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Abstract

Call bifaced any k-valent polyhedron, whose faces are p

a

a-gons and p

b

b-gons

only, where 3 � a < b, 0 < p

a

, 0 � p

b

. We consider the case b �

2k

k�2

covering

applications; so either k = 3 � a < b � 6, or (k; a; b; p

a

) = (4; 3; 4; 8). For all these

cases p

a

� 12. Call such a polyhedron aR

i

(resp. bR

j

) if each of its a-gonal (resp.

b-gonal) faces is adjacent to exactly i a-gonal (resp. j b-gonal) faces. The preferable

(i.e. with isolated pentagons) fullerenes are the case aR

0

for (k; a; b) = (3; 5; 6). We

classify bifaced polyhedra which are both aR

i

and bR

j

, and also all a- or b-face-

regular bifaced polyhedra (except aR

0

, aR

1

for (k; a)= (3,4), (3,5), (4,3), and, for

fullerenes, 6R

4

with 52 � n � 78, or 6R

3

with 52 � n � 58).

1 Introduction

Denote by (k; a; b; p

a

; p

b

) and call bifaced any k-valent polyhedron whose faces are only p

a

a-gons and p

b

b-gons with 3 � a < b and 0 < p

a

, 0 � p

b

. Any polyhedron (k; a; b; p

a

; p

b

)

with n vertices has

1

2

kn =

1

2

(ap

a

+ bp

b

) edges and satis�es the Euler relation n �

1

2

kn +

(p

a

+ p

b

) = 2, i.e.

p

a

(2k � a(k � 2)) + p

b

(2k � b(k � 2)) = 4k: (1)

Note, that if a �

2k

k�2

, then b >

2k

k�2

, and the left hand side of above equality is less than

zero. Hence a <

2k

k�2

= 2+

4

k�2

and (3,3), (3,4), (3,5), (4,3), (5,3) are only possible (k; a).

We consider only the case when, moreover, b �

2k

k�2

; it covers bifaced polyhedra mentioned

in chemical applications. It is easy to see, that all possible such bifaced polyhedra belong

to one of the following three classes.

A) If k = 3 � a < b � 5, then (??) takes the form p

a

(6 � a) + p

b

(6 � b) = 12 and,

for p

b

> 0, the class consists only the following 6 simple polyhedra (all but no.2 are duals

of all 5 non-Platonic convex deltahedra; each no.i below, i=3,4,5, comes from no.i+ 1 by

truncation of some edge).

1. Prism

3

for (a; b) = (3; 4) with p

3

= 2, p

4

= 3, n = 6;

2. the D�urer octahedron (i.e. the cube truncated in 2 opposite vertices) for (a; b) =

(3; 5) with p

3

= 2, p

5

= 6, n = 12;
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and 4 polyhedra for (a; b) = (4; 5):

3. dual of 2-capped APrism

4

with p

4

= 2, p

5

= 8, n = 16;

4. dual of 3-augmented Prism

3

with p

4

= 3, p

5

= 6, n = 14;

5. dual of bidisphenoid with p

4

= 4, p

5

= 4, n = 12;

6. Prism

5

with p

4

= 5, p

5

= 2, n = 10.

B) If k = 3 � a < b = 6, then (??) takes the form p

a

(6 � a) = 12 and there are 3

in�nite families a

n

: 3

n

, 4

n

, 5

n

with (a; p

a

) = (3; 4), (4,6), (5,12), respectively, and with

the unbounded number p

6

of hexagons.

C) If k = 4, then 3 � a < b �

2k

k�2

= 4 implies a = 3, b = 4 and (??) takes the

form p

a

= 8, i.e. there is only one in�nite family (3; 4)

n

with (a; b; p

a

) = (3; 4; 8) and

unbounded p

4

.

The minimal polyhedra of the families 3

n

, 4

n

, 5

n

and (3; 4)

n

are polyhedra 3

4

, 4

8

, 5

20

and (3; 4)

6

with p

b

= 0, when n =

ap

a

k

. Clearly, they are Platonic polyhedra: tetrahedron,

cube, dodecahedron and octahedron, respectively.

[?] gives that other 3

n

, 4

n

, 5

n

and (3; 4)

n

exist i� 12 � n � 0 (mod 4), 12 � n � 0

(mod 2), 24 � n � 0 (mod 2) and 8 � n, respectively. The equality kn = ap

a

+ bp

b

implies that the number n of vertices is equal to

n(3

n

) = 4 + 2p

6

; n(4

n

) = 8 + 2p

6

; n(5

n

) = 20 + 2p

6

and n((3; 4)

n

) = 6 + p

4

: (2)

5

n

are fullerenes well-known in Chemistry (see, for example, [?], [?]); 4

n

are mentioned

in [?]. In [?], [?], [?] we consider isometric embedding (up to scale 1 and 2) of skeletons

of some bifaced polyhedra into the vertex-set of hypercubes. It turns out that all known

fullerenes such that it or its dual is embbeddable are face-regular in the sense considered

below. In fact, 5

20

=20:1, 5

26

=26:1, 5

44

=44:73, 5

80

=80:7 and duals of 20:1, 28:2, 36:15,

5

60

(I

h

) are embeddable into a halfm-cube form=10, 12, 16, 22 and 6, 7, 8, 10, respectively.

(The notations n : k of a 5

n

are taken from [?]). Moreover, all known (see [?]) bifaced

polyhedra such that it or its dual is embeddable turn out to be face-regular: ## 1, 2, 5,

6 and duals of ## 1, 2 in case A); 4 polyhedra 4

n

(n=12, 24, 32, 32), 5 dual 3

n

(n=12,

16, 16, 28, 36); all t-hex-elongated cubes and their duals, in addition to 5 others (3; 4)

n

(n=8, 9, 10, 16, 24) and to the dual cuboctahedron embeddable into H

4

.

The graphs of all polyhedra of classes A), B), C) and their duals (except undecided

5

n

and dual (3; 4)

n

) have a Hamiltonian circuit; this follows from the results surveyed in

Section 5.3 of [?].

Here we want to identify aR

i

and bR

j

bifaced polyhedra; aR

i

(resp. bR

j

) means that

each a-face (resp. b-face) is edge-adjacent to exactly i a-faces (resp. j b-faces). Sometimes,

it is convenient to distinguish aR

i

and bR

j

bifaced polyhedra by graphs G

a

and G

b

of the

edge-adjacency of a- and b-faces, respectively. These graphs have p

a

and p

b

vertices,

respectively. Face-regular bifaced polyhedra are those having regular graphs either G

a

or

G

b

. (This combinatorial notion has nothing to do with the a�ne notion of regular-faced

polyhedra.)

A motivation for this work comes from fullerenes studies; see, for example, [?] (pen-

tagonal and hexagonal indices and their connection to the steric strain). In fact, these

indices give the number of vertices with degree 0,...,5 and 0,...,6 for graphs G

a

and G

b

of
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fullerenes; they where introduced in [?] as a try to mesure the steric strain of isomers of

5

84

.

See [?] for terms used here for polyhedra. We identify a polyhedron with the graph

of its skeleton. According to the famous Steinitz' Theorem, a graph is the skeleton of

a (3-dimensional) polyhedron if and only if it is planar and 3-connected. For a simple

polyhedron P we denote by chamP and call chamfered P the polyhedron obtained by

putting prisms on all faces of P and deleting original edges (see [?], [?] for more details).

