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This report includes two papers (a preprint and a reprint). The �rst

paper is phisolophically oriented and concerns the foundations of the

continuum. The second one is a technical survey of applications and

methods based on the use of continuous structures.

THE MATHEMATICAL CONTINUUM: FROM INTUITION TO LOGIC p. 3

Invited paper, in Naturalizing Phenomenology: Issues in Contemporary Phenomenology

and Cognitive Science (J. Petitot et al., eds.), Stanford University Press, 1998.

C0NTINUOUS STRUCTURES AND ANALYTIC METHODS IN COMPUTER SCI-

ENCE p. 31

Revised version of an Invited Lecture, in Ninth Colloquium on Trees in Algebra and

Programming, (B. Courcelle, ed.), Cambridge University Press, 1984.
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Chapter 1

THE MATHEMATICAL

CONTINUUM: FROM

INTUITION TO LOGIC

.... the conceptual world of mathematics is so foreign to what the in-

tuitive continuum presents to us that the demand for coincidence be-

tween the two must be dismissed as absurd. Nevertheless, those abstract

schemata which supply us with mathematics must also underlie the exact

science of domains of objects in which continua play a role.

Hermann Weyl, Das Continuum, 1918.

In this paper

1

we will deal with some foundational problems concerning the mathe-

matical continuum, in relation to Phenomenology. There are three main reasons which

justify such an entreprise:

(1) First, as it is explained in the introductory essay to this volume, mathematics have

always played an essential role in Husserlian Phenomenology. In fact Phenomenology

roots itself in the Philosophy of Arithmetic.

(2) Secondly, the question of the continuum is central for Phenomenology. The 
ux

of phenomenological data, what Husserl calls in Ding und Raum the pre-phenomenal

space, and the internal time consciousness rely upon the originary intuition of the

continuum. In what concerns the problematic of transcendental constitution, the link

between the intuition and the formalization of the continuum yields the exemple "par

excellence" of relation between what is constituting and what is constituted. Now it is

well known that the formalization of the continuum always encountered, from Aristotle

to Weyl, via Leibniz and Cantor, the greatest di�culties. One of the main thesis of

this paper will be that these di�culties are, so to say, the formal "symptom" of the

inherent di�culties in the \intuitions" of the continuum.

(3) Finally, the logical problems concerning formalization and axiomatization play a

crucial role in Husserl's formal ontology. Husserl's opposition between formal apo-

phantics and formal ontology is parallel to the model-theoretic one between syntax

and semantics. But Husserlian semantics is not purely set-theoretic. It wants to be

1

Invited paper, inNaturalizing Phenomenology: Issues in Contemporary Phenomenology

and Cognitive Science (J. Petitot et al., eds.), Stanford University Press, 1998.
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4 Foundations

a true formal theory of constructing principles of objects. Now, we will see that cat-

egorical semantics provides a far more satisfactory formal ontology than Set Theory.

Moreover we will analyse the correlation between proof principles (formal syntax) and

construction principles (categorical semantics). This correlation is analog to Husserl's

noetico-noematic one.

Dag Follesdal, when discussing Kurt G�odel's and HermannWeyl's conceptions of the

continuum, mentioned several important aspects of Husserl's in
uence on the thinking

of mathematicians. I will approach the discussion of the continuum from the per-

spective of trying to obtain a foundation for `mathematical knowledge' as part of our

way of interpreting and reconstructing the world, and not just as a `purely logical',

(meta)mathematical investigation of Mathematics. Nonetheless, some references to

technical work in Pure Mathematics and Mathematical Logic will be inevitable.

The starting point for this article are comments about the continuum made by

Hermann Weyl in the book Das Kontinuum [Weyl, 1918]. Weyl, a mathematician of

great stature, was strongly in
uenced by Husserl in his numerous foundational and

philosophical re
ections. In particular the `phenomenology' of the continuum is at

the heart of the most interesting, and modern, observations in [Weyl,1918]. Other

important references for these notes will be the articles by Ren�e Thom, Jean Petitot and

Jacques Bouveresse in the book Le Labyrinthe du Continu, [Salanskis, Sinaceur,1992],

as well as the re
ections of Wittgenstein (in di�erent places, to be cited in the text)

and in [Chatelet, 1993].

1.1 The Intuition

Our intuition about the continuum is built from common or stable elements, from in-

variants which emerge from a plurality of acts of experience: the perception of time, of

movement, of a line extended, of a trace of a pencil...

Time. Weyl considers \time as a fundamental continuum", and the \phenomenal

time" of Husserl and Bergson as \conscious experience" of the present which coexists

with \memory of the instant gone". Its measure is based on the comparison of temporal

segments [Weyl, 1918; p.109{111]. Weyl describes the intuition of time as a continuous


ux, an \experience in transformation". For Weyl, phenomenological time is a duration

without points, made out of parts that link together, that superimpose over each other,

because \this is now, but meanwhile now is no more" [Weyl, 1918; p. 111]

2

(footnotes

on page 22).

Weyl's insistence on non-compositionality of the continuum develops a fundamen-

tal thesis of Husserl's. There is in Husserl an essential opposition between time and

space as (pre-)phenomenal life-experiences, which are constituent existences, and time

and space as construed entities. The pre-phenomenal ones, time in particular, are non-

compositional, whilst the second ones, as a result of a mathematical construction, are

made out of ultimate elements (the points). Weyl accepts the (mathematical) hypothe-

sis which forces a one-to-one correspondence between the real line, as de�ned following

Cantor and Dedekind, and pre-phenomenal space, but he considers unsatisfactory the

extension of this correspondence to time.

Movement. We can `see' the continuum in the movement of an object. In Physics,

since Aristotle time presupposes movement: movement gives the measure and even
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the concept of time. The continuum which we derive reminds us again of 
ux, the

passage from the power to the act: but the direct vision of movement has no need to

appeal to memory. Weyl then proposes an interesting distinction: the continuous line

which is there, the \tracks of the tramway" (an image also dear to Ren�e Thom [Thom,

1990]) and the curve, a potential path, \which a pedestrian walks on... the trajectory

of a point in movement". When this point \�nds itself in a determined position, it

coincides with a determined point of the plane, without being itself this point of the

plane". \In movement, the continuum of points on a trajectory recovers in a continuous

monotone fashion the continuum of instants" [Weyl, 1918; ch.II par. 8]. But this is just

superposition: for Weyl the temporal continuum does not have points, the instants are

merely \transitions", the present is only possible due to the simultaneous perception

of the past and of the future.

The String extended. A thread, a string extended (another of Thom's images), is

another experience of the continuum. By its tension, it cannot have jumps nor holes.

The Pencil on a sheet. This is the most common experience of the continuum: no

one entertains discourse or conscious re
ection of the continuum before having drawn

lines on pieces of paper thousands of times. The experience is neat: a set of black

points transforms the curve into a line, in the sense of Weyl. The points are collected

in the trace, which makes their individuality disappear. These points become evident

again, as isolated points, when two lines cross each other.

Cauchy in his �rst demonstration of the Theorem of the Mean Value (see par.2

below) does not go further than the intuition of the continuum that comes from strings

and curves traced by a pencil and their crossings.

Viewing the traces of pencil over paper suggests from where our intellectual experience

of points | isolated and without dimensions | could have come: from the crossing of

two lines. The points are not part of our intuition of the continuum, clearly at least

not from the temporal continuum, as Weyl tells us, but also not part of the spatial

continuum, as Wittgenstein explains. For Wittgenstein, a curve is a law, it is not

made out of points; \the intersection point of two lines is not the common element of

two classes of points, but the intersection of two laws" [Wittgenstein,1964; quoted by

Bouveresse, 1992]. If the line or the curve of the movement has only one dimension,

that given by the law that describes it, then we are forced to conceive of a point, as the

crossing of two lines, as devoid of dimension. This is also suggested by two lines or by

pencil traces that cross each other, on a paper sheet. The point without dimension is

a conceptual construction, a necessary consequence of a line as a one dimensional law.

It is a posterior construction, speci�c to Set Theory, which `puts together' the points

to reconstruct the line. From this construction comes the set-theoretical inversion of

priorities { the continuum as a set of points | an inversion rejected, as we mentioned,

by Weyl, Wittgenstein and Thom, for di�erent reasons.

1.2 The Mathematics

One of the most important theorems about the mathematical continuum is intuitively

obvious: if on a plane a continuous line has one of its extremities in one side of a right

line and the other on the other side of the same right line, then the continuous line
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cuts through the right line.

Theorem of the Mean Value If the function f(x) is continuous with respect to the vari-

able x between a and b, and if we call c an intermediary value between f(a) and f(b),

then we can alway satisfy the equation f(x) = c, for at least one value of x between a

and b.

Proof (Cauchy, 1821) It is enough to see that the curve which has equation y = f(x)

will meet one or more times the line y = c, inside the interval between a and b; now, it

is evident that this will be what will happen when the hypotheses are met. QED

This proof is not a proof. It is not that the reasoning is faulty, it is the de�nitions

that are missing: Cauchy does not have (yet) a rigourous notion of continuity, nor

of a curve (Weierstrass). He appeals to the evidence of threads and traces of pencil.

Fortunately the theorem in Analysis is true, we can demonstrate it rigourously. Poinsot,

in a course in the Ecole Polytechnique in 1815, believed he had demonstrated, in a

similar fashion, that every continuous curve is di�erentiable everywhere, on the left or

on the right. The counterexample is well-known

3

.

Actually, at the beginning of the XIX century, the `intuition' about the continuum

in Mathematics needed to be made precise. The Ether of Physics was also in the

scienti�c spirit of everyone, with the homogeneity of a perfect continuum. There was

a choice to be made: in one side Leibniz in�nitesimals, on the other the limits, the

continuity in terms of `for all �, there exists a �' (Cauchy, Weiertrass).

What is the invariant, the stable among the many experiences of the world that

refer to the continum? Certainly a invariance of scale: all the little bits of time, of

a line, even of a string ... keep the same properties that of a longer one (with the

perception of continuity of an extended string, we don't see the atoms). In general, the

magnifying glass does not change our intuition of the continuum. Or more formally all

homotheties preserve the structure of the continuum. Then, the absence of jumps and

of holes: no stop to jump further (the jumps), no abyss in which Zeno's arrows can be

lost (the lacunas or absence of individual points).

There we have the formidable invention of Cantor and Dedekind. It will make

people forget Leibniz's ideas until the invention of Nonstandard Analysis, a century

later, because of its conceptual simplicity, its precision, its constructivity. Take the

totally ordered set of the integers, N , the rationals, Q, as fractions of integers. The set

Q is also totally ordered and has already some interesting properties for the continuum :

it is in e�ect a dense order (between any two rationals, there is always a third rational),

hence invariant by homothety and without jumps. But Q has an uncountable number

of holes or lacunas. Add on all the limits, in the sense of Cauchy, or, what turns out

to be the same, de�ne a real number as the set of rationals that are smaller than itself

(a Dedekind cut). This is the set-theoretical construction of Cantor-Dedekind which

is the standard formalisation of the continuum, that of the real line R of Analysis. It

satis�es the invariance of scale, it has no jumps or lacunas. A curve in space will be

continuous, if it is described by a law, which does not introduce jumps nor lacunas and

is parametrised by this line

4

.

1.2.1 The Impredicative De�nition of the Real Line

There is still a problem with the construction we have sketched: if a real number is the

limit of all the rationals that precede it, we are using and we are preparing the ground
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for a `circular de�nition'.

Firstly, there is always an in�nity of (positive) rationals smaller than whichever

(positive) real: hence we need to use, when de�ning it, the collection N of all the

integers, in its totality. And the classical de�nition of this totality has the following

structure: N is the smallest set that contains zero and which if it contains n it contains

n + 1. Said in a di�erent way, N is the intersection of all sets that contain zero and

that are closed under the successor operation. But N has also this property: to de�ne

it using the phrase `all the sets that..' we quantify over a collection that contains N

itself. The defeniens uses the defeniendum.

Secondly, once the real line has been constructed, whenever we de�ne, for example,

least upper bounds or greatest lower bounds, we do it once again using the quanti�-

cations which can make reference at what is being de�ned (the collection of the upper

bounds or of the lower bounds includes the `de�niendum', the smallest or greatest

bound, which is also an upper or a lower bound).

Poincar�e and Weyl, who were well aware of these problems in Analysis, gave a

rigorous de�nition of `impredicative notion' in mathematics

5

. Poincar�e observes that

these de�nitions are not always contradictory, but they always present the dangers

of circularity. Lebesgue, in 1902, built the General Theory of Integration over an

essentially impredicative de�nition (the Lebesgue measure). The question was hotly

discussed at the beginning of the century, in particular under the impulse of Russell.

We will hint to the consequences of this discussion in Weyl's books.

Does this circularity separate the Cantor-Dedekind construction and hence Anal-

ysis, from the `intuition of the continuum'? Clearly not. Already in Aristotle we

notice a circularity in the discourse on the continuum: the continuum is presented as

one \totality already formed, which, on its own, gives meaning to its components "

[Panza,1992]

6

.

The same way the present time of Weyl is circular: none of its parts (past, present,

future) has meaning without mutual reference to each other; time itself is the simul-

taneous perception of the past, the present and of the future. The present time that

it is not there anymore, it is past, or that it is not there yet, it is future, and that we

only understand when inserted in the whole of time or within a segment of time. The

same is true about the continuity of the string or the line, which is not conceived of

points, but globally, or at least through an `enlarged locality'. The impredicativity of

Analysis proposes a possible formalisation of this intuitive circularity, in particular of

phenomenological time; it is one of its expressive richness, another point of contact be-

tween intuition and mathematics. Thus, in our views, the intuitively non-compositional

nature of time is re
ected in the apparent paradoxes of the mathematical construction;

these circularities need not to be avoided but analysed and developped, in particular

by the tools of Logic and Type Theory (see below).

