
Département de Mathématiques et Informatique

UPERIEURESORMALENECOLE

CNRS URA 1327

A Generic Type System for CLP(X)

Fran�cois FAGES

Massimo PALTRINIERI

LIENS - 97 - 16

A Generic Type System for CLP(X)

Fran�cois FAGES

Massimo PALTRINIERI

LIENS - 97 - 16

December 1997

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 44 32 30 00

Adresse �electronique : fages@dmi.ens.fr , palmas@dmi.ens.fr

A Generic Type System for CLP(X)

Fran�cois Fages, Massimo Paltrinieri

LIENS CNRS, Ecole Normale Sup�erieure,

45 rue d'Ulm, 75005 Paris, France,

ffages,palmasg@dmi.ens.fr

Abstract

We propose a generic static type system for Constraint Logic Program-

ming including subtyping and parametric polymorphism. The �rst aim of

this prescriptive type system is to detect type errors statically in CLP pro-

grams. The system introduces a type discipline on the way CLP programs

and libraries can be composed, while still maintaining the ability to type

meta-programming predicates, thanks to the
exibility of subtyping. We

show that subject reduction holds under very general assumptions. We give

a polynomial-time algorithm for type checking, and we indicate that type

inference for variables and predicates is possible in the universe of in�nite

regular types, but is an open problem in the universe of �nite types.

1 Introduction

The class of Constraint Logic Programming languages, CLP(X), as intro-

duced by Ja�ar and Lassez [18], is a class of programming languages based

on the logic programming paradigm, parametrized by some mathematical

structure X , the domain of discourse. CLP is a simple and powerful model

of computation that has proven its ability to solve declaratively a wide va-

riety of applications, ranging from combinatorial optimization problems to

complex system modeling [19].

Inherited from the Logic Programming tradition, constraint logic pro-

grams generally have no static types or have a poor type structure. However,

the structure X of interest is generally a quite complex combination of basic

structures that may include integer arithmetic, real arithmetic, booleans,

lists, Herbrand terms, in�nite terms, feature structures, ..., with implicit co-

ercions as in e.g. Prolog IV [9]. Even the early CLP(R) system of [18] already

combines Herbrand terms with arithmetic expressions in a non-symmetrical

way: any arithmetic expression may appear under a Herbrand function sym-

bol, e.g. in a list, but not the other way around. The framework of many

sorted logic in [18] is not adequate for representing the type system under-

lying such a combination, as it forces Herbrand function symbols to have

a unique type (e.g. over reals or Herbrand terms), whereas Herbrand func-

tions can be used polymorphically (e.g. in f(1) and f(f(1)), or the list

constructor in a list of list of numbers [[3]]).

Making the underlying type system explicit is not of purely theoretical in-

1

terest, as there is also a growing need for using a type system at compile-time

for detecting errors statically in CLP(X) programs, instead of dynamically

at run-time as in an untyped CLP system. The need for a
exible type dis-

cipline becomes even more accurate nowadays where CLP systems grow in

size and various libraries and modules can be composed and re-used. It is

the purpose of a prescriptive type system, such as Mycroft-O'Keefe system

[23], to impose type restrictions on programs with respect to type declara-

tions, e.g. as in G�odel [15]. On the other hand the purpose of a descriptive

type system is to describe semantic properties of programs, such as approx-

imating its success set via abstract interpretation. The latter approach will

not be considered in this paper where we shall consider successes and �nite

failures as symmetrical and orthogonal to our typing issue.

The type system of Mycroft-O'Keefe is an adaptation to logic programs

of the parametric polymorphism of ML. A type inference algorithm is given in

[21]. In this sytem, types are �rst-order terms, type variables inside types,

like � in list(�), express type parameters, so that programs de�ned over

data structures of type list(�) can be used polymorphically over any list of

elements of some type �. The
exibility of parametric polymorphism is how-

ever by far insu�cient to handle properly coercions and complex structures

in constraint logic programs.

A type system for CLP(X) should also support the meta-programming

facilities of logic programming, through the ability to type meta-predicates

such as call(X), setof(X,G,L) or arg(N,T,A). One way to acquire such

a
exibility is to allow subtypes. A subtype relation between types list(�) <

term allows to type the predicate arg : nat � term � term ! bool so that,

for instance, the atom arg(1; [XjL]; X) is well-typed although the second

argument is a list. Similarly, we can type call : bool ! bool, freeze :

term � bool ! bool, setof : � � bool � list(�) ! bool, and the subtyping

relation bool < term allows to apply the arg predicate to atoms as well,

whereas applying the call predicate to a list would raise a type error.

Static types with subtyping relations between type constructors are also

compatible with powerful forms of object-oriented programming in CLP over

computation domains with inheritance hierarchies, such as -terms [1] [2],

objects of POS logic [24] and feature structures [3] [26] [8].

Combining parametric polymorphism with subtyping in a static type

system is thus a major issue. The problem has been deeply investigated in

the study of object-orientation in higher-order functional languages [5]. In

(�rst-order) logic languages, the picture is quite di�erent as the di�culties

due to the contravariance of the arrow constructor type (�!� � �

0

!�

0

if

�

0

� � and � � �

0

) disappear in absence of higher-order functional types.

Several type systems combining parametric polymorphism with subtypes

have been proposed for logic programs. However a number of problems still

appear: except in a restricted case in [24], subtype relations between (para-

metric) type constructors are not allowed. That prevents subtype relations

as list(�) < term (also unallowed in [24]) and thus forbids to type meta-

2

predicates. Furthermore, except in a restricted setting in [6], type inference

algorithms have been shown to be incomplete in general [24] [14] [16] [22].

