�nition T

B

a

S;P

is a congruence respect to the equivalence classes of the

abstract domain. Note also that T

B

a

S;P

is monotone on the (I

a

=

~

�

;�). This

comes from the fact that [I ]

=

~

�

� [J ]

=

~

�

implies #

a

I �#

a

J .

Lemma 4.8 T

B

a

S;P

is monotone on the (I

a

=

~

�

;�).

The proof that the abstract operator is correct w.r.t. the concrete one, is

based on the correctness of the abstract operations on the abstract con-

straints domain.

Theorem 4.9 �(T

B

S;P

(([I

a

]

=

~

�

))) � T

B

a

S;P

([I

a

]

=

~

�

).

4.5 The abstract operator is optimal

Consider a k greater than the maxima depth of the terms involved in the

constraints of the clauses in the program P . In this case the abstract operator

is also optimal. Before stating the main theorem, we need an intermediate

result. The next lemma state (constructively in the proof) the existence of

a c

0

1

; c

0

2

2 NC such that

Lemma 4.10 Consider c

1

; c

2

2 ANC then 9c

0

1

; c

0

2

2 NC, such that

c

1

a

~

^ c

2

= �

c

(c

0

1

~

^c

0

2

), and c

1

a

~

_ c

2

= �

c

(c

0

1

~

_c

0

2

).

Then

Theorem 4.11 [T

B

a

S;P

([I

a

]

=

~

�

)]

=

~

�

� �(T

B

a

S;P

(([I

a

]

=

~

�

)))

Let us �nally discuss termination properties of the dataow analyses pre-

sented in this section.

First note that the set of not equivalent (w.r.t. H) set of constraints belong-

ing to ANC is �nite.

Lemma 4.12 Assume that our alphabet has a �nite number of function and

predicate symbols. Our depth-k abstraction is ascending chain �nite.
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4.6 An example

We now show how the depth-k analysis works on an example. The program

that we consider is the same as the one in [18]. Consider the normal logic

program P

P : p(X) : �q(X; Y );:r(Y ):

q(X; Y ) : �X = Y:

r(X) : �X = f(a):

r(X) : �X = f(f(T )); r(X):

Consider the concrete �xpoint semantics of the program P , which is reached

after the �rst two steps :

T

B

+

S;P

T

B

�

S;P

X = Y jq(X; Y ):

X = f(a)jr(X):

8T (X 6= f(a) ^X 6= f(f(T )))jp(X):

X 6= Y jq(X; Y ):

8T (X 6= f(a) ^X 6= f(f(T )))jr(X):

X = f(a)jp(X):

Consider now a depth-2 analysis with Z 2

~

V . With #

a

cjA (c 2 ANC),

we indicate a set of constrained atoms fc

0

jA j c

0

2 ANC and c

0

�

a

cg and

(#

a

c ^ #

a

c

0

)jA indicate the set f (c

1

^ c

2

)jA j c

1

�

a

c and c

2

�

a

c

0

g. With

[I ] (I 2 I

a

), we intend the equivalence class of the set I w.r.t.

~

�.

T

B

a

+

S;P

T

B

a

�

S;P

2

6

4

X = Y jq(X; Y ):

X = f(a)jr(X):

#

a

X 6= f(a)jp(X):

3

7

5

2

6

4

X 6= Y jq(X; Y ):

X 6= f(a)jr(X):

#

a

X = f(a)jp(X) = f X = f(a)jp(X) g

3

7

5

Note that we have (T

B

+

S;P

; T

B

�

S;P

) � (T

B

a

+

S;P

; T

B

a

�

S;P

).

On this program Marriott and Sondergaard showed that their depth-2

analysis computed the approximation fp(a); q(x; x); r(f(a))g for the success

set, and fp(f(a)); q(a; f(a)); q(f(a); a); q(f(x); f(y)); r(a)g for the failure set.

This abstract interpretation is inconsistent as q(f(a); f(a)) is in both sets.

It is not the case with our approach in this example (of course it could be the

case with other examples), as by taking a non-ground reference semantics

for the analysis we obtain much more precise results.