For t � 1, denote by 2-Prism

t

4

the t-elongated octahedron, i.e. the column of t cubes,

capped in 2 most opposite faces. It is (3; 4)

4t+6

, and besides it is 3R

2

in our terms.

Similarly, for t � 1, denote by (APrism

t+1

3

)

�

the t-hex-elongated cube, i.e. the cube

with t triples of hexagons inserted as belts between 2 triples of squares incident to 2

opposite vertices (in other words, the dual of the column of t+1 octahedra �

3

= APrism

3

).

It is tetrahedral 4

6t+8

, which is 4R

2

.

Finally, for t � 1, denote by (2-APrism

t+1

6

)

�

the t-hex-elongated 5

24

, i.e. the dual of

the column of t+ 1 APrism

6

's capped on 2 opposite 6-faces. It is 5

12t+24

and is 5R

2

.

2 Face-regular polyhedra 3

n

, 4

n

and 6 sporadic ones

At �rst, one can verify by a direct check the following

Fact 1. All 6 bifaced polyhedra of the class A) above are both aR

i

and bR

j

for

(i; j) =(0,2), (0,4), (0,4), (0,3), (1,2) and (2,0), respectively. Their graphs G

b

are, re-

spectively: C

3

, the skeletons of the octahedron, of APrism

4

, K

2

�K

3

, C

4

, C

5

.

From now on we consider only classes B) and C). So (k; b) = (3; 6) or (4,4), i.e. we

consider only 3

n

, 4

n

, 5

n

and (3; 4)

n

. Studing polyhedra with bR

j

we, naturally, exclude

the four Platonic polyhedra 3

4

, 4

8

, 5

20

and (3; 4)

6

having no b-faces.

First observations about bR

j

give

Lemma 1 For a bifaced polyhedron bR

j

the following holds:

(i) p

b

� a

p

a

b�j

with an equality i� it is aR

0

; if k = 3, then p

b

�

p

a

b�j

;

(ii) p

b

= (a� i)

p

a

b�j

if the polyhedron is also aR

i

;

(iii) if (3; 4)

n

is 4R

j

for j = 1; 2, then it is not 3R

0

;

(iv) if k = 3, then bR

j

for j <

b

2

excludes aR

0

and bR

b�1

implies aR

0

; similarly, aR

i

for i <

a

2

excludes bR

0

and aR

a�1

implies bR

0

.

Proof. At �rst, (i) comes from counting the number of a-a edges as

1

2

p

a

a�

1

2

p

b

(b�j) �

0. The lower bound comes from the upper bound

1

2

p

a

(a� 1) on the number of a-a edges.

In fact, the only 3

n

, 4

n

and 5

n

which contain an a-face surrounded by a-faces only, are

Platonic polyhedra. Now, (ii) comes from double counting of the number of a-b edges.

(iii) and (iv) can be easily checked case by case. 2

The case (i) of Lemma ?? imples the �niteness of the number of bifaced polyhedra

bR

j

. The same upper bound holds even without our restriction b �

2k

k�2

, but only this

restriction limits p

a

.

The doubble counting of the number of a-b edges also implies the equality 2e(G

a

) �

2e(G

b

) = ap

a

� bp

b

for the numbers e(G

a

), e(G

b

) of edges of G

a

, G

b

. So, they are equal

i� kn = 2ap

a

.
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2.1 Face-regular polyhedra 3

n

For 3

n

, Lemma ?? gives a full answer on our problem of classifying of aR

i

and bR

j

.

Proposition 1 Any 3

n

(except the tetrahedron 3

4

) is 3R

0

. There are exactly 4 polyhedra

3

n

which are 6R

j

:

the truncated tetrahedron 3

12

for j = 3,

the chamfered tetrahedron 3

16

and its twist 3

16

(coming by a truncation of the cube on

4 vertices pairwise at distance 2 for the �rst 3

16

and on 4 vertices being endvertices of two

opposite edges for the second 3

16

) for j = 4,

a 3

28

(coming by a truncation of a dodecahedron on 4 vertices pairwisely at distance

3) for j = 5.

The graphs G

b

of these polyhedra are the skeletons of the tetrahedron, the octahedron

and the icosahedron for j = 3; 4; 5, respectively.

Proof. Recall that for 3

n

, p

3

= 4 by (??), n = 4+2p

6

, and by Lemma ??(i) p

6

�

12

6�j

.

Hence we have

n � 4 +

24

6 � j

� 28:

If j � 2, this bound implies n � 10, i.e. n = 4, and we have a tetrahedron having no

hexagons. Hence j � 3, and n � 12. We just checked all 3

n

for n � 28 (there are 1, 2, 1,

2, 2 polyhedra 3

n

for n = 12, 16, 20, 24, 28, respectively). 2

2.2 Face-regular polyhedra 4

n

The cube is unique 4

n

which is 4R

4

. There is no 4

n

which is 4R

3

.

Proposition 2 The only polyhedra 4

n

which are 4R

2

are either 4

12

= Prism

6

or the

family (APrism

t+1

3

)

�

= 4

8+6t

, t � 1, of t-hex-elongated cubes.

Proof. Let q

0

be a quadrangle of 4

n

with 4R

2

. Then q

0

is adjacent to two quadrangles

q

1

and q

2

. These quadrangles are adjacent other qudrangles. There are two cases: either

q

1

and q

2

are adjacent or not. In the �rst case, we obtain a con�guration of 3 quadrangles

surrounded by 3 hexagons. This con�guration generates the family (APrism

t

3

)

�

. In the

second case, we obtain a ring of six quadrangles that uniquely gives Prism

6

= 4

12

. 2

There is also an in�nity of 4R

0

and 4R

1

. If a polyhedron 4

n

is 4R

1

, then the 6

quadrangles are partitioned into 3 pairs of adjacent quadrangles. The pairs are separated

by hexagons. Each pair of quadrangles is surrounded at least by one ring of hexagons.

There are 3 polyhedra 4

n

for n=18, 20, 26, where each pair of quadrangles is surrounded

exactly by one ring of hexagons. Remark that a deletion of 3 edges, separating quadrangles

in the 3 pairs, (and 6 their endvertices) produces bifaced polyhedra from above 4

18

and

4

26

, namely, Prism

6

and dual of 3-augmented Prism

3

, respectively.

Let there be at least two rings of hexagons around one pair of quadrangles. Then one

can �nd a chain of hexagons connecting two pairs of quadrangles such that the two end

4



hexagons of the chain are adjacent exactly to one quadrangle of each pair. Let P be such

chain containing k hexagons. We can consider P as follows. Let P

k

e a chain of k + 4

quadrangles, where 2+2 end quadrangles are the original ones. Each inner quadrangle has

an upper and a lower edges, and two side edges by that it is adjacent to two neighbouring

quadrangles. We have to set two new vertices on the upper and lower edges of each inner

quadrangle of P

k

for to otain the chain of hexagons. There are 3

k

possibilities of setting

new vertices. Some of these 3

k

chains of hexagons are isomorphic. Not each obtained

chain is feasible, i.e. it can be enlarged upon a polyhedron 4

n

. But if a chain of hexagons

with two end pairs of quadrangles is feasible, then it and the third pair of quadrangles

de�nes uniquely a polyhedron 4

n

. Nonisomorphic chains can de�ne isomorphic polyhedra

4

n

.

