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Abstract: Motivated from an example of ridge graphs of metric polytopes, we
consider a class of connected regular graphs such that the squares of their adja-
cency matrices lies in some symmetric Bose-Mesner algebras of dimension 3, as a
generalization of strongly regular graphs. In addition to a detailed analysis of this
prototype example defined over (MetPs)*, some general properties of these graphs

are studied from the combinatorial view point.

1. Introduction

The notion of ridge graphs is given in [3] for studying metric polytopes MetP,
and their relatives. The complement of one of those is interesting to us in this

paper. Indeed, after some modifications, a connected regular graph is found such
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that the square of its adjacency matrix lies in a symmetric Bose-Mesner algebra
of dimension 3, though itself is not strongly regular. It therefore leads to another
interesting generalization of strongly regular graphs besides the notion of distance

regular graphs.

A connected simple graph G is called strongly reqular with parameters v, k, A, i

if it consists of v vertices such that

k if x =y,
|IG(x) NG(y)| =14 A if 2,y are adjacent,

i otherwise,

where G(z) = {z|z € V(G) is adjacent to x}. This condition can be restated in
terms of its adjacency matrix A as A% = kI + AMA + u(J — I — A). As a matter
of fact, its adjacency algebra is a symmetric Bose-Mesner algebra of dimension 3.
A subspace A C M, (C) of symmetric matrices is called a symmetric Bose-Mesner
algebra if I,.J € A, and A is closed under both the ordinary product and Hadamard
product of matrices, and under the conjugate transposing as well. It is known
that each symmetric Bose-Mesner algebra has a base {A; | 0 < i < d} consisting
of (0,1)-matrices such that Ay = I, ¥p_A; = J, and A;A; = Sf_opl Ay for
suitable parameters pfj, 0 < 14,5,k < d. This leads to combinational structures
such as symmetric association schemes, and in particular P-polynomial association

schemes, i.e, distance-regular graphs, refer to [1, 2] for more details.

Some classical combinatorial structures were defined in terms of their incidence
matrices through Bose-Mesner algebras. Among many others, recall that a 2 —
(v, k, A) design IT = (X, B) is called quasi-symmetric with sizes of intersections «, (3
if M'M = kI + aA+ (J—1— A) where A is the square (0,1)-matrix indexed
by B x B such that A(B;,Bs) = 1 if and only if |B; N By = a. It is worth
noting that MM lies in the Bose-Mesner algebra of dimension 3 generated by A.
One of the purposes of this paper is to study those (0,1)-matrices M such that
M'M lie in symmetric Bose-Mesner algebras of dimension 3, in particular for those
symmetric ones. Necessary background regarding ridge graphs is given in section 2.
As a prototype example, the complement ['5 of the ridge graph of metric polytopes
is given in section 3 in details. Among other things, we show that its adjacency

matrix lies in a symmetric Bose-Mesner algebra of dimension 5. The observations



made in section 3 leads to a generalization of strongly regular graphs, called quasi

strongly regular graphs (QSRG), in section 4.

2. The complement of ridge graphs

We will first recall the notion of ridge graphs introduced in [3] for completeness, and

then we will correct some misprints found in [3].

Let us prepare some notation before we give the definition of these graphs.
”) over R

n
For each n, define vectors w;ji, viji € R(2), a vector space of dimension (2

indexed by {(p,q)|1 < p < g < n}, such that

i) the (p,q)-entry of wu;, (1 <i<j <k <n)is given by

1 if (p,q) = (4, 4), (4,k), or (j,k),
0 otherwise;

uz’jk(pa q) = {

ii) the (p, g)-entry of v, (1 << j<n, k+#1i,j)is given by

L if (p,q) = (4,7),
Uijk(paq) - -1 lf {p;Q} = {Zak} or {],k},
0 otherwise.

The graph I'), is defined over the vectors
{ur|l <i<j<k<n}U{vpp|l <i<j<nk#ij}

such that two vectors a, b are adjacent if there is an index (p,q) such that the
(p, q)-entries of @ and b are nonzero and their sum a4 + b ) is zero. Some small

examples include:

1. '3 is the complete graph K, of 4 vertices;

2. 'y is a strongly regular graph SRG(16,9,4,6), and its complement I'; is the
(4 x 4)-grid L(K44) which is a strongly regular graph SRG(16,6, 2, 2).