On the other hand, we do not obtain X = a as a computed answer for

p(X). The reason is that the constraint X = a is indeed not computed by

constructive negation (and a fortiori not by SLDNF-resolution), and p(a)

is also not true in Kunen's semantics under Clark's equational theory (it is

true however with the addition of the domain closure axiom DCA [17] to

CET assuming a �nite alphabet, in which case the computed answer in our

case is DCA-equivalent to X = a). As already pointed out, the analysis of

Marriott and Sondergaard is based on Fitting's semantics for which p(a) is

true in this example, but in general Fitting's semantics is non e�ective [11]

and is thus already an approximation of any computable semantics. This is

the second reason for our gain of precision.
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5 Conclusion

Starting from the hierarchy of semantics de�ned [10], our aim was to show

that well known analysis for logic programs could be extended to normal

CLP programs. Based on the framework of abstract interpretation [7, 8],

we have presented a depth-k analysis which is able to approximate the an-

swer set of normal CLP programs. The analysis has been proven correct

and also optimal w.r.t. constructive negation. Starting from a generalized

S-semantics for normal CLP programs [9], we have de�ned a normal form for

Herbrand constraints, which allowed us to de�ne a function of abstraction

which is a congruence for the equivalence in CET. This method is somehow

general. Based on the semantics of the hierarchy in [10] and on the nor-

mal form of constraint presented in this paper, other well known analyses

for logic programs can be extended to normal CLP programs. For exam-

ple, starting from a suitable version of Clark's semantics presented in the

hierarchy, a groundness analysis can be de�ned which can be proven correct

and also optimal w.r.t. constructive negation. We have chosen to present,

here, a depk � k analysis, because it was also interesting to show how from

inequalities can be derived useful information for the analysis.
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A Appendix: Proofs of theorems

Theorem A.1 (3.1) For any input constraint c = �(_

i

A

i

), algorithm 3.1

terminates and computes a false-simpli�ed form of c.

Proof A.1 The algorithm terminates since the A

i

's in c = �(_

i

A

i

) are a

�nite number.

We then show that it computes a false-simpli�ed form of c.

c = �(_

i

A

i

) and I is the subset of the A

i

's used in the method above.

Applying the method, the constraint that we obtain is, by construction (step

3), equivalent to the constraint c = �(_

i

A

i

).

We show that this resulting constraint is false-simpli�ed.

Let us suppose that this was not the case. Then there exist a I � I such

that H j= �(_

i2I

A

j

) $ �(_

i

A

i

) and for all K subset of I, _

i 62I

A

i

is not

H-equivalent to _

k2K

A

k

. Then there exists at least an A

~

i

2 InI. such that

� A

~

i

is entered in I in the �rst phase.

In this case H j= 9�(A

~

i

). H 6j= �(A

~

i

) $ false. In this case or

H 6j= �(_

i2I

A

j

) $ �(_

i

A

i

) or A

~

i

is redundant and then there exists

K subset of I such that _

i 62I

A

i

is H-equivalent to _

k2K

A

k

.

� A

~

i

is entered in I in the second phase, with other A

j

j 2 S.

In this case H j= 9�(_

s2S

A

s

) and H 6j= 9�(_

i

2 (Snj)A

i

).

H 6j= �(_

s2S

A

s

) $ false. As before or H 6j= �(_

i2I

A

j

) $ �(_

i

A

i

)

or �(_

s2S

A

s

) is redundant and then there exists K subset of I such

that _

i 62I

A

i

is H-equivalent to _

k2K

A

k

.

� A

~

i

is entered in I in the third phase.

In this case S would not be minimal.

Proposition A.1 (3.1)

H j= �$ Res(�)

Proof A.2 The �rst three steps correspond to the �rst three step of the Ma-

her's canonical form for the Herbrand Universe [17] and are been proved to

preserve the equivalence.

The fourth step correspond to the steps performed in the simpli�cation al-

gorithm in [4] to simplify inequations and are been proved to preserve the

equivalence.

By de�nition, the �fth step preserves the H-equivalence.

Lemma A.2 (4.2) � is additive.

Proof A.3 First note that [I

a

]

=

~

�

W

�

[J

a

]

=

~

�

= [I

a

~

_J

a

]

=

~

�

where

~

_ is the l.u.b

on the (I

a

;

~

�).

We need to show that
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[~�([

i

S

i

)]

=

~

�

=

W

�

[~�(S

i

)]

=

~

�

= [

~

_

i

~�(S

i

)]

=

~

�

.

To this aim we show that ~�([

i

S

i

)

~

�

~

_

i

~�(S

i

).