This way the division between time and Mathematical Analysis, which disturbs

Weyl (the absence of points in the phenomenological time in comparison with the

points which form the real line) is in part, but only in part, reduced: the real points

can be, a posteriori, isolated, but their de�nition and their Analysis, �a la Cantor-

Dedekind, requires `a global look' at the continuum, the same way the intuition of

the present requires that of the past and of the future. In Das Kontinuum Weyl is

worried, as most mathematicians at the beginning of the century, about the necessity

of rigour in the mathematical de�nitions: too many paradoxes have disrupted the
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foundational work, the de�nitions tinged with circularity are suspected. For this reason,

he tries a novel approach, which avoids impredicativity, as it is based on a predicative

approach of Mathematical Analysis. This attempt will not a�ect his concrete work in

Mathematics (see [Chand.,1987]) nor his futher foundational re
ections (see the next

footnote). Weyl is probably missing, in that temporary restriction of his mathematical

tools, a common element between Analysis and the intuition of (temporal) continuum,

of which he particularly cares. However, given his mathematical talent, the few pages

he sketched on this point will be considered a paradigm by other logicians that, later

on, will continue to prefer the strati�ed certitudes to the expressive circularities of

impredicativity (see [Feferman,1988]). But the challenge of his book is primarily his

insatisfaction with the mathematical analysis of the temporal continuum and in his

critique of the arti�cial unity of the space-time, a very important (and very criticable)

acquisition of the Mathematical Physics of his time

7

. Time, due to its irreversibility,

to the nature of its continuum, is very di�erent from space, as many thinkers, from

St. Augustine to Weyl, have made the e�ort to tell us.

1.3 Between Intuition and Mathematics

Cantor and Dedekind have proposed a precise mathematical formalisation of the intu-

itive continuum, with at least three points of contact with our intuitive demands: the

invariance of scale, the absence of jumps and of holes. This formalisation is based on

very clear `construction principles' : the sequence of natural numbers, quotients, limits

of convergent sequences. Because iteration gives us the integers (we will come back to

this point) and quotients give us the rationals; a convergence criterium for a sequence

given by a rule gives us a method to construct the reals. A convergence criterium for a

sequence, even if the sequence is not known a priori, indicates, without ambiguity, by

retracing the interval, what we de�ne as `the real limit' of this sequence

8

.

The theoretical import of this construction is massive and its conceptual force rekin-

dles our vision of the world. Because not only Mathematics and its structures, it is our

knowledge that is not strati�ed. Once a language and a expressive geometry intervene

with the description of the world, they enrich it with forms, which acquire an objective

autonomy. This is the basis and the result of the intersubjectivity, it emerges from the

world, it is full of history and because of this, it is not absolute nor arbitrary. But above

all this language, this geometry will in
uence our original intuition, for a dynamic game

is then played. This game goes from our intuitions to their formalisations and when

it returns to the the intuition, it modi�es it. A `classical' mathematician does not see

a trace of a pencil, without seeing the continuum of R, which parametrizes the trace

as a curve. He will talk about the continuity of this trace, of space, of time, of move-

ment, directly in terms of his analytical language. Also the trace over the sheet, the

comtemplation of movement are instruments for his own re
ection, `eyes for the mind'

for the construction that he is trying to master, Analysis. And, before any proofs, he

starts to use his intuition over the mental spaces of Analysis and Geometry, trying to

understand them as he understands the string, as if they were realities of the same

level

9

. From this comes the usual platonic ontology of most mathematicians. It is a

formidable help to formulating conjectures and even proofs: Cauchy has `seen' the right

Theorem of the Mean Value. Ren�e Thom also has `lived' for a long time amongst the
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continuous and di�erentiable varieties. His deep immersion into this conceptual space,

his mathematical genius, have allowed him to `see', �rst, and classify the singulari-

ties (the catastrophes), an exceptional mathematical (and cognitive) performance. For

him, as for many mathematicians of the continuum, \the Continuum precedes ontolog-

ically the discrete", for the latter is merely an \accident coming out of the continuum

background", \a broken line" ... \the archetypical continuum is a space that has the

property of a perfect qualitative homogeneity", hence it gives us a vision, more than

a logico-mathematical construction [Thom, 1992]. Actually Thom goes further \any

demonstration is a revelation of a novel structure, where the elements solidify the intu-

ition and where the reasoning reconstructs the progressive genesis" [Thom,1990;p.560].

An intuition, non emergent from the world, but observation of the universe of Mathe-

matics where the \form of existence is without doubt di�erent from the concrete and

material existence of the world, but nevertheless subtly and deeply linked to the ob-

jective existence." For this reason \the mathematician must have the courage of his

inner convictions; he will a�rm that the mathematical structures have an existence

independent of the mind that has conceived them; ... the platonist hypothesis ... is

...the most natural and philosophically the most economical" [Thom,1990;p.560]. Dana

Scott more prudent said to this author: \it does no harm".

The advantages of the platonic hypothesis in the `linguistic synthesis' for the every-

day communication amongst mathematicians are enormous, due to the e�cacy of the

objective signi�cation that it can give to the language and to the crucial `scribbles in

the blackboard'. But the foundational and philosophical drawbacks that it entails are

also very important, for all transcendent ontology disguises the historical and cognitive

process, the project of intellectual construction, of which Mathematics is rich, and in

particular the `proof principles' and the `construction principles' which are at the basis

of its nature.

1.3.1 Other Constructions of the Continuum

Discussing the continuum we have tried to describe how the mathematical intuition

is built in our relation with the world, by \these acts of experience ... within which

we live as human beings" [Weyl,1918;p113]. On the basis of these life experiences,

we propose descriptions and deductions, we make wagers, not arbitrary, but full of

history and of intersubjectivity, of invariance within a plurality of experiences. Those

wagers, organised in mathematical theories, are our linguistic (Algebra, Analysis) and

spatial formalisations (Geometry). The `transcendental objectivity' (in the Husserlian

sense) but not transcendent, which emerges by these intellectual constructions and which

modi�es itself and enriches itself in history, will give (mathematical) forms to the world:

forms that are not `already there' and which will also modify and enrich our original

intuitions.

These proposals, these constructions, which aim to an objectivity not absolute

anymore, but strong, full of intellectual and cognitive paths, of theorems, of intersub-

jective communication, are not unique. In the case of the continuum, Leibniz had

proposed another construction, in an way too incomplete to resist the very robust

construction of Cauchy, Weierstrass, Cantor and Dedekind. It was necessary to wait

for the Mathematical Logic of this century, so that an alternative proposal became

a new Mathematical Analysis, Non-Standard Analysis

10

. The non-standard analyst
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describes the continuum di�erently: despite a number of conservative extension results

for the new theories with respect to Standard Analysis (they prove the same theorems,

within the standard fragment of the language), his real numbers like `halos of inte-

gers' are a di�erent thing altogether and it is possible to demonstrate new theorems.

The ordered set of non-standard numbers, the new real line, loses, for example, the

invariance of scale (Hartong), one of the strong invariants of our di�erent views of

the continuum, see [Barreau&Hartong,1989]. The non-standard analysist hence view

the geometrical space, the physical world in e�ect, in a di�erent way; this change of

theory and of intuition of the mathematical continuum seems to o�er new insights in

Mathematical Physics (see [Cutland,1988] and the articles by Lobry, Lutz and Reeb

in [Salanskis&Sinanceur,1992]; [Salanskis,1991] proposes an epistemological analysis of

the non-standard continuum).

Thom himself does not believe that the standard analysis, yet at the heart of his

work, gives a de�nitive representation of the continuum. Dissatis�ed by the arithmeti-

cal (and logical) generativity of the (non-)standard continuum, exactly like Weyl was

by the treatment of the \continuous 
ux" and of the phenomenal time as a set of real

points, he will suggest new ideas (see [Thom,1992]). By his mathematical audacity, he

sketches a new conceptual construction. This conception is built from his mathematical

work experience, which is comparable, for him, for its force and its evidence, to the

experience of the world.

But the intuition that is constructed in the praxis of Mathematics is di�erent from

that which emerges directly from our relation with the physical world, even if they

do get mixed up in our `working mathematicians' minds. The �rst one, in what con-

cerns standard analysis for example, is based on the Cantor-Dedekind construction

and the work derived from that in more than a century. If Cauchy in his `proof' of the

Theorem of the Mean Value had made reference to well-de�ned notions of curve and

continuity, if he could have appealed to the rigorous mathematical intuition of the stan-

dard reals, built over the correct de�nitions given some decades later, then his proof

would have been a proof. He would have used the `informal rigor' of the practice of

mathematics. In a somewhat di�erent understanding of this notion from Kreisel's, the

informal rigor is based on observations `from above and from a distance' of de�nitions

and constructions that we know to be potentially rigorous and then by the development

of an informal deduction: the rigor stays more in the precision of the notions than

of the deductions. This method is so typical of work in Mathematics, so much based

on `intuition', because it is built on the history and the practice of Mathematics. This

mathematical intuition, and the informal rigor which is grounded on it, is not the one

of the `man in the street' (even less the one of the paleolithical man): all the training

in Mathematics, from the student to the researcher, is to acquire this informal rigor,

di�cult balance between intuition and formal rigor, which permits a demonstration

and its comprehensible expression.

The identi�cation of these two kinds of intuition, the one of the trained mathemati-

cian and the other developed only in everyday life, into one single `pure intuition', is

the origin of the di�culties to developing a cognitive analysis, not purely psychological,

not purely logical of Mathematics. For the analysis of mathematical intuition, which is

not given, which is not an absolute, but it is built in the interplay of acts of experience,

language, design and formalization, is actually part of the analysis of Mathematics as

a form of knowledge. Moreover, the confusion between di�erent levels or kinds of intu-
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ition, from the common sense one to the one in the experienced mathematician, beyond

history, gives a comparable or identical level to the objectivity from the physical world

and to the objectivity from Mathematics: in both cases the intuition of evidence will

be the same, as well as the one of invariants and stabilities. One intuition `pure and

unique' forces us to believe in the unicity of the theory possible; it makes di�cult a

comparative analysis of di�erent theories, or of wagers of representation, which are

proposed to treat mathematically the world and our intuitions of it and which are full

of history and of questioning, as the intuition of the continuum.

1.4 From Mathematics to Logic

Take the subsets, the parts, of the set N of the integers, P (N). If two subsets A and

B are strictly included into each other they di�er by a �nite or in�nite subset, but, we

would say, in `a discrete way', by successive jumps: it is integers, well separated ones,

that A is lacking to get to B. I hope the reader can `see' this in his head, using his

mathematical intuition. But, this is not really the case: P (N) contains chains (totally

ordered sets) with the same type of order as R (i.e. the kind of order of the continuum:

dense, without jumps or holes). The proof is easy: Q is countable, choose a bijective

enumeration of Q by N and associate to each real number the integers which enumerate

its Dedekind cut. Then you have a bijection (an order isomorphism) between R and

a chain inside P (N). Our construction principles have given us very rich structures,

R and P (N), so rich that they escape the intuitive na

�

ive observation. Actually these

structures do not exist: the property that we just `saw' is not there, it is not explained

as we explain a property of the world, we have demonstrated it, as we have built these

structures, as conceptual constructions. The well-trained analyst can short-circuit this

proof and see immediately the continuous chain, for the Dedekind cuts are as concrete

for him as this table (to paraphrase G�odel). In any case, to construct the chain in P (N),

we have made some `choices'. We have presented Q as a set of pairs (fractions) of the

integers N . Each rational corresponds actually to an in�nity of equivalent fractions;

hence to give a bijective enumeration of Q we must enumerate N�N (easy) and choose

a representant for each set of equivalent fractions. This choice is e�ective, for these

equivalence classes are decidable { and the Theory of Recursively Enumerable Sets

(and Recursive Functions) realises the Axiom of Choice

11

. This axiom, this principle,

is a construction, or allows a construction, that of the \set of choices", composed of

one element for each set in the collection considered (see the note). Hence it is a

construction principle, since, by using a speci�c mathematical structure, it allows the

construction of new structures. But it is also a principle of proof: once presented `in

abstracto' (that is, at formal level, with no intended domain of interpretation, as if

it held for all collection of sets, without any hypothesis on decidability nor on order

that allowed the choice of the `�rst element' of each set) it becomes a purely logical

stake: further than the �nite (or decidable or ordered) it completely cuts itself o� from

the practices of life and it acquires a level of abstraction that makes it independent

of the formalisations `without structure' of mathematics (the formal set theories, see

paragraph 5). Nonetheless the trained mathematician uses it everyday, without fear of

error, knowing without knowing that he's using a powerful proof principle, which only

the speci�c structure of certain constructions makes applicable. And he confuses his
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cognitive performance, the vision of the conceptual structures of his daily intellectual

practices, with a mystical ontology.

Let us try again: cardinality is in �rst approximation the number of elements of a

set. Cantor has shown, by a simple diagonal construction that R has more elements

than N , the integers. The reader clearly sees the real line and the `integer points' well

isolated and regularly spaced. The rationals Q are dense and hence give an approxima-

tion for each real number. But they are as numerous as the integers. Is it true that if

a subset of R is larger than N or Q then it has necessarily the cardinality of R? What

does say the observation about this object universe? What says the pure intuition?

Nothing. But still the reals are there, God at least must know them all, with their

subsets.

To answer these questions it is necessary to make precise the `frame of the set

theoretical construction', to make precise our `basic principles': if we consider the reals

inside the universe of construtibles of G�odel we say yes, if we consider the reals inside

the set theoretical universe of Cohen we say no. We do not know which framework God

prefers. The question, from Cantor to Frege, G�odel, Cohen and D.Scott has been a

key issue in Mathematical logic: it is the challenge of the Continuum Hypothesis (HC).

We will refer again to it in section 5.2; but before that we must discuss `iterations' and

`horizons'.

1.5 Construction Principles and Proof Principles

One of the `theoretical situations' that gives `certainty' or `structural solidity' in the

work of mathematicians and logicians is the joining of di�erent methods, which con-

verge to the same construction. When very di�erent ideas with technical and cultural

origins very much apart can be translated into each other, possibly up to isomor-

phisms, we are sure that we have in our hands a signi�cant construction. For these

connections, with di�erent degrees of proximity, sometimes just embeddings without

isomorphisms, are to be found in all interesting domains of Mathematics. That is the

unity of Mathematics: these bridges, these translations, this to-and-from, these intel-

lectual percourses through rough tracks, sometimes in parallel, which may arrive by

shortcuts to well-known valleys. The audacious explorers (constructors!) will be re-

joined by others, which proposed totally di�erent paths, with (sometimes) independent

goals.

