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SaLSA: a Specifiction Language for Search Algorithms

Yves Caseau, François Laburthe

1. Abstract

This paper presents a language and a system for expressing complex search algorithms. Algorithmic
components involving search (non-determinism and backtracking) often appear as sub-routines of
complex optimization algorithms. Such algorithms usually combine local and global search, each
method being specialized (using dedicated heuristics, branching procedures or neighborhoods) and
complex (combining various backtracking or search strategies). Hence, the standard programming
process of such algorithms is usually tedious and error-prone. By specifying search procedures with
small terms of the SaLSA language, we propose to raise the level of abstraction of hybrid algorithm
descriptions. Such a language, together with its associated compiler and environment, offers new
opportunities for improving the development time, maintenance cost and reliability of combinatorial
optimization software.

2. Motivations

Large-scale industrial combinatorial problems are seldom solved by using in a straight-forward
manner a well-known algorithm from the Operations Research literature. Most of the times, because
of the specificity of the problem or because of its intrinsic complexity (problems involving several
types of constraints, or several criteria to optimize), the programmer has to use, in order to tackle
such problems, several algorithmic components, combine them, and design a hybrid algorithm.
Hybrid algorithms thus combine different optimization paradigms such as local optimization, linear
programming, semi-definite programming, constraint propagation, branch and bound, etc...

Unfortunately, the design of hybrid algorithms is not (yet) a well understood engineering process
and few tools are available to the programmer : each algorithmic technology usually comes with its
own language (a modeling language for local optimization, CLP for constraint programming, a
linear package for LP, ....), but there is usually little available to combine such components. In some
case, (coarse grain cooperation between the algorithms), assembling the components is easy (for
example, if the components operate one after the other, the overall algorithm is only a sequence of
calls to distinct procedures). In other cases, when the algorithms are intimately interleaved, the
cooperation may be much harder to organize.

Many search algorithms belong to this category of fine-grain algorithmic cooperation (in particular
for heuristics enriched with backtracking -e.g. LDS- or algorithms featuring constraint propagation
and local optimization). However, the overall scheme (as described in textbooks) of search
algorithms is simple :

• local search is based on a visit of a series of neighborhoods

• global search is based on the exploration of choice points, with a particular backtracking strategy

Hence, local and global search may be described by means of local structures (neighborhoods or
choice points) and visit mechanisms (iterate moves / backtracking strategy). This suggests that
much of the specificity of search algorithms is in the control of the algorithm. This presentation will
indeed focus on specifying the flow of control of hybrid search algorithm, and will set aside other
algorithmic issues (which may be utterly important), such as incremental consistency maintenance,
constraint propagation, etc. Anyhow, we feel that giving a concise description of the control
mechanisms in a hybrid algorithm is an improvement over state of the art of hybrid algorithm
descriptions and that the global understanding of the behavior of the system that it offers is highly
valuable. Considering the search mechanism as a control structure, there is no reason to express
search algorithms only within tools/languages dedicated to one particular programming paradigm
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(such as constraint propagation). Instead, such a standpoint suggests the enrichment of a full-
fledged programming language with new control structures dedicated to search (see for example
[AC 97].

Within today’s languages available for combinatorial optimization, the engineering process of such
specialized tree search algorithms is usually a tedious task. In fact the « best common platform »
supporting all paradigms is usually :

• either a Prolog-like logic language with an implicit search strategy. In this case, the programmer
may try to specialize the search algorithm by encoding some control in the logic formulation.
Because this process amounts to modifying a clean specification of a problem with some logic
intended only for resolution, it is usually difficult and inelegant.

• or a lower level language with primitives for setting choice points and backtracking (such as a
concurrent calculus like Oz or a simple imperative language like Claire)

Both solutions have their drawbacks : the first approach is not open enough towards other
optimization paradigms, while the second approach lacks readability and abstraction. Therefore, we
propose a new language (SaLSA) dedicated to programming tailored search trees. This language is
currently implemented as a Claire preprocessor [CLAIRE], but it could be used in any other system
featuring primitives for setting and removing backtrack points (or offering the possibility of
creating concurrent processes).

A language such as SaLSA should :

• provide to complex hybrid algorithms simple formal specifications of the flow of control.

• support more creativity from the programmer (simple variations of an algorithm can be easily
expressed).

A SaLSA compiler (or pre-processor) should :

• improve the quality of the run-time code (automatically generated)

• support some automatic tuning of a parametric search procedure with respect to a given data-set
or some operational constraints (e.g. limited computation time).

Last, a dedicated environment for code generation in SaLSA could offer some highly valuable tools,
for producing traces of the search [Mei 95], for monitoring the search (the so-called performance
profile of [Zi 93]), for driving the search in an interactive manner [Sch 97].

Last, we should mention that others authors have investigated the combination of local and global
search. Pesant et al. [PG97] have proposed a framework for keeping a declarative programming
style with hybrid algorithms and Michel and van Hentenryck [MvH97] have proposed a modeling
language for local search algorithms (LOCALIZER). This proposal is very elegant, and influenced
heavily our presentation of choice points. Our proposal should be fully compatible with the
invariant mechanism proposed in [MvH97].

3. Description of the language

3.1 Assembling choice points into terms describing hybrid tree search

SaLSA is intended for the specification of the flow of control in search algorithms. It can be seen as
a flow-chart language, dedicated to algorithms with non-determinism. The basic building block of
this language is the choice point, an operation which considers a set of (mutually exclusive)
decisions, and applies only one of them at a time. Hence, as a control mechanism, a choice point
leads from one state (a time instant during the computation) to a set of states (since there are several
branches). Hence a choice point yields a neighborhood in the space of all states. In a traditional
implementation, these branches would be visited sequentially, one after the other. However, in order
to account for distributed implementations of search algorithms, we leave unspecified the order of
visit between these branches. In a sequential implementation, whenever a failure is detected in a
branch, the algorithm « backtracks » (goes back to the father node, which, in turn, may either visit
its next son, or if all of them have been visited, may itself backtrack to its own father node). In a
distributed implementation, when a failure is detected, the node disappears (and informs its father of
its death).
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A choice point may actually have two different behaviors, either generating a non empty set of
decisions (and hence a strict neighborhood of the current state), or generating an empty set of
decisions (yielding an empty neighborhood). In the latter case, applying the choice point has no
effect. In this case, we say that the system has come to a fixpoint for this choice point.

