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Abstract: This is a survey on distances on the symmetric groups S

n

to-

gether with their applications in many contexts; for example: statistics,

coding theory, computing, bell-ringing and so on, which were originally

seen unrelated. This paper initializes a step of research toward this di-

rection in the hope that it will stimulate more researchs and eventually

lead to a systematic study on this subject.

x0. Introduction

Distances on S

n

were used in many papers in di�erent contexts; for example, in

statistics (see [Cr] and its references), coding theory (see [BCD] and its references),

in computing (see, for example [Kn]), bell-ringing and so on. Here we attempt to

give a brief bird's view of distances on S

n

according to types of problems considered:

x1. Bi-invariant semi-metrics: consider, especially, extreme rays of the cone formed

by them; some of such extreme rays coming from graph metrics are given in

x4.

x2. Right-invariant metrics: lists many examples of such metrics, their connection

with statistics and some properties and inequalities of them.

x3. Ball and cliques: collect some known information of volumes of balls for some

right-invariant metrics, and also on maximal sizes of subsets of S

n

having given

pairwise distances.

x4. Graphic and hamiltonian distances: survey possibilities of derving metric spaces

(S

n

; d) from graphs or of sorting it out as a kind of hamiltonian circuits.
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x5. Metric basis, permutation approximation and symmetries: relates, via underly-

ing concept of metric basis of (S

n

;H), several papers concerning approximation

and the symmetric groups of (S

n

;H), (S

n

; `

1

).

x6. Commutation distance: treats separately this distance on S

n

, usually consid-

ered for other groups, actually d(a; b) = 1 if and only if d

com

(ab; ba) = 0.

x1. Bi-invariant semi-metrics on S

n

Call semi-metrice d on S

n

bi-invariant if d(a; b) = d(ca; cb) = d(ac; bc) for any

a; b; c 2 S

n

. So d(a; b) = d(ab

�1

; e) and weight values d(a) = d(a; e), where e is

the identity, determine completely a bi-invariant semi-metric d on S

n

. Now, d is bi-

invariant if and only if d(a) = d(b

�1

ab) for all a; b 2 S

n

, i.e. if and only if the weight

d(a) is constant on conjugacy classes. Let C

1

; � � � ; C

p

n

�1

be all nontrrivial conjugacy

classes of S

n

, where p

n

is the number of partitions on n. So any bi-invariant semi-

metric can be seen as a vector (d(C

1

); � � � ; d(C

p

n

�1

)) of length p

n

�1. It was noted in

[CD1] that all bi-invariant semi-metrics on S

n

(in the above form of weight functions

on conjugacy classes) form a polyhedral convex cone B

n

of dimension p = p

n

� 1

with vertex O.

We are interested in �nding extreme rays of the cone B

n

, which is exactly

the set of vectors (x

1

; � � � ; x

p

) such that x

i

� 0 for 1 � i � p, and x

i

� x

j

+ x

k

if 1 � i; j; k � p, and C

i

� C

j

C

k

. We take extreme semi-metric, i.e. the point

d on extremal ray such that minfd(a) j d(a) > 0g = 1 as a representative of an

extreme ray. So an extremal semi-metric takes only rational values with degrees 2

as denominators.

Some examples of bi-invariant semi-metrics are given in the following as weight

functions, for each a 2 S

n

:

1) the Hamming weight H(a) := jf1 � � � n; a(�) 6= �gj;

2) the Cayley weight T (a) := the minimum numbers of transpositions such that

their product is a;

3) the semi-metric Q(a) := 0 if a 2 A

n

, and := 1 otherwise.

We have H(a) = T (a) + N(a) where N(a) is the number of cycles of a 2 S

n

.

Moreover,
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i) T is an extremal metric, but H does not belong to an extremal ray [CD1].

ii) Q is an extremal semi-metric, and for n 6= 4, any bi-invariant semi-metric

which is not a metric is a multiple of Q [BC].

