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Abstract: Motivated from an example of ridge graphs of metric polytopes, we

consider a class of connected regular graphs such that the squares of their adja-

cency matrices lies in some symmetric Bose-Mesner algebras of dimension 3, as a

generalization of strongly regular graphs. In addition to a detailed analysis of this

prototype example de�ned over (MetP

5

)

�

, some general properties of these graphs

are studied from the combinatorial view point.

1 . Introduction

The notion of ridge graphs is given in [3] for studying metric polytopes MetP

n

and their relatives. The complement of one of those is interesting to us in this

paper. Indeed, after some modi�cations, a connected regular graph is found such

�

e-mail:thuang@cc.nctu.edu.tw
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that the square of its adjacency matrix lies in a symmetric Bose-Mesner algebra

of dimension 3, though itself is not strongly regular. It therefore leads to another

interesting generalization of strongly regular graphs besides the notion of distance

regular graphs.

A connected simple graph G is called strongly regular with parameters v; k; �; �

if it consists of v vertices such that

jG(x) \G(y)j =

8

>

>

>

<

>

>

>

:

k if x = y;

� if x; y are adjacent,

� otherwise,

where G(x) = fzjz 2 V (G) is adjacent to xg. This condition can be restated in

terms of its adjacency matrix A as A

2

= kI + �A + �(J � I � A). As a matter

of fact, its adjacency algebra is a symmetric Bose-Mesner algebra of dimension 3.

A subspace A � M

n

(C) of symmetric matrices is called a symmetric Bose-Mesner

algebra if I; J 2 A, and A is closed under both the ordinary product and Hadamard

product of matrices, and under the conjugate transposing as well. It is known

that each symmetric Bose-Mesner algebra has a base fA

i

j 0 � i � dg consisting

of (0; 1)-matrices such that A

0

= I;

P

d

k=0

A

i

= J , and A

i

A

j

=

P

d

k=0

p

k

ij

A

k

for

suitable parameters p

k

ij

; 0 � i; j; k � d. This leads to combinational structures

such as symmetric association schemes, and in particular P -polynomial association

schemes, i.e, distance-regular graphs, refer to [1, 2] for more details.

Some classical combinatorial structures were de�ned in terms of their incidence

matrices through Bose-Mesner algebras. Among many others, recall that a 2 �

(v; k; �) design � = (X;B) is called quasi-symmetric with sizes of intersections �; �

if M

t

M = kI + �A + �(J � I � A) where A is the square (0,1)-matrix indexed

by B � B such that A(B

1

; B

2

) = 1 if and only if jB

1

\ B

2

j = �. It is worth

noting that M

t

M lies in the Bose-Mesner algebra of dimension 3 generated by A.

One of the purposes of this paper is to study those (0,1)-matrices M such that

M

t

M lie in symmetric Bose-Mesner algebras of dimension 3, in particular for those

symmetric ones. Necessary background regarding ridge graphs is given in section 2.

As a prototype example, the complement �

5

of the ridge graph of metric polytopes

is given in section 3 in details. Among other things, we show that its adjacency

matrix lies in a symmetric Bose-Mesner algebra of dimension 5. The observations
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made in section 3 leads to a generalization of strongly regular graphs, called quasi

strongly regular graphs (QSRG), in section 4.

2 . The complement of ridge graphs

We will �rst recall the notion of ridge graphs introduced in [3] for completeness, and

then we will correct some misprints found in [3].

Let us prepare some notation before we give the de�nition of these graphs.

For each n, de�ne vectors u

ijk

; v

ijk

2 R

(

n

2

)

, a vector space of dimension

�

n

2

�

over R

indexed by f(p; q)j1 � p < q � ng, such that

i) the (p; q)-entry of u

ijk

(1 � i < j < k � n) is given by

u

ijk

(p; q) =

8

<

:

1 if (p; q) = (i; j); (i; k); or (j; k);

0 otherwise;

ii) the (p; q)-entry of v

ijk

(1 � i < j � n; k 6= i; j) is given by

v

ijk

(p; q) =

8

>

>

>

<

>

>

>

:

1 if (p; q) = (i; j);

�1 if fp; qg = fi; kg or fj; kg;

0 otherwise:

The graph �

n

is de�ned over the vectors

fu

ijk

j1 � i < j < k � ng [ fv

ijk

j1 � i < j � n; k 6= i; jg

such that two vectors a; b are adjacent if there is an index (p; q) such that the

(p; q)-entries of a and b are nonzero and their sum a

(p;q)