By abstracting from particular structures as required in the CLP scheme,

we study in this paper a generic static type system for CLP programs, in-

dependently of any speci�c computation domain X . Section 2 presents a

type system that includes parametric polymorphism and subtype relations

between constructors of di�erent arities. We show that in this system the

subject reduction property (i.e. goal resolution preserves static types) holds

independently of the computation domain under the only assumption that

the type of predicates is de�nitional-generic in the sense of [21] [20].

Section 3 shows that type checking reduces in polynomial-time to the

solving of subtype inequalities of some simple form.

Section 4 studies the solving of subtype inequalities in presence of subtype

relations between constructors of di�erent arities. We give a linear time

algorithm for solving the systems of inequalities of the simple form needed

for type checking, and we indicate that the system of inequalities involved

in type inference can be solved in the universe of in�nite regular types, but

that it is an open problem in the universe of �nite types.

The last section gives examples of type inference for variables and pred-

icates.

2 Typing CLP(X) Programs

In this presentation we conform where possible to the notations of the My-

croft O'Keefe system in [21] [23].

2.1 Poterms as Types

Our type system is based on a structure of partially ordered terms, called

poterms, that we use for representing types of CLP programs. Poterms

generalize �rst-order terms by the de�nition of a subsumption order based

on function symbols, that comes in addition to the instantiation preorder

based on variables. Poterms are similar to order-sorted feature terms or

 -terms [1] [25] [2] [3] but we �nd it more convenient here to adopt a term

syntax (with matching by position) instead of a record syntax (with matching

by name) for denoting static types.

Let V

Type

be a (countably in�nite) set of type variables, called parame-

ters, denoted by, �; �; ::. Let (F

Type

;�

F

) be a poset of type constructors,

noted �:::, given with their arity (constants, also called basic types, are type

constructors of arity 0). We assume that F

Type

contains a constant bool

(used for typing predicates).

The type language is the set Types of poterms, noted � ,..., formed over

V

Type

and (F

Type

;�

F

):

� ::= �j�(�

1

; ::; �

n

):

3

A ground poterm, i.e. a type without parameters, is called monomorphic.

A poterm containing parameters is called polymorphic.

A substitution � is a mapping from variables in V

Type

to Types, extended

to a mapping from Types to Types by morphism. Poterms are ordered by

the usual instantiation pre-order �

var

, de�ned by � �

var

�

0

, i.e. � is an

instance of �

0

, i� � = �

0

� for some substitution �.

We assume that the order �

F

on type constructors is given with a func-

tion � that associates to each pair of type constructors � �

F

�

0

of arity m

and n respectively, an injection �(�; �

0

) : [1; n]![1; m] from the arguments of

�

0

to those of � (therefore m � n is assumed whenever � �

F

�

0

) The role of

� is to extend �

F

to a subtype relation on poterms:

De�nition 1 The subtyping order is de�ned as the least relation �

sub

over

Types satisfying:

��

sub

� for any parameter �

�

�1

�

sub

�

0

1

::: �

�n

�

sub

�

0

n

�(�

1

; :::; �

m

)�

sub

�

0

(�

0

1

; :::; �

0

n

)

for all �, �

0

such that � �

�

F

�

0

.

We say that a type � is a subtype of a type �

0

(or �

0

is a supertype of �) i�

�

0

�

sub

� .

Proposition 2 (Types;�

sub

) is a partial order.

Note that in this de�nition, all type constructors are covariant. This al-

lows to extend uniformly subtype relations on basic types, e.g. int �

sub

real,

to subtype relation on constructor types, e.g. list(int) �

sub

list(real), yet

list(int) 6�

sub

list(�). Note also that the de�nition of �

sub

with � implies

that the arity of a type constructor is less or equal to the one of its subtype

constructors, moreover V (�

0

) � V (�) whenever � �

sub

�

0

. Hence subtype

relations between type constructors, such as list(�) �

sub

term, are possible,

but not emptylist �

sub

list(�) for example. This restriction is not really

mandatory but simpli�es the solving of subtype inequalities for type check-

ing.

2.2 Typed CLP(X) Programs

CLP(X) programs are de�ned with another signature containing type decla-

rations for function and predicate symbols. Let V be a (countably in�nite)

set of term variables. Let F be a set of function symbols, denoted by f; g; ::,

given with their arity ar(f) � 0 and a type declaration f : �

1

�:::��

ar(f)

! � .

Let P be a set of predicate symbols, denoted by p; ::, given with their arity

and a type declaration p : �

1

� ::: � �

ar(p)

! bool. Constraint predicates

are distinguished predicates in P , denoted by c; ::: P is assumed to contain

constraint constants true; false and the equality predicate = : ���! bool.

4

An atom (or a constraint) is an expression of the form p(t

1

; :::; t

n

) where p

is a predicate symbol of arity n and the t

i

's are terms.

Following [21], a typed CLP program is a CLP program with type declara-

tions for variables inside clauses. The expressions belong to seven categories

de�ned by the grammar:

� ::= � j �(�

1

; � � �; �

k

) Type

t ::= X j f(t

1

; � � �; t

k

) Term

A ::= p(t

1

; � � �; t

k

) Atom

� ::= � j c(t

1

; :::; t

k

) j A j �

1

; �

2

Formula

C ::= [8X

1

: �

1

; � � �; X

n

: �

n

](A �) Clause

G ::= [8X

1

: �

1

; � � �; X

n

: �

n

](�) Goal

� ::= C

1

� � � C

l

Program

where X denotes a variable, � the \empty" formula, �

1

; �

2

the conjunction

of �

1

and �

2

. Considering more general formulas, such as negation :�, or

the ask operation (A ! �) of concurrent constraint programming, would

not cause any extra di�culty w.r.t. our typing issue.

To be well-typed, well-formed expressions must also satisfy type rules.