Indeed, those ridge graphs in [3] are the complements of these graphs I',, (n >

3). It is worth mentioning here that I, is the skeleton of the dual metric polytope
(MetP,)*, where MetP, denotes the full dimensional polytope in R(g), defined by
the inequalities

(T, vijk) = @ij — Tig — Tj <0,

(@, wije) = Tij + @ik + x5 < 2.
The first 3(’;) homogeneous inequalities above define the cone MetP, of all semi-
metrics on n points, and its dual cone is the cone of feasible multicommodity flows.
The graph T, is also the edge-graph of the dual metric polytope (MetP,)*, i.e., the
ridge (subfacet, co-edge) graph of MetP,. The local graph of T, is the bouquet of
n — 3 copies of (3 x 3)-grids with a common K3, i.e. any two above grids are disjoint
except the triangle, one for all of them. Refer to [3, 4] for further details on this
topic.

Corrections for some misprints found in [3] are given in the following:

1. (Theorem 2.2, [3]) For n > 4, T, is locally the bouquet of (n — 3) copies of

- (
(3 x 3)-grids with a common Kj having parameters v = 4(’;), k = 3(2n —
5), A=2(n—2) or 4, and

_J2(n—1), 4, 0r0 ifn=>6,
"7 2n-1), 4 if n=5.

2. (line +5, p.p. 362 [3]) Some parameters of I, are the valency W,

n—3)(n%2—13) 2(n—3)(n?—16)
3 or 3 + 2.

and p = XA

3. (Theorem 2.9 [3]) For n > 4, the ridge graph G!, of the metric cone Met, is
locally the bouquet of (n—3) hexagons with a common edge having parameters
u:3(g), k=202n—-5), A\=n—2or 2, and

) 2n—4,n, n—1or0 ifn>5,
a 2n—4, n, n—1 if n = 4.



4. (line +10, p.p. 364 [3]) Some parameters of G/ are the valency 7(”_3)2”2_6),

n—3)(n?—12) (n—3)(n?—14)
5 3 + 1.

and p = ( or

Finally, lines —5 ~ —8 in p.p. 362 [3] should be deleted.

Among these graphs, I's is of particular interest to us, the details of the graph
['s will be given in the next section as a prototype for a generalization of strongly

regular graphs.

3. The prototype

Among the family {I',|n > 4} of graphs defined in the previous section, the
graph I's is the focus in this section. A maximal clique partition of the vertex set
of I's is given, it then leads to a symmetric Bose-Mesner algebra of dimension 5

containing its adjacency matrix.

Consider the following partition of the vertex set of I's into {X;|1 <i <10},

where

X, ={123,12.3,13.2,23.1}, X, = {145,14.5,15.4,45.1},
Xo = {124,12.4,14.2,24.1}, X, = {234,23.4,24.3,34.2},
Xy = {125,12.5,15.2,25.1}, X = {235,23.5,25.3,35.2},
X, ={134,13.4,14.3,34.1}, X, = {245,24.5,25.4,45.2},
X5 = {135,13.5,15.3,35.1}, X0 = {345,34.5,35.4,45.3},

and ¢jk corresponds to wu;j, ij.k corresponds to v, respectively for suitable 7, j
and k£ < 5. Note that each X; gives a maximal clique of I's; and there are no others.
Let A(7, ) be the adjacency matrix of I's with respect to X; (in rows) and X; (in

columns) in the orders as given respectively. Then A(i, j) is one of the following:

0 0 0 o0
1 g g g g for (i,7) = (1,6),(1,9), (1,10),(2,5), (2,8),(2,10),(3,4),(3,7),
0 0 0 o0