In order to describe real search algorithms, choice points need to be assembled. Since choice points
have two possible behaviors, we consider two composition mechanisms : leaf-composition (×) and
fixpoint-composition (◊). For example, the term C1× C2 will first apply the branching mechanism of
C1 before applying that of C2 in all the branches. As another example, one has C ◊ C = C. Indeed if
the current state is at a fixpoint for C, nothing will be done (the environment will be unmodified)
and when C is applied a second time, the state is still at a fixpoint for C.

Simple search algorithms generally feature few choice points (sometimes only one). Since, the
composing a choice point with itself by fixpoint composition is useless (C ◊ C = C), standard
algorithms usually apply C × C × C × C ... C As a shorthand, we offer the power notation Cn

(C4 = C × C × C × C). This allows us to describe search algorithms of bounded depth n, from which
one can either exit at a leaf (after having applied n times the choice point C), or earlier, when at
some depth k, (k ≤ n), after having already branched k-1 times, the system has come to a fixpoint for
the choice point C.

In some cases, one would be inclined to execute algorithms Cn with very large values of n, in order
to retain only the fixpoint exits. The construct C* describes this infinite composition of a choice
point with himself, until stability (fixpoint state) is reached. The execution of such a term goes
through a search tree, in which some branches may be infinite (possibly yielding non terminating
program), and in which the exits occur at various depths.

Up to now, we have mentioned « exits » from the search procedure. These are states of the system
where the execution of the search algorithm is over. We then need to specify where the flow of
control goes. We consider two possibilities : either executing the whole algorithm described by the
term until all nodes have come to an exit or stopping the whole algorithm as soon as one state
comes to an exit. Those two behaviors are described with the introduction of constructs in the
language called terminators. There are two of them : cont and exit. Both terminators can be
composed with a term either with ◊ or ×. In each case, they forbid any further composition of this
type. For example T ◊ exit ◊ U = T ◊ exit for any pair of terms T and U. For example, if C is a
standard assignment choice point (assigning successively to a variable all values from its domain),
C* ◊ exit will search for solutions and stop at the first one encountered, whereas C* ◊ cont will
search for all solutions, but will return to the initial state of the system (the root node of the search
tree) after the search has been performed.

This last example, C* ◊ cont, is, however, of little interest. Indeed, there is no way of knowing, the
number of solutions which have been encountered. One would like, to be able to do some printing
or to update some global variables, in each fixpoint-exit of C*, before continuing the search. In
order to offer such a possibility, the composition constructs are extended ◊ and × are extended in
order to accept as second argument functions as well as terms. The idea is to compose them with
functions which have side effects. For example, if talk is a function which tells the user about the
current solution, we can replace the previous term by a more interesting version C* ◊ talk ◊ cont,
which will evaluate talk() in all states which account for fixpoint exits of C*.

3.2 Creating choice points

Let us now describe how choice points are created. Before stating the grammar for expressing
choice points, we start by a simple example (labeling finite domain variables). The syntax should be
self explanatory : choice points are named objects (here, the name is labeling) and they are
described by a set of moves which are simple expressions containing free variables. These free
variables are defined after the with keyword: some may be bound to a unique value (e.g.
x=some(....) ), others may range over a set of values (e.g. v ∈ values(x) ). To highlight choice points
in source code, their definition is surrounded by a box.
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labeling :: Choice
moves post(FD, x == v)
with x = some(x in Variable | unknown?(value,x)),

v ��∈ values(x)
on failure post(FD, x <> v)

The choice point is defined as the control structure which applies moves, one at a time, for all
possible assignments of the free variables. The precise operational semantics of choice points is
defined in a separate section, but we can consider as a first approximation that the choice point
defines a neighborhood of the current state. Choice( moves f(x) with x ∈ g() ) applied to the state s
yields the set of states {s1, ..., sn} if the evaluation of g() returns {x1, ..., xn} and if state si is obtained
from state s by the evaluation of f(xi). In the following grammar, we type in bold the reserved
keywords and in italic the optional components of a choice point.

Choice points are named objects and are always created with the Choice keyword. They may be
defined in a parametric manner (here, the parameters are x1,...,xi).

<ChoicePointName> (x1:<type>,...,xi:<type>) :: Choice
<ChoicePoint(x1,...,xi)>

A choice point with free variables (x1,...,xi) is either defined directly with the moves keyword, an
expression for defining the moves and a set of variable definitions, or it may use a case expression
(conditional switch based on typing). They may be defined in a parametric manner (here, the
parameters are x1,...,xi).

<ChoicePoint(x1,...,xi)> ::=
< moves

<MovesDef(x1,...,xn)>
such that <condition(x1,...,xn)>>

sorted by <order(x1,...,xn)>>

<vdef({x1,...,xi},xi+1,... xn)>
on failure <Dexp(x1,...,xn)> > |

<case <exp(x1,...,xj)> (<type> <ChoicePoint(x1,...,xj)>,
....
<type> <ChoicePoint(x1,...,xj)> )

 with <vdef({x1,...,xi},xi+1,... xj)>  >

The set of moves considered for a choice point can be defined in three ways : either by explicit
enumeration of the expressions to evaluate, separated by the or keyword, or by a unique expression
containing at least one free variable ranging over a set of values, or by an expression composing
other choice points, which we call a SaLSA term.

<MovesDef(x1,...,xn)> ::= <Dexp(x1,...,xn)> or <Dexp(x1,...,xn)> .... or <Dexp(x1,...,xn)> |
<Dexp(x1,...,xn)> |
from <SALSATerm>

A choice point hence corresponds to a set of moves, which can be processed in parallel. However,
this set may then be modified by two optional lines in the choice point definition. A first line for
selecting only a subset of the moves which have been enumerated. This can be done by stating any
Boolean condition (which is tested before the move), or by using within a condition the expression
delta(<exp>), which represent the variation of the integer expression <exp> through the move (this
feature is inspired from Localizer) The second optional modification specifies the order in which
these moves should be considered.