We want to show that #

a

~�([

i

S

i

) =#

a

~�([

i

S

i

)

First we show that #

a

~�([

i

S

i

) �#

a

([

i

~�(S

i

))

Consider c 2#

a

~�([

i

S

i

), then there exists a c

0

, c �

a

c

0

such that c

0

2 ~�([

i

S

i

),

by de�nition of ~�, which apply �

c

to each element of [

i

S

i

, we have that

~�([

i

S

i

) = [

i

~�(S

i

) then c

0

2 [

i

~�(S

i

). c, which is c � c

0

, belongs to #

a

([

i

~�(S

i

)).

Also #

a

([

i

~�(S

i

)) �#

a

~�([

i

S

i

).

Consider c 2#

a

([

i

~�(S

i

)) then there exists a c

0

, c �

a

c

0

such that c

0

2 [

i

~�(S

i

)

then for some j, c

0

2 ~�(S

j

), by de�nition of ~�, which apply �

c

to each

element of S

j

, c

0

2 ~�([

i

S

i

). c, which is c � c

0

, belongs to #

a

~�([

i

S

i

).

Then #

a

~�([

i

S

i

) =#

a

([

i

~�(S

i

)).

But #

a

([

i

~�(S

i

)) = [

i

#

a

~�(S

i

) =

~

_

i

~�(S

i

).

This completes the proof.

Theorem A.3 (4.5) Let c; c

0

2 NC.

If H j= c$ c

0

then H j= �

c

(c)$ �

c

(c

0

).

Proof A.4 In the following by equivalent we mean H-equivalent. Let us

�rst note that

a �

c

does not changes the structure of the connectives and quanti�ers.

b if c$ true then �

c

(c)$ �

c

(true) = true.

If

� c has the form 9X Y 6= t[X ] for an arbitrary (and arbitrary

quanti�ed) Y and a generic t then, if jtj > k then �

c

(c) = true.

If jtj � k �

c

(c) = c and c$ �

c

(true) = true.

� c has the form Y = t _ Y 6= t for an arbitrary (and arbitrary

quanti�ed) Y and a generic t then if jtj > k �

c

(c) = �

c

(Y =

t)_�

c

(Y 6= t) = �

c

(Y = t)_true = true. In case jtj � k �

c

(c) = c

and c$ �

c

(true) = true. Since �

c

does not changes the structure

of the connectives for all c$ true then �

c

(c)$ �

c

(true).

c if c$ false then �

c

(c)$ �

c

(false) = false.

This is true by de�nition of the Res form, recalling that c is in a false

simpli�ed form.

Let us now show that if c $ c

0

then �

c

(c) $ �

c

(c

0

) where c 6$ true and

c 6$ false.

We show it by double structural induction on c and c

0

.

If c and c

0

are basic quanti�ed constraints (which are not equivalent to true

or false) this is trivial.

Suppose now that only c

0

is a basic quanti�ed constraint:
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� c

0

= (X = t) for an arbitrary (and arbitrary quanti�ed) X and a

generic (and arbitrary quanti�ed) t. Since the equalities in the con-

straints are in solved form, by lemma 4.3, c is isomorphic to c

0

, this

means that c have the following syntactic form up to variables renam-

ing,

c = c

0

V

T

i

W

F

j

where T

i

$ true or T

i

� c

0

and F

i

$ false or F

i

� c

0

.

By the observations a,b and c we still have that �

c

(c)$ �

c

(c

0

).

� c

0

= (X 6= t) for an arbitrary (and arbitrary quanti�ed) X and a

generic (not existentially quanti�ed otherwise we are in the case a)

t. By lemma 4.4, c has to have the following syntactic form up to

variables renaming, c = c

0

V

T

1

W

F

j

where T

i

$ true or T

i

� c

0

and

F

i

$ false or F

i

� c

0

.

By the observations a,b and c we still have that �

c

(c)$ �

c

(c

0

).

We show it now for c and c

0

not basic constraints:

{ if c = 9X d since c 6$ true and c 6$ false then also c

0

has to be

equal 9y d

0

and d$ d

0

. By induction hypothesis �

c

(d)$ �

c

(d

0

).

This implies �

c

(9xd) = 9x�

c

(d)$ 9y�

c

(d

0

) = �

c

(9yd

0

).

{ if c = 8X d the case is similar to the one above.