The relationship between Intuitionistic Logic and Theory of Categories (by means

of the Theory of Types) gives one of the more interesting and elegant examples of

this kind of correspondence. A few remarks on this subject will allow us to clarify

the notions of `proof principle and construction principle', to mention a categorical

semantics of impredicative de�nitions and of the notion of `variation', which are the

heart of the analysis of the continuum.

After that, we will brie
y go back to the Axiom of Choice and the Continuum

Hypothesis as logical axioms and as mathematical constructions.

In our views, the relationship we sketch below may be clari�ed by (and help to

understand) some concepts of Husserl's. First, as we already said, the categorical se-

mantics of formal languages o�ers a `formal ontology' far more adequate to Husserl's

prespective than the set-theoretic one. Category Theory is grounded on principles of
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constructions, within a structural understanding of mathematics, which allow to go

far beyond the `point-wise', unstructured and basically compositional, set-theoretic ap-

proach. Moreover, the interplay between proof principles (syntax) and principles of

constructions (closer to semantics) may be understood by means of a parallelism with

the Husserlian correlation noesis/noema. One has to interpret mathematical construc-

tions as `act of a subjet', in intuitionistic terms. However, the `objectivity' of these

constructions, in our approach, is due to their relation to the regularities of the world

and to their `intersubjective' content, which is built by and in the dialogue with other

subjective experiences. (Of course, this signi�cantly departs from Brouwer's solipsistic

philosophy). Thus Husserl's `noeses' may be understood, in mathematics, as systems

of rules, possibly implemented in mental acts, and `noemas' are the correlated objec-

tivities, the intersebjective constituent of the mental constructions.

1.5.1 Conjunction, Quanti�cation and Products

In Intuitionistic Logic

12

we say to have a `proof' of a conjunction A ^B (in a unique,

canonical way), if we have a proof of A, a proof ofB and the possibility of reconstructing

from a proof of A ^ B a proof of A and one of B (we have projections). Let A and B

be two sets, two spaces, any two mathematical structures: what we have just de�ned is

simply the cartesian product A�B of A and B with its projections, which associate to

each element, or proof of A�B, one element or proof of A and one of B. More precisely

it is the Category Theory version of the cartesian product, the product invented by

the geometers, which thanks to its categorical generalisation gives us also the product

of two topological spaces, two partial orders, of any two mathematical structures ... in

their categories (of structures). We have already gone to constructions, having started

with proofs: A � B is the categorical (in fact geometric) semantics (interpretation) of

the intuitionist conjunction A ^B.

In Mathematics, in Algebra, in Geometry when we have a construction, we usually

have another, its dual, for free. Category Theory says that it is enough to reverse

all the arrows, that is the direction of all morphisms or functions between objects, to

obtain the dual of a given construction. In the case of the product, we reverse the

direction of the projections. This way we obtain the categorical coproduct, which can

be constructed in several categories. This corresponds to the notion of intuitionistic

disjunction: the famous intuitionistic disjunction A _ B, of which we have a proof if

and only if we have a proof of A or a proof of B and we know of which one the proof is.

In particular, for this notion of disjunction, A_ :A (A or not A) is not demonstrable:

to prove it, it is necessary to have a proof of A or a proof of :A, hence the `excluded

third option' is not valid. More formally, write S ` C to mean `S demonstrates C';

then, in full generality,

S ` A _B if and only if S ` A or A ` B

and hence the theoretic `or' (_) corresponds to the metatheoretic `or'. In a classical sys-

tem this beautiful intuitionist symmetry theory/metatheory is lost, for the implication

from left to right is false. Hence this intuitionistic `or' is not so odd: it is simply the

dual of a very familiar geometric construction, the cartesian product, and it transfers

the metatheoretical disjunction into the theory.
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We can also show that the intuitionist implication can be interpreted as the ex-

ponential objects in the categories closed under this construction. In intuitionistic

systems, a proof of A! B is a `computation' which takes any proof of A into a proof

of B or, in Type Theory, a term of type A ! B; informally, it is then a `computable'

function from A to B. In Category Theory, the exponential object, which may also be

written as A ! B, represents exactly the set of morphisms or functions between two

objects of a category.

But Mathematics needs variables. The syntactic entity represented by x; y; : : :,

which is an individual variable in Mathematical Logic, is a projection in Category

Theory. When it appears within a formula, this generalises to the notion of �bration,

a categorical way of talking about variation. Thus the universal quanti�cation 8x 2

B:A(x) (for all x in B we have A(x)) corresponds to a �bred product (or pullback), a

notion well-established in Geometry, a kind of `generalised cartesian product': actually

universal quanti�cation generalises conjunction, for A(x) must be true at the same time

for any x in B. This is an in�nite conjunction or a limit: very informally it corresponds

to A(b) ^A(b

0

) ^ : : : for all elements b; b

0

; : : : in B.

How do we understand the existentencial quanti�cation 9x 2 B:A(x) (there exists a

x in B such that A(x) holds), always in the �rst-order case (that is when the variables

are individual ones) ? The seminal observation of Lawvere is that this is nothing but the

dual of the product above, with respect ot the operation of substitution (formally 8x

and 9x correspond, respectively, to right and left adjoints to the substitution functor,

see [Lambek&Scott,1986]). Thus, once more, syntactic principles from Logic, indeed

Frege's �rst-order universal quanti�cation, nicely corresponds to actual constructions

in geometry.

Matters get more complicated when we consider variables over propositions or sets

(we will write them with capital letters X; Y; : : :). Why this extra work? When dis-

cussing the continuum from the logical point of view this is inevitable: the real numbers

of Analysis are sets of integers, the numerical codes of (equivalence classes of) Cauchy

sequences of rationals. For this reason the Arithmetic of second order, with variables

ranging over propositions is considered the logical counterpart of Cantor-Dedekind's

Analysis. Here comes the di�culty: the variables do not vary over a set or predicate,

as in 8x 2 B:A(x), but instead they vary inside the collection Prop of all the sets or

propositions, including 8X 2 Prop:A(X), the proposition that we are trying to de�ne,

for 8X 2 Prop:A(X) is in Prop. Danger, danger: impredicativity got us. No problem:

we will sort things out in two di�erent ways. Through a normalisation theorem (we

will see this in paragraph 5.3) and through a construction, that does not depend on

the logic, and which has its origin in Geometry (the Grothendieck topos and the ideas

of Lawvere). Inside these geometrical categories we can give a structural meaning, as

a closure property of certain categories, to this stake that worries many logicians (but

very few mathematicians and computer scientists). Brie
y the variation will happen

now over a category and not simply over an object of a category, as in the �rst order

case, for we need to give meaning to the variables over propositions and each propo-

sition is an object; thus it is necessary that this category be closed under products

indexed over itself. All this gives a new structure for the variation and a strong closure

property. The circularity of the impredicative de�nitions becomes then a theorem, the

closure of certain categories under generalised products, whose origin is geometrical

(see [Asperti&Longo, 1991]).
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The only di�culty is that the construction cannot be done inside a classical Set

Theory ([Reynolds, 1984]), instead one needs an intuitionistic environment ([Pitts,

1987], [Hyland, 1988], [Longo, Moggi, 1991]). Once again, but this is complicated,

the geometrical symmetry between 8X and 9X can be represented as left and right

adjunctions, with respect to a functor that also generalises the cartesian product, the

diagonal functor.

Here we have a game of principles of proof and principles of construction that have

very di�erent origins and motivations. We understand ones through the others and this

way we obtain one of these conceptual chains that are the kernel of the mathematical

construction.

We have used implicitly in this sketch of a mathematical semantics of proofs, some

constructions that take us back to in�nity and the continuum. We have touched the

continuum in two main ways: the semantics of the notion of variation or change, which

is one of the elements of the phenomenon of the continuum, and the impredicative

de�nitions. But there are also passages to the limit, which are implicit in the categorical

constructions of the product, as the universal quanti�cation 8x 2 B:A(x) is an in�nite

conjunction, a categorical limit.

We then go back to in�nity, to limits and to the continuum in Mathematics and

Logic.

1.5.2 Limits and Closings of the Horizon

Despite the supporting references to systems of Intuitionstic Logic, the reader should

not suppose that the author is a `devoted intuitionist' as we can still �nd them (and

of great scienti�que value) in Northern Europe. The notion of conceptual construction

discussed here is the one which emerges from the practice of Mathematics and it is

more general than the one of Brouwer or as formalised by Heyting. The interest for

Intuitionism is �rst mathematical: these systems have a correspondence in Geometry

(Topos Theory) which is hard to �nd for other logical systems. But the interest in

Intuitionism is also methodological, because of the emphasis it puts on the notion of

construction

13

. But we should not make a limiting religion of our extraordinary creative

possibilities, when it comes to mathematical constructions. In�nity for example has

been part of our practices of language and of our perception of space for a long time,

too long for us to try and expel it from our mathematical practice or from the logical

theoretizations.

Consider the sequence 1; 2; 3; : : : that we can iterate without any reason to stop.

Its closure, on the horizon, which we call !, is it not as clear and certain as the �nite

iteration? Nowadays with computers that do iteration so well, we can observe what

happens after iteration more easily than in the past: the �nitist engagement in Logic

this century is in the origin of (the development of) these formidable digital machines

that have changed our daily life

14

. This �nitist e�ort should remain with the machines!

We can continue, as mathematicians have done forever, using this construction, this

going to the limit, without fear of losing our \unshakeable certainties". And we can

state with no problem:

! + 1; ! + 2; : : : ; ! + ! = ! � 2
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But now the playing is easy, the construction evident:

! � 2; ! � 3; : : : ; !! = !

2

Why not carry on? The rule is there:

!

2

; !

3

; : : : ; !

!

So long as we have a persisting iteration, we, human beings, we get bored. This is

one of the di�erences between us and the computers: boredom. Computers don't get

bored: iteration is their strongest point. We, once we have understood, once we have

detected a regularity, we look further a�eld, we see the horizon, ! or even !

!

, as we

see the image of poplars in [Chatelet, 1993;ch.2.2]: we enclose into one single look

the range that repeats itself in the direction of the horizon and we project it over

an actual in�nity. This is a human experience which is gradually made explicit in

concepts through the centuries; maybe it has its origins in the Oriental religions, as

Weyl would have it

15

; in any case, this experience has developed because of and within

the mathematical practice, where religious commitment and platonist ontology can mix

up and justify a conceptual construction, as with Galileo, Newton or Cantor. But what

happens if we continue the iteration of the exponentials? We have ! to the power !

to the power ! ... on the limit, in the horizon this will be simply ! to the power !, !

times. This ordinal we call �

0

, it gives the smallest solution to the equation x = !

x

.

Do we need a trans�nite ontology to describe and use this construction? No, a simple

principle of going to the limit, to the horizon, su�ces, if we have an explicit iteration

(as in this case) or a criterium of convergence (as in the case of Cauchy sequences).

The ordinal ! is not in the world, it is not a convention, nor merely a symbol: it

synthetises a principle of construction, a \disciplined gesture" to paraphrase Chatelet,

rich of history. Its rigorous use in Mathematics has given it a meaning, has inserted it

inside operative contexts, has shown us its di�erent points of view, brie
y has found

it a place within the conceptual network we call Mathematics. This gesture reiterated

gives us ...! � 2,... !

2

,...!

!

... �

0

. And whatever follows

16

.

The utilisation of �

0

in proofs has huge consequences. To begin with, Gentzen

showed, in 1936, the consistency of Arithmetic, by induction up to �

0

, hence using

methods beyond the �nite ones, which are below !

17

. Next, this \skeletons of in-

�nity" can be found in the minimal construction of a model of Set Theory: G�odel's

constructibles, which takes us back to the continuum. G�odel's idea in 1938 was brie
y

as follows: starting from the empty set, repeat by induction up to �

0

the constructions

formalised by Set Theory in their language and noting else

18

. The real numbers built

inside this mathematical structure do satisfy the Axiom of Choice (and the Continuum

Hypothesis), for reasons of minimality that we can guess: the sets of real numbers have

minimal cardinality (see [Jech,1973], [Devlin,1973]). Cohen in 1966 proposed another

construction for Set Theory: he adds generic or arbitrary elements, whose properties

are \forced" bit by bit, during the construction of the model, in a way that does not

realise the Continuum Hypothesis (or the Axiom of Choice).

We normally say that these two major results show the independence of the Contin-

uum Hypothesis (and of the Axiom of Choice) from the formal Set Theories (Zermelo-

Frankel, etc..). But this is not the most interesting aspect: the meaning of these

theorems is in their proofs. They consist of mathematical (set-theoretical) construc-

tions inside which certain properties are realised and through this they give us precise
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information about the nature of these properties (in particular about the structure of

the continuum and the cardinality of subsets of the Cantorian reals: they depend on

the construction made). The fact that these properties are independent from the For-

mal Set Theories concerned (the independence) says nothing about the continuum, but

simply underlines the poverty of these formalisations, which are independent of any

structure and which were born exactly to answer the questions about the continuum

and about choice. Frequently formalism forgets the constructive and structural nature

of Mathematics: G�odel and Cohen's constructions remind us of this.

1.5.3 The In�nite in the Trees

Yet another relevant construction, in Mathematics, is that of `tree'. Mathematical trees

have their root on top: a unique node, which branches downwards. A tree is �nitely

branching if each node has a �nite number of nodes below it; a branch is a sequence

of consecutive nodes, a path with no interruptions that starts at the root and develops

to the bottom. Consider now the following principle, known as K�onig's Lemma (KL):

\in a �nitely branching, in�nite tree, there is an in�nite branch".