To express type rules, we use the following forms of assertions:

t : � (t is a well-typed term of type �)

A Atom (A is a well-typed Atom)

� Formula (� is a well-typed Formula)

C Clause (C is a well-typed Clause)

G Goal (G is a well-typed goal)

P Program (P is a well-typed Program)

A type context � is a �nite set of unique type assignments for variables, each

of the form X : � .

De�nition 3 (Well-Typed Program) A typed program is well-typed if it

can be derived by the type system in table 1.

The rule Sub for subtyping allows us to see any expression of some type

� as an expression of any supertype �

0

of � . The type of a variable is

determined by the declaration in the context. The rule for terms (resp.

atoms) use �

var

-polymorphically the type declared for the function (resp.

predicate) symbols. The other rules are merely bureaucracy.

In the following we will see that the type of the equality predicate =:

� � �!bool plays a central role that marks a fundamental di�erence with

other approaches to the typing of logic programs. In our type system the

equality constraint s : � = t : �

0

raises a type error if and only if � and �

0

have

no common supertype, i.e. i� s and t are not comparable as objects of some

type in the hierarchy. On the other hand, the constraint s : � = t : �

0

is true

i� s and t can be made equal to some value of a type �

00

subtype of � and �

0

.

Therefore if � and �

0

have no common subtype, we know that the constraint

will be false, hence this information can be used by the compiler to optimize

5

(Sub)

� ` t : � � �

sub

�

0

� ` t : �

0

(Var) � ` X : �(x)

(Func)

� ` t

1

: �

1

� � � � � ` t

k

: �

k

�

� ` f(t

1

; � � �; t

k

) : ��

if f : �

1

� � � ��

k

! �

for any substitution �

(Atom)

� ` t

1

: �

1

� � � � � ` t

k

: �

k

�

� ` p(t

1

; � � �; t

k

)Atom

if p : �

1

� � � � � �

k

! bool

for any substitution �

(Empty) � ` � Formula

(Formula)

� ` AAtom

� ` A Formula

(Conj)

� ` �

1

Formula � ` �

2

Formula

� ` (�

1

; �

2

) Formula

(Clause)

� ` A Atom � ` � Formula � = fX

1

: �

1

:::X

n

: �

n

g

` [8X

1

: �

1

; � � �; X

n

: �

n

](A �) Clause

(Goal)

fX

1

: �

1

; � � �; X

n

: �

n

g ` � Formula

` [8X

1

: �

1

; � � �; X

n

: �

n

](�)Goal

(Prog)

` C

1

Clause � �� ` C

l

Clause

` (C

1

� � � C

l

) Program

Table 1: The type system for CLP(X) programs.

the generated code (similarly to other descriptive type systems for static

analyses), but certainly not to raise a static type error, as here successes

and failures are considered symmetrical and orthogonal to our prescriptive

typing issue. The only possible type error for = in our system is when the

arguments are not in the same category, i.e. have no common supertype.

Therefore, in a hierarchy like int < term; bool < term, with type dec-

larations integer : int!bool, boolean : bool!bool, the goal integer(X),

boolean(X) raises a type error, whereas the goal X = Y , integer(X),

boolean(Y) doesn't raise a type error as X : int; Y : bool is a possible

typing (if the type term is in the hierarchy). The crux of our approach is

to see the equality predicate as a constraint, that may perform coercions

in presence of subtype relations (e.g. like in Prolog IV [9]), and not as a

6

shorthand for variable renaming and substitution (e.g. like in [13, 14])

1

.

2.3 Subject Reduction

Subject reduction is the property that evaluation rules transform a well-

typed expression into another well-typed expression. The evaluation rule

for CLP is top-down (left-right) SLD-resolution, so what has to be proven

is that resolution transforms a well-typed goal into a well-typed goal. This

proves that the execution model of CLP is consistent with the static type

system, since a well-typed CLP program remains well typed along execution.

The next theorem proves the subject reduction property of our type

system for CLP under the assumption that a predicate must be used �

var

-

monomorphically inside its de�nition with (mutually recursive) clauses. This

notion of \de�nitional genericity" was introduced in [21] for escaping from

the undecidability results for inferring the type of predicates, similarly to

ML, inside mutually recursive de�nitions [20]. Here we show that it provides

also a su�cient condition for subject reduction in our context (see appendix).

Hypothesis 1 (De�nitional-genericity) The type of the arguments of a

de�ning occurrence of a predicate in a clause (an occurrence to the left of

\ ") must be a subtype (not an instance) of a variable renaming of the

declared type of the predicate.

For example, the predicate member can be typed �

var

-polymorphically,

i.e.member : ��list(�)!list(�), if its de�nition doesn't not contain special

facts like member(1; [1]), which otherwise force its type to be member :

int� list(int)!list(int), for satisfying the de�nitional-genericity condition.

Theorem 4 (Subject Reduction) Let P be a de�nitional generic well-

typed program. LetR � p(t); R be a well-typed goal, andR'� t = t

0

; p

1

(t

1

); :::

; p

n

(t

n

); R be a resolvent obtained by one step of SLD resolution with a pro-

gram clause p(t

0

) p

1

(t

1

); ::; p

n

(t

n

). If � is a type context for R, i.e. � ` R,

then there exists an extension �

0

of � to possible further variables occurring

in R', such that �

0

` R'.

The subject reduction property means that static types can be dropped

at execution time. It should be clear however that in presence of subtype

relations, the static types usually denote object categories that the constraint

solver needs to know in order to check the satis�ability of constraints, hence

dynamic types cannot be eliminated in general. The dynamic types may

contain more information than the static types, such as for example whether

a variable is instanciated or not. The dynamic type V ar cannot be a static

type in our sense as it is not a constructor type, hence the issue of moding

1

If needed, these operations of aliasing can be added without di�culty w.r.t. type

checking or type inference, simply by adding a special predicate � such that s : � � t : �

0

is well-typed i� � = �

0

.