<condition(x1,...,xn)> ::= <exp(x1,...,xn)> |
delta(<exp>) <operator> <exp>

<order(x1,...,xn)> ::= <increasing|decreasing> <exp(x1,...,xn)>

The structure of the section for defining the free variables xi+1,... xn from the parameters x1,...,xi is
described below. Note here that the expressions for defining the values of variable may use set
expressions such as {x in E | P(x)}, {f(x) | x in E}, some(x in E | P(x)), some(x in E minimizing
e(x)), etc.
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<vdef({x1,...,xi},xi+1,... xn)> ::= with xi+1 <=,∈> <exp>,
xi+2 <=,∈> <exp(x1)>, ....
xn <=,∈> <exp(x1,...,xn-1)>

Finally, we have denoted the expressions describing the moves with the syntax <Dexp>. These
expressions are indeed special expressions because they may either be distributed across different
processes (for parallel computations) or be undone from one branch to the other (for sequential
exploration of the branches). For the case of algorithms involving constraint propagation of other
mechanisms enforcing some consistency over the set of objects, these expressions are events which
trigger some automatic computation (e.g. propagation). In this case, the expressions are richer than
simple imperative instructions. To keep the description as declarative as possible, the expressions
for moves (which may be standard programming instructions) may consist in posting an event to a
solver. The solver is here a black-box with consistency mechanisms, which maintains additional
data structures. The way the solver reacts to events is defined somewhere else in the program with a
declarative style (by means of constraints, invariants, production rules, concurrent agents, etc...).

<Dexp(x1,...,xn)> ::= post(<solver>, <exp(x1,...,xn)>)
<exp(x1,...,xn)>

Choice points can be combined together to form SaLSA terms with the two operators (◊ and ×),
which have been described earlier and with a few other constructs that will be defined in the next
section.

3.3 Composing choice points to produce search trees

This section describes a few other constructs available for expressing search algorithms(except from
the two compositions mechanisms).

The first primitive denotes visits to a tree which retain only the best exits (such a procedure is called
look-ahead search). Let T be a term from which there is only one possibility of exit, either leaf or
fixpoint, but not both : for example C*, C

8
 ◊ cont, C

n × D* are such valid terms, whereas C
n
,

C
n ◊ D* are not. Let f be a function of arity 0, n be an integer and r be a real number between 0.0

and 1.0. Then, the execution of the term smallest(T,f,n,r) will perform a look-ahead search of the
search tree T , will evaluate f()  in all its exits, will compute the minimal value fmin of these
evaluations, and will come back to those exits for which f() × r ≤ fmin , keeping at most n of them
(the smallest ones). For example, if C is a choice point, smallest(C,f,1,1.0) will go into all branches
of C , evaluate f(), and return to one of the branches yielding the smallest value. A symmetrical
primitive, largest, is also available.

Two other constructions are also available for expressing global topological conditions on the shape
of the search tree. The first one (the operator ‘/’ ) limits the number of exits of a term by an integer.
As for smallest and largest, this applies only to terms having only one possibility for exiting : either
leaf or fixpoint. For example C* / 4 will behave like C* until the first four exits (fixpoint exits) and
will afterwards stop any further exploration (backtracking to the root node).

Another operator (‘!’) limits the number of allowed backtracks in the tree. The execution of T ! n
will be like that of term T until exactly n backtracks have been performed, in which case, the
algorithm will stop any further exploration and backtrack to the root node for T.

The two last operator dynamically change the shape of the tree which is being explored : In the term
T where f, the where operator extracts from a given tree definition T, only those nodes n for which a
given condition was verified all along the path from the root node to n. Note that this is a
generalization to the case of arbitrarily complex SaLSA expressions of the such that condition in
the definition of one choice point. The next operator, until, allows the user to express certain
conditions which should cause the search should stop, although the neighborhood has not yet been
fully explored. In the term T until f, the until operator checks the condition f() at every inside node
of T and performs the visit of T until an evaluation of f()yields true, in which case, it by-passes the
rest of the search (deeper in the tree) and considers itself at a fixpoint exit of the term T. When the
exploration resumes, the exploration resumes until the term comes to a « natural » fixpoint or leaf
exit or until it comes to a new fixpoint exit (where f() yields true), etc.
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3.4 Grammar

In order to complete the grammar that has been show in the previous section, we give the syntax for
the SaLSA terms, which may be used either within choice point definitions, or directly within
Claire expressions, through the min, max or SOLVE primitives.

<SALSATerm> ::= <SimpleTerm> |
<SimpleTerm> × <SALSATerm> |
<SimpleTerm> ◊ <SALSATerm> |
<SimpleTerm> × <SALSATerm> ◊ <SALSATerm> |
<SALSATerm> / <integer> |
<SALSATerm> ! <integer> |
<SALSATerm> until <function> |
<SALSATerm> where <function> |
<terminator>

<SimpleTerm> ::= <ChoicePointName> |
<ChoicePointName><integer> |
<ChoicePointName>* |
<smallest | largest>(<SALSATerm>,<function>,<integer>,<percentage>) |
<SimpleTerm> × <function> |
<SimpleTerm> ◊ <function>

<terminator> ::= cont | exit
<ClaireExpression> ::= <min | max>(<SALSATerm>, <function>) |

SOLVE(<SALSATerm>)

4. Operational semantics

The purpose of this section is to define formally the behavior of SaLSA expressions. In order to do
so, we first need to account for the evaluation of standard expressions of the programming
language. If the evaluation of the closed expression (without free variables) exp yields the value val,
the evaluation will be denoted as :

ξ ξ, :   ' , ' :E exp E val( ) → ( )
where the pair (ξ,E) denotes the state of the system (the set of existing objects, values of global
variables, etc...). In order to express the behavior of SaLSA terms, we will describe a process
calculus of distributed computations. This is the reason which the environment of evaluation is
separated in two parts : we distinguish a global part of the system, ξ , (which will be shared by all
processes) and a local part, E , (each process will have its own version of this environment). Note
here, that both parts of the environment may be changed by the evaluation in case of side effects of
the considered expression.