The reader certainly understands, `sees' this geometrical property of trees: if the

in�nite tree cannot grow in�nitely horizontally (since it is �nitely branching) it must

grow in�nitely vertically. This is an easy observation about the construction of trees,

by an `insight' onto the plane or the structure of planar trees. However, we cannot, in

general, e�ectively produce (construct by a calculable process) the in�nite branch, even

if the nodes are labelled and the tree is e�ectively produced (recursively enumerable).

More precisely: one cannot give an algorithmic rule, write a program that generates

the in�nite branch, for the computer will have to go down paths for exploration and

returns, erasing and reconstructing its memory in a non-e�ective way. Hence this

principle, even if evident, goes beyond usual e�ectiveness; it is not intuitionistically

acceptable

19

.

Yet this principle has several applications. One is implicit in the categorical analy-

sis of the impredicative de�nitions, mentioned in 5.1: a somewhat similar principle, the

Uniformity Principle (UP, see the last note above), is used in the construction of the

categories closed under products indexed over themselves ([Rosolini, 1986], [Hyland,

1988], [Longo&Moggi, 1991]; see [Longo, 1987] for a partly informal exposition). The

principle hence contributes to giving structural semantics to the syntax of impredica-

tivity: as we said in section 5.1, we can `understand' the impredicative de�nitions as

closure properties of certain categories. Moreover, Tait-Girard proof of the normal-

isation theorem for impredicative Type Theory (see [Girard&al, 1989]) uses K�onig's

Lemma and one \comprehension" axiom over Sets of the following form

9X 2 Sets:8x:(x 2 X () A(x)):

The naive platonists, which accept this axiom, and the limitative constructivists of

di�erent schools, that reject it, all attribute to it an ontological content, on the basis

of a \prejudice (in fact a medieval one) according to which the same logic holds for

Mathematics and the real world { this implies, as a consequence, that an existential

quanti�cation must refer to singular individual entities really existing as separated,

independent and transcendent entities" [Petitot, 1992]. This mistake that Petitot de-

scribes very well, is based on forgetting the role of proofs in Mathematics; it is su�-



18 Foundations

cient to observe closely the argument for \strong normalisation" in Type Theory, in

[Girard&al, 1989; par. 14] for example, to see that this axiom is simply a principle of

proof: it `just" permits to replace one variable over propositions (or types) for a given

collection of terms, de�ned during the proof. Where is the ontological miracle?

A major consequence of the Strong Normalisation Theorem for Girard's system,

and also for other systems starting with G�odel's 1958 system, is a demonstration of the

consistency of Arithmetic of �rst and second order, and hence of Formal Analysis (see

[Girard&al, 1989])

20

.

In summary, non-e�ective insights or conceptual constructions are part of the math-

ematical practice and the metamathematical theoretization, with no need to refer to

`ontological' principles. The consequences of an `existentially quanti�ed' assertion (a

comprehension axiom, say) are logical consequences of a possible (or assumed) con-

structions. The insight into trees may be as certain as an e�ective procedure

21

.

1.6 The Logical Independence

The �rst great result of incompleteness, or of undecidability with respect to an interest-

ing formal system, is G�odel's result, in 1931. In particular, G�odel's \�rst incompleteness

theorem" shows that formal Arithmetic, which can code all e�ective processes, contains

an undecidable propositions, call it G, if it is consistent

22

. The second incompleteness

theorem says that Arithmetic does not show its own consistency. More precisely, the

second theorem shows that G�odel's undecidable proposition G is provably equivalent,

in Arithmetic, to consistency. Hhence the second theorem shows that G is true, in the

standard model, if we suppose the consistency of Arithmetic.

Later, to show the consistency from Gentzen to Girard, it was necessary to come

out of the e�ective �nitism and make use of stronger principles of proof, as hinted

above.

We have also mentioned two other major results of independence, as consequence of

G�odel and Cohen's constructions: the Continuum Hypothesis and the Axiom of Choice

are not demonstrable nor refutable within Formal Set Theories.

By this, are there mathematical truths that we cannot reach through `demonstra-

tion'? How would this be implied by the results of incompleteness or independence, if

we just mentioned the existence of constructions which demonstrate the consistency of

Arithmetic, of the Continuum Hypothesis and of the Axiom of Choice? There are no

propositions that are `true and not demonstrable' in Mathematics. True and demonstra-

ble with respect to what, with respect to which construction and which proof principles

? One must make this precise.

There is in the usage of the this phrase, `true but not provable', a `slipping of

meaning', very relevant and typical of naive Set Theory. We only have a precise notion

of `truth of a proposition' with respect to given mathematical structures (there are

in fact several notions: Tarski's, Kripke's, Brouwer-Heyting-Kolmogorov's...). But we

believe naively that there exists a set of true propositions. And hence the mystical

reasoning: we move from the notion of truth to the collection, which exists in God's

mind and which contains, one by one, the true propositions, in a well-ordered fashion.

Which one, then, between the Continuum Hypothesis (CH) and its negation :CH

belongs to this collection?
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In Mathematics when we talk about the truth of a proposition, it is necessary to say

what we mean by this (that is, with respect to which notion of truth and with respect

to which structures) and moreover it is necessary to show the truth with respect to

this structure, to this notion. That was what G�odel did with the proposition G (\this

proposition is not provable"), which he showed to be codi�able and undecidable in

formal Arithmetic. He also proved that this proposition is true in the standard model

under the hypothesis of consistency, an obvious consequence of the second theorem of

incompleteness (the equivalence, in Arithmetic, of consistency and G). But G�odel did

not say that the consistency of Arithmetic, undemonstrable in Arithmetic, is \true":

for that it would be necessary to use Gentzen's proof, based on stronger principles.

G�odel (and Cohen) will give us structures where the Continuum Hypothesis and the

Axiom of Choice are true (or false) and they proved it.

Hence, what is this phenomenon of incompleteness, so important for the treatment

of the continuum in Logic?

When discussing the intuitionist conjunctions and disjunctions, we saw a perfect

correspondence between proof principles and categorical constructions. But this is not

always this perfect. The incompleteness of a formal theory, with respect to a precise

structure, appears when we have a rift, a gap, between proof principles and construction

principles. Formal axioms, abstract principles, syntax for the manipulation of symbols

and proofs in one side, constructions, in general geometrical or structural ones, in the

other. The mathematical and logical di�culty lies in `putting the �nger on' the gap by

providing theorems, making precise the proof principles and the construction principles

utilised.

Actually, even once the principles of proof and construction are well-described, there

is not always a clear demarcation between them; think for example of the Principle of

Uniformity or of K�onig's Lemma, or the Axiom of Choice, which are always between

proof and construction. Amongst the ones we have seen, perhaps only the axioms of

comprehension do not look like principles of construction and are pure `proof tech-

niques'. Also the rules and the formal axioms of the Arithmetic of Peano-Dedekind

or the logical systems of �rst order of Frege and Hilbert, the Set Theories, are very

clearly principles of proof, derived from mathematical constructions (Number Theory,

Analysis, ..). It is in the di�cult to detect, but possible gaps, between formal proofs and

mathematical constructions, that incompleteness theorems can be found

23

.

The incompleteness theorems of G�odel (the �rst: under the hypothesis of consis-

tency, there is an undecidable proposition; the second: the consistency is undecidable)

and the consistency proofs from Gentzen to Girard show that in the construction of the

integers and their properties we use, or we can use, if we we accept them, strong princi-

ples, beyond formal arithmetic: we show hence that the consistency is a true property

over the integers (and hence we show the truth of the undecidable proposition given by

the �rst theorem of G�odel, which is non-demonstrable in Arithmetic and equivalent to

consistency).

The constructions of G�odel and Cohen prove the same thing about CH and AC:

they show that they are true (or false in Cohen's case) on certain structures, contructed

using certain principles, but that they are non-demonstrable using simply the axioms

and rules, the proof principles, of Formal Theories of Sets

24

. In other words, all these

results (and many others: Paris-Harrington, Kruskal-Friedman ...) by proving the

truth or validity of certain propositions over possiblemathematical structures (universes
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of sets or of numbers) or by proving their unprovability within given formal systems

(described by possible proof-principles), `simply' display the gap between mathematical

constructions and formal theories.

Thus, one should never say in Philosophy of Mathematics the phrase `there are true

but non-demonstrable propositions', for this phrase makes no sense in Mathematics.

A working mathematician (not on Sundays, for then he does the usual naive platonic

philosophy) asks immediately ` Non-demonstrable with respect to which system (to

which proof principles)? True in which structure (using which construction principles

and notion of truth)?'

This century, the formalism, in Logic and Proof Theory, which going further, has

found in �nitism and formalism its origins, have without doubt helped to answer these

questions. But why logical formalism, a philosophical indirect springing of the math-

ematical practice, should be the ultimate source of our certainties, of our analyses of

proof and of construction in Mathematics?

The conceptual networks, inside which the mathematical constructions are embed-

ded, do not give us the ultimate certainties, but insert each construction within other

forms of knowledge. These give it a meaning, several meanings, whose connections

and compatibilities, form the net, relatively solid, of our relation with the world. It is

the practical unity of Mathematics and its emergence from the world which contitutes

its foundations: this frame and the balances of theories, which translate each other,

interpret each other, give root to each of its nodes in our forms of knowledge.

The analysis of proofs, Proof Theory, is one of its instruments. The di�erent struc-

tural semantics will provide others. But it is necessary to insert Mathematics in the

triangular relation history{individual{world, by reconstructing the cognitive and his-

toric percourses which are at the origin of the mathematical invention.

Our e�ort towards the comprehension of the world is like a walk over quicksand:

when we throw the net of our knowledge, of which mathematics is but a small part,

this net will permit us to advance a few steps, just by its extension. The challenge

of naturalization, as cognitive analysis, and as analysis of the historical and collective

construction of concepts (mathematical ones in particular) consists in �nding a few

supporting points for this net.

1.7 Three Levels and the Richness of the Continuuum

In this article we have underlined, initially, the non-unicity of the intuition of the

continuum. Then we have developed an analysis which emphasized three levels: the

intuition one, the construction principles one, and the proof principles one.

On the �rst level, the richness of the world and of points of view from which to

observe it, compatible points of view, non isolated, but built from a dialogue with

evolution and history, suggest a plurality of intuitive approaches and ground mathe-

matics in our relation to the world. In part we �nd these points of view in the di�erent

mathematical constructions of the continuum, which constitute the second level. These

constructions enrich and modify the original intuitions, which are not that simple when

the mathematical praxis adds to them its depth. But thanks to Logic there is a third

level, where the analysis of the proof (as well as the Formal Set Theories, their axioms,

their rules of inference) plays an essential role. Clearly, the incompleteness results
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lay in between the second and the third level, as a precise form of indetermination of

mathematical constructions by formal theories.

Speaking transcendentally, the mathematical objectivity does not �nd its origin in

the unicity of the intuitive giving, nor in the categoricity (or unicity) of the psycho-

physical genesis of that one, but instead in the common, historical and cognitive (hence

intersubjective) process of the conceptual construction. That is, in the mathematical

construction the value and the objective realities are not to be found in the mathematical

entities (the integers, the real numbers, ! or �

0

for example) but in the process of

constitution of these so-called entities, as conceptual constructions: the iterations, the

passages to the limit, the closures of horizons, the constitutions of invariants

25

. In the

case of the continuum, the mathematical objectivity is also in the richness of interaction

of three levels we mentioned: intuition, Mathematics, Logic. This interaction is not a

vicious circle, but a virtuous one, extraordinary example of the dynamicity of our forms

of knowledge: Logic, for example, which only extracts formal rules from the constructive

practices of Mathematics, o�ers, thanks to the incompleteness theorems and Non-

standard Analysis, new mathematical structures, which suggest a new intuition about

the continuum. A further starting point, through games of dynamic re
ections, for

other constructions and formalisations.

1.8 Conclusion

The logicist and formalist philosophies of Mathematics, in this century, provided the

conceptual philosophical background of major scienti�c achievements. The birth of

computability and, hence, of Computer Science is one example. Another is the re-

markable proposal for a precise notion of mathematical rigour: formal rigour, as the

`potential deduction of a theorem by a mechanical (in principle) system of axioms and

rules', tells us what it may exactly mean that a proof can be carried on with `absolute'

certainty. We also know what is a good de�nition and the paradoxes are distant. Now

that formal rigour has been objectivized in formalisms (and computers) we can recon-

struct the meaning and the practice of demonstrations and widen our notion of rigour,

by encompassing also diagrams, metaphors, images; by trying to understand the role

of the `geometric insight'. This is not about opposing a new Proof Theory to the old

one, but about enriching Logic and Proof Theory, making it come out of the formalist

cage which generated the so-called \logico-computational hypothesis" for the human

intelligence: \Intelligence ... is e�ectively de�ned as that which can be manifested by

the communication of discrete symbols" ([Hodges, 1992]). Hence the direct, geometric

proof of Pitagora's theorem do not contain \explicit" intelligence, even less founda-

tional interest for Mathematics: intelligence develops only after its traduction in �nite

algebraic languages, if necessary pixel by pixel, over discrete cartesian coordinates.

We found traces of a di�erent analysis of foundation (and of mathematical intelli-

gence) in the work of logicians who have insisted on the role of Geometry. For example,

in the denotational (or categorical, see section 5.1) semantics of Lawvere-Scott for intu-

itionistic systems (or for programming), geometry and/or continuity give signi�cation

to lists of symbols `without meaning', for \Geometry is more compelling", as Dana

Scott suggested once. Or also in the geometry of proof nets by J.Y. Girard, where the

symmetries and the direct manipulation of images (networks over the plan) come into
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the play of logical derivations, in an essential way. Moreover geometry is central in the

recent mathematical development of husserlian analysis of knowledge, as in Petitot's

work

26

. It is perhaps `vision' that is more compelling, as some neurophysiologists claim.