For k = 1, there is only one feasible chain that de�nes the polyhedron 4

26

.

For k = 2, there are 3 nonisomorphic chains. All they are feasible and de�ne polyhedra

4

n

for n=32, 36, 44.

For k = 3, there are 6 feasible nonisomorphic chains de�ning 5 nonisomorphic poly-

hedra 4

n

for n = 36, 48, 50, 56, 66, where 4

36

is isomorphic to 4

36

, obtained for k = 2.

We can explicitly de�ne an in�nite sequence of feasible chains P

0

k

, k � 1, such that

each inner quadrangle of P

0

k

has by one new vertex on the upper and the lower edges.

These chains de�ne an in�nite sequence of polyhedra 4

n

for n = 2(k

2

+ 6k + 6), k � 1.

There are another sequences of 4R

1

-polyhedra 4

n

for n = 2(k

2

+ 4k + 4), n = 2(k

2

+

5k + 4), k � 1, and n = 2(k

2

+ 3k + 6), k � 3. For k = 1, the �rst three sequences give 3

smallest 4R

1

-polyhedra 4

26

, 4

18

, 4

20

.

All six 4R

1

polyhedra 4

n

with n < 46 (see Table 1 below) come as �rst two members

of those 3 sequences. Perhaps, for any large even n, there are 4R

1

and 4R

0

polyhedra.

Similar assertion is even more probable for more rich families 5

n

and (3; 4)

n

.

Proposition 3 (i) All (i; j;n) such that there exists 4

n

both 4R

i

and 6R

j

are:

(2,0;12), (2,2;14), (1,3;20), (2,4;20), (0,3;24), (1,4;26), (0,4;32), (0,5;56).

(ii) Each of above 8 cases is realized by unique 4

n

, except the case (0,4;32) realized by

the chamfered cube and its twist.

(iii) Prism

6

= 4

12

(the �rst case in (i) above) is only 6R

0

. The dual tetrakis snub cube

(the last case in (i)) is unique 6R

5

. There are no 6R

1

. The unique 4

14

= (APrism

2

3

)

�

(which is also 4R

2

) and unique 4

16

are only 6R

2

. Only 6R

3

are cases (1,3;20) with

G

b

being Prism

3

, and the truncated octahedron (0,3;24) above. All 6R

4

are the cases

(2,4;20)=(APrism

3

3

)

�

, (1,4;26) with G

b

being the unique (3; 4)

9

and (0,4;32) (the cham-

fered cube and its twist having as G

b

the cuboctahedron and its twist). 2

All examples of 4

n

for n � 44 are given in Table 1. The last 3 columns of Table 1

give numbers of 4

n

, n � 44, with the graph G

a

of the edge-adjacency of 4-gons being

2K

2

+ 2K

1

, K

2

+ 4K

1

, P

3

+ P

3

, respectively. The polyhedra 4

n

, n � 44 are taken from

[?].

Table 1

5



n #4

n

#4R

0

#4R

1

#4R

2

2K

2

+ 2K

1

K

2

+ 4K

1

P

3

+ P

3

12 1 � � 1 � � �

14 1 � � 1 � � �

16 1 � � � � � 1

18 1 � 1 � � � �

20 3 � 1 1 � � 1

22 1 � � � 1 � �

24 3 1 � � 1 � 1

26 3 � 1 1 1 � �

28 3 � � � 1 1 1

30 2 1 � � 1 � �

32 8 2 1 1 3 � 1

34 3 1 � � 1 1 �

36 7 3 1 � 1 1 1

38 7 1 � 1 3 2 �

40 7 2 � � 2 2 1

42 5 2 � � 2 1 �

44 14 3 1 1 8 1 �

So, all face-regular 4

n

(except two in�nite sets for 4R

0

, 4R

1

) are 9 polyhedra from

Proposition ??(i), the unique 4

16

and all t-hex-elongated cubes for t > 2.

3 Face-regular fullerenes 5

n

The dodecahedron 5

20

is the unique fullerene which is 5R

5

.

The hexagonal barrel Barrel

6

= 5

24

is the unique 5

n

which is 5R

4

. It is also 6R

0

.

The only fullerenes with 5R

3

are 5

28

(T

d

) and 5

32

(D

3h

), which are 6R

0

and 6R

2

, re-

spectively. All fullerenes 5R

i

for i = 3; 4 are the �rst 3 cases in (i) of Proposition ??

below.

The fullerenes which are 5R

2

are distinguished by graphs G

a

which are cycles formed

by pentagons. There are the following 5 cases:

(1) G

a

= 4C

3

,

(2) G

a

= 2C

3

+ C

6

,

(3) G

a

= C

3

+ C

9

,

(4) G

a

= 2C

6

,

(5) G

a

= C

12

.

There are in�nitelymany fullerenes in the case (1): 5

48

(D

2

) and at least one tetrahedral

5

n

for n = 4(a

2

+ ab + b

2

) � 8 starting with 5

40

(T

d

), 5

44

(T ), 5

56

(T

d

), 5

68

(T ), 5

76

(T ); see

[?] for the case (1). The fullerenes 5

44

(T ) and 5

56

(T

d

) are also 6R

3

and 6R

4

, respectively.

Clearly, any fullerene 5

n

in the case (1) comes by collapsing into a point of all 4

triangles of a 3

(n+8)

; so, n is divided by 4. Actually, all face-regular 5

n

(besides 26:1, 30:1,

38:16 and (0,-), (1,-)) have n divisible by 4.

6



Proposition 4 There is no fullerene in the case (2).

Proof. The 6-cycles of pentagons can be considered as a ring with 6 tails, i.e. edges

connecting the vertices of the ring with other vertices. Similarly, each 3-cycle of pentagons

is a circuit of 9 vertices, six of which are endpoints of 6 tails. We have to connect the 6

tails of the 6-cycles with 12 tails of two 3-cycles for to obtain a net of hexagons.

The 6-cycles C

6

has two domains: outer and inner. There are two cases: either the

two 3-cycles lie in distinct domains or both lie in the same, say, outer, domain. In the

�rst case, by symmetry, we can consider only outer domain. The Euler relation shows

that the boundary circuit of the ring of pentagons should have 3 tails. It is easy to verify

that it is not possible to form a net of hexagons using 3 tails of the 6-cycle and 6 tails of

the 3-cycle.

In the second case by the Euler relation we have the 6-cycle with 6 tails and two 3-cycles

C

A

3

and C

B

3

each with 6 tails. Suppose there is a fullerene containing this con�guration.

Then, in this fullerene, there are chains of hexagons connecting a pentagon of the 6-cycle

and a pentagon of a 3-cycle. Consider such a chain of minimal, say, q, length. In this

case, the 6-cycle is surrounded by q rings each containing 6 hexagons. If we dissect the

q-th ring of hexagons into two 6-cycles each with 6 tails, we obtain the 6-cycle surrounded

by q � 1 rings. The boundary of the (q � 1)-th ring contains 6 tails.