To keep the presentation simple, we will consider that all choice points are of the form

C :: Choice
moves g(x)
with x ��∈ f()

such that k()
on failure h(x)

which we will denote by Choice(f,g,h,k). In fact, if f() returns an ordered list of tuples, any choice
point definition can be rewritten in such a form.

We start by imposing typing conditions on the four functions f,g,h,k used in the choice point
definition :

1. f is of type void → set[X], without side effects

2. g is of type X → {void, ⊥}, with allowed side effects on E

3. h is of type X → void, with allowed side effects on ξ and E

4. k is of type void → bool, without side effects.
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where ⊥ is a special value of the language, used for denoting failure (this may correspond to an
uncaught exception). After a small amount of rewriting (we introduce an empty term ε such that C ×
ε =C and C ◊ ε =C, and we rewrite Cn as C×C..... ×C and C* as the infinite composition C×C×......),
we consider that all SaLSA terms can be written in the form of (possibly infinite) binary terms

C × <SALSATerm> ◊ <SALSATerm>,

where C is :
either a choice point, 
or a terminator,
or the empty term ε, 
or an expression smallest(<SALSATerm>,f,n,r)
or an expression <SALSATerm> / <integer>

We introduce concurrent processes (roughly speaking, there will be one process per node in the
search tree), and we will define transitions of a system composed of a global environment and a set
of states. Processes will be small objects denoted as p :℘ and will have the following components :

p

state start and wait done failed

father
sons set object
env set object

code SALSATerm

:

: ,exp , , ,
:

: [( , )]
: [ ]
:

℘

{ }
℘

< > ℘
< >

< >

















Moreover, we will consider a particular process π. The computation of the algorithm represented by
the SaLSA term will represented by a sequence of transitions in the process calculus, according to
the rules which follow. The transitions will be written:

ξ ξ,{ ,..., }  ' ,{ ' ,..., '}//
p p p pn l1 1( )  → ( )

where a process p’j are either distinct from the set of pi, or it is obtained by changing entries of some
process pi , which will be denoted by

p p field new valuej i'  = [ ]

We are now ready to state the rules specifying the legal transitions in this system.

    

p env E

p
state start

env E
code T

p p
p state done v

p state failed v

E T E v

' : '

:
,  ( ,  )  ( ,  { '}),  

' .   
 ' .   

( ,  ) :  ( )  ( ' ,  ' ) :  

//

℘ =( )

℘
=
=
=











 → = ∧ =( )
∨ = ∧ =( )







→

ξ ξ

ξ ξ

 

 

true

false

solve

Rule 1: link with the programming language

  

( ,  )  ( ,  { ' , ..., ' })

( ,  , , ..., )  ( ,  , ..., , ' , ..., ' )

//

//

ξ ξ
ξ ξ

p p p

p p p p p p p

n

k k n

 →

{ }  → { }
 

 

1

1 1 1

Rule 2: expanding one node of  the frontier
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C Choice f g h k

p
state start

env E
code C T T

E f E x x n

p p
state expand

sons x x

n

n

=

℘
=
=

= × ◊











→ { } >

 → { }






( , , , )

: ,  ( ,  ) :  ()  ( ,  ) :  ,..., ,  

( ,  )  ( ,  ( , ),...,( , ) )//

1 2

1

1

0ξ ξ

ξ ξ

 

 π π

Rule 3: expanding a node: generating the labels of the branches

  

C Choice f g h k

p
state start

env E
code C T T

E f E

p p code T

=

℘
=
=

= × ◊











→

 → [ ]

( , , , )

: ,  ( ,  ) :  ()  ( ,  ) :  {}

( ,  )  ( ,  )//
1 2

2

ξ ξ

ξ ξ

 

 

Rule 4: generating an empty set of labels: fixpoint state

  

p

state expand
env E
code Choice f g h k T T

sons x p x x p

E g x E void

E k E true

p

i n n

i

: ( , , , )
( , ),...,( , ),..,( , )

   

( ,  ) :  ( )  ( ,  ' ) :  
( ,  ) :  ()  ( ,  ) :  

' :℘

=
=
= × ◊
= { }















→
→

1 2

1 1 π

ξ ξ
ξ ξ

 
 

℘℘
=

=
=
=















 → { }[ ]

father p
env E
code T
state start

p p sons x p x p x pi n n

'

( ,  )  ( ,  ( , ),...,( , ' ),..,( , ) )//

1

1 1ξ ξ 

Rule 5: going down a branch

  

p
father p
state failed

p

state expand
env E
code Choice f g h k T T

sons x p x x p

E g x E v

E k

i n n

i' :

: ( , , , )
( , ),..., ( , ),.., ( , )

   

( ,  ) :  ( )  ( ,  ' ) :  
( ,  ) :  ()

℘ =
=







℘

=
=
= × ◊
= { }















→

1 2

1 1 π

ξ ξ
ξ

 
  ( ,  ) :  '

 '

( ,  ) :  ( )  ( ' ,  ' ' ) :  

( ,  )  ( ' ,  
' '
( , ),..., ( , ' ),.., ( , ) )//

→
= ⊥ ∨ =( )

→

 → { }






 

 

 

ξ

ξ ξ

ξ ξ

E v

v v false

E h x E void

p p
env E

sons x p x p x p

i

i n n1 1

Rule 6: failure in a branch

  

p
state expand

sons x p x p
i x

p p state wait

n n
i: ( , ),...,( , ) ,    ,     

( ,  )  ( ,  )//

℘
=
= { }





 ∀ ≠

 → [ ]
1 1

π

ξ ξ 

Rule 7: when all sons of a node have been expanded
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∀ =

℘ =
= { }







 → [ ]{ }

i p state failed

p
state wait
sons x p x p

p p p p p p state failed p p

i

n n

n l l

,  .