But this widening of Proof Theory should not be just a new game of mathematical

rules, as this would only give us a new mathematical discipline. Wittgenstein had

forseen this happening with the hilbertian metamathematics [Shanker, 1988] and it has

in fact happened. Metamathematics became a new and beautiful kind of mathematics,

where the principal results have been indirect: a precise notion of formal rigour and

... Computer Science, but not the explicit foundation of the mathematical practice,

as was Hilbert's dream. We can not `found' mathematics (its \rules of the game" as

Wittgenstein says) over a mathematical discipline, a logical-mathematical system also

made up of mathematical \rules of the game". There cannot be an internal foundation,

purely formal and mathematical, of Mathematics: the incompleteness theorems are not

accidents, they underline the gap between the metamathematical principles of proof

(once transformed into a mathematics of formal rules) and the rigourous practice of

mathematical constructions. It is then necessary to increase the variety of tools for

the foundation of mathematics, �rst by the direct constructions of Geometry (which

is being done), then with other forms of knowledge; that is, retaking the metaphor of

knowledge as a network (end of Sect. 6) it is necessary to insert the partial network of

Mathematics in the wider one of the other forms of knowledge. The project to aim at

should take mathematics out of its `auto-foundational' game (metamathematics as a

form of mathematics) and look for its cognitive origins in our relation to the regularities

of the world, in the connections to di�erent conceptual constructions, in the mental

invariants that we build while living and historical beings.
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Notes

1. A preliminary version of this paper, in french, is available from the author.

2. St. Augustine in his Confessions, which Weyl unfortunately does not cite, has

the same point of view. Time is a primary notion, independent of movement.

\There are three forms of time:... the present time of things gone, which is our

memory; the present time of present things, which is our vision; the present time

of future things, which is our wait" [St. Augustine,401;Lib XI, ch.XX]. Evidently

St. Augustine is not talking about intuition: time, Mathematics and the knowl-

edge of God himself reside in memory. More precisely, the measure of time is

given in memory, because on remembering we compare the temporal segment of

a short syllable, \which is not there anymore", to a long one [St. Augustine, 401;

Lib. XI]. Contrary to Aristotle's opinion in Physics, for St. Augustine movement
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is not a primary notion: it is time that permits us to describe it as velocity (in

modern terms, as a continuous function of space and time).

3. An early counterexample is due to Weierstrass. One variant of his example is the

function f(x) = �

sin(2

n

x)

2

n

. One was surprised until Poincar�e by the fact that this

function is nowhere di�erentiable (and with good reasons...).

4. It is interesting to note how usually we talk, in Mathematics and in Logic, about

the `reduction' (�a la Cantor-Dedekind) of the real numbers to the integers, as if

the reals were already `there', as if the `informal practice' of the mathematical

continuum (see Cauchy's demonstration of 1821) made reference to an external

objectivity, that we must understand by reduction (the same way we reduce

some chemical realities to Physics). This is comprehensible in the naif platonic

practice of Mathematics, but it it is less so for the formalist/de�nitionist vision

of mathematics still prevailing in Logic.

5. In Set Theory, in writing 8y for `for all y', a set b is de�ned impredicatively if,

typically, it is given in the form

b = fxj8y 2 A P (x; y)g

where b can be an element of A (the same set or collection A of sets which appears

in the de�nition of b). Brie
y in an impredicative theory there is no strati�cation

of the mathematical universe and it is acceptable to de�ne one element b using a

predicate or set A which can contain b. Informally we can not comprehend the

parts, the elements, without comprehending at the same time the whole, or a big

part of the whole.

6. Also for Leibniz and Kant the continuum cannot be decomposed into its elements,

it is not formed from simpler unities: it presents itself simultaneously as a totality

and its parts (see [Panza,1989]).

7. In the sequence of his fundamental re
ections Weyl �rst joined the ranks of Intu-

itionism, then he embraced a more open view of mathematical knowledge. But the

mathematics of Brouwer and the logical systems of Heyting are compatible with

the impredicative notions: in fact even the de�nition of an intuitionist proof is

impredicative (see [Longo, 1987] for more: yet the interplay is between theory and

metatheory, so it is acceptable for many). After that, in his logical-philosophical

writings (see the French version of [Weyl, 1918] for many references), Weyl will

never go back to his Predicative Analysis. On the contrary, he will develop a very

rich vision of the connections between Mathematics and Physics which will culmi-

nate in [Weyl, 1953] his last book, a Husserlian masterpiece, clearly anti-formalist:

Mathematics emerge from the e�ort to know the world (physically, chemically,

artistically ...) as a `transcendental objectivity'. See also [Weyl, 1985] for a very

balanced and `secular' view of the instruments of demonstration in mathematics.

8. In Intuitionistic Mathematics we distinguish between sequences given by a `law',

or `lawlike', and `lawless' ones. Here the `law' is an algorithmic (or e�ective) rule.

For example, � is the limit of a lawlike sequence (the algorithm for constructing
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it), whereas a real whose decimals are given by successively playing a die is the

limit of a lawless sequence. But even a convergent lawless sequence obeys a rule

and follows a convergence criterium: in the lawless sequence above, one plays the

dice and add its results as decimal numbers. The limit is unique and well-de�ned:

the criterium of convergence is given by the fact that `we add as decimals' the

results of the throw. It is the existence (of the limit) that is weak, non-e�ective.

9. \Among the usual spaces that better embody the ideal of the continuum, there

are two that appear almost immediately: the euclidian line and the euclidian

plan; the line for its mechanical and physical realisations (the extended thread,

the luminous ray) ..." [Thom, 1992; p.142].

10. Leibniz in�nitesimals became the new real numbers, smaller than any other stan-

dard real number. Then x � y if x � y is in�nitesimal and hence a function is

continuous if f(x) � f(x+ h) for all in�nitesimal h.

11. Axiom of choice (AC): \For all non-empty collection of non-empty sets, we can

contruct a set which constains exactly one element from each set of the fam-

ily". The Axiom of Choice is essential in many demonstrations, including some

that concern the continuum: without AC the de�nitions of limit based on neigh-

bourhoods and the one based on sequences are not equivalent (it is necessary to

construct a sequence, by choosing a point for each succesive environment).

12. The few technical notions in this section will not be used in the sequel: they are

just examples of elementary connections between principles of proof and principles

of construction. For more details on intuitionistic systems of types and Category

Theory, see [Lambek&Scott,1986], [Asperti&Longo,1991].

13. We could say the same about Girard's Linear Logic as its nature makes even

Classical Linear Logic ... \constructive" [Girard, 1991].

14. The research on the \unshakeable certainties" of Hilbert and Brouwer (see [Brouwer,

1927]) has given us this century a very solid notion of mathematical rigor: the

�nitist deduction, formal and e�ective. Over this basis, the amazing Thirties of

Logic have seen the birth of one precise notion of calculation and of machine,

the foundations of the modern programming languages (Turing: the imperative

languages; Church: the functional ones; Herbrand: the logic ones).

15. See the note \D'Anaxagore �a Dedekind", 1926, in the French version of [Weyl,

1918].

16. We can continue with �

1

, �

2

,..., �

!

and having understood the mechanism, which

after �

0

is not that simple, we can continue with �

�

0

... .

17. But this method of proof was not considered very convincing by many, for the

heart of the problem of consistency for Arithmetic is the consistency of induction,

the key principle of Peano's Arithmetic: one shouldn't use an even more powerful

induction to show it. There are other ways of proving it, tough, using formally

equivalent, yet more conving, methods.
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18. This means reiterate the constructions formalised by the axiom of power of a set,

of replacement{ image of a set by a function, etc ... so long as they are de�nable

in the language of Set Theory.

19. Consider the contrapositive of K�onig's Lemma (KL), which is called the FAN

Theorem since Brouwer: \if in a �nitely branching tree, each branch is �nite,

then the tree is �nite". FAN says that if we `get stopped' along each of the

descendent branches, then a �nitely branching tree is uniformly limited: it is thus

a compactness property. Most intuitionists (e.g. [Troelstra, 1973]) accept FAN,

which does not imply KL, for the equivalence between FAN and KL, its classical

contrapositive, is not intuituionistically valid. (In general, in Intuitionistic Logic,

::A is not the same as A and we cannot go from :B ! :A to A! B (read KL

as \A [in�nite tree] implies B [there exists an in�nite branch]").) In [Troelstra,

1973] a relevant variant of FAN is proposed, the Uniformity Principle (UP): under

certain circumstances, "8x9y:::" may be replaced by "9y8x:::" (or, y is uniform

for all x; compare with the alternation of quanti�ers in FAN: for every branch

there is an end implies there exists an end for any branch).

20. The theorems of cut-elimination and normalisation for the systems of higher order

give extremely solid bases to the impredicative de�nitions. The consequence is

that every proof in the system can be simpli�ed to a `minimal form' (a normal

form or without cuts), or that there are no `incontrollable propositions' that can

introduce themselves into proofs. We must note that the second principle of proof

mentioned here is su�cient to prove the theorem of normalisation, but the proof

of Girard, which uses both principles displays very clearly, for its elegance, the

issues of the construction. See also [Fruchart&Longo, 1995] for an application of

a recent theorem to the justi�cation of impredicative de�nitions.

21. As a matter of fact, even much stronger properties of trees than the previously

described compactness property, (K�ong's Lemma), may be acceptable. This is

too complex a matter to be described in short, but it may be worth hinting that

also the so called \determinacy for �

0

trees" bases its reliability on an insight

into the planar structure of trees. Consider a well-founded tree (roughly, a tree

with no in�nite branch) and let two players play the following game. Player

one moves downwards from the root by choosing one node; player two moves

further by choosing a node below. The �rst player that cannot move anymore

(he is on a leaf) has lost. Fact: there is always a winning strategy for one of

the players. The proof goes by an `easy', but powerful induction: it is trivial

for `one node trees'; given a tree, assume the thesis for all the trees obtained by

erasing the root, then prove it for the whole tree (obvious). Surprisingly enough,

one may derive from this fact the consistency of Arithmetic (and even more): the

expressiveness (and di�culties) depend on (the careful - impredicative - de�nition

of) the rich structure of well-founded trees and the use of induction on them (see

[Moschovakis,1980], for example). The latter turns out to be convincing, even

certain, by the insight into the planar structure of trees.

22. In particular the formalised proposition, which says \this proposition is not prov-

able".
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23. Computer Science has given new motivations to the work of logicians, since, with-

out reference to the mathematical structures, they try to analyse the practice of

programming and the conception of the architectures of computers (and to pro-

pose new designs). However, in the good practice of computing the unity of Math-

ematics imposes itself again, in the research for a mathematical and structural

meaning for these theories (semantics of programming languages: denotational,

algebraic,..). In some cases, the incompleteness of theories, w.r.t. semantic mod-

els, has suggested relevant extensions of the formal or programming theory or

language.

24. We could mention that beyond products and coproducts, which correspond so well

to the intuitionist conjunction and disjunction, the E�ective Topos, which is the

basis of the sketched constructions of second order, is constructed using principles

that go beyond the other `pure' intuitionist rules (the principles of Uniformity

and of Markov, amongst others): hence the E�ective Topos shows the truth of

non-demonstrable propositions of the systems of intuitionistic logic, of which it

is a model. The Genericity Theorem, see [Longo, 1995; Fruchart&Longo, 1997],

gives another mismatch between the Topos and Intuitionistic Logic.

25. See also [Petitot,1992; par. II.1].

26. For a philosophical introduction to the \geometry of perception", and also for its

numerous applications to which it referes, see [Petitot, 1995]. About the role of

the continuum in linguistics, see [Fuchs&Victorri, 1994].
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Chapter 2

C0NTINUOUS STRUCTURES

AND ANALYTIC METHODS

IN COMPUTER SCIENCE

1

Abstract

Most of the structures one deals with in Computer Science have a discrete

and e�ective character: (�nite) graphs, nets, trees in programming and

formal languages, algorithms over �nite strings or natural numbers, cir-

cuits etc... By continuous structures we mean "smooth" spaces, usually of

cardinality not less than continuum, where interesting topological or order

properties give some information on, say, classes of functions over them.

By discussing results from various areas of Mathematical Computer Sci-

ence, we stress the role of continuous structures as tools for proving results

about discrete or even �nite structures. In particular we overview results

concerning functionals in computability theory, trees in lambda calculus,

boolean circuits in complexity theory and relate the �nitary/combinatorial

nature of the problems with their continuous solutions. We mostly focus

on the methodology, and just hint to the technical aspects of the results

presented.

2.1 Introduction

In order to outline the purpose of this lecture, it is probably worth mentioning �rst

what we are not going to discuss. We are not going to look at the most widely known

application of continuous structures in Computer Science. By this we mean the solution

of the basic domain equation X = X ! X . Scott's solution of this equation, in the

early 70's (to within isomorphism, of course; Scott (1972)), and his preliminary work

on it, e.g. Scott (1970), set the mathematical basis for the Scott-Strachey approach to

programming languages (see Stoy (1978), say). The work done within (or motivated

by) denotational semantics by several authors includes, in a rather broad sense, purely

1

Revised version of an Invited Lecture, in Ninth Colloquium on Trees in Algebra and Pro-

gramming (CAAP 84), pages 1{22 (Courcelle, editor). Cambridge University Press, 1984.
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mathematical developments (see Gierz et al. (1980)) as well as methods which in
u-

enced the actual design of programming languages (e.g. Gordon et al. (1979)). Speci�c

areas are concerned with original applications of Category Theory to the semantics of

programming languages (see Plotkin & Smyth (1982) for more results and references)

and computability in abstract structures (see Barendregt & Longo (1982) or Longo

& Martini (1984) (for simple approaches and references), just to mention two broadly

construed topics.

What is the relation between the equation X = X ! X and continuity properties?

The point was to �nd a model of type free �-calculus. This language already was (and

more become later) a paradigmatic or stylistic language for functional programming.

Approximation properties suggested the way to �nd a non trivial space isomorphic

to its own "function space": by allowing only the continuous functions w.r.t. a suitable

topology, that isomorphism was made possible without contradicting Cantor's theo-

rem, though obtaining a su�ciently rich function space for the interpretation of all

�-de�nable functions.

The required approximation properties may be given by the notion of domain as

topological space. In general, a partially ordered set Y (poset) is directed if 8x; y 2 Y

there exists z 2 Y such that x; y � z.