{ if c = A^B then c

0

= A

0

^B

0

such that A

0

$ A and B

0

$ B. By

induction hypothesis �

c

(A

0

)$ �

c

(A) and �

c

(B

0

)$ �

c

(B). Then

�

c

(A

0

^B

0

) = �

c

(A

0

) ^ �

c

(B

0

)$ �

c

(A) ^ �

c

(B) = �

c

(A ^B).

{ if c = A _ B then the case is similar to the one above.

Theorem A.4 (4.6) Let c

1

; c

2

2 NC

� �

c

(c

1

)

a

~

^ �

c

(c

2

) �

a

�

c

(c

1

^c

2

),

� �

c

(c

1

)

a

~

_ �

c

(c

2

) = �

c

(c

1

_c

2

),

�

~

9

a

x �

c

(c

1

) = �

c

(

~

9x c

1

);

�

~

8

a

x �

c

(c

1

) = �

c

(

~

8x c

1

):

Proof A.5 By sake of simplicity in the following proof �

c

will be called

simply �

� �(c

1

)

a

~

^ �(c

2

) �

a

c

1

^c

2

.

We need to show that M(Res(�(c

1

) ^ �(c

2

))) �

a

�(Res(c

1

^ c

2

)).

We will �rst show that M(Res(�(c

1

) ^ �(c

2

))) �

a

�(Res(c

1

^ c

2

))

holds for the �rst three phases of Res and then that it holds also for

the fourth phase.

As we already pointed out the function � does not change the structure
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of the connectives and the quanti�ers of a formula c.

�, in fact, leaves unchanged the quanti�ers in front of a formula, cuts

the equality, substitute with true the inequality longer than k and makes

explicit the existential quanti�cations of the new variables introduced

by the cut but does not manipulate the connectives.

The same result holds for the M operator.

This means that we can always think �(c) (or M(c)) as having the

same structure than c, eventually with equality where the right part is

cut at k in place of equalities \longer than k",and the logical constant

true in place of inequalities\longer than k"( or containing variables in

~

V ).

For similar reasons, we can think of the normal form of (�(c

1

)^�(c

2

))

as having the same syntactic \structure" of c

1

^c

2

, namely if the prenex

disjunctive-conjunctive form of (�(c

1

) ^ �(c

2

)) is �(A

1

_ : : : _ A

n

)

(where A

i

is a conjunction of basic constraints), the prenex disjunctive-

conjunctive form of c

1

^c

2

is �(A

0

1

_: : :_A

0

n

) (where A

i

is a conjunction

of basic constraints), and the relation between the elements of the con-

junction of each A

i

w.r.t. the corresponding A

0

i

is as explained above.

This depends on the fact that also the prenex disjunctive conjunctive

form is a syntactic manipulation which renames the variables and dis-

tributes the connectives.

Consider now the �rst tree phases of Res, they operate on each con-

junction separately.

Calling, as before, the disjunctive form of �(c

1

)^�(c

2

) �(A

1

_: : :_A

n

)

and the disjunctive form of c

1

^ c

2

�(A

0

1

_ : : :_A

0

n

) we have

M(Res

1�3

(�(c

1

) ^ �(c

2

))) = M(Res

1�3

(�(A

1

^ : : : ^ A

n

))) = (by

the observation on M and Res

1�3

above) �(M(Res

1�3

(A

1

)) _ : : : _

M(Res

1�3

(A

n

))).

In similar way

�(Res

1�3

(�(A

0

1

_: : :_A

0

n

))) = �(�(Res

1�3

(A

0

1

))_: : :_�(Res

1�3

(A

0

n

))):

We �rst want to show that for each basic constraint in�(M(Res

1�3

(A

1

))_

: : :_M(Res

1�3

(A

n

))), the corresponding basic constraint in�(�(Res

1�3

(A

0

1

))_

: : :_ �(Res

1�3

(A

0

n

))) implies it, under H.

This would show thatM(Res

1�3

(�(c

1

)^�(c

2

))) �

a

�(Res

1�3

(c

1

^c

2

)).

Suppose that this was not the case, namely there exists a basic con-

straint ~c in the conjunction M(Res

1�3

(A

i

)) which is not implied by

the corresponding basic constraint in �(Res

1�3

(A

0

i

)).