: ( , ),...,( , )
 

( ,  , ,..., , ' ,..., ' )  ( ' ,  , ' ,..., ' )//
1 1

1 1 1ξ ξ 

Rule 8: when all sons of a node report a failure

  

∀ ∈ ∈{ }
=

℘ =
= { }







 → [ ]{ }

i n p state failed done

p state done

p
state wait
sons x p x p

p p p p p p state done p p

i

n n

n l l

  { .. },  . ,  
.

: ( , ),...,( , )

 

( ,  , ,..., , ' ,..., ' )  ( ' ,  , ' ,..., ' )//

2
1

1 1

1 1 1ξ ξ 

Rule 9: when all sons of a node have finished their computations

  

p code exit

p p p state donen

1

1 1

.  

( ,  ,..., )  ( ' ,  )//
=

{ }  → [ ]{ }ξ ξ 

Rule 10: exit terminator

  

p code cont

p p p pn n

1

1 2

.  

( ,  ,..., )  ( ' ,  ,..., )//
=

{ }  → { }ξ ξ 

Rule 11: cont terminator

  

p
state start
env E
code T

p
state start
env E
code T n T T

p p p p p m

i m p state start p code

m n

m l

i i' :

:
/

     

( ,  )  ( ' ,  ,..., , ' ,..., ' ,  
{ .. },  . ,  .

//

℘
=

=
=











℘
=

=
= × ◊











 → { } >
∀ ∈ = =( )

=

∨
1 2

1 1 0
1

ξ ξ 

ε

  { .. },  
' . { , , }
' .

( ,  )  ( ' ,  ,..., )//

m n

j l
p state failed done wait

p code

p p code T p code T

j

j

m

<

∀ ∈
∈
≠
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Rule 14: no exits from a look-ahead or limited search

5. Examples

5.1 Resolution strategies for a finite domain constraint solver

As a first simple example for SaLSA we express some standard labeling strategies offered as built-
in in most finite domain constraint solvers. One can for instance consider three branching
mechanisms :

• Selecting an unassigned variable (for example, according to the first-fail principle, picking a
variable with minimal domain cardinal), and assigning successively all possible values to it. This
can be described by the following choice point (L) :

L :: Choice
moves post(FD, x == v)
with x = some(x in {x in Variable | unknown?(value,x)} minimizing card(x)),

v ��∈ values(x)
 

• For variables with many values in their domain, one usually replaces the assignment procedure
by a domain reduction procedure. This can be described by this choice point (R) :
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R :: Choice
moves post(FD, x <= mid) or post(FD, x > mid)
with x = some(x in Variable | unknown?(value,x)),

 mid = (x.sup + x.inf) / 2

 

• A last procedure consists in picking a suspended disjunction (c1 or c2) and enforcing one the two
constraints (ci). This can be described by the choice point (D) :

D :: Choice
moves post(FD, d.c1) or post(FD, d.c2)
with d = some(d in Disjunctions | unknown?(side,d))

 

 With all these choice points, a standard strategy for solving satisfiability problems can be
expressed as :

 SOLVE(D* ◊ R* ◊ L* ◊ exit)

 In order to address optimization (say minimization) problems, the solver also needs to offer a
branch&bound search algorithm. This can be described in the following manner. Let UB be a global
variable storing the best value found so far in the search (initialized with a high constant), and let
OBJ be a domain variable representing the objective function to minimize, let us defining the
following utility functions.

 registerUB() -> UB := OBJ.value
enforceUB() ->post(FD, OBJ < UB)

The branch and bound minimizing algorithm can then be expressed with the following expression :

 SOLVE((D *◊ R* ◊ L*) where enforceUB ◊ registerUB ◊ cont)

 

5.2 The n queens problem.

Let us now consider the famous n-queens problem (placing n queens on a n×n chessboard  such that
no pair of queens attack each other’s position). This problem could be solved very simply with a
constraint solver using the procedures described in the previous paragraph. However, for the sake of
the argument, let us present a specialized search algorithm.

We build a solution to the n queens problem by filling up two arrays : line and column, with the
following meaning : line[x] = y (or column[y] = x) means that a queen has been placed on the
chessboard, in the (x,y) spot. Otherwise, line[x] = 0 (resp column[y] = 0) means that no queen has
yet been placed in the line x (resp. in the column y). In order to keep both array consistent, and to
perform some propagation, we use a small solver, called chessboard (for example, posting the
update line[x] := y to chessboard triggers the update column[y] := x). Moreover, we compute a
matrix (possible) of Booleans indicating which spots are not attacked by a queen already placed on
the board. The chessboard solver is responsible for keeping this matrix up to date.

A first choice point (L) picks a line containing no queen and recursively tries to place a queen in all
free spots in this line.

L :: Choice
move post(chessboard, line[i] := j)
with i = some(i in Lines | line[i] = 0),

j ��∈ {j in Columns | possible[i,j]}

From this choice point several algorithms can be tested : searching for the first solution, printing all
solutions, or printing the first three solutions found.

 SOLVE(L* ◊ exit), SOLVE(L* ◊ display ◊ cont),

  SOLVE(L* / 3 ◊ display ◊ cont)
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However, these algorithms may return solutions having less than n queens on the board. Since
exactly one queen is placed in a branch of a choice point, boards with n queens will be obtained at
depth n, whereas solutions obtained at a shallower depth correspond to less queens. In order to print
only solutions with n queens, on can run the following algorithm.