7

that is part of the descriptive type approach is clearly beyond the scope of

this paper.

3 Type Checking

The rule system given above doesn't provide a type checking algorithm be-

cause the expressions in the premises of the (Sub) rule are not subexpressions

of the conclusion, the substitution � in the (Func) and (Atom) rules is not

determined, and the (Func) and (Sub) rules are ambiguous.

The (Sub), (Func) and (Atom) rules can be replaced with two new rules:

(Func')

� ` t

1

: �

0

1

� � � � ` t

k

: �

0

k

� ` f(t

1

; � � �; t

k

) : ��

if f : �

1

� � � ��

k

! �; �

0

i

�

sub

�

i

�

for some substitution �, 1 � i � k

(Atom')

� ` t

1

: �

0

1

� � � � ` t

k

: �

0

k

� ` p(t

1

; � � �; t

k

)Atom

if p : �

1

� � � � � �

k

; �

0

i

�

sub

�

i

�

for some substitution �, 1 � i � k

The new system obtained by replacing the (Sub), (Func) and (Atom) rules

with the (Func') and (Atom') rules provides a deterministic syntax-directed

type system suitable for type checking. It is easy to check that the new

system is equivalent to the original system in the sense of

Proposition 5 A program is well typed in the original system i� it is well

typed in the new one.

The construction of a substitution � in rule (Func') and (Atom'), can

be solved as follows. First of all remark that the variables in the types of

clause variables are not under the scope of these substitutions, as they act

only on the variables of the (renamed apart) type declarations for function

and predicate symbols. Therefore in order to avoid unsound instanciations,

the variables in the types of the clause variables will be replaced by new

constants.

Now let � be the collection of inequations �

sub

imposed on types by

rules (Func') and (Atom') in a derivation. Let us de�ne the size of a system

of inequalities as the number of symbols

2

, clearly

Proposition 6 The size of the system � of inequalities associated to a typed

program is O(nvd) where v the size of the type declarations for variables

in the program, n is the size of the program, and d the size of the type

declarations for function and predicate symbols.

2

By taking a compact representation with dags for terms, atoms and types, and by

representing inequalities by special arcs between type nodes, a linear-size representaton of

the system of inequalities is possible.

8

As the type system is deterministic we have:

Proposition 7 A well-formed program is typable if and only the system of

inequalities collected along its derivation is satis�able.

It is worth noting that the system of inequalities � collected in this way

for type checking have in fact a very particular form. Let us write � [�] for

a type � containing a parameter � as subterm (or equal to �).

De�nition 8 A system � of inequalities is left-linear if any variable has

at most one occurrence at the left of � in the system. � is acyclic if it

does not contain any cycle, i.e., a set of inequalities of the form �

1

[�] �

�

0

1

[�

1

]; �

2

[�

1

] � �

0

2

[�

2

]; ::; �

n

[�

n�1

] � �

0

n

[�]:

As the type parameters in the types of clause variables have been re-

named into constants, the only type variables at the left of �

sub

in the system

�, are those that come from the result type of a function declaration, e.g. �

in nil : list(�). As the variables in a result type are distinct and renamed,

the system � is thus strati�ed and acyclic, and the variables in � have a

single occurrence at the left of �

sub

, so � is left-linear.

Proposition 9 The system of inequalities generated by the type checking

algorithm is acyclic and left-linear.

The next section studies subtype inequalities and presents an algorithm

for solving acyclic left-linear systems in linear time (prop. 13). This shows

with prop. 6 that type checking can be done in cubic time.

4 Subtype Inequalities

The satis�ability of subtype inequalities (SSI) problem [28] is the problem

of determining whether a system of inequalities

V

n

i=1

�

i

�

sub

�

0

i

over types

�

1

; �

0

1

; :::; �

n

; �

0

n

has a solution, i.e., whether there exists a substitution �

such that

V

n

i=1

�

i

��

sub

�

0

i

�: This is not to be confused with the term semi-

uni�cation problem de�ned with the instantiation ordering

V

n

i=1

�

i

� �

var

�

0

i

�, and whose undecidability was shown in [20].

De�nition 10 A solution to an inequality ��

sub

�

0

is a substitution � such

that ���

sub

�

0

�. A principal solution is a solution � such that for any solu-

tion �

0

there exists a substitution � such that 8� 2 V ��

0

�

sub

���.

Type inference for simply typed lambda calculus with subtyping is poly-

nomial time equivalent to the SSI problem [17]. For this reason, the SSI

problem has been deeply studied in the functional-programming commu-

nity. Due to the lack of results for the general case, special instances of the

SSI problem have been identi�ed along two di�erent axes:

9

� the structure of (F;�

F

)

� the form of the types.

Special cases of the SSI problem are obtained by restricting the structure of

(F;�

F

) to: disjoint union of lattices, n-crown, disjoint union of posets with

suprema, partial orders.

Special cases of the SSI problem are also obtained by restricting the form

of the terms:

Flat-SSI types are just variables or constants

Uniform-SSI �nite terms without variables

built over (F;�

F

) and !

Homogeneous-SSI relation between constructors of same arity

Non-uniform-SSI general poterms.

Complexity results for Uniform-SSI have been provided over speci�c

structures of the poset (F;�

F

). When (F;�

F

) is diecrete, i.e. no di�er-

ent elements are comparable, the problem reduces to un�cation since �

F

reduces in this case to equality. If (F;�

F

) is a disjoint union of lattices

(for which the discrete poset is a special case, namely a disjoint union of

one-element lattices), then there is a polynomial-time algorithm that solves

the Uniform-SSI problem [28]. When (F;�

F

) is a n-crown, the Uniform-SSI

algorithm is Pspace-hard [28]. In the general case, i.e. (F;�

F

) is a par-

tial order, Frey [10] recently proved that UNIFORM-SSI is Pspace-complete.