Such basic constraint ~c can be

{ an equality X = t which belongs also to �(c

1

) ( or �(c

2

)) then

there exists a t

0

; �

k

(t

0

) = t such that X = t

0

2 c

1

. Since X =

t

0

2 c

1

X = t

00

2 Res

1�3

(c

1

^ c

2

) where t

00

� t

0

. Then X = t 2

�(Res

1�3

(c

1

^ c

2

)).

{ an equality X = t such that there exists a t

0

; �

k

(t

0

) = t and

X = t

0

2 Res

1�3

(�(c

1

)^�(c

2

)), then there exists a t

00

; t

00

� t

0

such
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that X = t

00

2 Res

1�3

(c

1

^c

2

). Then X = t 2 �(Res

1�3

(c

1

^c

2

)).

{ an inequality X 6= t which belongs also to �(c

1

) ( or �(c

2

)) then,

by de�nition of �, jtj � k, and X 6= t 2 c

1

. X 6= t 2 Res

1�3

(c

1

^

c

2

). Then X 6= t 2 �(Res

1�3

(c

1

^ c

2

)).

{ an inequalityX 6= t which belongs to Res(�(c

1

)^�(c

2

)). Note that

if X 2

~

V then also t = U 2

~

V . Since M did not substitute the

inequality with true, X 62

~

V and jtj � k, X 6= t 2 Res

1�3

(c

1

^c

2

).

Then X 6= t 2 �(Res

1�3

(c

1

^ c

2

)).

For the �rst three phases of Res we have showed that

M(Res

1�3

(�(c

1

) ^ �(c

2

))) �

a

�(Res

1�3

(c

1

^ c

2

)).

It is easy to note that for the fourth phase we have the following relation

M(Res(�(c

1

) ^ �(c

2

))) �

a

�(Res(c

1

^ c

2

)).

This comes from the observation that the conjunction of base concrete

constraints in �(Res(c

1

^ c

2

)) could be inconsistent for H while this is

not true for the corresponding conjunction inM(Res(�(c

1

) ^ �(c

2

))),

while if a conjunction of base abstract constraints in M(Res(�(c

1

) ^

�(c

2

))) is inconsistent for H, then the corresponding conjunction in

�(Res(c

1

^ c

2

)) is also inconsistent. ThenM(Res(�(c

1

) ^ �(c

2

))) �

a

�(Res(c

1

^ c

2

)).

� �(c

1

)

a

~

_ �(c

2

) = �(c

1

_c

2

).

First, let us show how can simplify �(c

1

_c

2

) which is by de�nition equal

to �(Res(c

1

_c

0

2

). We will show how we can simplify �(c

1

)

a

~

_ �(c

2

) in

a similar way.

Let c

1

= �

c

1

(c

1

) and c

0

2

= �

c

0

2

(c

0

2

). The procedure Res on c

1

and c

0

2

performs just the �rst step since c

1

; c

0

2

2 NC and they are connected

by an or.

Then �(Res(c

1

_c

0

2

)) = �(�

c

1

[�

c

0

2

(c

1

_ c

0

2

)).

Now applying � we obtain: �

c

1

[�

c

0

2

[�

3

(�(c

1

) _ �(c

0

2

)) where

�

3

= 9d

1

; 9d

2

; ::, where d

i

2 (

~

V \ V ar(�(c

1

))[ (

~

V \ V ar(�(c

2

))).

On the other end, we simplify �(c

1

)

a

~

_ �(c

2

) which is by de�nition equal

to Res(�(c

1

)_�(c

2

)).

By similar arguments, �(c

1

)_�(c

0

2

) = (�

c

1

[�

0

3

)(�(c

1

))_(�

c

0

2

[�

00

3

)(�(c

0

2

)),

where �

0

3

= 9d

1

; 9d

2

; ::, where d

i

2 (

~

V \ V ar(�(c

1

))) and �

0

3

=

9e

1

; 9e

2

; ::, where e

i

2 (

~

V \ V ar(�(c

2

))).

Then Res(�(c

1

)_�(c

0

2

)) = �

c

1

[ �

c

2

[ �

0

3

[ �

00

3

(�(c

1

) _ �(c

0

2

)); since

all variables in �

0

3

[ �

00

3

are new distinct variables from the ones in

�

c

1

[�

c

2

.

�

~

9

a

X �(c

1

) = �(

~

9X c

1

):

~

9

a

X�(c

1

) is equal, by de�nition to 9X �(c

1

).