Let the chain of q hexagons connect the 6-cycle with C

A

3

. At least two tails of the

(q � 1)-th ring correspond (are connected) to tails of C

A

3

. Since the boundary of the

(q � 1)-th ring with 6 tails is similar to the boundary of the 6-cycle with 6 tails, our

problem is reduced to the case when two tails of the 6-cycle are connected to two tails

of C

A

3

. There are two cases: either endpoints of the two tails of C

A

3

are separated on the

boundary of C

A

3

by a vertex or not. We obtain two con�gurations each consisting of a

circuit with vertices having or not having tails. Both these con�gurations have unique

enlarging by hexagons which cannot be glued with the cycle C

B

3

having 6 tails. 2

We proved in [?] that there is the unique fullerene 5

38

(C

3v

) (which is 6R

2

) in the case

(3), and exactly 4 fullerenes 5

36

(D

2d

), 5

44

(D

3d

), 5

44

(D

2

) and 5

48

(D

6d

) (which are not 6R

j

for all j) in the case (5).

In the case (4) we have an analogue of Proposition ??.

Proposition 5 The only fullerenes 5

n

which are 5R

2

and have G

a

= 2C

6

are t-elongated

5

24

, i.e. (2-APrism

t+1

6

)

�

= 5

12t+24

, t � 1.

Proof. Let C

6

and C

0

6

be the inner and the outer circuits of a ring of 6 adjacent quadran-

gles. We have to set 6 new vertices on edges of C

6

and C

0

6

such that the 6 quadrangles of

the ring are transformed into 6 pentagons. It is not di�cult to verify that all new vertices

should be set on one of the circuits C

6

and C

0

6

. Let C

6

have no new vertices. Then it

is the boundary of a hexagon. A similar assertion is true for the other 6-cycles of pen-

tagons. This con�guration of two 6-cycles of pentagons and the condition 5R

2

uniquely

give the family (2-APrism

t+1

6

)

�

consisting of a 6-cycle of pentagons surrounded by t rings

of hexagons (each containing 6 hexagons) and by the other 6-cycle of pentagons. 2

7



It looks too hard to describe all fullerenes 5R

0

, and even simpler fullerenes 5R

1

. (All

130 of such 5R

1

fullerenes for n � 72 are listed in [?]; the two smallest are a 5

50

(D

3

) and

the 5

52

(T ).) Clearly, any fullerene which is 5R

1

comes by collapsing into an edge each of

all 6 quadrangles of a 4

(n+12)

.

Now we consider fullerenes which are 6R

j

.

It is not di�cult to show that the barrel 5

24

, the 5

26

and a 5

28

(T

d

) are the only fullerenes

which are 6R

0

. A not great enumeration shows that only fullerenes which are 6R

1

are the

5

28

(D

2

) and the 5

32

(D

3

).

6R

2

-con�gurations G

b

of hexagons are sums of cycles C

m

.

Proposition 6 The only fullerenes which are 6R

2

are the following fullerenes:

5

32

(D

3h

) with G

b

= 2C

3

,

5

38

(C

3v

) with G

b

= C

3

+ C

6

,

5

40

(D

5d

) with G

b

= 2C

5

,

5

30

(D

5h

) with G

b

= C

5

,

5

32

(D

3d

) and 5

32

(D

2

) both with G

b

= C

6

,

5

36

(D

2d

) with G

b

= C

8

,

5

40

(D

2

) with G

b

= C

10

.

Proof. It can be done using n � 50 and the inequality for 6R

2

-fullerenes from Lemma ??(i)

and scanning the list of small fullerenes in [?]. But we cannot assert that the list contains

all 6R

2

-fullerenes. Hence we give below a geometrical proof.

Let a fullerene contains a triple C

3

of mutually adjacent hexagons. Then the triple is

surrounded by a ring of 9 pentagons. There are two cases: either the ring of pentagons is

surrounded by a ring of hexagons or not. In the �rst case we otain uniquely the fullerene

5

38

(C

3v

) with G

b

= C

3

+C

6

, which is the case (3) of fullerenes that are 5R

2

. In the second

case, we obtain uniquely the fullerene 5

32

(D

3h

) with G

b

= 2C

3

such that the ring of 9

pentagons is surrounded by 3 pentagons and 3 mutually adjacent hexagons.

Now consider fullerenes containing only rings C

m

of hexagons for m > 3. Of course,

there is a ring R containing inside only pentagons. We distinguish cases by the number

p of pentagons contained inside the ring R. If p = 1, then the ring R consists of 5

hexagons. Since the fullerene is 6R

2

, R is surrounded by a ring of 10 pentagons. We

obtain a con�guration which uniquely de�nes the fullerene 5

40

(D

5h

) with G

b

= 2C

5

,

where the ring of 10 pentagons is surrounded by the second ring of 5 hexagons, and the

outer boundary of the ring is a pentagon.

If p = 2, we obtain, as above, uniquely the fullerene 5

40

(C

2

), which is not 6R

2

.

For p = 3, there are 2 con�gurations of 3 pentagons: three mutually adjacent pen-

tagons and a chain of pentagons. We obtain again the fullerene 5

38

(C

3v

) in the �rst case.

The other case do not give fullerenes which are 6R

2

.

For p = 4 and p = 5, there are 4 and 7 con�gurations of pentagons, respectively. None

of them gives a fullerene which is 6R

2

.

There are 18 connected con�gurations of 6 pentagons. Only 5 of them give fullerenes

which are 6R

2

: 5

30

(D

5h

) with G

b

= C

5

, 5

32

(D

3d

) and 5

32

(D

2h

) both with G

b

= C

6

,

5

36

(D

2d

) with G

b

= C

8

, 5

40

(D

2

) with G

b

= C

10

.
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For 7 � p � 12, we do not obtain fullerenes which are 6R

2

. 2

We know the following 5 fullerenes which are 6R

3

: 5

36

(D

2

), 5

44

(T ) which is also

5R

2

, 5

48

(D

3

), 5

52

(T ) which is 5R

1

, and the buckminsterfullerene 5

60

(I

h

) which is 5R

0

.

Remaining unchecked 6R

3

-fullerenes 5

n

have 52 � n � 58.

We know also the following 5 fullerenes which are 6R

4

: 5

40

(D

5d

), 5

56

(T

d

) which is also

5R

2

, 5

68

(T

d

) which is also 5R

1

, 5

80

(I

h

) which is also 5R

0

, a 5

80

(D

5h

) which is also 5R

0

.

Remaining unchecked 6R

4

-fullerenes 5

n

have 52 � n � 78.

All face-regular fullerenes 5

n

, 50 < n < 80, with the symmetries T , T

h

, T

d

, I

h

(besides

4 items in Proposition ??(i) below) are the unique with their symmetries 5

68

(T ), 5

76

(T ),

5

76

(T

d

) which are (2,-), (2,-), (0,-) with G

5

= 4K

3

, 4K

3

, 12K

1

, respectively.

The fullerenes 5

n

which are both 5R

i

and 6R

j

have n = 20 + 24

5�1

6�j

. Taking such

fullerenes from the above list of fullerenes which are 5R

i

and/or 6R

j

, we obtain

Proposition 7 (i) All (i; j;n) such that there exists 5

n

both 5R

i

and 6R

j

are:

(4,0;24), (3,0;28), (3,2;32), (2,2;38), (2,3;44), (1,3;52), (2,4;56), (0,3;60), (1,4;68),

(0,4;80), (0,5;140).

Their G

b

are, respectively, 2K

1

, 4K

1

, 2C

3

, C

10

, truncated tetrahedron, chamfered te-

trahedron, a 4-valent polyhedron with p= (p

3

=14, p

6

=6), the dodecahedron, a 4-valent

polyhedron with p= (p

3

=20, p

6

=6), the icosidodecahedron, its twist, snub dodecahedron.