These results are summarized in the following table:

structure of (F;�

F

) Uniform-SSI

disjoint union of lattices P-complete [28]

n-crown Pspace-hard [28]

partial order Pspace-complete [10]

Homogeneous SSI have been studied in [25] in a quasi-lattice structure.

An algorithm is given and proven correct for declarations without para-

metric polymorphism. When parametric polymorphism is taken into ac-

count, the algorithm may return typings which are not most general or

fail even if most general typings exist. The di�culty is due to the fact

that the algorithm relies on the computability of the least upper bound

between the type declared for a predicate argument and the type of the

actual argument. The computability is not guaranteed in presence of para-

metric polymorphism, due to the existance of in�nite ascending chains like

? � list(?) � list(list(?)) � � � �.

As already pointed out, in our poterm structure, if ��

sub

�

0

then V (�

0

) �

V (�), hence we can prove that

Proposition 11 There is no poterm � such that ��

sub

� [�]. If � [�]�

sub

�

has a solution then there exists a poterm �

0

such that � [�]�

sub

�

0

and � 62

V (�

0

).

10

For instance, ��

sub

list(�) has no (�nite) solution in any poterm structure.

On the other hand, if list(�)�

sub

term then list(�)�

sub

� has one solution:

� = term. The following algorithm bene�ts from this property.

4.1 The Acyclic Left-Linear Case

We show that the satis�ability of acyclic left-linear subtype inequalities can

be decided in linear time, and admit principal solutions in posets (F;�

F

)

satisfying the following

Hypothesis 2 For every function symbol � in (F;�

F

) the set f�

0

j� �

F

�

0

g

of greater elements than �, admits a maximum element denoted by �.

This means that every �

F

-connected component of function symbols admits

a maximum element. The de�nition extends naturally to types as follows:

1. � = �

2. �(�

1

; ::; �

n

) = �(�

1

; ::; �

n

)

The hypothesis entails the existence of a greatest supertype � for any type

� , as well as the existence of a root in every �

sub

-connected component

of types. For example a hierarchy like a � b; c � b; c � d violates the

hypothesis if b and d have no common supertype serving as a root for the

connected component. On the other hand that hypothesis doesn't assume,

nor it is implied by, the existence of a least upper bound to types having a

upper bound (sup-quasi-lattice hypothesis in [25]).

In this section, a system � is in solved form if it contains only equations

of the form

f�

i

= �

i

g

i

where the �

i

's are all di�erent and have no other occurrence in �. The

substitution �

�

= f�

i

 �

i

g associated to a system in solved form � is

trivially a principal solution. We show that the following simpli�cation rules

compute solved forms for satis�able acyclic left-linear systems:

(Dec) f(�

1

; :::; �

m

) � g(�

0

1

; :::; �

0

n

) ^ ��!

V

n

i=1

�

�i

� �

0

i

^ �

if f �

�

F

g

(VarLeft) � � � ^ ��!� = � ^ �[�=�]

if � 6= �, � 62 V (�).

(VarRight) � � � ^ ��!� = � ^ �[�=�]

if � 62 V , � 62 V (l) for any l � r 2 �, and � 62 V (�).

By taking as complexity measure of the system the sum of the sizes of

the terms in the left-hand side of inequalities (without equalities), each rule

strictly decreases the complexity of the system: (Dec) and (VarLeft) by one,

(VarRight) by the size of � .

Lemma 12 The rules terminate in O(n) steps, where n is the sum of the

sizes of the terms in the left-hand side of inequalities.

11

One can easily check that each rule preserves the left-linearity as well as

the acyclicity of the system, and that each rule preserves the satis�ability of

the system, as well as its principal solution if one exists, from which follows:

Theorem 13 Let � be an acyclic left-linear system. Let �

0

be a normal

form of �. Then � is satis�able i� �

0

is in solved form, in which case �

�

0

is a principal solution of �.

Hence acyclic left-linear subtype inequalities can be solved in linear time.

4.2 The general case

In this section we consider the structure of poterms with the additional

hypothesis that the poset of type constructor symbols (F;�

F

) is an inf-quasi-

lattice (i.e. a greatest lower bound exists whenever a lower bound exists).

Hypothesis 3 (F;�

F

) is an inf-quasi-lattice.

The idea is to check the consistency of a general system of inequalities

by replacing in the algorithm of the previous section the (VarLeft) rule by a

rule computing the g.l.b. of the supertypes of a type:

(VarLeft) � � � ^ � � �

0

^ � �!� � glb(�; �

0

) ^ �

�!? if � and �

0

have no lower bound

This is not su�cient for checking the satis�ability of the system in the struc-

ture of �nite poterms. However it can be proved that this is su�cient for

proving the satis�ability of the system in the structure of in�nite regular

types (i.e. recursive types [5]), which admit solutions to equations of the

form � = list(�) (namely the type list(list(:::))).

In absence of subtype relation between type constructors of di�erent ar-

ities, Amadio & Cardelli's algorithm for checking consistency with recursive

types is polynomial in a lattice structure, while the satis�ability in �nite

types (with a generalization of Fuh & Mishra's algorithm [12]) has been

shown by Frey [10] Pspace-complete in an arbitrary poset.

The technique used in [10] for proving consistency in in�nite types can be

generalized to our case with subtype relations between type constructors of

di�erent arities in a poterm structure. The study of the algorithm is beyond

the scope of this paper but will be the matter of a forthcoming paper, we

refer to [10] for details.