+ b

(p;q)

is zero. Some small

examples include:

1. �

3

is the complete graph K

4

of 4 vertices;

2. �

4

is a strongly regular graph SRG(16; 9; 4; 6), and its complement �

4

is the

(4� 4)-grid L(K

4;4

) which is a strongly regular graph SRG(16; 6; 2; 2).
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Indeed, those ridge graphs in [3] are the complements of these graphs �

n

(n �

3). It is worth mentioning here that �

n

is the skeleton of the dual metric polytope

(MetP

n

)

�

, where MetP

n

denotes the full dimensional polytope in R

(

n

2

)

, de�ned by

the inequalities

hx; v

ijk

i = x

ij

� x

ik

� x

jk

� 0;

hx; u

ijk

i = x

ij

+ x

ik

+ x

jk

� 2:

The �rst 3

�

n

3

�

homogeneous inequalities above de�ne the cone MetP

n

of all semi-

metrics on n points, and its dual cone is the cone of feasible multicommodity ows.

The graph �

n

is also the edge-graph of the dual metric polytope (MetP

n

)

�

, i.e., the

ridge (subfacet, co-edge) graph of MetP

n

. The local graph of �

n

is the bouquet of

n� 3 copies of (3� 3)-grids with a common K

3

, i.e. any two above grids are disjoint

except the triangle, one for all of them. Refer to [3, 4] for further details on this

topic.

Corrections for some misprints found in [3] are given in the following:

1. (Theorem 2.2, [3]) For n � 4; �

n

is locally the bouquet of (n � 3) copies of

(3 � 3)-grids with a common K

3

having parameters v = 4

�

n

3

�

; k = 3(2n �

5); � = 2(n� 2) or 4, and

� =

8

<

:

2(n� 1); 4; or 0 if n � 6;

2(n� 1); 4 if n = 5:

2. (line +5, p.p. 362 [3]) Some parameters of �

n

are the valency

2(n�3)(n

2

�7)

3

,

and � =

2(n�3)(n

2

�13)

3

or

2(n�3)(n

2

�16)

3

+ 2.

3. (Theorem 2.9 [3]) For n � 4, the ridge graph G

0

n

of the metric cone Met

n

is

locally the bouquet of (n�3) hexagons with a common edge having parameters

v = 3

�

n

3

�

; k = 2(2n� 5); � = n� 2 or 2, and

� =

8

<

:

2n� 4; n; n� 1 or 0 if n � 5;

2n� 4; n; n� 1 if n = 4:
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4. (line +10, p.p. 364 [3]) Some parameters of G

0

n

are the valency

(n�3)(n

2

�6)

2

,

and � =

(n�3)(n

2

�12)

2

or

(n�3)(n

2

�14)

2

+ 1.

Finally, lines �5 � �8 in p.p. 362 [3] should be deleted.

Among these graphs, �

5

is of particular interest to us, the details of the graph

�

5

will be given in the next section as a prototype for a generalization of strongly

regular graphs.

3 . The prototype

Among the family f�

n

jn � 4g of graphs de�ned in the previous section, the

graph �

5

is the focus in this section. A maximal clique partition of the vertex set

of �

5

is given, it then leads to a symmetric Bose-Mesner algebra of dimension 5

containing its adjacency matrix.

Consider the following partition of the vertex set of �

5

into fX

i

j1 � i � 10g,

where

X

1

= f123; 12:3; 13:2; 23:1g; X

6

= f145; 14:5; 15:4; 45:1g;

X

2

= f124; 12:4; 14:2; 24:1g; X

7

= f234; 23:4; 24:3; 34:2g;

X

3

= f125; 12:5; 15:2; 25:1g; X

8

= f235; 23:5; 25:3; 35:2g;

X

4

= f134; 13:4; 14:3; 34:1g; X

9

= f245; 24:5; 25:4; 45:2g;

X

5

= f135; 13:5; 15:3; 35:1g; X

10

= f345; 34:5; 35:4; 45:3g;

and ijk corresponds to u

ijk

, ij:k corresponds to v

ijk

respectively for suitable i; j

and k � 5. Note that each X

i

gives a maximal clique of �

5

and there are no others.

Let A(i; j) be the adjacency matrix of �

5

with respect to X

i

(in rows) and X

j

(in

columns) in the orders as given respectively. Then A(i; j) is one of the following:

1.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

for (i; j) = (1; 6); (1; 9); (1; 10); (2; 5); (2; 8); (2; 10); (3; 4); (3; 7),

(3; 10); (4; 8); (4; 9); (5; 7); (5; 9); (6; 7); (6; 8) and their

transposes;
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2.