 SOLVE(((L
n
 ◊ cont) / 3) × display × exit)

For a more complex algorithm with the n queens problems, one could very well reason on columns
instead of lines. In fact, a more appropriate algorithm would reason sometimes on lines, sometimes
on columns, depending on which model is most constrained. This can be described with the
following choice point :

Mix :: Choice
case Size(domain(line[i0])) < Size(domain(column[j0]))
({true} moves post(chessboard, line[i0] := j)

  with j ��∈ {j in Columns | possible[i0,j]}
 {false} moves post(chessboard, line[i] := j0)

  with i ��∈ {i in Lines | possible[i,j0]} )
with i0 = some(i in {i in Lines | line[i] = 0} minimizing Size(domain(i)),

j0 = some(j in {j in Columns | column[j] = 0} minimizing Size(domain(j))

With this composite choice point, a simple algorithm for finding an assignment of queens to places
can be described as

 SOLVE( Mix* ◊ exit)

Finally, let us mention that a standard labeling technique for the n queens problems consists in
trying first (within a line or a column), the spots near the middle of the sequence. The choice point
L can be easily modified (L’) to take this heuristic into account :

L :: Choice post(chessboard, line[i] := j)
with i = some(i in Lines | line[i] = 0),

j ��∈ {j in Columns | possible[i,j]}
sorted by increasing abs(n / 2 - i)

5.3 Various insertion algorithms for routing problems

We now consider the well-known vehicle routing problem : the problem is defined a set of workers
and by a set of tasks to be done at different locations. A solution is an assignment of tasks to
workers as well as a route (a schedule) for each worker. Standard algorithms are insertion
algorithms in which one picks one task at a time, affects it to a worker and inserts it at some place in
its route. In order to describe such procedures, let us define choice points for representing this
insertion mechanism. The first choice point describes how a task is inserted between two successive
ones in a tour, the second choice point uses the first one to consider all routes, and retain only the
best insertion for each route.

Insert(t:Task, r:Route) :: Choice
moveslink(x,t,r), link(t,y,r)
with (x,y) ∈ edges(r)

OneInsert :: Choice
moves from smallest(Insert(t,r), Length(r))

with t = some(t in Tasks | unaffected(t)),
r ��∈ Routes

 

Simple look ahead heuristic recursively picks a task and a route and inserts the task where it fits
best in that route :
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 SOLVE((OneInsert / 1)* ◊ exit )

The algorithm can be improved with some incremental local optimization. The idea is to re-
optimize the solution after each insertion (in order to correct mistakes made by wrong insertions,
and to improve the sequencing of tasks in the route where the task has just been inserted). However,
during the look-ahead exploration of the branches, one can afford only a limited amount of
optimization, while in the actual insertion, one has the time to perform a more thorough pass of
local optimization. Let us define two local optimization procedures with the following choice
points:

TwoOpt(t:Task) :: Choice
moves link(x,u,r), link(y,z,r)

with r = route(t)
(xy, uz) ��∈ SortedPairsOf(edges(r))

such that delta(Length(r)) < 0

ThreeOpt(t:Task) :: Choice
moves link(x,u,r1), link(z,y,r2), link(t,w,r)

with r = route(t), u = next(t),
r1 ��∈ RoutesCloseTo(r), r2 ��∈ RoutesCloseTo(r),
xy ∈ edges(r1), zw ∈ edges(r2)

such that delta(TotalLength) < 0

SmartInsert:: Choice
moves from smallest(Insert(t,r) x (TwoOpt(t)/1)*, Length(r))

x (ThreeOpt(t)/1)*

with t = some(t in Tasks | unaffected(t)),

 SOLVE((SmartInsert/1)* ◊ exit)

5.4 Various Scheduling heuristics.

We now describe a set of search algorithms dedicated to scheduling problems. This first ones are
constructive heuristic based on the notion of selection. Tasks are selected one by one and scheduled
as soon as possible accordingly with their resource requirements. This process can be described
with the choice point :

Ins :: Choice
moves post(schedule,t.start = t.start.inf)
with t ∈ {t in Tasks | available(t) & not(scheduled(t))}

 

yielding a naive heuristic :

 SOLVE((Ins/1)* ◊ exit)

This heuristic can be improved if we decide to choose the task to schedule by some priority rule (for
example, the shortest or the most urgent task). The algorithm then becomes :

Ins2 :: Choice
moves post(schedule,t.start = t.start.inf)

with t ∈ {t in Tasks | available(t}
sorted by decreasing priority(t)

 

 SOLVE((Ins2 / 1)* ◊ exit)
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As for the previous routing examples, this priority measure can also be assessed after the insertion,
yielding a look-ahead search algorithm.

 SOLVE(largest(Ins, global_cost, 1)* ◊ exit)

Since these enriched greedy strategies yield good results, they can be enriched with some global
backtracking. This yields a kind of limited discrepancy search algorithm (see [HG 95]), where
branching takes place when two tasks t and t’ were candidates to be inserted, which could not be
distinguished by our heuristic evaluation function. In these cases, instead of breaking ties arbitrarily,
we create a backtrack point and consider both possibilities (insert t, insert t’), in separate branches.
This yields the following algorithm :

 SOLVE(smallest(Ins, bound, 2, 1.0)* ◊ display ◊  exit)

In order to have a finer control over the size of the search tree, one can also adapt the amount of
backtracking to the depth in the tree. This is motivated by the fact that backtracking at the root of
the tree is responsible for more diversification in the solution set than backtracking deeper in the
tree. This mechanism can be (for example) implemented by the following algorithm :

 SOLVE(    smallest(Ins, bound, 5, 1.0)
5

×  smallest(Ins, bound, 2, 1.0)
10

×  smallest(Ins, bound, 1)* ◊  exit)

5.5 Exhaustive scheduling techniques and "shaving"

Let us now consider an exhaustive approach to the (disjunctive) scheduling problem. Instead of
selecting the tasks one by one and scheduling them as soon as possible, one may consider pairs of
tasks and decide which one should be processed first. This technique, called « edge-finding », is
well adapted to an exhaustive search (exact optimization) since the branches of the search tree are
mutually exclusive (which was not always the case of the algorithms described in the previous
paragraph). This search procedure can be described as follows :

EdgeFinding :: Choice
move post(schedule, t1 isbefore t2)

or post(schedule, t2 isbefore t1)
with (t1, t2) = some{pair in tuple(Task, Task) | unordered(pair)}

Another exhaustive search approach would be to affect to each task a starting date, by trying all
possible dates, one after the other. This search algorithm is highly inefficient as an exhaustive
method (because it produces many equivalent schedules). However, it may be used as a propagation
mechanism through limited look-ahead search. This propagation technique is called « shaving »
[MS 95] and it is based on the following idea :

Let t be a task with possible starting times between a  and b. We try to force t to start at time a, and
propagate : if this assignment leads to a failure, the domain of the starting time of t can be « left-
shaved », i.e. its lower bound may be updated to a+1. This process is repeated until some k is
reached such that assigning the a+k as a starting date for t no longer raises a contradiction (a
procedure shaving domains from the right can be designed in a similar manner). A choice point
expressing this labeling procedure can be described as :

Start(t:TASK) :: Choice
move post(schedule,t.start = v)
with t = some(t in Task | unknown(value, t.start)},

v ∈ (t.start.inf .. t.start.sup)
on failure t.start != v
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The shaving procedure amounts to a limited visit of the Start choice point, which we want to stop as
soon as one leaf has been reached (without causing failure), and for which we want to exit not in a
leaf, but at the root node.