De�nition 2.1.1 (i) A poset (X;�) is complete if any directed set Y � X has a

least upper bound (l.u.b.), tY . We then say that (X;�) is a complete partial order

(c.p.o.).

(ii) Let (X;�) be a c.p.o.. A � X is open in the Scott topology if

1. x 2 A and x � y ) y 2 A

2. Y � X directed and tY 2 A ) A \ Y 6= ;.

(iii) A c.p.o. (X;�) is algebraic, with base X

0

� X , if ; and fy 2 X j x

0

� yg,

for x

0

ranging over X

0

, form a basis for the Scott topology on (X;�). X

0

is the set

of �nite (or algebraic) elements. (X;�) is consistently complete if every bounded

subset has a l.u.b..

(iv) A domain is a consistently complete algebraic c.p.o., with the Scott topology.

Remark 2.1.2 Given domains X = (X;X

0

;�) and Y = (Y; Y

0

;�), f : X ! Y is

continuous i� 8x 2 X f(x) = tff(x

0

)jx

0

� xg. The Scott topology on non trivial

domains is T

0

, but not T

1

. Recent work in denotational semantics has been dealing

with stronger separation properties (e.g. metric spaces) or weaker closure properties

not necessarily topological.

Examples. The set of partial functions from ! (the natural numbers) to !, and

P!, the powerset of !, are domains. (P! is also a lattice, of course, and P!

0

= fA :

A � ! and A is �niteg).

The category of domains, with continuous maps, is Cartesian closed. That is, if X

and Y are domains, then also X � Y and Cont(X; Y ), the continuous functions from

X to Y , are domains, with suitable bases, and they are nicely related (see Mac Lane

(1971), Scott (1981), for details

2

).

2

Added in reprint: see also Asperti & Longo (1991)
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Most of the research issues mentioned above involve the Category of domains or

related structures essentially as foundational tools for Computer Science or, say, ana-

lyze the relation between computational and denotational properties of programming

languages. More discussion on this matter may be found in several places, see Longo

(1984). In the present lecture we would like to motivate the use of continuous structures

by their direct applications to results on �nite or discrete spaces. Namely, we are going

to survey a few results which may be stated in elementary/combinatory terms over

discrete or �nite structures and which have been proved by using continuous spaces.

The mathematical notions used for this investigation are borrowed from (or related to)

Mathematical Logic.

Probably a rough analogy with a basic topic in Mathematics may help to understand

our methodological viewpoint.

The assertions of Number Theory deal with integers and are mostly elementary

and of a combinatory character. The fundamental theorem of arithmetic, say, proves

that any number is the product of a unique �nite sequence of primes. In this case the

proof is both elementary and simple; the relevance, though, of this old discovery is

clear to everybody. Thus more knowledge about properties of prime numbers is surely

important; in particular, say, the way they distribute over !. Gauss, in 1849, �rst

conjectured that, if p(n) denotes the number of primes not exceeding n, then

(G) lim

n!1

p(n) logn

n

= 1

that is p(n) is asymptotic to n=logn .

(G) may be clearly stated in elementary formal number theory, Peano Arithmetic,

as

8x 9y 8z (x > 0 ^ z > y ! j1�

p(z) log z

z

j <

1

x

)

(G) is known as the Prime Number Theorem. It was �rst proved by Hadamard

and de la Vall�ee Poussin in 1896 by using Complex Function Theory, i.e. by the strong

topological algebraic properties of the �eld of complex numbers and the functions over

it.

Only much later, in 1949, Selberg and Erdos gave an elementary proof of (G), that

is a proof not using properties of functions of complex variables.

This pattern occurred several times in number theory; �rst analytic proof, then an

elementary argument, with at most a little use of real valued functions.

Usually, as in the case of (G), the elementary proof is more intricate and not simple

at all, but it gives a better insight into constructive aspects of the result (y, say, depends

uniformly e�ectively on x , in the formal statement of (G)). The analytic approach,

though, may be more transparent, just because the di�culties are scattered over whole

nicely organized theory, such as the theory of complex functions.

Moreover, it may relate the results studied to other problems because of the unifying

power of a large and deep theory. This is exactly what happened with (G), in view

of the work done, in order to prove (G), on the Riemann zeta function and the Euler

identity by using Fourier series, see Hardy & Wright (1960).
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It should be clear, then, that elementary or combinatory does not mean simple (or

simpler): it may even mean the opposite, because it is harder to prove something by

means of only a few notions, a few tools.

The results below have also been proved by looking at continuous structures. In the

�rst two cases one may even say that "analytic" methods have been used, for elements

of domains are described by �nite approximations, similarly to approximations by �nite

expansions of Fourier series in complex function theory. Of course, we do not yet deal

with the width and the di�culties of number theory: the Theory of Numbers is the

oldest and most basic topic in Mathematics. In Pisa, say, some beautiful results were

already obtained by Fibonacci (1202). Mathematical Computer Science is surely not

as old as that. Its growth, though, because of the relevance of Computer Science and

its applications in every-day life, is much faster.

Section 2.2 presents an elementary notion of higher type computation. The ba-

sic properties of the type structure obtained by this, are proved by an essential use

of continuous domains for denotational semantics and generalized computability. In

section 2.3 below, a (preliminary) fact for the solution of recursive equations between

programs is discussed. This is done for a paradigmatic functional language, �-calculus.

The proof uses a non-axiomatizable ("in�nitary") consistent extension of �-calculus

and a continuous model.

Section 2.4 deals with the answer to a question concerning boolean circuits and their

complexity. As a matter of fact, the �nitary argument for relating size and depth is

based on an analogy to hierarchies of in�nite classes of open sets in suitable topological

spaces.

References to the eight or more authors, including this author, who proved the

results summarized in this introductory lecture, are given in the corresponding sections.

2.2 The Hereditary Partial E�ective Functionals

Classical higher type recursion theory deals with total object. As a matter of fact,

G�odel and Kreisel's motivation for this topic refers to the analysis of the meaning

in constructive mathematics of Peano or Heyting arithmetic (see Kreisel's paper in

Heyting (1959)). For Kreisel's "no counterexample" interpretation, say,

from 9x8y9z8w A(x; y; z; w)

write 9F9G8f8g A(F (f; g); f(F (f; g)); G(f; g); g(F (f; g):G(f; g))),

where F;G; f; g are function variables in the due type (type 1, the type of number

theoretic functions, as for f and g; (pure) type 2, as for the functionals F and G, since

they are functions of functions). Then x and y are e�ectively recovered from f and g,

if F and G are (higher type) total computable functionals. Thus the need to de�ne this

sort of computable maps.

In Computer Science, a new branch of mathematical research on these matters has

been motivated by the semantics of typed and type free languages, for it is sound to

investigate the e�ectiveness, over semantic domains, of the interpretation of (higher

type) programs. In particular, since the work done by Scott in the semantics of pro-

gramming languages and, in higher type recursion theory, by Ershov, who refers to

early research by Scott, there has been a growing interest in partial objects. As a

matter of fact, since the 30's, the notion of "partiality" turned out to be essential and
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helpful in the foundation of recursive function theory. A key point, say, is that the

class of partial recursive functions (PR) can be e�ectively numbered; more precisely,

the universal function is also in PR.

By using this idea, in Longo (1982) a direct elementary approach was proposed to

higher type partial functionals (the HPEF). In Longo & Moggi(1984) the basic facts

are proved and the type structure is compared to extant approaches.

The di�erence with Scott-Ershov approach (or Hyland's, for total functionals) is

that the later �rst introduces the notion of continuity, possibly in abstract categorical

settings, then de�nes the continuous and computable objects in any type by using PR;

while the HPEF are presented by an inductive elementary construction, only based

on the notion of partial recursive function. Interestingly enough, the key structural

property of the HPEF, which may be expressed in purely elementary terms, could only

be proved by using continuous structures. This may be considered a further motivation

to the invention of the category of domains.

2.2.1 The problem

For setsA;B, write f : A! B if f is a total map fromA toB. By setting !

?

= ![f?g,

we may write f : ! ! !

?

for any partial number-theoretic function. As for higher

types, integer (or, respectively, pure) types are de�ned by n+1 : n! n (or, respectively,

n+ 1 : n! 0), for n 2 !.

Let <;> be any e�ective coding of pairs in !; that is <;> codes a pair of numbers

by a single number.

Set C

(0)

= ! and C

(1)

= PR. We now de�ne C

(n)

, for all n > 1, as the set of

hereditary partial e�ective functionals (HPEF) of integer type n, by induction on

n, using a set C

(n:5)

of maps from C

(n�1)

to C

(n)

(functions of "intermediate" type).

The maps in C

(n)

go from C

(n�1)

to C

(n�1)

. The coding <;> is extended to higher

types in one of the several possible ways. In other words, the extented <;> codes

C

(n)

� C

(n)

by C

(n)

, for any n, as it will be shown below.

Notation:

�xy:g(x; y) is the map < x; y >` g(x; y):

De�nition 2.2.1 (i) C

(n:5)

= f� : C

(n�1)

! C

(n)

j �xy:�(x)(y) 2 C

(n)

g;

ii) C

(n+1)

= f� : C

(n)

! C

(n)

j 8� 2 C

(n:5)

� � � 2 C

(n:5)

g.

In order to see that this de�nition makes sense, let's check the types.

Assume that C

(n�1)

and C

(n)

are given. Consider �rst � : C

(n�1)

! C

(n)

and set

 (< x; y >) = �(x)(y), for x; y 2 C

(n�1)

(check the typing for exercise: e.g., observe

that �(x) : C

(n�1)

! C

(n�1)

).

Clearly  : C

(n�1)

! C

(n�1)

. Then, by (i) in the de�nition above, � 2 C

(n:5)

i�

 2 C

(n)

.

The following diagram should help in understanding how C

(n+1)

, the \next" higher

type, is de�ned in (ii), by using C

(n:5)

, which has been de�ned in (i) from the given

C

(n�1)

and C

(n)

:

C

(n�1)

?

@

@

@

@R

� � � �

C

(n)

C

(n)

-

�
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That is, � 2 C

(n+1)

i� 8� 2 C

(n:5)

� �� 2 C

(n:5)

, as given in (ii) in the de�nition.

Note that the pure type functionals fPC

(n)

g

n2!

, i.e. for n + 1 : n ! 0), may be

also de�ned, by the technique above: just substitute PC

(n)

in the second instance of

C

(n:5)

in the de�nition of PC

(n+1)

corresponding to de�nition 2.2.1 (ii) (see Longo &

Moggi (1984; 3.12)).

In both cases, one only needs to know C

(0)

= ! and C

(1)

= PR, to start with.

Apparently, though, it may seem that the full strength of Set Theory is needed in

order to de�ne the sets C

(n:5)

and C

(n+1)

above. As a matter of fact, a consequence of

the results mentioned below is that, for all n; C

(n)

and C

(n:5)

are countable and can be

e�ectively numbered.

By this we do not need to look, say, at the set of all functions from C

(n�1)

to C

(n)

in order to de�ne C

(n:5)

, but a countable subset would do. A posteriori, this is all

expressible in Peano Arithmetic. (Exercise: set C

(1)

= "the constant functions from

! to !". What is the cardinality of C

(2)

? And if one takes, as C

(1)

, the primitive

recursive functions?).

We want to know, now, what the C

(n)

's are and how they behave, for n > 1. It is

easy to see that all acceptable G�odel-numberings of C

(1)

= PR live in C

(1:5)

. It would

be nice, say, if one could extend the notion of e�ective numbering to maps in C

(n:5)

,

for n > 1. In view of the s-m-n (iteration) theorem, this corresponds to proving the

property (P) below, which was conjectured in Longo (1982).

(P ) 8n � 0 9�

n

2 C

(n:5)

8� 2 C

(n:5)

9f

n

2 C

(n)

� = �

n

� f

n

Recall now that for all f

n+1

2 C

(n+1)

one has f

n+1

� �

n

2 C

(n:5)

. Then by (P), for

some f

n

2 C

(n)

; f

n+1

� �

n

= �

n

� f

n

.

By this, HPEF may be visualized in the integer types by the following diagram:

!

-

f

!

? ?

�

1

�

1

C

-

f

2

C

�

�

�

?

�

�

�

?

C

(n�1)

-

f

n

C

(n�1)

? ?

�

n

�

n

C

(n)

-

f

n+1

C

(n)

�

�

�

�

�

�

In order (P) to hold, the �

n

's have to be surjective as well and, by this, preserve

the cardinality of ! at higher types. Again, (P) is elementary and has a combinatory


avour.
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2.2.2 The method

In this section we give the basic hints for the main result concerning the HPEF, with

the only aim to display the use of continuous structures in the proofs.

In Longo & Moggi (1984), (P) has been proved by an heavy induction loading,

proposed by the second author, to be precise, who �rst pointed out that, by looking

only at de�nition 2.2.1, the HPEF do not need to be ... well de�ned. As a matter of

fact, <;>: !

2

$ ! is not trivially inherited at higher types. A �rst sight, one would

just set < f; g > (n) = < f(n); g(n) > as a de�nition for <;>: C � C $ C and so

on. This is clearly wrong, for divergence of f or g cause essential problems. Set then

< f; g > (n) = if n is even then f(

n

2

) else g(

n�1

2

).

This is �ne for C

(1)

, but it doesn't automatically prove that

< �; � > (f) = < �(f); �(f) >

de�nes an (e�ective) coding of C

(n)

�C

(n)

into C

(n)

, for n � 2. The proof of this goes

inductively together with the proof of (P) and of two more facts, which need a few

de�nitions.

Recall that a numbered set is a pair (D; e) where e : ! ! D is onto. f : D! D

0

is

a morphism (of the numbered sets (D; e); (D

0

; e

0

)) if 9f

0

2 R f � e = e

0

� f

0

where R

are the recursive functions.

De�nition 2.2.2 (i) Let (D; e) and (D

0

; e

0

) be numbered sets. De�ne then

(i) d : ! ! D is an acceptable numbering of D if 9f; g 2 R e = d � g and

d = e � f .