(ii) Each of 11 above cases is realized by the following (unique with their symmetry)

fullerenes:

5

24

(D

6d

), 5

28

(T

d

), 5

32

(D

3h

), 5

38

C

3v

), 5

44

(T ), 5

52

(T ), 5

56

(T

d

), 5

60

(I

h

), 5

68

(T

d

), 5

80

(I

h

),

5

80

(D

5h

), 5

140

(I).

(iii) For (i; j;n)=(0,4;80) there is exactly one other fullerene: 5

80

(D

5h

)= twisted cham-

fered dodecahedron. The fullerenes of other 10 cases (except unchecked n =56 and n=68)

are unique.

(iv) 5

140

(I) is unique 6R

5

; 5

24

, 5

26

, 5

28

(T

d

) are only 6R

0

(their duals and the icosahe-

dron are called Frank-Kasper polyhedra in chemical physics; they appear also as disclina-

tions (rotational defects) of local icosahedral order).

All 17 fullerenes 5

n

with n � 50 and which are 6R

j

are among 27 which are listed

below in Table 2. Six more 6R

j

-fullerenes are the last 6 items of Proposition ?? (i). The

only remaining possibilities should be either 6R

3

with n=52, 54, 56, 58, or 6R

4

with n

between 52 and 78; in both these cases fullerenes are not 5R

i

, except possibly the triples

(i; j; n)=(2,4,56) and (1,4,68).

For n < 82, there are 15, 4, 4 fullerenes from 3 respective in�nite series: (0;�), (2;�)

with G

5

= 2C

6

, (2;�) with G

5

= 4C

3

; there are 75 fullerenes (1;�) for n < 74.
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Table 2. All face-regular fullerenes with at most 50 vertices

# in symmetry (i; j) G

a

G

b

[?] * if unique in 5R

i

; 6R

j

20 : 1 I

h

� (5;�) Icosahedron �

24 : 1 D

6d

� (4; 0) APrism

6

2K

1

26 : 1 D

3h

� (�; 0) G

7

3K

1

28 : 1 D

2

� (�; 1) G

8

2K

2

28 : 2 T

d

� (3; 0) truncated K

4

4K

1

30 : 1 D

5h

� (�; 2) 2

^

C

5

C

5

32 : 2 D

2

� (�; 2) 2G

1

C

6

32 : 3 D

3d

� (�; 2) 2G

2

C

6

32 : 5 D

3h

� (3; 2) G

4

2C

3

32 : 6 D

3

� (�; 1) G

9

3K

2

36 : 2 D

2

(�; 3) 2G

1

G

5

36 : 6 D

2d

(�; 2) 2G

3

C

8

36 : 14 D

2d

(2;�) C

12

2P

4

36 : 15 D

6h

� (2;�) 2C

6

C

6

+ 2K

1

38 : 16 C

3v

� (2; 2) C

3

+ C

9

C

3

+ C

6

40 : 1 D

5d

(�; 4) 2

^

C

5

APrism

5

40 : 38 D

2

(�; 2) 2P

6

C

10

40 : 39 D

5d

(�; 2) C

10

+ 2K

1

2C

5

40 : 40 T

d

� (2;�) 4C

3

G

6

44 : 73 T � (2; 3) 4C

3

truncated K

4

44 : 85 D

2

(2;�) C

12

2G

1

44 : 86 D

3d

(2;�) C

12

2G

2

48 : 144 D

2

(2;�) 4C

3

G

11

48 : 186 D

6d

(2;�) C

12

2

^

C

6

48 : 188 D

3

� (�; 3) 3P

4

G

10

48 : 189 D

6d

(2;�) 2C

6

APrism

6

+ 2K

1

50 : 270 D

3

(1;�) 6K

2

G

12

All fullerenes 5

n

both 5R

i

and 6R

j

with n > 50

52 T � (1; 3) 6K

2

chamfered K

4

56 T

d

� (2; 4) 4C

3

4-valent,p = (p

3

= 14; p

6

= 6)

60 I

h

� (0; 3) 12K

1

Dodecahedron

68 T

d

� (1; 4) 6K

2

4-valent,p = (p

3

= 20; p

6

= 6)

80 I

h

� (0; 4) 12K

1

Icosidodecahedron

80 D

5h

� (0; 4) 12K

1

its twist

140 I � (0; 5) 12K

1

snub dodecahedron

In Table 2 we give also the graphs G

a

and G

b

(of adjacencies of 5- and 6-faces, respec-

tively). We use the following notation:

C

n

, P

n

,K

n

are the cycle, the path and the complete graph, all on n vertices. Truncated

K

4

means the skeleton of the truncated terahedron.

^

C

n

is a wheel, i.e. C

n

plus an universal

vertex. We suppose below that the set of n vertices of a graph is the set f1; 2; :::; ng.

10



G

1

= C

6

with additional edges (1,5), (5,2), (2,4);

G

2

= C

6

with additional edges (1,3), (3,5), (5,1);

G

3

= P

5

with additional edges (2,6), (3,6), (4,6), where 6 is a new vertex;

G

4

= C

9

with additional edges (1,10), (2,10), (3,10), (4,11), (5,11), (6,11), (7,12),

(8,12), (9,12), where 10, 11 and 12 are new vertices;

G

5

= C

6

with additional edges (1,7), (2,7), (3,7), (4,8), (5,8), (6,8), where 7 and 8 are

new vertices;

G

6

= C

8

with additional edges (1,9), (9,5), (3,10), (10,7), where 9 and 10 are new

vertices;

G

7

= C

6

and C

0

6

with additional edges (1,3), (3,5), (5,1), (1

0

; 3

0

), (3

0

; 5

0

), (5

0

; 1

0

), (2; 2

0

),

(4; 4

0

), (6; 6

0

);

G

8

= two isomorphic graphs G

1

and G

0

1

connected by edges (x; x

0

) and (y; y

0

), where

x; y and x

0

; y

0

are pairs of vertices of valency 2 in G

1

and G

0

1

, respectively;

G

9

= C

8

with additional edges (1,9), (2,9), (9,10), (10,11), (5,11), (6,11), where 9, 10,

11 are new vertices;

G

10

= 3 isomorphic graphs G

3

, G

0

3

and G

00

3

with identi�ed vertices x = x

0

= x

00

and

y = y

0

= y

00

, where x; y, x

0

; y

0

and x

00

; y

00

are pairs of vertices of valency 1 in each of the 3

graphs;

G

11

= two isomorphic graphs G

1

and G

0

1

with additional edges (3; 3

0

), (6; 6

0

), (2,7),

(2

0

; 7), (5,8), (5

0

; 8); without the new vertices 7 and 8 it is G

8

;

G

12

= D�urer octahedron plus 3 new vertices: the midpoints of 3 edges which are disjoint

pairwise and with each triangle.

The asterisk * in the symmetry column of Table 2 means that the fullerene is unique

with this symmetry and corresponding number of vertices.