Let c

1

= �

c

1

(c

1

). Then 9X �(c

1

) = 9X [�

c

1

[�

�(c

1

)

�(c

1

):
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We obtain an equivalent formula if we consider �(

~

9X c

1

) which is, by

de�nition, equal to �(9X c

1

).

By de�nition of � we obtain 9X [�

c

1

[�

�(c

1

)

; as we wanted.

�

~

8

a

X �(c

1

) =

~

8X c

1

.

The proof is similar to the previous one.

Lemma A.5 (4.7) Consider c

1

2 NC such that c

1

= (

V

i

X

i

= t

i

) . ~:

a

�

c

(c

1

) =

�

c

(~:(c

1

)).

Proof A.6 We have to show that M(Res(:(�

c

(c

1

)))) = �

c

(Res(:c

1

)).

Consider the particular form of the constraint c

1

, by the de�nition of �, we

have that (:(�

c

(c

1

))) can be expressed as a disjunction

W

i

A

i

of inequalities

A

i

= X

i

6= t

i

. In a similar way :c

1

can be expressed as a disjunction

W

i

A

0

i

of corresponding inequalities A

0

i

= X

i

6= t

0

i

, where t

0

i

is the term obtained

cutting the term t at depth k.

Since Res does not have any e�ect on a disjunction of inequalities, we need

to showM(

W

i

A

i

) = �

c

(

W

i

A

0

i

); only. Let us show that

� for each inequality X

i

6= t

i

2 M(A

i

), X

i

6= t

i

2 �

c

(A

0

i

).

Suppose X

i

6= t

i

2 M(A

i

), then X

i

= t

i

was one of the equality in the

conjunction c

1

with jt

i

j � k. Then X

i

6= t

i

belongs to the disjunction

in :c

1

. Since jt

i

j � k, X

i

6= t

i

belongs to the disjunction in �

c

(:c

1

) .

� for each inequality X

i

6= t

i

2 �

c

(A

0

i

), X

i

6= t

i

2 M(A

i

).

Suppose X

i

6= t

i

2 �

c

(A

i

) then the depth of t

i

has to be less or equal

k: Then X

i

= t

i

2 �

c

(A

i

), and X

i

6= t

i

2 :(�

c

(c

1

)).

Since t

i

has not been cut by � (jt

i

j � k) X

i

6= t

i

2M(A

i

).

This completes the proof.

Theorem A.6 [4.9] �(T

B

S;P

(([I

a

]

=

~

�

))) � T

B

a

S;P

([I

a

]

=

~

�

).

Proof A.7 In this proof, for a sake of simplicity, let us abbreviate T

B

S;P

with

T

c

P

, and T

B

a

S;P

with T

a

P

.

We need to show that [~�(T

c

P

(([I

a

]

=

~

�

)))]

=

~

�

� [T

a

P

([I

a

]

=

~

�

)]

=

~

�

:

To this aim we will show that for all cjA 2 ~�(T

c

P

(([I

a

]

=

~

�

))) there exists a

cjA 2 T

a

([I

a

]

=

~

�

) and c �

a

c.

Suppose cjA 2 ~�

+

T

c

P

([I

a

]

=

~

�

) there exists a c

0

jA 2 T

c

P

+

(([I

a

]

=

~

�

)) such that

c = �

c

(c

0

).

There exists then a clause C = A : �djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

2 P with

local variables Y , such that there exists

c

1

jA

1

; :::; c

m

jA

m

2 

+

([I

a

]

=

~

�

);

c

m+1

jA

m+1

; :::; c

n

jA

n

2 

�

([I

a

]

=

~

�

) and c

0

=

~

9Y (d

~

^c

1

~

^ : : :

~

^c

n

).

By de�nition of ,

there exist c

0

1

jA

1

; :::; c

0

m

jA

m

2 #

a

I

a

+

; c

0

m+1

jA

m+1

; :::; c

0

n

jA

n

2 #

a

I

a

�

, such

that �

c

(c

i

) = c

0

i

.
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Now since it exists the clause C 2 P with local variables Y ,

there exists a corresponding clause in C in �(P ) with local variables Y

0

, and

c

0

1

jA

1

; :::; c

0

m

jA

m

2 #

a

I

a

+; c

0

m+1

jA

m+1

; :::; c

0

n

jA

n

2 #

a

I

a

�,

we can derive cjA 2 T

a

P

+

([I

a

]

=

~

�

),

where c =

~

9

a

Y

0

(�

c

(d)

a

~

^ c

0

1

a

~

^ : : :

a

~

^ c

0

n

).