5 Type Inference

De�nition 14 A semi-typed program is a typed CLP program without type

declarations for variables. A variable typing for a semi-typed program P is

a type declaration for variables in each clause of the program. A variable

12

typing � is a principal variable typing if for any other variable typing �

0

for

P there exists a substitution � such that 8x 2 V �

0

(x)�

sub

�(x)�.

Similarly to the type checking algorithm, one can consider the system of

inequalities �(P) obtained by collecting the subtype inequalities along the

derivation of a program P , with unknowns for the type of variables. The size

of this system is O(nd) where d is the size of the declarations for functions

and predicates and n is the size of the program. Clearly

Proposition 15 A semi-typed CLP program P admits a variable typing i�

the system of inequalities �(P) is satis�able.

Note that the system of inequalities is no longer left-linear, but still

acyclic. As indicated in the previous section, under the hypothesis that the

types form an inf-quasi-lattice with roots, the solving of these systems of

inequalities in in�nite regular types can be done with a generalization of

Frey's algorithm [10].

Following [21], types for predicates can be inferred from the program, by

imposing that a predicate is used with the same type instance (i.e. �

var

-

monomorphically) in each occurrence within the clauses of its (mutually

recursive) de�nition. The reason for this restriction is, as in ML, to es-

cape from the undecidability of the original semi-uni�cation problem w.r.t.

�

var

[20]. Under this restriction, assigning type variables to the argument

type patterns of untyped predicates, and using these type patterns with-

out renaming in the rules of the type checker, reduces again the problem of

predicate type inference to solving a system of subtype inequalities. With

the same argument, one can thus establish the decidability of predicate type

inference in the universe of in�nite types, and the existence of a principal

type to predicates under the restriction of �

var

-monomorphic de�nition.

Principal types for predicates are not very informative however. As the

only type constraints are that the type of the arguments are subtypes of

the declaration pattern, the components of the principal type of a predicate

are always either variables or roots of connected components in the type

hierarchy. For example, in the type hierarchy list(�)�

sub

term, the type

inferred for append from its usual de�nition by two clauses will be term �

term � term ! bool, which is indeed a principal typing for append. On

the other hand, computing a most informative type for predicates, de�ned

as the principal type w.r.t. �

var

and the most speci�c w.r.t. �

sub

(i.e. a

type t such that for any other type t

0

there exists a substitution � such that

t

0

�

sub

t�) is not always a good strategy. For example, a predicate testing the

equality of a number to 0, de�ned by the fact p(0), would then be typed

p : zero! bool, instead of p : num! bool, whenever the hierarchy contains

the type zero < num.

One pragmatical approach for infering more precise types is to remove

subtype relations in the type hierarchy of a module, such as list(�)�

sub

term

in a list module, so that the roots of the connected components match the

13

expected types to be inferred in that module. For example, by masking

the subtype relation list(�) < term, in the list module, the principal type

inferred for append is then list(�)� list(�)� list(�)! bool.

6 Conclusion and perspectives

Typing CLP programs for detecting errors statically, while retaining the

exibility required for preserving all the metaprogramming facilities of logic

programming, is the challenge that conducted the design of the type system

presented in this paper. We have shown that type checking in our system

can be done in polynomial time, and that type inference for variables and

for predicates is possible in the universe of regular in�nite types.

Our next step will be to make experiments with an implementation of

our type system on a large constraint logic software, such as Sicstus Pro-

log [27] for instance. The built-in predicates of Sicstus Prolog are mainly

metaprogramming predicates, on top of which a large amount of libraries

have been built for ISO Prolog, various data structures, CLP(Q), CLP(R),

CLP(FD), objects, etc. We believe that it is possible to completely type

Sicstus Prolog and its libraries in our system, while still retaining all the

intended use of the predicates.

From a practical point of view, considering regular in�nite types is proba-

bly not a limitation. From a theoretical point of view however, the decidabil-

ity of the satis�ability of subtype inequalities in �nite types with relations

between type constructors of di�erent arities is an interesting open problem,

that was already mentionned by Smolka in his thesis [25].

Another aspect of our type system is that it is limited to covariant func-

tors. We do not believe that we can advantageously drop this restriction to

include mixed contravariant functors as we would then inherit of the unde-

cidability of system F for type checking. On the other hand, the
exibility

of our type system for CLP can be extended in several directions. One is to

infer types for function symbols as well. Another issue is to allow the over-

loading of predicates and function symbols, i.e. the possibility to give the

same name to symbols that di�er by their type, wherever the type checker

can eliminate the ambiguities.

Acknowledgements: We are especially grateful to Alexandre Frey, Michael Hanus

and Gert Smolka for fruitful discussions which helped us to clarify some points in

the literature on types.

References

[1] H. Ait-Kaci and R. Nasr, LOGIN: A Logical Programming Language

with Built-in Inheritance, Journal of Logic Programming, 3, 187-215,

1986.

14

[2] H. Ait-Kaci, An Introduction to LIFE - Programming with logic, In-

heritance, Functions and Equations, in D. Miller (ed.), Proc. of the

Internat. Symp. on Logic Programming, Vancouver, BC, pages 52-68,

The MIT Press, Cambridge, MA, 1993.

[3] H. Ait-Kaci, A. Podelski and S.C. Goldstein, Order-Sorted Feature The-

ory Uni�cation, Journal of Logic Programming, pp.100-124, 1997.

[4] A. Aiken and E.L. Wimmers, Type Inclusion Constraints and Type In-

ference, Conf. Functional Programming Languages and Computer Sci-

ence, p.31-41, ACM Press, 1993.