 SOLVE(Start(t) / 1 × cont)

5.6 Local Optimization and partial schedules

In this paragraph, we present a local optimization algorithm based on tree search. The idea is to go
from one solution to one of its neighbors by keeping the good part of the initial solution and trying
to re-plan the rest of it. Such a procedure differs from the usual hill-climbing control of local
optimization, in the sense that the choice of the part of the solution that is being kept is non-
deterministic and that several trials are allowed (this procedure is described as « generalized
shuffle » in [CL 95]).

To describe such an algorithm, we need two choice points: a first one, Forget selects the partial
solution to keep from the initial solution, a second one, EdgeFinding  which orders two tasks
sharing the same resource (this branching procedure has been presented earlier as the standard
method for exhaustive search). We are now able to write a move which tries at most three times to
keep only part of the current solution, and which, in each case, tries to re-obtain a full schedule by
performing a global search limited by 100 backtracks.

 SOLVE(Forget / 3 × (EdgeFinding* ! 100) × exit)

5.7 Playing chess

The next example concerns chess playing. The two players play one after the other and each one
seeks the move which will put him into the best position. Let us assume that a configuration of the
chess board can be assessed by a function (the better the configuration, the higher the value) fw for
the white player just after a white move (and similarly a function fb for the black player just after a
black move). Moreover, let Wmove be a choice point iterating all possible moves for the white
player. A one-move ahead strategy for the white player can hence be described by the term

 SOLVE(largest(Wmove, fw) ◊  exit)

A more sophisticated strategy could also examine all possible replies of the black player to the
considered move. This is described as

 SOLVE(smallest(Wmove, max(Bmove, fb)) ◊  exit)

The white player may also decide to reason three moves ahead, but considering only the five replies
of the black player, which seem best. This can be described as

 SOLVE(largest(Wmove, min(largest(Bmove, fb, 5), max(Wmove, fw) )) ◊  exit)

A full search tree based on choice points as the ones which have just been described would then
correspond to a simulation of the chess game.

5.8 Redundant disjunctive scheduling constraints : searching for « good » maximal cliques

We now address a problem that we encountered on some instances of cumulative scheduling
problems. In these instances, the standard cumulative scheduling algorithm behaved poorly because
it was not able to make some simple inferences. These simple inferences could have been made if
one had realized that many pairs tasks of tasks were disjunctive (i.e. could not be in process at the
same time), either because their combined resource requirement exceeded the available quantity or
because of explicit precedence constraints. When there are many such disjunctions, it is interesting
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to consider cliques in the graph of these disjunctions (a clique of disjunctions is a set of tasks such
that any pair of them is disjunctive). In fact, to each clique of disjunctions, one can create a fake
disjunctive resource and impose that all tasks in the clique require this resource. This is a redundant
constraint and does not discard any solution, but it may perform new inferences.

In fact, the most interesting cliques are the maximal ones. However, there are too many of them and
one cannot afford to add too many such redundant constraints (the slow down in execution time is
noticeable). So, one has to find a set of « good » maximal cliques. For example finding the cliques
with maximal cardinality or with maximal duration (adding the durations of the tasks in the clique).
This can be done with a simple search algorithm, trying to build the set of tasks S corresponding to
a clique :

 SOLVE(largest(C*, totalduration, 3, 0.90) × make_redundant_constraint × cont)

 with a simple choice point C :

C :: Choice
moves S :add t

with t ∈ {t in Task | forall(t’ in S, disjunctive(t,t’)) }
sorted by decreasing duration(t)

 

5.9 The Lin & Kernighan heuristic for the TSP

We now describe a local optimization procedure for the traveling salesman problem (TSP), due to
Lin and Kernighan [LK 73]. The procedure generalizes the standard k-opt moves, which consist in
removing k edges from the tour and replacing them by k other ones. The idea is based on the
following observation : a k opt move, always consists in replacing a set of edges { ,..., }e ek1  by
{ ,..., }f fk1 . Without losing too much generality, one can assume that for all i, ei and fi have the
same end point. The transformation can hence be constructed incrementally, by replacing e1 par f1,
e2 by f2, etc. When the move yields an improvement, we get
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The LK heuristic for finding one move is the following. Starting from some vertex x’ in the tour, we
replace the incoming edge on x’  e1=xx’ by a shorter one f1 =yx’ (df1

 < de1
). Then, we replace the

outgoing edge on y, e2=yy’ by some other f2 =zy’ such that df1
 + df2

 < de1
 + de2

 , and so on ... A
limited amount of backtracking is performed to find the best move (in the original paper,
backtracking occurs only on the two first levels of the search). Once the best move has been found,
it is generally used in a hill-climbing walk.