(3,10), (4,8), (4,9), (5,7), (5,9), (6,7), (6,8) and their

transposes;
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0 1 1 1
2. v o v for1<i=j<10;
1 1 0 1
1 1 1 0
0 0 1 1
3.0 0 ] for (4,5) = (1,2),(1,3),(2,3),(4,5),(7,8) and their transposes;
1 1 0 0
0 1 0 1
400 0, 1| for (1,7) = (2,4),(3,5),(3,6), (5,6), (8,9) and their transposes;
1 0 1 0
0 1 1 0
D 1 g g 1 for (Zh]) = (47 7)7 (57 8)7 (67 9)7 (67 10), (9, 10) and their
0 1 1 0
transposes;
0 0 1 1
6. o o 0 1| for(i,j) =(1,4),(1,5),(2,6),(4,6),(7,9);
1 1 0 0
0 0 1 1
T e o for (i,5) = (1,7),(1,8),(2,9), (4,10), (7, 10);
0 0 1 1
0 1 0 1
8.| 1 ot o for (i,5) = (2,7),(3,8),(3,9), (5,10), (8,10);
0 1 0 1

Note also that A(7,j) is the transpose of case 6) if (i,7) = (4, 1), (5, 1), (6,2), (6,4),
(9,7); A(i,7) is the transpose of case 7) if (i,7) = (7,1),(8,1),(9,2),(10,4) and
(10,7); finally A(4, ) is the transpose of case 8) if (i,7) = (7,2), (8, 3), (9, 3), (10,5)
and (10, 8). Indeed, A = [A;j]i0x10 is an adjacency matrix of I's.

Some information of the graph I's can be derived from the relative positions
of the above eight 4 x 4 matrices in its adjacency matrix A. The positions for those
30 copies of 4 x 4 zero matrix can be kept record as the Petersen graph. This also

gives the clique graph C of I';.

Proposition 3.1 The clique graph C of I's is the Petersen graph.

Moreover, for other such 4 x 4 matrices in the list, let
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D = [Aji]i<i<i0; i-e., the diagonal-like matrix with 10 copies of identity

matrix of order 4 along its main diagonal, and zero elsewhere;
M =A— D;
N = the matrix obtained from M by interchanging 0, 1 in those nonzero A;;;

R=J—-(I+D+M+N).

Note that all these four matrices are symmetric, the following lemma can be checked

easily by some computer work.

Lemma 3.2 The ordinary products among {J, D, M, N, R} are given in the follow-

ing table:
° J D M N R
J 40J 3J 12J 12J 12J
D 3J 3 + D M + 2N 2M + N 3R
M 12J M + 2N 121 +2M +4(J — I — M) 8D +4M + 2N + 4R 4M + 4N + 4R
N 12J 2M + N 8D + 4M + 2N + 4R 121 +2M + 4(J — I — M) 4M + 4N + 4R
R 12J 3R 4M + 4N + 4R 4M + 4N + 4R 127 + 12D + 4M + 4N

This lemma shows that the vector space spanned by {I, D, M, N, R} over C
is also closed under the ordinary product of matrices; hence it also carries some

algebraic structure. It is straightforward to check that

A = D+ M,

A* = 4]+ 111+ 2D + 4N;

A* = 76J — 101 + 31D + 21 M and
A* = 1224J + 2611 + 52D + 104N.

The following Theorem follows immediately.

Theorem 3.3 The adjacency algebra of 's is the symmetric Bose-Mesner algebra
of dimension 5 generated by I, D, M, N and R.
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As a consequence, a symmetric association scheme of 4 classes is obtained with
{I, D, M, N, R} as its adjacency matrices. Note also that

N? = M? =121 +2M +4(J — I — M)

in the table, it can be interpreted in terms of strongly regular graph. Let G(M)
(respectively G(IV)) be the graph with M (respectively N) as its adjacency matrix.

Corollary 3.4 G(M) is a strongly reqular graph SRG(40,12,2,4) and hence its
adjacency algebra is a symmetric Bose-Mesner algebra of dimension 3 generated by

{I,M,J—1-M}.

This equation also shows that G(N) is 12-regular such that each pair of vertices
has either 3 or 4 common neighbors depending on whether they are adjacent in
G(M), rather than in G(N) itself.