[5] R. M. Amadio and L. Cardelli, Subtyping Recursive Types, ACMTrans-

actions on Programming Languages and Systems, vol. 15, No. 4, 575-

631, 1993.

[6] C. Beierle, Type Inferencing for Polymorphic Order-Sorted Logic Pro-

grams, 12th International Conference on Logic Programming, The MIT

Press, 765-779, Tokyo, 1995.

[7] F. Bourdoncle, S. Merz, Type checking higher-order polymorphic multi-

methods, Proc. POPL'97, pp.302-315, Paris, jan. 1997.

[8] B. Carpenter, Typed feature structures: a generalization of �rst-order

terms, International Symposium on Logic Programming, ILPS91, 202-

217, San Diego, 1991.

[9] A. Colmerauer, Speci�cation of Prolog IV, LIM technical report, 1996.

[10] A. Frey, Satisfying Subtype Inequalities in Polynomial Space, Proc.

SAS'97, LNCS 1302, 1997.

[11] Y.C. Fuh, P. Mishra, Polymorphic Subtype Inference; Closing the

Theory-Practice Gap, Proc. TAPSOFT'89, LNCS 352, pp.167-183,

1989.

[12] Y.C. Fuh, P. Mishra, Type inference with subtypes. Proc. ESOP'88,

LNCS 300, pp.94-114, 1988.

[13] M. Hanus, Parametric Order-Sorted Types in Logic Programming, In-

ternational Joint Conference on Theory and Practice of Software De-

velopment, (TAPSOFT 1991), LNCS Vol. 494, 181-200, 1991.

[14] M. Hanus, Logic Programming with Type Speci�cations, in F. Pfenning

Ed., Types in Logic Programming, MIT Press, 1992.

[15] P. Hill, J. Lloyd, The G�odel programming language, MIT Press, 1994.

[16] P. Hill, R. Topor, A semantics for typed logic programs, in F. Pfenning

Ed., Types in Logic Programming, MIT Press, 1992.

15

[17] M. Hoang , J.C. Mitchell, Lower Bounds on Type Inference with Sub-

types, ACM Symposium on Principles of Programming Languages,

1995.

[18] J. Ja�ar, J.L. Lassez, Constraint Logic Programming, Proc. of

POPL'87, Munich, 111-119, 1987.

[19] J. Ja�ar, M.J. Maher, Constraint Logic Programming: A Survey, Jour-

nal of Logic Programming, 19-20, 1994.

[20] A.J. Kfoury, J. Tiruyn, P. Urzyczyn, The Undecidability of the Semi-

Uni�cation Problem, Technical Report BUCS-89-010, Boston Univ.,

Oct. 89.

[21] T.K. Lakshman, U.S. Reddy, Typed Prolog: A Semantic Reconstruc-

tion of the Mycroft-O'Keefe Type System, International Symposium on

Logic Programming, ILPS91, 202-217, San Diego, 1991.

[22] G. Meyer, Type Checking and Type Inferencing for Logic Programs

with Subtypes and Parametric Polymorphism, Informatik Berichte 200,

Fern Universitat Hagen, 1996.

[23] A. Mycroft, R.A. O'Keefe, A Polymorphic Type System for Prolog,

Arti�cial Intelligence, 23, 295-307, 1984.

[24] G. Smolka, Logic Programming with Polymprphically Order-Sorted

Types, in J. Grabowski, P. Lescanne,, W. Wechler, editors, Algebraic

and Logic Programming, LNCS 343, 53-70, 1988.

[25] G. Smolka, Logic Programming over Polymorphically Order-Sorted

Types, PhD Thesis, Universitat Kaiserslautern, Germany, 1989.

[26] G. Smolka, Feature Constraint Logics for Uni�cation Grammars, Jour-

nal of Logic Programming, 12:51-87, 1992.

[27] SICStus Prolog User's Manual, release 3#5, SICS, october 1996.

[28] J. Tiuryn, Subtype Inequalities, Seventh Symposyum on Logic in Com-

puter Science, 308-315, 1992.

16

A Appendix: Proofs of some theorems

Proposition 5. A program is well typed in the original system i� it is well

typed in the new one.

Proof.

Soundness. If a program is typable in the new system, it is typable in the

original one.

In the proof generated by the new system, just replace every occurrence of

the (Func') and (Atom') rules respectively with

� ` t

1

: �

1

�

1

�

ext

�

0

1

� ` t

1

: �

0

1

�

� � �

� ` t

k

: �

k

�

k

�

ext

�

0

k

� ` t

k

: �

0

k

�

� ` f(t

1

; � � �; t

k

) : �

0

�

if f : �

0

1

� � � ��

0

k

! �

0

� ` t

1

: �

1

�

1

�

ext

�

0

1

� ` t

1

: �

0

1

�

� � �

� ` t

k

: �

k

�

k

�

ext

�

0

k

� ` t

k

: �

0

k

�

� ` p(t

1

; � � �; t

k

)Atom

if p : �

0

1

� � � ��

0

k

Completeness. If a program is typable in the original system, it is typable

in the new one.

By induction on the structure of the expression to be typed. Let us take the

most complex case, i.e., the expression to be type checked is f(t

1

; � � �; t

k

),

where f : �

1

� � � ��

k

! � . There are two possible cases, namely, the proof

terminates by the application of the

1. (Func) rule

2. (Sub) rule.

Case 1: (Func). According to the (Func) rule, t

1

: �

1

� � � � t

k

: �

k

�. Then,

by the induction hypothesis, the terms t

1

� � � t

k

are also type checked to

t

1

: �

1

� � � � t

k

: �

k

� by the new rule system. By applying the (Func') rule

with �

0

= �� and �

0

i

= �

i

�; i = 1::k, the expression f(t

1

; � � �; t

k

) is also well

typed to �� by the new rule system.