By correctness of the abstract operations and by de�nition of �

c

, we have

that c = �

c

(c

0

) = �

c

(

~

9Y (d

~

^c

1

~

^ : : :

~

^c

n

)) �

a

~

9

a

Y

0

(�

c

(d)

a

~

^ �

c

(c

1

)

a

~

^ : : :

a

~

^ �

c

(c

n

)) =

~

9

a

Y

0

(�

c

(d)

a

~

^ c

0

1

a

~

^ : : :

a

~

^ c

0

n

) = c:

In a analogous way we prove that for each cjA 2 ~�

�

T

c

P

([I

a

]

=

~

�

) there exists

a cjA 2 T

a

P

�

([I

a

]

=

~

�

) such that c �

a

c.

Suppose we have cjA 2 �

�

T

c

P

([I

a

]

=

~

�

), then there exists c

0

jA 2 T

c

P

�

([I

a

]

=

~

�

)

such that �

c

(c

0

) = c.

Then for each clause C

k

= A d

k

jA

k;1

; :::; A

k;m

k

; �

k

:

de�ning A in P with local variables Y

k

, there exist e

k;1

jA

k;1

; :::; e

k;m

k

jA

k;m

k

2



�

([I ]

=

~

�

),

e

k;m

k

+1

jA

k;m

k

+1

; :::; e

k;n

k

jA

k;n

k

2 

+

([I ]

=

~

�

), n

k

� m

k

where for m

k

+ 1 � j � n

k

, :A

k;j

occurs in �

k

,

and c

00

=

~

^

~

8Y

k

(:d

k

~

_e

k;1

: : :

~

_e

k;n

k

).

By de�nition of  there exist

e

0

k;1

jA

k;1

; :::; e

0

k;m

k

jA

k;m

k

2 #

a

I

a
�

and e

0

k;m

k

+1

jA

k;m

k

+1

; :::; e

0

k;n

k

jA

k;n

k

2 #

a

I

a
+

,

�

c

(e

k;j

) = e

0

k;j

:

Now C

k

s are the only clauses in P which de�ne A, by construction, the cor-

responding clauses of C

k

's are the only clause de�ning A in �(P ).

Moreover Y

0

k

are the local variables of the corresponding clause of C

k

in �(P ),

there exist e

0

k;1

jA

k;1

; :::; e

0

k;m

k

jA

k;m

k

2 #

a

I

a

�,

e

0

k;m

k

+1

jA

k;m

k

+1

; :::; e

0

k;n

k

jA

k;n

k

2 #

a

I

a

+

, n

k

� m

k

where for m

k

+ 1 � j � n

k

, :A

k;j

occurs in �

k

,

then cjA 2 T

a

P

�

([I

a

]

=

~

�

),

where c =

a

~

V

~

8

a

Y

k

(~:

a

�

c

(d

k

)

a

~

_ e

0

k;1

: : :

a

~

_ e

0

k;n

k

).

By correctness of the abstract operations and by de�nition of �

c

, we have

that c = �

c

(c

00

) = �

c

(

a

~

V

~

8Y

k

(~:d

k

~

_e

k;1

: : :

~

_e

k;n

k

) �

a

a

~

V

~

8

a

Y

0

k

(~:

a

�

c

(d

k

)

a

~

_ �

c

(e

k;1

) : : :

a

~

_ �

c

(e

k;n

k

)) =

a

~

V

~

8

a

Y

0

k

(~:

a

�

c

(d

k

)

a

~

_ e

0

k;1

: : :

a

~

_

e

0

k;n

k

) = c.

Lemma A.7 [4.10] Consider c

1

; c

2

2 ANC then 9c

0

1

; c

0

2

NC such that �

c

(c

0

1

) =

c

1

, �

c

(c

0

2

) = c

2

and c

1

a

~

^ c

2

= �

c

(c

0

1

~

^c

0

2

), and c

1

a

~

_ c

2

= �

c

(c

0

1

~

_c

0

2

).

Proof A.8 Consider Res(c

1

^ ~c

2

), where ~c

2

is the renamed apart version

(w.r.t. c

1

; x; y) of c

2

.