(ii) � : D ! D

0

is a relative numbering (of (D

0

; e

0

) w.r.t. (D; e)) if � � e is an

acceptable numbering of (D

0

; e

0

).

(iii) � : D ! D

0

is a principal numbering (of (D

0

; e

0

) w.r.t. (D; e)) if � is a

morphism and 8 2Mor(D;D

0

) 9� 2Mor(D;D)  = � � �

Clearly acceptable, relative and principal numberings are onto maps. In presence

of a relative numbering, any principal numbering is also relative. The converse doesn't

hold. It is easy to see that, if (D; e) yields (a generalized version of) the recursion

theorem and f : D ! D

0

is a relative numbering, then also D

0

has the same property

(see Longo & Moggi (1984; Intermezzo)).

The other assertion in the inductive proof need notions and facts from the Category

of domains (see 1.1). Let X = (X;X

0

;�) be a countably based domain, with a given

numbering fx

n

g

n2!

of X

0

. Under a few simple decidability conditions for fx

n

g

n2!

,

de�ne x 2 X computable if fn j x

n

2 X

0

and x

n

� xg is r.e. (see Scott (1981) for

details). Let X

c

be the collection of computable elements. Under these assumptions,

call any such domain e�ective.

Since in Cartesian Closed Categories properties of objects are inherited at higher

types, given X as above, each object in the type structure generated byX is an e�ective

domain, with a corresponding notion of computable element. By this, Ershov nicely

related the continuous (and computable) partial functionals in the type structure over

!

?

, the 
at domain with ? as least element, to the classical Kleene-Kreisel countable

functionals (and the Hereditary E�ective Operators; see Ershov(1976) for an account).

Of course, continuity properties are the key issue in the Category of domains.

Consider now E = Cont(!; !

?

), where ! is given the discrete topology. Clearly, E

is the e�ective domain of the partial functions E

c

= PR.
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Set E

(n+1)

= Cont(E

(n)

; E

(n)

). We can now state the main theorem in Longo &

Moggi (1984).

Theorem 2.2.3 For all n � 1 one has:

(1) C

(n)

= E

(n)

c

(2) C

(n)

� C

(n)

�

=

C

(n)

via <;>

(3) C

(n:5)

= Cont(E

(n�1)

; E

(n)

)

c

(4) 9� 2 C(n:5) principal relative numbering.

Proof. Longo & Moggi (1984). 2

Properties (1) - (4) are proved by combined induction. (1) and (3) give the continu-

ity of the HPEF. More precisely, (2) at type n+1 is obtained from (1) + (2) at type n.

by �rst showing that, in an e�ective domain, any e�ective coding of pairs of algebraic

elements by algebraic elements is inherited to a corresponding e�ective coding at the

higher type (the function space). (1) + (3) + (4) give (1) at the higher type. (1) +

(2), again, prove (3) and so on, with various combinations, to prove the rest.

Note, now, that once proved that each C

(n)

is a countable set, with the natural

numbering of constructive domains, (P) above amounts to say that each C

(n:5)

con-

tains a principal numbering. In fact, by generalized Myhill-Shepherdson theorem (see

Giannini & Giuseppe Longo (1984)), the continuous and computable functions over the

computable elements of e�ective domains coincide with their morphisms, as numbered

sets.

There may be direct arguments for proving (P), i.e. with no use of the continuous

structure. In Longo & Moggi (1984), though, it seemed essential to the role of �nite

approximants (algebraic elements) and their e�ectiveness properties to deal with the

functions in the C

(n)

's, which are in�nite objects.

Properties of e�ective computations over (possibly) in�nite inputs are naturally

handled by looking at �nite pieces and, then, taking (topological) limits. Apparently,

there is no way to escape from this, also when direct (non topological nor limit) de�-

nitions are given, as in our case.

Remark. Topological or limit structures are implicit in the de�nition of the Kleene-

Kreisel countable functionals, when given by the "associates" (see Normann (1980)).

This is not so for the HPEF, where in the de�nition, there is no 
avour of continuity nor

approximation. Though, as soon as we just want to check if the de�nition makes sense

in any type, �nite approximants, that is the algebraic elements of suitable domains,

come in. Of course, Myhill-Shepherdson and Kreisel-Lacombe-Shoen�eld theorems,

and their generalizations, are the key facts to understand this.

Question. Fix C as your preferred set of partial maps from ! to !. What are,

then, the C

(n)

's de�ned as in de�nition 2.2.1? (Take, say, C equal to the primitive

recursive functions or the polynomial time computable functions. The properties of C

are naturally inherited at higher types via the intermediate types C

(n:5)

).

2.3 Invertible terms in �-calculus

Terms of �-calculus are de�ned by variables, formal application and the binding oper-

ator �. The computation (reduction) rules are axiomatized as follows:
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(�) (�x:M)N � [N=x]M ; for N free for x in M , as usual;

(�) �x:Mx �M ; for x not free in M:

The reduction predicate "�" is re
exive, transitive and substitutive. "=" is the

least equivalence relation such that M �M

0

)M = N ; "=" also is substitutive.

A term is in (�-)normal form (��-normal form) if no subterm is the LHS of axiom

(�)((�) or (�)).

A term M possesses a (��-) normal form if, for some M

0

in (�� )normal form,

one has ��(�) ` M = M

0

. Finally, M is solvable (or has head normal form), if, for

some P

1

; :::; P

q

;

!

x

and y, �� `M = �x

1

:::x

n

:yP

1

:::P

q

, M is unsolvable, otherwise.

The paradigmatic role of �-calculus and Combinatory logic, as functional program-

ming languages, is well known, see Backus (1978).

2.3.1 The problem

Combinatory Logic and �-calculus, as type free applicative languages, have a set of

terms which forms a monoid with I � �x:x as identity and composition "�" as appli-

cation, where M � N = BMN for B = �xyz:x(yz). Church proved that the closed

terms of ���-calculus form a recursively presented monoid, with an unsolvable word

problem. Note, now, that equations among terms give a standard methods for de�ning

terms, as well as for programs. Equations, though, as well known from algebra, can be

more easily solved when working in a group.

Consider, for example, the following de�nition of the (unknown) term X :M �X =

X �P . IfM , say, possesses an inverse, M

�1

, an easy application of Curry's �xed point

combinator gives X from X = M

�1

� X � P , since we obtain an ordinary recursive

de�nition of X .

It is then an important question, raised by Curry & Feys (1958), under what con-

ditions a term in the monoid has an inverse.

De�nition 2.3.1 Let T be (an extension of) �-calculus. M is T -invertible if 9N T `

M �N = I and T ` N �M = I. (In this case we that M;N are T -inverse).

Dezani (1976) gives a characterization of invertible terms in ���-calculus, among those

which possess a normal form (for ��-calculus, the group coincides with I). This was

done by an (implicit) use of the notion below of tree for terms. More recently, B�ohm

& Dezani (1984), by similar techniques, characterized invertibility w.r.t. a large class

of associative combinators, besides composition "�". By this, more general tools for

solving equations are provided

3

.

3

Added in revision: a rather unexpected application of invertible terms is given in Bruce et al.(1992),

as these terms are used to caracterize the isomorphisms which hold in all Cartesian Closed Categories.
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De�nition 2.3.2 (Informal) The B�ohm tree of M is given by:

BT (M) = Q if M has no head normal form

BT (M) = �x

1

:::x

n

:y if M =

�

�x

1

:::x

n

:yM

1

:::M

p

�

�

@

@

BT (M

1

) � � � BT (M

p

)

The de�nition is informal, since B�ohm-trees may be in�nite (see Barendregt (1984) for

a precise de�nition). In particular, BT (M) �nite and 
-free i� M has a normal form.

Thus, there are plenty of interesting terms with in�nite B�ohm-trees. Take, say the

�xed point combinator Y = �y:(�x:y(xx))(�x:y(xx)) or the solution of X = �z:zX ,

and a lot more. Since Wadsworth and Hyland's work, B�ohm-trees have been a basic

tool in the comparison of operational and denotational semantics of �-calculus (see

Barendregt (1984), Longo (1983)).

Roughly, this is because all terms, as all programs, are �nite B�ohm-trees "display"

their computational (operational) behaviour, which may be in�nite (see Longo (1984)

for a discussion).

B�ohm-trees may be partially ordered by setting 
, the unde�ned tree, as the least

one and, then, by setting BT (M) � BT (N) if BT (N) is obtained from BT (M) by

replacing 
 in some leaves of BT (M) by some B�ohm-tree.

Dezani's result (see theorem 2.3.4, below) uses a di�cult combinatory technique,

where the �niteness of the B�ohm-trees considered has an essential role. The question

remained of characterizing all invertible terms, not necessarily with normal form; equa-

tions like the example above are perfectly sound also if BT (M) is in�nite, forM could

still possess a head normal-form.

Bergstra & Klop (1980) fully answered the general questions, by using results in

Dezani (1976). Our present interest in the methods used in Bergstra & Klop (1980)

relies on the essential application made of in�nitary, continuous structures to solve this

typically combinatotial problem. What's nice is that the characterization in Bergstra

& Klop (1980) con�rms the result in Dezani (1976), since invertible terms turn out to

live only among normal forms. To see this, though, one needs to look also at terms

with an in�nite computational behaviour.

2.3.2 The method

Let �

1

; :::; �

n

be a permutation of 1; :::; n and

!

z

be a �nite string of variables.

De�nition 2.3.3 (i) The hereditary permutators (HP) is the set of �-terms de-

�ned by:

M 2 HP if BT (M) = �zx

1

:::x

n

:z

�

�

@

@

�

!

y

1

:x

�1

� � � �

!

y

n

:x

�n

�@ �@

and each subtree is the tree of a term in HP.
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(ii) The �nite hereditary permutators (FHP) are the terms in HP with a �nite,


-free B�ohm-tree.

Theorem 2.3.4 Assume that M has a normal-form. Then M is ��-invertible i�

M 2 FHP .

Proof. Dezani (1976) (see also Bergstra & Klop (1980)). 2

Theorem 2.3.5 M is ��-invertible i� M 2 FHP .

Proof. Bergstra & Klop (1980) (see also Barendregt (1984)). 2

It is clear that in order to prove theorem 2.3.5 from theorem 2.3.4 one only has to show

(O)M is ��-invertible)M has a normal form, since anyM in FHP automatically

has a normal form.

Bergstra and Klop give two arguments for (O), by embedding �-terms into di�erent

continuous models, D

1

and P!. The discussion below borrows from the presentation

in Barendregt (1984) and the authors second proof. It should be clear that we only

try to give some transparency, if possible, to what is not immediately transparent from

the very technical presentations by the authors, namely the mathematical signi�cance

of the methods used.

P! may be turned into a model of type-free �-calculus by a classical recursion

theoretic notion of set-theoretic application and by de�ning abstraction accordingly

(see Scott (1976) and Longo (1983), for recent work).

De�nition 2.3.6 Let <;>: !

2

$ ! be a coding of pairs (the "little diagonal", say) and

fe

n

g

n2!

the canonical numbering of the �nite subsets of !. Set then, for A;B 2 P!

and f 2 Cont(P!; P!),

A �B = fmj9e

n

� B < n;m >2 Ag and �x:f(x) = f< n;m > jm 2 f(e

n

)g

Clearly, �x:f(x) � B = f(B), by remark 2.1.2, that is, F (A) = (�)x:A � x and

G(f) = �x:f(x) give a retraction Cont(P!; P!) / P!, for F �G(f) = f . For the given

F ,G is actually the unique such (see Longo (1983)). Of course, the cardinality of P!

is 2

�

0

and its topological structure is the key point for de�ning the given retraction.

The true equalities between �-terms in P! are characterized by the following the-

orem.

Theorem 2.3.7 (Hyland) P! j=M = N i� BT (M) = BT (N).

Proof. (see Barendregt (1984)). 2

We also need to introduce an interesting extension of ���-calculus, which may be

de�ned in terms of B�ohm-trees. The reader who wants to avoid the few technical

notions below, at �rst reading, may skip them, and go to comment 2.3.11.

Note �rst that, once the (possibly in�nite) operational behaviour of a �-term has

been displayed by its B�ohm-tree, one may also consider in�nitary reduction rules (or

expansion roles, their inverse operations).

In particular, one may �-expand (possibly in�nite) nodes of a tree. Call "�

�

" such

a (possibly in�nitary) rule between trees.
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Examples

�

�

@

@

y

�

�

@

@

x

�

�

�

�

@

@

�x:y

x

�

�

@

@

�z:x

z

�x:x �

�

�xy:x �xy:x

y

�

�

�z

1

:y

�z

2

:z

1

�z

3

:z

2

�

�

�

(in�nitary)

It is easy to see that the last tree is BT (J), for J = �xy:x(Jy).

De�nition 2.3.8 Let A;B be B�ohm-tree. De�ne then

(i) A

�

� B if 9A

0

A �

�

A

0

� B, where � is de�ned after de�nition 2.3.2,

(ii) A

�

�

�

B if 9A

0

; B

0

A �

�

A

0

� B

0

�

�

B

(iii) A =

�

B if A

�

�

�

B

�

�

�

A

(iv) H

?

= fM = N j M , N are �-terms and BT (M) =

�

BT (N) g

H

?

is a consistent extension of ���-calculus. It is actually the largest consistent

extension of the theory H , where all unsolvable terms are equated (Barendregt (1984)).

Thus H

?

is the unique Hilbert-Post completion of H .

Lemma 2.3.9 (Main Lemma) Let M;N be H

?

-invertible (see def. 2.3.1). Then for

some n;m � 0), say n � m, there are permutations �; � and M

i

(1 � i � n); N

j

(1 �

j � m) such that

(i) �� `M = �zx

1

:::x

n

:z(M

1

x

�1

) � � �(M

n

x

�n

),

�� ` N = �zy

1

:::y

m

:z(N

1

y

�1

) � � �(N

m

y

�m

),

� � � = � � � = id, and

(ii) N

i

;M

�i

, for 1 � i � m, and M

i

; I, for m < i � n, are H

?

-inverse, modulo

some substitution instances.