Case 2: (Sub). With no loss of genericity we can assume that the (Sub)

rule is never used twice consecutively. Then the proof terminates with

� ` t

1

: �

1

� � � � � ` t

k

: �

k

�

� ` f(t

1

; � � �; t

k

) : �� �� �

ext

�

0

� ` f(t

1

; � � �; t

k

) : �

0

if f : �

1

� � � ��

k

! �

By the induction hypothesis, the terms t

1

� � � t

k

are also type checked to

t

1

: �

1

� � � � t

k

: �

k

� by the new rule system. By applying the (Func') rule

with �

0

= �� and �

0

i

= �

i

�; i = 1::k, the expression f(t

1

; � � �; t

k

) is also well

typed to �

0

by the new rule system. 2

17

Subject Reduction Theorem 4. Let R � R; p(t) be a goal, R' �

R; p

1

(t

1

); ::; p

n

(t

n

); (t = t

0

) a resolvent obtained by the application of one

step of SLD resolution by nondeterministically selecting the program clause

p(t

0

) p

1

(t

1

); ::; p

n

(t

n

) satisfying de�nitional genericity. Let � be a type

context assigning a type to each variable occurring in R, then there exists

an extension �

0

of � to possible further variables occurring in R', such that

if � ` R then �

0

` R'.

Proof. First the construction of �

0

: let p : � be the static declaration of

predicate p, � a substitution such that �

t

�

sub

�� and �

00

a type context such

that �

00

` p(t

0

) p

1

(t

1

); ::; p

n

(t

n

); the type context �

0

is then de�ned as �

0

=

�[�

00

�. Now, what has to be proven is that �

0

` R; p

1

(t

1

); ::; p

n

(t

n

); (t = t

0

),

given that � ` R; p(t). By the (Conj) typing rule, this is equivalent to prove

that

1. �

0

` R

2. �

0

` p

1

(t

1

); ::; p

n

(t

n

)

3. �

0

` (t = t

0

)

given that � ` R and � ` p(t). These three conditions are proven below.

1. Since �

0

is an extension of �, � ` R implies �

0

` R.

2. Since the program is well-typed, there is a type context �

00

such that

�

00

` p(t

0

) p

1

(t

1

); ::; p

n

(t

n

). Since �

0

= �[�

00

�, then �

0

` p

1

(t

1

); ::; p

n

(t

n

).

3. For �

0

` (t = t

0

) to hold, since the typing of = is =: �� �, it must be

�

t

� �

�

t

0

� �

or, equivalently

�

t

�

sub

��

�

t

0

�

sub

��

for some substitution �. Let p : � be the static declaration of predicate

p. Since � ` p(t), then �

t

�

sub

��, for some substitution �. For the

de�nitional genericity of p, we have that �

t

0

�

sub

� and then �

t

0

�

sub

��

(up to variable renaming).

Let us take �� � ��, then we have that �

t

�

sub

�� and �

t

0

�

sub

��.

2

18

Proposition 9. The system of inequalities generated by the type rules is

acyclyc and left-linear.

Proof. To see why the system is acyclic, recall that rules generating in-

equalities are (Func

0

) and (Atom

0

) and they can only be applied in sequences

(Atom

0

)-(Func

0

) or (Func

0

)-(Func

0

).

(Atom

0

)-(Func

0

). The application of (Atom

0

) produces

�

0

i

[x

1

] � �

i

�

1

[x

2

]

where x

1

and x

2

are di�erent since x

1

can be opportunely renamed, while

the application of (Func

0

) produces

�

0

j

[x

3

] � �

j

�

2

[x

4

]

in general and it can produce

�

0

j

[x

3

] � �

j

�

2

[x

1

]

if �

2

= fx

4

 x

1

g. Now, since x

3

can be opportunely renamed, it can be

chosen di�erent from x

2

to guarantee that

�

0

i

[x

1

] � �

i

�

1

[x

2

]; �

0

j

[x

3

] � �

j

�

2

[x

1

]

is not a cycle.

Tha case (Atom

0

)-(Func

0

) is similar.

The system is left-linear since variables occurring in the left-hand side of

inequalities occur in type terms �

0

i

introduced by rules (Func

0

) and (Atom

0

)

and can be renamed without any loss of generality. 2

Proposition 11a There is no poterm x such that x�

sub

s[x].

Proof. For x�

sub

s[x] to hold, there must be a substitution � such that

x��

sub

s[x]�. Let s[x] be the generic term g(t

1

; ::; t

h�1

; x; t

h+1

; ::; t

n

). For

x��

sub

g(t

1

; ::; t

h�1

; x; t

h+1

; ::; t

n

)� to hold, x must be of the form

f(s

1

; ::; s

k�1

; x; s

k+1

; ::; s

m

)

with f �

�

F

g, n � m, � : [1; n]![1; m], �(h) = k. But this would give

x� = f(s

1

; ::; s

k�1

; x; s

k+1

; ::; s

m

)� which is false over �nite terms. 2

Proposition 11b If s[x]�

sub

x has a solution then s[x]�

sub

t with x 62 V (t),

for some t.

Proof. We consider only the case where x occurs at the �rst level, the other

19

cases can be proven by induction on the structure of the terms. Let s[x] �

f(s

1

; ::; s

k�1

; x; s

k+1

; ::; s

m

) and t � g(t

1

; ::; t

n

), with f �

�

F

g, n � m. If x oc-

curred in t, say t � g(t

1

; ::; t

h�1

; x; t

h+1

; ::; t

n

), then x = g(t

1

; ::; t

h�1

; x; t

h+1

; ::; t

n

)

in the solution �, which is false over �nite terms. So x 62 V (t) and x is not

in the image of �. 2

20