Consider c

0

1

as c

1

, where all the variables in

~

V ( which appears only in the

right part of equalities because c

1

2 ANC) are substituted with terms in the

following matter: if V 2 V ar(Res(c

1

^ ~c

2

)) then V = a otherwise v = t
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where t is the term assigned to V by the solution of Res(c

1

^ ~c

2

).

It is worth noting that, by construction, �

c

(c

0

1

) = c

1

and �

c

(c

0

2

) = c

2

.

We show now that c

1

a

~

^ c

2

= �

c

(c

0

1

~

^c

0

2

).

c

1

a

~

^ c

2

=M(Res(c

1

^ ~c

2

)), while �

c

(c

0

1

~

^c

0

2

) = �

c

(Res(c

0

1

^ ~c

0

2

)); where ~c

0

2

is

the renamed apart version (w.r.t. c

0

1

; x; y) of c

2

.

By construction, Res(c

0

1

^ ~c

0

2

) is equal to Res(c

1

^ ~c

2

) where the variables in

~

V are replaced by a. It is immediate to see that for every equality that M

cuts in Res(c

1

^ ~c

2

), � cuts it in the same way in Res(c

0

1

^ ~c

0

2

) and that for

every equality that � cuts in Res(c

0

1

^ ~c

0

2

) M cuts it or leave unchanged in

Res(c

1

^ ~c

2

) giving the same result.

Moreover for each inequality (longer than k) that M substitute with true in

Res(c

1

^ ~c

2

), � does the same in Res(c

0

1

^ ~c

0

2

) because that inequality is still

deeper than k, and also for each inequality (which contain variables in

~

V )

thatM substitute with true in Res(c

1

^ ~c

2

), � does the same in Res(c

0

1

^ ~c

0

2

),

because, by construction of c

0

1

and c

2

, that inequality in Res(c

0

1

^~c

0

2

) is longer

than k.

On the other hand � does not cut any other inequalities in Res(c

0

1

^ ~c

0

2

)

because, by construction of c

0

1

and c

2

, we have substitute just the variables

in

~

V with terms longer than 0.

By construction of c

0

1

and c

0

2

, it is easy to see that c

1

a

~

_ c

2

= �(c

0

1

~

_c

0

2

).

Theorem A.8 (4.11) [T

B

a

S;P

([I

a

]

=

~

�

)]

=

~

�

� �(T

B

a

S;P

(([I

a

]

=

~

�

)))

Proof A.9 We have to show that [T

a

P

([I

a

]

=

~

�

)]

=

~

�

� [~�(T

c

P

(([I

a

]

=

~

�

)))]

=

~

�

,

where T

a

P

and T

c

P

are as in the proof of theorem A.6.

We show that for each cjA 2 T

a

P

([I

a

]

=

~

�

), cjA also belongs to ~�T

c

P

([I

a

]

=

~

�

).

Suppose cjA 2 T

a

P

+

(I

a

) then there exists a clause

C = A : �djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

2 P with local variables Y ,

by hypothesis P = �(P ) that C 2 �(P )

and c

1

jA

1

; :::; c

m

jA

m

2 #

a

I

a

+; c

m+1

jA

m+1

; :::; c

n

jA

n

2 #

a

I

a

�;

c =

~

9

a

Y (�

c

(d)

a

~

^ c

1

a

~

^ : : :

a

~

^ c

n

).

Consider now c

0

1

; :::; c

0

m

; c

0

m+1

; :::; c

0

n

; such that �

c

(c

0

i

) = c

i

and

�(c

0

1

~

^ : : :

~

^c

0

n

) = c

1

a

~

^ : : :

a

~

^ c

n

. Such c

0

i

exist by the lemma A.7. By de�nition

of , c

0

1

jA

1

; :::; c

0

m

jA

m

2 

+

(I

a

); and c

0

m+1

jA

m+1

; :::; c

0

n

jA

n

2 

�

(I

a

).

Then considering C = A : �djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

2 P = �(P ) with

local variables Y ,

we obtain that c =

~

9Y (d

~

^c

0

1

~

^ : : :

~

^c

0

n

) 2 T

c

+

P

(I

a

).

By hypothesis d = �(d) and by the lemma A.7, we obtain that �

c

(c) = c then

cjA 2 �

+

T

c

P

(I

a

)

Using also the second part of lemma A.7, we also obtain that for each

cjA 2 T

a

P

�

(I

a

), cjA 2 �

�

T

c

P

(I

a

).
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