Notation: M 2

k

HP if M is in HP up to level k of BT (M), where the root is

level 0 of a tree.

Theorem 2.3.10 If M is ��-invertible, then M 2 HP .
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Proof. (Sketch) Assume thatM;N are ��-inverse. Then M;N are also H

?

-inverse,

for ��� � H

?

. If we prove

1) 8k (M H

?

-invertible )M 2

k

HP );

we are done, by the (informal) inductive de�nition of HP.

1) above holds for k = 1, by (a lot of) combinatory work on BT (M), up to the �rst

two levels (see Dezani (1976), Bergstra & Klop 1980) or Barendregt (1984)).

Assume now (1) for k > 1. By lemma 2.3.9, M;N H

?

-inverse ) N

i

;M

�i

are

H

?

-inverse, as in lemma 2.3.9(ii).

Then, by induction hypothesis, N

i

;M

�i

2

k

HP and, clearly, M;N 2

k+1

HP . 2

Comment 2.3.11 Interestingly enough, most of the proof of the Main Lemma may be

directly borrowed from Dezani's argument, which never mentions the theory H

?

. What

is then the use of it? The point is in the induction loading. If one assumes that M and

N are ��-inverse, one doesn't get, in general, that M

i

; N

�i

, de�ned as in lemma 2.3.9

(ii), are ��-inverse, but just H

?

-inverse (modulo some substitution instances). Thus

the argument cannot be iterated inductively. In Dezani (1976) this can be done under

the strong assumption that M and N possess a normal form.

Moreover, by the in�nitary character of the provable equalities, H

?

allows to com-

pare terms with in�nite B�ohm-trees. Roughly, it is like looking at full decimal ex-

pansions of rational numbers, without restricting the attention to numbers with �nite

expansions (normal forms). The proof, though, works, at �nite levels, exactly as for

the �nitary result and it is then analytically extended to the in�nite expansions.

Church original work on �-conversion used a more restrictive notion of �-term.

Namely, �I-terms are de�ned similarly to �-terms, provided that �x:M is a �I-term i�

x occurs free in M .

It is easy to see that a �I-term M has a normal form i� all of its subterms have a

normal form. By looking at the de�nition of HP, one may work out the following fact.

Theorem 2.3.12 If M 2 HP , then BT (M) is 
-free and there exists a �I-term M

0

such that BT (M

0

) = BT (M).

Let's now follow stepwise Bergstra and Klop's argument for

(O) If M is ��-invertible, then M has a normal form. Assume that M;N are ��-

inverse and that M has no normal form. Then

(1) There exist �I-terms M

0

; N

0

s.t. BT (M

0

) = BT (M) and BT (N

0

) = BT (N), by

theorem 2.3.12.

(2) BT (M

0

) is in�nite, by assumption and theorem 2.3.10, and, hence M

0

has no

normal form.

(3) M

0

�N

0

is a �I-term, for M

0

�N

0

� BMN where B � �xyz:x(yz), and, hence, it

has no normal form, by (2).

(4) P! j=M

0

=M and P! ` N

0

= N . by (1) and theorem 2.3.7.
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(5) P! j=M

0

�N

0

=M �N . by (4).

(6) BT (M

0

�N

0

) = BT (M �N), by (5) and theorem 2.3.7, again.

(7) BT (M �N) is in�nite, by (3) and (6), and, hence , M �N has no normal form.

The conclusion in (7) is clearly impossible, for ��� j=M �N = I .

Comment 2.3.13 The role of P!, as continuous model should be clear. It essentially

allows to go from (1) to (6), by using theorem 2.3.7. Since BT-equal terms are the same

object in P! by theorem 2.3.7, one has (4) and, hence, (5) and (6) trivially follow.

It is like looking at a property of natural numbers by studying them as elements of

a more structured continuum they live in, the real or complex �eld, say. Where does

continuity come in, in this case? The proof of theorem 2.3.7 heavily relies on continuity

properties of P!. To see this more closely, one may consult Barendregt (1984) or look

at results which distillate the notion of "approximable application" in Longo (1983).

This notion relates, in a general setting, the interpretation of formal application to the

limit structure of models.

Can one directly go from (1) to (6) by working over B�ohm-trees with some smart

combinatory technique? This is done in Barendregt (1984; x.18.4), but the continuity

argument is important as well. As a matter of fact one has to take the (completion

of the) set of B�ohm-trees, partially ordered as after de�nition 2.3.2, and heavily work

with approximation and Scott continuity over this domain.

A �nal remark on cardinality. It is possible to take a countable model instead of

P!, in the argument above, for RE � P!. the set of recursively enumerable sets, is an

equationally equivalent sub-model of P!. That is, by the same notions of application

and abstraction, RE yields a model which satis�es the same equalities as P!. More

generally, for any in�nite cardinal �, there is an applicative structure of cardinal �

which yields lots of di�erent �-models, including one equationally equivalent to P!

(see Longo (1983)). The use of RE, though, instead of P! would be like looking at

rational numbers (or complex numbers with rational coordinates), for the analysis of

the behaviour of continuous functions or predicates over the real (or complex) numbers.

Those countable subsets are dense and they perfectly determine continuous functions

or predicates on the latter sets. Similarly, RE is dense in P! w.r.t. the Scott topology

(and contains all algebraic elements).

2.4 Circuit complexity

By circuits one may compute functions. Actually, boolean circuits form the core of

computers, when printed as chips. It is then worth studying the complexity of circuits,

e.g. by looking at their size and depth.

2.4.1 The problem

A boolean circuit is usually described as a �nite directed acyclic graph, with input

nodes and gates, labelled by ^ or _, as other nodes. One node is the output node. The

size is given by the number of gates and the depth is the maximum length of a directed

path from an input to the output.
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One may also de�ne boolean circuits in a more set-theoretic style.

De�nition 2.4.1 For n > 0, let fx

1

; x

1

; :::; x

n

; x

n

g be the inputs or litterals. The

litterals are ^

0

(_

0

)-circuits. For i > 0, an ^

i

; (_

i

)-circuit is a �nite nonempty col-

lection of ^

i�1

(_

i�l

)-circuits (write i-circuit for a ^

i

-or _

i

-circuit).

A �

i

-circuit is a _

i+l

-circuit. �

i

-circuits are de�ned dually. A �

i

(�

i

)-family is

a collection of �

i

(�

i

)-circuits all of whose 1-circuits are uniformly bounded in size (in

some n). The depth of an i-circuit is i and the size is the cardinality of its sub-circuits.

Let I = f0; 1g. Clearly, each boolean circuit with n inputs computes a function from

I

n

to I . A reasonable bound, in the size growth for circuits, is a polynomial growth rate

in n. �

i

(�

i

)-families may be considered with this polynomial growth limitation. The

question to ask then is how depth and size relate in computing functions. In particular,

are there functions computed by polynomial size, depth k+1 circuits which cannot be

computed by polynomial size, depth k circuits?

This question does not have an obvious answer since one may expect that a su�-

ciently large polynomial for the size growth may compensate the little loss in depth.

2.4.2 The method

In this �nal example the use of in�nitary-continuous structures is indirect. More pre-

cisely, the proof in the �nitary case is built up by an analogy to the in�nitary result.

The step towards in�nity is made by looking at I

!

instead of I

n

, for n < w. I

!

, of

course, is the set of in�nite sequences of 0 and 1's.

In�nite circuits are de�ned similarly as in de�nition 2.4.1, by dropping the �nitary

restrictions. Namely, inputs are from an in�nite set fx

1

; x

1

; x

2

; x

2

:::g and, at each

^

i

(_

i

) level, one may take in�nite collections from the level below. We only require

that an (in�nite) �

i

-circuit has all of its 1-subcircuits which are �nite.

Clearly, each circuit in the present sense de�nes a function f : I

!

! I , similarly as

�nite circuits de�ne functions from I

n

to I , for suitable n. A � I

!

is de�ned by a

circuit C, if A = f

�1

(1) for f de�ned by C.

De�nable subsets of I

!

are in a simple relation to a well known �-algebra of subsets

of I

!

as topological space.

De�nition 2.4.2 Let X be a topological space. De�ne then

�

0

1

= fA j A � X and A is openg

�

0

1

= fA j A � X and A is closedg,

for i > 1;�

0

i

= f[

!

1

A

n

j 8n < ! 9j < i A

n

2 �

0

j

g

�

0

i

= fA j A (the complement of A) is in �

0

i

g.

If X is a countably based complete metric space, then A � X is Borel if, for some

i < !

1

; A 2 �

0

i

.

Borel sets are extensively used in several areas of Mathematics and in Descriptive

Set Theory. Consider now ! and I with the discrete topology.

Note then that I

!

, with the product topology, is a countably based compact metric

space (the Cantor space). The distance between �; � 2 I

!

is given by d(�; �) =

1

2

n

,

where n is the least such �(n) 6= �(n). Thus the basic open sets are the collections of

extensions of �nite sequences of 0 and 1's.
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Just looking at the de�nitions, one may easily compare circuits and Borel sets in

I

!

, by the following lemma.

Lemma 2.4.3 A � I

!

is in �

0

i

i� it is de�nable by a �

i

-circuit.

A classical result for the Borel hierarchy of sets states the non trivial fact that for

i < j;�

0

i

is strictly smaller than �

0

j

.

The proof is usually given by diagonalization (Jech (1978)). Namely, one �rst shows

that for each i, there exist a universal set U in �

0

i

. That is, for every �

0

i

set A, for

some a in the given space, A = fx j (x; a) 2 Ug. Then, by the usual Cantor-Russell

diagonal argument, take K = fx j (x; x) 2 Ug 2 �

0

i

. Clearly, K 2 �

0

i+l

but K 62 �

0

i

otherwise, for some k;K = fx j (x; k) 2 Ug and k 2 K i� k 2 K.

In Sipser (1983) a more combinatorial proof is given of the strict inclusion between

�

i

-circuits and �

i+1

-circuits.

Theorem 2.4.4 For all i > 0, there exist functions de�nable by �

i

-circuits but not by

�

i�1

-circuit.

The proof actually gives, for each p > 0, a function f

p

: I

!

! I with the required

property, at level p, as follows. Let <;>: !

2

$ ! be a pairing function, extended to

!

n

in the usual way. De�ne, for � 2 I

!

,

f

p

(�) = 1 i� 9i

1

8i

2

:::Qi

p

�(< i

p

; :::; i

p

>) = 1:

For p = 1; f

p

is clearly �

1

de�nable, but not �

0

. The basic work is in the inductive

step, where, assuming the result for p� 1, a �

p�2

-circuit is given for f

p�1

from a �

p�1

-

circuit for f

p

. This is done by completing functions constructively de�ned at �nitary

levels (Sipser (1983)).

The �nitary case deals with circuits, �

i

-circuits in particular, de�ned as in de�ni-

tion 2.4.1.

The input strings, then, and all higher levels of ^;_ collections are �nite. Since we

want to look at polynomial growth rate, the attention is restricted to circuit families

whose size is bounded by a polynomial in the number of input variables. Thus a �

i

-

family, say, is a collection of _

i+1

-circuits as in de�nition 2.4.1, with this polynomial

size limitation.

Theorem 2.4.5 For all i > 0, there exist functions de�nable by a �

i

-circuit family

but not by a �

i�1

-circuit family.

The proof goes similarly as for theorem 2.4.4. The �nitary limitations come in by the

�nite nature of the counterexamples and by the uniform bounds in their de�nition.

Namely, for p;m > 0 and n = m

p

, de�ne f

n

p

: I

n

! I as follows:

f

n

p

(�) = 1 i� 9i

1

< m 8i

2

< m:::Qi

p

< m �(< i

1

; :::; i

p

>) = 1

(if n is not a power of m, then f

n

p

is everywhere 0).

A �nitary analogue to the work done for the in�nitary statement, in particular in

the inductive step, proves that the f

n

p

have the required property (Sipser (1983)).
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Comment 2.4.6 In�nite binary sequences, i.e. the elements of I

!

, are limits of

�nite sequences in the obvious sense. This is made more precise by taking I

!

with the

Cantor topology and by the topological notion of limit: just recall the de�nition of basic

neighbourhood in I

!

.

Thus also in this case one looks at the completion ("take all limits") of a given set of

�nite objects. Similarly, in section 2.3 the in�nite B�ohm-trees considered were limits,

w.r.t. the Scott topology, of the �nite B�ohm-trees used in the original �nitary result.

In both cases, the �nite objects to be extended were clearly provided by the extant

result or the problem itself. As for the result sketched in section 2.2, no explicit hint

was given by the problem to the continuous structure which could be used. Myhill-

Shepherdson theorem and Scott's work, though, suggested the method and the (heavy)

induction loading.

In the result just presented, the rich topological structure of I

!

appears, since

the Borel hierarchy theorem is given for (spaces homeomorphic to) countably based

complete metric spaces. This is only used for an analogy, though, more than for a

rigorous in�nitary extension of �nitary facts, as in the previous cases.

Proofs as well as conjectures by analogy are fruitfully used in Mathematics. As

for the present �nite/in�nite analogy, applied to circuit complexity, more work may be

found 1n Furst et. al. (l981).

The leading idea in this approach may be extended to the fundamental P =?NP

question in complexity theory, by comparing exponential growth to uncountability

(Sipser (1954)). In short, typical NP-complete problems, such as the various satis�a-

bility problems are decided by deterministic algorithms enumerating and checking all

subsets of a given set. The exponential growth arises just because the subsets of a set

of cardinality n are 2

n

.

Analogously, uncountability arises from the powerset operation over in�nite sets.

Thus polynomial growth may be related to exponential growth similarly as count-

ability to uncountability. By this analogy Furst et al. (1981) answer a question on the

complexity of parity functions. We look forward to seeing further applications of this

method to the P =?NP question.

It should be clear that this informal survey is far away from being exhaustive as far

as the use of "analytic" methods in Computer Science is concerned. We hope, though,

that the examples mentioned could give some motivations for looking at combinatorial

facts also in in�nitary frameworks or by transporting combinatorial methods on in�nite

objects, where they are often simpler, to corresponding methods on �nite objects.
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