Here is the full example of a program searching for a move with the L&K heuristic :

//  data in the global environment:

 d[x:City, y:City] : integer // the distance matrix
pred[x:City] : City // the immediate predessor of a city

//  (used to store the tour to optimize)
possible_pred[x:City] : set[Cit]y // the candidates to be the immediate predessor

//  data in the local environments (in each node of the tree)

 l:list[City] := nil

//  The solver LK

 LK :: invariant(gain = sum(d[pred[l[i]], l[i]] - d[l[i+1] - l[i], i in (1 .. length(l - 1)) )
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//  functions

 cyclic() : boolean -> length(l) > 1 & l[1] = l[length[l]]

 notbetter() : boolean ->gain ≤ 0

//  choice points

F :: Choice
moves post(LK, l := list(x))

with x ∈ Cities
 

N :: Choice
movespost(LK, l :add x)
with x ∈ {x in Cities | exists(y in possible_pred[x] | d[y,x] < d[pred[x],x]]}

such that gain ≥ 0
 

the algorithm for finding a move can then be expressed as follows :

SOLVE(largest(F × (N × (N / 1)* until cyclic), gain, 1)

and the overall local search algorithm can be described as

SOLVE(largest(F × (N × (N / 1)* until cyclic), gain, 1)* until notbetter  ◊  exit)

Hence, this complex heuristic can be programmed in very simple manner with SaLSA. Moreover,
the user can very simple experiment some other backtracking possibilities, such as the following
algorithm which performs an exhaustive search of neighborhoods containing at most 3 moves

SOLVE(largest( largest( F × ((N / 2)
8
,  × (N / 1)* until cyclic),

 gain, 3)* until notbetter,
gain, 1) ◊ exit)

6. A first implementation

In this section, we report some specific features of the first implementation that was realized as a
Claire pre-processor.

6.1 Code generation

A prototype implementation of SaLSA has been realized from the operational semantics. The
implementation is mono-process and only one strategy of visit of the search tree is offered: depth
first search. The current implementation is a Claire generator, which produces CLAIRE objects and
methods from a SaLSA code.

The main interest of such an implementation is its memory cost. Except for the terms involving
look-ahead search (with smallest/largest), all the nodes of the search tree that are under
consideration at a given time instant are always on a same branch, and only the deepest one is
active. Hence, the environments of all processes can be stored (incrementally) on a stack. Such
mechanisms are already offered by the Claire language, which makes the generation of code easier.

For the look-ahead search procedures (say smallest(T, f, k) ), there are two possibilities for the
implementation : one can either keep a copy of all potential interesting environments, and
throughout the exploration of T, keep only the k best ones. One can also remember only the paths in
the search tree rather than the whole environments. This amounts to a time versus space tradeoff :
the first solution is much more memory consuming but may be faster (the environments need not be
reconstructed), however, never more than by a factor 2. In practice when T is a large tree, and k is
small, the speed gain is likely to be negligible, whereas the memory requirements are not bounded.
Therefore, we settled for the second implementation.
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The current implementation is a prototype and is still under development. However, we expect to
release a first system in the public domain in the fall of 1997, together with a small finite constraint
domain solver, called ECLAIR.

6.2 ASCII syntax

In the implementation of SaLSA, the syntax for describing choice points is different from the one
that has been used throughout this document. The first reason is due to the limitation of ascii
characters : the operators × , ◊ and ∈ are replaced by *, /+ and in, the terms Cn and C* are written
C ^ n and C ^ *. Moreover, the syntax for choice points is different : it is less readable, but the
code generator was easier to implement. The difference is that we use functions instead of arbitrary
Claire expressions with possibly free variables. The branching process is separated in two phases.
First, generating a set of exclusive decisions, and then, taking them. In order to describe the set of
decisions in a parametric manner, the decisions are represented by the evaluation of a single
function on different sets of parameters (so here, we do not allow the explicit neighborhood syntax
<move> or <move>, it needs to be coded into one single parametric function call). This amounts to
decomposing choice points into an iteration and a function :

We start by describing the creation of the variables. Each variable is either bound to one single
value (x = <exp>) or to a set of values (x ∈ <exp>). Suppose there is only one variable. We
encapsulate the expression defining its value in a function f (without parameters since the function
had no free variables) and denote this part of the choice point by Choose(f) if f returns a set of
values and by Focus(f) is f returns a single value. When there are several variables, each one of
them is defined by a Focus(<function>) or Choose(<function>) construct. However, the variables
are not always independent one from the other (consider for example a simple labeling procedure
featuring two variables: an unassigned domain variable (one single object) and a set of possible
values from its domain (a set of objects : Here, the variable needs to be generated before the set of
values since the values depend on the variable.

To express these dependencies between variables, the Focus and Choose constructs will be
composed with the ‘o’ operator, in sequence. For example, the following expression

Choose(g) o Focus(f) o Choose(h)

yields as parameters the set of triples (x,y,z) such that :

x ∈ g(), y = f(x), z ∈ h(x,y)

The arguments x is always passed as parameter to the function f, so the function defining the ith

variable must always be of arity (i-1) (even if it doesn’t use all its parameters). This allows us to use
all possible free variables that we may want. Note that passing functions is strictly equivalent to
passing expressions when one declares the function as an inline function. Once this set of
parameters is constructed (which is can also naturally be done incrementally), the label generator
can be enriched with a function to evaluate on these parameters in order to take the decision. The
addition of the decision function is done through the use of the do operator. For example, the choice
point

Label :: Choice
moves assign(x,v)
with x = NextVariable()

  v ��∈ values(x)

can be entered as followed on the system

Focus(NextVariable) o Choose(Values) do assign

The side effects of the evaluation of the assign function are undone upon backtracking to the father
node. However, one can also perform some actions in the father node when one of its children
reports a failed search. In order to do so, one can apply the bk operator to a choice point, in the same
manner as the do operator. For example, the choice point
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Label2 :: Choice
moves assign(x,v)
with x = NextVariable()

  v ��∈ values(x)
on failure updateGUI(x,v)

can be entered as followed on the system

Focus(NextVariable) o Choose(Values) do assign bk updateGUI

7. Conclusions

In this paper, we have presented a language for describing specialized (global and local) search
algorithms. This allows us to specify in a very concise manner the flow of control for complex
algorithms. Such a language is a step towards programming complex hybrid algorithms with a high
level of abstraction. By raising the level of abstraction, the code becomes shorter and more elegant
(yielding shorter development and maintenance times). By using a code generator, we can improve
the reliability of the run-time code. Future directions of research include a programming
environment dedicated to such algorithms (with a special purpose debugger, stepper, tracer, etc. )
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