Call a fullerene quasi-6R

j

if the number of 5-6 edges divided by the number of hexagons

is 6 � j. If it is, moreover, not 6R

j

, then call it proper quasi-6R

j

. There are at all 65

proper quasi-6R

j

with at most 50 vertices: 3, 2, 4, 17, 1, 38 for (n; j)= (36,2), (38,2),

(40,3), (44,3), (48,4), (48,3), respectively. The unique case of j = 4 above is the fullerene

48:1. Among above 65 fullerenes only 38:10 and 38:14 are also quasi-5R

i

, i.e. the number

of 5-6 edges divided by the number of 12 of pentagons. In fact, they are both proper

quasi-5R

2

and quasi-6R

2

. The second one looks as a double spiral: its 5-graph G

a

is the

path P

12

with the additional edge (1,3), and its 6-graph G

b

is the path P

9

with the edge

(1,3) also. The fullerenes 44:85,86 in Table 2 are quasi-6R

3

while 32:2,3 and 36:2 are quasi

5R

3

.

Some similarities between the graphs G

a

, G

b

and between symmetries in Table 2

indicate examples of operations on fullerenes:

(i) 30:1 and 40:1 have the same graph G

a

= 2

^

C

5

and they belong (for t = 1; 2) to the

sequence of t-hex-elongated dodecahedron 5

20

, i.e. the dual of column of t + 1 APrism

5

capped on 2 opposite 5-faces;

(ii) by deleting 4 points of K

1;3

in any triple of adjacent pentagons, we obtain 28:2,

40:40 from 44:73 and the 5

56

(T

d

), respectively;

(iii) by deleting all six 5-5 edges from the unique 5

56

(D

3d

) which is 5R

1

, we obtain

44:86;

11



(iv) all 5 (respectively 4) fullerenes having a cycle as G

b

(respectivelyG

a

) are in Table

2. A cutting of each hexagon in the cycle into two pentagons produces 44:85, 44:86,

40:39 from 32:2, 32:3, 30:1, respectively. The same cutting of hexagons of the 6-cycle (of

hexagons) produces 48:186 from 36:15. The same cutting of alternating hexagons of the

8-cycle (of hexagons) produces 5

44

from 36:6. The 5-graph G

a

of 40:38 is 2P

6

while the

6-graph G

b

of 36:14 is 2P

4

.

4 Face-regular polyhedra (3; 4)

n

Proposition 8 All polyhedra (3; 4)

n

which are 4R

j

are as follows:

(i) 3 polyhedra 4R

0

: APrism

4

= (3; 4)

8

which is 3R

2

with G

b

= 2K

1

, the (3; 4)

9

with

G

b

= 3K

1

and the cuboctahedron (3; 4)

12

which is 3R

0

with G

b

= 6K

1

;

(ii) 2 polyhedra 4R

1

: a (3; 4)

10

with G

b

= 2K

2

, G

a

= 2P

4

and a (3; 4)

12

which is the

twisted cuboctahedron with G

b

= 3K

2

;

(iii) 4 polyhedra 4R

2

: 2-Prism

4

= (3; 4)

10

which is 3R

2

with G

b

= C

4

, (3; 4)

12

with

G

b

= C

6

and two nonisomorphic (3; 4)

14

, both are 3R

1

, with G

b

= C

8

and G

b

= 2C

4

;

(iv) 3 polyhedra 4R

3

: 2-Prism

2

4

= (3; 4)

14

which is 3R

2

, a (3; 4)

22

which is 3R

1

and

the cross-capped truncated cube (3; 4)

30

which is 3R

0

. G

b

graphs of these polyhedra are

planar cubic graphs consisting of quadrangles and hexagons. They are skeletons of the

cube 4

6

, the unique polyhedron 4

16

, and the truncated octahedron 4

24

, respectively.

Proof. (i) The condition 4R

0

implies that each quadrangle is adjacent only to trian-

gles. Consider a quadrangle q

0

. Each vertex of q

0

is additionally a vertex of two triangles

adjacent to q

0

and a triangle or a quadrangle lying between two triangles adjacent to q

0

.

We classify (3; 4)

n

with 4R

0

using the number s of quadrangles having a common vertex

with q

0

. If s = 0, we uniquely obtain APrism

4

= (3; 4)

8

which is 3R

2

. If s = 1, then

the vertex of the new quadrangle opposite to the vertex common with q

0

has valency 4

with two edges that cannot be connected to anything else. So, this case is impossible.

If s = 2, we uniquely obtain (3; 4)

9

. If s = 3, we uniquely obtain (3; 4)

11

which has 5

quadrangles such that the 5th quadrangle having no common vertices with q

0

is adjacent

to other two quadrangles. Hence this polyhedron is not 4R

0

. If s = 4, we uniquely obtain

the cuboctahedron (3; 4)

12

which is 3R

0

.

(ii) The condition 4R

1

implies that there is a pair of two adjacent quadrangles such

that these quadrangles are adjacent to six triangles. Call this con�guration by T . If there

is a triangle adjacent to T , we uniquely obtain (3; 4)

10

. Otherwise, we uniquely obtain

the twisted cuboctahedron (3; 4)

12

.

(iii) Let P be a polyhedron (3; 4)

n

with 4R

2

. Let q

0

be a quadrangle of P . The

condition 4R

2

implies that q

0

is adjacent to two triangles t

0

, t

0

0

and two quadrangles q

1

,

q

2

. There are two possibilities: either q

1

and q

2

have a common vertex or not.

Let S be the con�guration consisting of q

0

, q

1

, q

2

, t

0

and t

0

0

, where q

1

and q

2

have no

common vertex. Each of the quadrangles q

1

and q

2

is adjacent to two triangles. Without

loss of generality we can suppose that one of triangles adjacent to q

1

, say t

1

, is adjacent

to the triangle t

0

, too. We have two possibilities: either one of triangles, adjacent to q

2

,

is adjacent to t

0

, or not. Consider the �rst case. Let t

2

be the triangle adjacent to q

2

and

12



t

0

. We obtain a con�guration, say, S

1

. It is easy to verify that the condition 4R

2

imples

that S

1

de�nes uniquely polyhedron 2-Prism

4

= (3; 4)

10

such that the other triangles t

0

1

and t

0

2

adjacent to q

1

and q

2

are adjacent to the triangle t

0

0

, too. This polyhedron is also

3R

2

. It has G

b

= C

4

.

Now suppose that P has a con�guration S, but no con�guration S

1

. Then both the

triangles adjacent to q

2

are not adjacent to t

0

, and one of these triangles, say t

2

, is adjacent

to t

0

0

. Since P has no S

1

, the second of the triangles adjacent to q

1

, say t

0

1

, is not adjacent

to t

0

0

. Hence there are quadrangles q

3

, q

4

adjacent to t

0

, q

1

and t

0

0

, q

2

, respectively. So, we

obtain a con�guration consisting of 5 quadrangles anf 6 triangles that de�nes uniquely a

polyhedron (3; 4)

14

. This polyhedron is also 3R

1

. Its graph G

b

is C

8

.

Now suppose that P has no con�guration S. Then the quadrangles q

1

and q

2

have

a common vertex v

0

(which is a vertex of q

0

, too). There are two possibilities: either

v

0

is also a vertex of the fourth quadrangle or of a triangle. Both these cases and the

condition that P has no con�guration S imply uniquely either a polyhedron (3; 4)

14

having

4 mutually adjacent quadrangles (which is also 3R

1

) or a polyhedron (3; 4)

12

with a 6-belt

of 4-gons. The graphs G

b

of these polyhedra are 2C

4

and C

6

, respectively.