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

for 1 � i = j � 10;

3.

0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

for (i; j) = (1; 2); (1; 3); (2; 3); (4; 5); (7; 8) and their transposes;

4.

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

for (i; j) = (2; 4); (3; 5); (3; 6); (5; 6); (8; 9) and their transposes;

5.

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

for (i; j) = (4; 7); (5; 8); (6; 9); (6; 10); (9; 10) and their

transposes;

6.

0 0 1 1

1 1 0 0

0 0 1 1

1 1 0 0

for (i; j) = (1; 4); (1; 5); (2; 6); (4; 6); (7; 9);

7.

0 0 1 1

1 1 0 0

1 1 0 0

0 0 1 1

for (i; j) = (1; 7); (1; 8); (2; 9); (4; 10); (7; 10);

8.

0 1 0 1

1 0 1 0

1 0 1 0

0 1 0 1

for (i; j) = (2; 7); (3; 8); (3; 9); (5; 10); (8; 10);

Note also that A(i; j) is the transpose of case 6) if (i; j) = (4; 1); (5; 1); (6; 2); (6; 4),

(9; 7); A(i; j) is the transpose of case 7) if (i; j) = (7; 1); (8; 1); (9; 2); (10; 4) and

(10; 7); �nally A(i; j) is the transpose of case 8) if (i; j) = (7; 2); (8; 3); (9; 3); (10; 5)

and (10; 8). Indeed, A = [A

ij

]

10�10

is an adjacency matrix of �

5

.

Some information of the graph �

5

can be derived from the relative positions

of the above eight 4� 4 matrices in its adjacency matrix A. The positions for those

30 copies of 4� 4 zero matrix can be kept record as the Petersen graph. This also

gives the clique graph C of �

5

.

Proposition 3.1 The clique graph C of �

5

is the Petersen graph.

Moreover, for other such 4� 4 matrices in the list, let
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D = [A

ii

]

1�i�10

; i.e., the diagonal-like matrix with 10 copies of identity

matrix of order 4 along its main diagonal, and zero elsewhere;

M = A�D;

N = the matrix obtained from M by interchanging 0, 1 in those nonzero A

ij

;

R = J � (I +D +M +N).

Note that all these four matrices are symmetric, the following lemma can be checked

easily by some computer work.

Lemma 3.2 The ordinary products among fJ;D;M;N;Rg are given in the follow-

ing table:

� J D M N R

J 40J 3J 12J 12J 12J

D 3J 3I +D M + 2N 2M +N 3R

M 12J M + 2N 12I + 2M + 4(J � I �M) 8D + 4M + 2N + 4R 4M + 4N + 4R

N 12J 2M +N 8D + 4M + 2N + 4R 12I + 2M + 4(J � I �M) 4M + 4N + 4R

R 12J 3R 4M + 4N + 4R 4M + 4N + 4R 12I + 12D + 4M + 4N

This lemma shows that the vector space spanned by fI;D;M;N;Rg over C

is also closed under the ordinary product of matrices; hence it also carries some

algebraic structure. It is straightforward to check that

A = D +M ;

A

2

= 4J + 11I + 2D + 4N ;

A

3

= 76J � 10I + 31D + 21M and

A

4

= 1224J + 261I + 52D + 104N:

The following Theorem follows immediately.

Theorem 3.3 The adjacency algebra of �

5

is the symmetric Bose-Mesner algebra

of dimension 5 generated by I;D;M;N and R.
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As a consequence, a symmetric association scheme of 4 classes is obtained with

fI;D;M;N;Rg as its adjacency matrices. Note also that

N

2

=M

2

= 12I + 2M + 4(J � I �M)

in the table, it can be interpreted in terms of strongly regular graph. Let G(M)

(respectively G(N)) be the graph with M (respectively N) as its adjacency matrix.

Corollary 3.4 G(M) is a strongly regular graph SRG(40; 12; 2; 4) and hence its

adjacency algebra is a symmetric Bose-Mesner algebra of dimension 3 generated by

fI;M; J � I �Mg.

This equation also shows thatG(N) is 12-regular such that each pair of vertices

has either 3 or 4 common neighbors depending on whether they are adjacent in

G(M), rather than in G(N) itself.