4. Quasi strongly regular graphs (QSRG)

It is well known that distance-regular graphs can be seen as a generalization of
strongly regular graphs by allowing diameters larger than 2. Following the prototype
example ['5; given in section 3, we will introduce another interesting generalization

of strongly regular graphs.

Let us give the definition first, and we then consider this generalization in
a broader sense. A connected graph I' with adjacency matrix M is called quasi

strongly reqular if
M? =kI + A+ M(J—1-A4)

for some symmetric (0, 1)-matrix A where (I, J; A) form a Bose-Mesner algebra of

dimension 3.

Let us now consider this generalization in terms of incidence matrices of some
incidence structures. Let M be a (0, 1)-matrix of order v x b, indexed by X x B,
such that MJ =rJ, JM =kJ, and

M'M = kI +zA +y(J — I — A).
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This matrix M can be interpreted as a k-uniform, r-regular incidence structure
IT = (X, B) such that any pair of distinct blocks have either z or y points in common.
It is interesting to note that some classical combinatorial structures can be derived by
posing some additional conditions over M M. For example, if in addition M M! =
rI+A(J—1I), then M is an incidence matrix of a quasi symmetric 2 — (v, kA) design
with sizes = and y of intersection between any two blocks. A well known theorem
of Seidel and Goethals showed that both MM?" and M'M lie in the symmetric
Bose-Mesner algebra of dimension 3 generated by I, J and A.

The above observation for (0,1)-matrices and designs motivate us to study
those matrices M € M,,y,,,(C) with constant column and row sums such that either
M'M or MM?" lie in some Bose-Mesner algebras and their potential combinatorial
structures. Let M be a (0,1)-matrix indexed by X x B such that MJ =rJ, JM =
kJ and

M'M = (k- B)I + (a— B)A+ (]

MM = (r— I+ (\—p)B+ pJ

for some square matrices A (indexed by B x B) and B (indexed by X x X). Note
that

(M'M — (k= B)I = 3J),
and hence

b
(o = B)?
where 3 = |B|. Substituting

A? = (M'MM'M — (k — 8)*I + (66> — 2kbr)J — 2(k — ) (. — B)A) (¥)

MUM(M'M) = (0 — B)M'MA+ (k= B+ (B(k — B) + Brk)J + (a— B)(k — B)A,

MY (MM )M = (A=p)M* BM +(r — ) (k= B) L +(B(r —p) +pk?) J + (= 5) (r— p) A,
into (*), we have
A2 = m((a — B)M'MA + (b(k — b) + 8b*)J — (o — B)(k — b)A)

— g A MM (= )k 5) = (k= B+ (3l — ) + i

—(Bb* = 2kbr))J + ((a = B)(r — p) — (k — B) (e — B)) A



It follows that A? € (I, J, A) if and only if M*M A (and hence M!BM) € (I, J, A).
Note also that M*M A(Bj, By) is the number of flags (z,C) such that z € By N C
and C' N By # 0 (to be specified); and M*BM (By, By) is the number of adjacent
pairs (z,y) with z € By and y € Bs.

Two graphs can be associated with M naturally. The one with B as an in-
cidence matrix is called the point graph of II. The other with A as an incidence
matrix is called the block graph of I1. Note that those with J—I—Bor J—1— A as

their adjacency matrices are simply the complements of those under consideration.

Lemma 4.1 The block graph of Il = (X, B) is strongly reqular if and only if M*M A
(and hence M'*BM ) belong to the algebra (I, J, A) generated by I,J and A.

Theorem 4.2 If Il = (X,B) is an incidence structure with M B in (M,J) (or
equivalently AM in (M, J)), then A?> € (I, J, A), B% € (I, J, B) and hence both the
point graph of and the block graph 11 are strongly reqular.

From now on, we assume that M is symmetric and hence M? = kI + \A +
pu(J — I — A). In other words, M is the adjacency matrix of a connected k-regular
graph such that any two distinct vertices has A or u common neighbors, called Deza

graphs in [5].

Theorem 4.3 If I' is a connected simple graph with an adjacency matriz M such
that M? = kI + NA+u(J —1—A) and MA or AM lying in (M, J), then T is quasi

strongly reqular.
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