(iv) Let P be a polyhedron (3; 4)

n

which is 4R

3

.

(a) Suppose P has a triangle adjacent to 3 quadrangles. Then we have a con�guration

of a triangle surrounded by six quadrangles. This con�guration de�nes uniquely the cross-

capped truncated cube (3; 4)

30

(i.e. each of the six 8-faces of the truncated cube is capped

alternating such that each vertex get valency 4), which is also 3R

0

. Its G

b

is the skeleton

of some 4

24

.

(b) Let P has no triangle adjacent only to quadrangles. Suppose that P has a tri-

angle adjacent to two quadrangles and a triangle. . The condition 4R

3

implies that the

second triangle is adjacent also to two quadrangles and there are two other quadrangles

having common vertices with above triangles. We obtain a con�guration consisting of two

adjacent triangles surrounded by six quadrangles. This con�guration de�nes uniquely a

polyhedron (3; 4)

22

which is also 3R

1

. Its graph G

b

is the skeleton of 4

16

.

(c) Now suppose that each triangle of P is adjacent at most to one quadrangle. Then

we otain uniquely the polyhedron 2-Prism

2

4

= (3; 4)

14

which is also 3R

2

. Its G

b

is the

skeleton of a cube. 2

Taking from polyhedra of Proposition ?? ones that are 3R

i

, we obtain

Corollary 1 (i) All (i; j;n) such that there exists (3; 4)

n

both 3R

i

and 4R

j

are as follows:

(2,0;8), (2,2;10), (0,0;12), (1,2;14), (2,3;14), (1,3;22), (0,3;30).

(ii) Each, except (1,2;14), of above 7 cases is realized by unique (3; 4)

n

:

APrism

4

= (3; 4)

8

, 2-Prism

4

= (3; 4)

10

, the cuboctahedron=(3; 4)

12

,

2-Prism

2

4

= (3; 4)

14

, a (3; 4)

22

and the cross-capped truncated cube=(3; 4)

30

. 2

It looks too hard to describe all (3; 4)

n

which are 3R

0

; for example, the ambo (i.e. the

convex hull of the mid-points of all edges) of (3; 4)

n

is (3; 4)

2n

which is 3R

0

.

There are other operations to obtain one (3; 4)

n

from another. Let P be a polyhedron

(3; 4)

n

. Consider an alternating cut which is not self-intersecting. It is a set C

0

of edges

of P such that if an edge e 2 C

0

belongs to a quadrangle, then the edge opposite to e in

13



this quadrangle belongs to C

0

, but the other two edges of this quadrangle do not belong

to C

0

. Similarly, if an edge of C

0

belongs to a triangle, then exactly two edges of this

triangle belong to C

0

. Now we transform the cut C

0

into a circuit C as follows. We set a

vertex in the middle of each edge of C

0

and connect the new vertices consecutively. Then

each quadrangle having (two) edges of C

0

is partitioned into two quadrangles adjacent

by the new edge. Each triangle intersecting with C

0

is partitioned into a triangle and

a quadrangle adjacent by the new edge. We obtain a new polyhedron (3; 4)

n

0

, where

n

0

= n + jCj and jCj is the number of vertices (and edges) of the circuit C.

The circuit C is such that it is not self-intersecting and each its edge is an adjacency-

edge of a quadrangle either with a triangle or with a quadrangle. Call a circuit of a

polyhedron (3; 4)

n

with this property admissible.

Call a circuit C of a polyhedron P (3; 4)

n

alternating if any two edges of C belong to

distinct faces of P . Let v be a vertex of C. The valency of v is 4 in P and is 2 in C.

The 4 edges incident to v belonging and not belonging to C alternate. Any admissible

circuit of P is alternating. If P has an admissible circuit C, we can delete C from P such

that two quadrangle adjacent by an edge of C are glued into a new quadrangle. Similarly,

a triangle and a qudrangle adjacent by an edge of C are glued into a new triangle. We

obtain a new polyhedron (3; 4)

n

0

with n

0

= n � jCj.

Call a polyhedron (3; 4)

n

reducible if it has an admissible circuit. Otherwise the poly-

hedron is called irreducible. An irreducible polyhedron cannot be obtained from other

polyhedron by transforming an alternating cut into a circuit. Any reducible polyhedron

can be obtained from another polyhedron with smaller number of vertices.

We know two in�nite families of irreducible polyhedra (3; 4)

3k

, k � 2, and (3; 4)

4k

,

k � 2, k 6= 3, and 3 irreducible polyhedra not belonging to these families.

The �rst polyhedron (3; 4)

6

of the family (3; 4)

3k

is the octahedron �

3

. The polyhedron

(3; 4)

3(k+1)

is obtained from (3; 4)

3k

by inscribing a triangle into one of two triangles of

(3; 4)

3k

adjacent to 3 other triangles.

The �rst polyhedron (3; 4)

8

of the family (3; 4)

4k

is the antiprism APrism

4

. The

polyhedron (3; 4)

4(k+1)

is obtained from (3; 4)

4k

by inscribing a quadrangle into one of two

quadrangles of (3; 4)

4k

adjacent to 4 triangles.

The transformation of an alternating cut into a circuit shows that there are in�nitely

many polyhedra with 3R

1

. In fact, let P be (3; 4)

n

which is 3R

1

. Let p be a path consisting

of adjacency edges of quadrangles with quadrangles. Let p connects two vertices of two

pairs of adjacent triangles such that these vertices are endvertices of adjacency edges of

these triangles. Then the cut generated by the set of vertices of the path p is alternating

and transforms P into (3; 4)

n

0

(n

0

= n + 2jpj + 1) which is 3R

1

again. But we have the

following

Proposition 9 The only polyhedra (3; 4)

n

which are 3R

2

are either (3; 4)

8

= APrism

4

or the family 2-Prism

t

4

, t � 1, of t-elongated octahedra.

Proof. Let t

0

be a triangle of (3; 4)

n

with 3R

2

. Then t

0

is adjacent to two triangles

t

1

and t

2

. These triangles are adjacent other triangles. There are two cases: either t

1

and t

2

have or have not a common second adjacent triangle. In the �rst case, we obtain

14



a con�guration of 4 triangles surrounded by 4 quadrangles. This con�guration generates

the family 2-Prism

t

4

. In the second case, we obtain uniquely APrism

4

= (3; 4)

8

. 2

Consider alternating (as it is de�ned after Corollary 1) cuts of the octahedron �

3

=

(3; 4)

6

. Each cut partitions the set of 6 vertices of �

3

into two parts. We distinguish a cut

C by the cardinality n(C) of the smallest part. We have 4 cases, when n(C) = 1; 2; 3. If

n(C) = 2, then the two vertices are adjacent, otherwise we have nonalternating cut. If

n(C) = 3, then there are two cases, when �

3

is partitioned either into two triangles or

into two 3-paths.

The alternating cut with n(C) = 1 provides (3; 4)

10

which is 3R

2

and 4R

2

. The

alternating cut with n(C) = 2 provides (3; 4)

12

which is 4R

1

but not 3R

i

. The cut with

n(C) = 3 vertices of which form a triangle provides (3; 4)

12

= the cuboctahedron which is

3R

0

and 4R

0

. This polyhedron is the second (reducible) polyhedron of the family (3; 4)

4k

for k = 3. The cut with n(C) = 3 vertices of which form a 3-path provides (3; 4)

14

which

is 3R

1

and 4R

2

with G

b

= 2C

4

. (cf. Proposition ??).