4 . Quasi strongly regular graphs (QSRG)

It is well known that distance-regular graphs can be seen as a generalization of

strongly regular graphs by allowing diameters larger than 2. Following the prototype

example �

5

given in section 3, we will introduce another interesting generalization

of strongly regular graphs.

Let us give the de�nition �rst, and we then consider this generalization in

a broader sense. A connected graph � with adjacency matrix M is called quasi

strongly regular if

M

2

= kI + �A+M(J � I � A)

for some symmetric (0; 1)-matrix A where hI; J; Ai form a Bose-Mesner algebra of

dimension 3.

Let us now consider this generalization in terms of incidence matrices of some

incidence structures. Let M be a (0; 1)-matrix of order v � b, indexed by X � B,

such that MJ = rJ; JM = kJ , and

M

t

M = kI + xA + y(J � I � A):
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This matrix M can be interpreted as a k-uniform, r-regular incidence structure

� = (X;B) such that any pair of distinct blocks have either x or y points in common.

It is interesting to note that some classical combinatorial structures can be derived by

posing some additional conditions over MM

t

. For example, if in addition MM

t

=

rI+�(J�I), thenM is an incidence matrix of a quasi symmetric 2�(v; k�) design

with sizes x and y of intersection between any two blocks. A well known theorem

of Seidel and Goethals showed that both MM

t

and M

t

M lie in the symmetric

Bose-Mesner algebra of dimension 3 generated by I; J and A.

The above observation for (0,1)-matrices and designs motivate us to study

those matrices M 2 M

n�m

(C) with constant column and row sums such that either

M

t

M or MM

t

lie in some Bose-Mesner algebras and their potential combinatorial

structures. Let M be a (0,1)-matrix indexed by X �B such that MJ = rJ; JM =

kJ and

M

t

M = (k � �)I + (�� �)A+ �J

MM

t

= (r � �)I + (�� �)B + �J

for some square matrices A (indexed by B � B) and B (indexed by X �X). Note

that

A =

1

(�� �)

(M

t

M � (k � �)I � �J);

and hence

A

2

=

1

(�� �)

2

(M

t

MM

t

M � (k � �)

2

I + (�b

2

� 2kbr)J � 2(k � �)(�� �)A) (*)

where � = jBj. Substituting

M

t

M(M

t

M) = (�� �)M

t

MA+ (k� �)

2

I + (�(k� �) + �rk)J + (�� �)(k� �)A;

M

t

(MM

t

)M = (���)M

t

BM+(r��)(k��)I+(�(r��)+�k

2

)J+(���)(r��)A;

into (*), we have

A

2

=

1

(�� �)

2

((�� �)M

t

MA + (b(k � b) + �b

2

)J � (�� �)(k � b)A)

=

1

(�� �)

2

((�� �)M

t

BM + ((r � �)(k � �)� (k � �)

2

)I + (�(r � �) + dk

2

�(�b

2

� 2kbr))J + ((�� �)(r � �)� (k � �)(�� �))A

9



It follows that A

2

2 hI; J; Ai if and only if M

t

MA (and hence M

t

BM) 2 hI; J; Ai.

Note also that M

t

MA(B

1

; B

2

) is the number of ags (x; C) such that x 2 B

1

\ C

and C \ B

2

6= ; (to be speci�ed); and M

t

BM(B

1

; B

2

) is the number of adjacent

pairs (x; y) with x 2 B

1

and y 2 B

2

.

Two graphs can be associated with M naturally. The one with B as an in-

cidence matrix is called the point graph of �. The other with A as an incidence

matrix is called the block graph of �. Note that those with J� I�B or J� I�A as

their adjacency matrices are simply the complements of those under consideration.

Lemma 4.1 The block graph of � = (X;B) is strongly regular if and only if M

t

MA

(and hence M

t

BM) belong to the algebra hI; J; Ai generated by I; J and A.

Theorem 4.2 If � = (X;B) is an incidence structure with MB in hM;Ji (or

equivalently AM in hM;Ji), then A

2

2 hI; J; Ai; B

2

2 hI; J; Bi and hence both the

point graph of and the block graph � are strongly regular.

From now on, we assume that M is symmetric and hence M

2

= kI + �A +

�(J � I � A). In other words, M is the adjacency matrix of a connected k-regular

graph such that any two distinct vertices has � or � common neighbors, called Deza

graphs in [5].

Theorem 4.3 If � is a connected simple graph with an adjacency matrix M such

that M

2

= kI +�A+�(J� I �A) and MA or AM lying in hM;Ji, then � is quasi

strongly regular.
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