Denote by T

i

the polyhedron obtained from �

3

by a cut C with n(C) = i, i = 1; 2.

Similarly, let T

3

and T

0

3

be polyhedra corresponding to cuts with n(C) = 3 vertices of

which form a triangle and a 3-path, respectively.

The reducibility of the 12 polyhedra of Proposition ?? are as follows:

(i) (3; 4)

8

= (3; 4)

4k

, k = 2, and (3; 4)

9

= (3; 4)

3k

, k = 3, are irreducible, and (3; 4)

12

=

T

3

;

(ii) (3; 4)

10

is irreducible, and (3; 4)

12

= T

2

;

(iii) (3; 4)

10

= T

1

, (3; 4)

14

= T

0

3

with G

b

= 2C

4

, but (3; 4)

12

= (3; 4)

3k

, k = 4, and

(3; 4)

14

with G

b

= C

8

are irreducible;

(iv) (3; 4)

14

, (3; 4)

22

and (3; 4)

30

are reduced to T

1

, T

4

and T

2

, respectively, i.e. they

are reduced to �

3

.

So, the polyhedra (3; 4)

10

of (ii) and (3; 4)

14

with G

b

= C

8

of (iii) are two irre-

ducible polyhedra not belonging to the families (3; 4)

3k

and (3; 4)

4k

. There exists the

third irreducible polyhedron (3; 4)

16

not belonging to these families. This polyhedron has

G

a

= G

3

= 4K

1

+2K

2

and G

b

= G

4

is C

8

with two pendant edges incident to two adjacent

vertices of C

8

.

So, all face-regular (3; 4)

n

(except two in�nite sets for 3R

0

, 3R

1

) are 8 polyhedra from

Corollary 1, the unique (3; 4)

9

, the twisted cuboctahedron (3; 4)

12

, a (3; 4)

10

, a (3; 4)

12

and

all t-elongated octahedra for t > 2. The rhombicuboctahedron and its twist are (3; 4)

24

which are 3R

0

. Their graphs G

b

= G

4

are the octahedron plus a new vertex on each edge

and, respectively, C

8

+K

9;1;3;5;7

+K

10;2;4;6;8

. The snub cube is a 5-valent polyhedron with

p=(p

3

=32, p

4

=6) obtained from the rhombicuboctahedron by cutting 12 of its squares

into two triangles; its graph G

4

is the cube plus two new vertices on each edge.

5 Some remarks

Among face-regular bifaced polyhedra, which are both aR

i

and bR

j

, the most interesting

are those that satisfy the following conditions:

15



a) (i; j) = (0; b� 1): dual 2-capped APrism

4

, D�urer's octahedron, the dual 4-triakis

snub tetrahedron 3

28

, the dual tetrakis snub cube 4

56

, the dual pentakis snub dodecahe-

dron 5

140

(I) and the cross-capped truncated cube (3; 4)

30

.

b) p

a

= p

b

: dual bisdisphenoid, the truncated tetrahedron 3

12

, two 4

20

, 5

44

(T ) and

three (3; 4)

14

with (i; j; p

a

)= (1,2;4), (0,3;4), (2,4;6), (1,3;6), (2,3;12), (1,2;8), (1,2;8),

(2,3;8), respectively.

c) i = j: 4

14

= (APrism

2

3

)

�

, 5

38

(C

3v

) and (3; 4)

10

=2-Prism

4

, each has i = 2 and

consists of concentric belts of a- or b-gons (belts sizes are 3,3,3 for above 4

14

, 3,6,9,3 for

5

38

(C

3v

) and 4,4,4 for 2-Prism

4

).

All bifaced polyhedra with all a-faces forming a ring are: Prism

5

, Prism

6

, APrism

4

and 4 fullerenes with 36, 44, 44, 48 vertices. All bifaced polyhedra with all b-faces forming

a ring are: Prism

3

, dual of bidishpenoid, the 4

14

, the 4

16

, 2-Prism

4

, a (3; 4)

12

, a (3; 4)

14

and 5 fullerenes with 30, 32, 32, 36, 40 vertices.

It turns out that all bR

j

bifaced polyhedra with b > 2 have as G

b

the skeleton of a

bR

j

0

bifaced (or regular) polyhedra. In particular, all 3 bR

4

polyhedra 4

n

(n=26, 32, 32)

have as G

b

polyhedra (3; 4)

n

, and all 3 bR

3

polyhedra (3; 4)

n

(n=14, 22, 30) have as G

b

polyhedra 4

n

. The face-regularity aR

i

or bR

j

can be compared with other, relevant for

applications topological indices of a bifaced polyhedron. For example, it can be compared

with description of vertices by the vertex type or with the pair (q

a

; q

b

), where q

a

(resp.

q

b

) is the number of maximal connected sets of a-gons (resp. b-gons). Here we call a

set of faces connected if, seen as a graph with adjacency being the edge-adjacency of

faces, it is connected. For example, q

a

+ q

b

� p

a

+p

b

with equality for the cuboctahedron;

(q

a

; q

b

) = (p

a

; 1) or (

1

2

p

a

; 1), if a bifaced polyhedron is simple and aR

0

or aR

1

, respectively.

It will be interesting to identify face-regular polyhedra among the following simple

polyhedra, generalizing those considered in this paper (see [?] for the existence):

1) with p = (p

3

= 2; p

4

= 3; p

6

); it exists unless p

6

= 1; 3; 7;

2) with p = (p

4

; p

5

= 12�2p

4

; p

6

); it exists unless (p

4

; p

6

) =(1,0), (i; 1) for i = 0; 1; 5; 6;

3) with p = (p

3

; p

5

= 12�3p

3

; p

6

); it exists unless (p

3

; p

6

) =(0,1), (1; i) for i = 0; 1; 2; 4

or (2,1), (3; i) for i = 0; 2; 4 or (4,2), (4, any odd).

One can look for face-regular bifaced in�nite polyhedra, i.e. partitions of Euclidean

plane. For example, all 6 bifaced Archimedian plane partitions are face-regular. In fact,

(3.6.3.6), (4.8.8), (3.12.12), (3.3.3.3.6), (3.3.3.4.4), (3.3.4.3.4) are (0,0), (0,4), (0,6), (�; 0),

(2,2), (1,0), respectively.

Finally, there are face-regular simple polyhedra with p = (p

5

; p

b

i); b > 6. Icosahedral

polyhedra with p = (p

5

= 72; p

6+i

=

60

i

) for i=1,2,3 (so,n = 140 +

120

i

) with G

b

being

snub dodecahedron, Icosidodecahedron, Dodecahedron, respectively, are b-face-regular

(6 + i)R

(6�i)

. On the other hand, following 3 simple bifaced polyhedra are (3,0) face-

regular.They have p = (p

5

= 12; p

6

= 4), (p

5

= 24; p

8

= 6), (p

5

= 60; p

10

= 12) and n=28,

56, 140, respectively. Their G

5

is truncated Tetrahedron, truncated Cube, truncated Do-

decahedron and they have tetrahedral, octahedral, icosahedral symmetry, respectively.

They come as a triakon decoration of all 4,8,20 hexagons of truncated Tetrahedron, trun-

cated Octahedron, truncated Icosahedron, respectively.
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