Actually, for n = 3 there are two nontrivial conjugacy classes: all transpositions, C

1

,

and all cycles of length 3, C

2

. B

3

has only two extremal semi-metrics, i.e. T and

Q. For n = 4, there are four nontrivial conjugacy classes: C

1

= (��), C

2

= (��)(��),

C

3

= (� � �), C

4

= (� � � �), and all extremal semi-metrics for n = 4 are listed below

[BC]:

C

1

C

2

C

3

C

4

Q 1 0 0 1

R 1 0 2 1

T 1 2 2 3

N 1 2 1 1

3 2 2 1

1 2 1 2

2 2 1 1

1 2 2 1

Remark that Q and R are the only two among the above eight extremal semi-metrics

which are not metrics and that H = T + Y . It found in [Fac], by computer check,

that there are 50 extremal semi-metrics for n = 5 and 805 extremal semi-metrics for

n = 6. It was shown in [BC] that B

n

has at least 2

�exp(�

p

2n)

n

extremal semi-metrics

as n approaches 1. Some constructions of extremal metrics coming from graphs

will be given below in x4.

x2. Right-invariant metrics on S

n

A semi-metric d on S

n

is called right-invariant if d(a; b) = d(ac; bc) for any a; b; c 2

S

n

. So d(a; b) = d(ab

�1

; e) as in x1, and weight values d(a) = d(a; e), a 2 S

n

,

determine d completely. Some examples of right-invariant metrics are:

1) `

1

(a; b) =

n

P

i=1

ja(i)�b(i)j, called also Manhattan, city-block or taxi-cab distance

(n = 2) and, in statistics, Spearman footrule.

2) `

1

(a; b) = max

i�i�n

ja(i) � b(i)j, the dual to `

1

(spaces `

p

; `

q

are called dual if

1

p

+

1

q

= 1).
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3) `

2

(a; b) =

s

n

P

i=1

(a(i)� b(i))

2

, the usual euclidean distance; also called Spear-

man's rank correlation in statistics. Note that `

1

; `

2

; `

1

are Minkowski-H�older

distances (i.e., d(a; b) = ka � bk) of normed spaces with kak = (

n

P

i=1

ja

i

j

p

)

1=p

for cases p = 1; 2; and 1 respectively, restricted on vectors a = (a

1

; � � � ; a

n

)

where a

1

; � � � ; a

n

are permutations of f1; 2; � � � ; ng.

4) L(a; b) =

n

P

i=1

min(ja(i)� b(i)j; n� ja(i)� b(i)j), the Lee distance used in mod-

ulation.

5) H(a; b) = jfi j i 2 f1; 2; � � � ; ng; a(i) 6= b(i)gj, it is Hamming distance used

in transmission. Note that H(a; b) = n � jFix(a

�1

b)j and in case of binary

vectors of length n, the distances `

1

; L;H coincide with the usual Hamming

distance on binary sequences, i.e. the cardinality of the symmetric di�erence.

6) T (a; b) := the minimum number of transpositions needed to obtain b from

a, which is equal to n minus the number of cycles in ba

�1

, i.e. the Cayley

distance.

7) I(a; b) := the minimum number of pairwise adjacent transpositions needed to

obtain b from a, i.e.

I(a; b) = jf(i; j) j 1 � i; j � n; a(i) < b(j); b(i) > b(j)g

which correspond to Kendall's � in statistics [Ke].

8) UL(a; b) := n minus the length of the longest increasing subsequence in

(ba

�1

(1); � � � ; ba

�1

(n)): It is the metric introduced by Ulam et.al., [BSU] for

DNA research in biology, called evolutionary distance, and by Levenstein [Le]

for codes correcting errors, deletions and insertions of symbols. It is also used

in linguistics as editing distance.

In the above list of eight metrics, only the last three are graphic (in the same

defnied in x4 below.) Metrics d (especially d = `

2

; `

1

; I) are usually used in statistics

in the form

1 �

2d

max

a

0

;b

0

2S

n

d(a

0

; b

0

)

in order to interpret them as a correlation coe�cient. Moreover, metrics on S

n

were

used in statistics (see, for example, [DG], [Cr] and references there) to compare two
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permutatins considered as two ranking of the same n items by two judges. The right-

invariance of the metric is cructial here since it means that the distance between

rankings does not depend on the labellings of our n items. Metric `

1

; `

1

; L;H; T are

extended as right-invariant metrics on partial transformations in [CD2], and metric

`

1

; `

2

;H; T; I; UL are extended for partially ranked data in [Cr].

[DG] gives mean, max, variance and normality for distance `

1

as n!1; they

also indicate also the asymptotic normality for T; I and (private communication

from Diakonis) for H. [DG] also shows I + T � `

1

� 2I, where d � d

0

means

d(a) � d

0

(a) for any a 2 S

n

, and that simultaneously equality of both bounds hold

exponentially often, since jfa j a 2 S

n

; I(a) = T (a)gj = F

2n�2

, where F

0

= F

1

= 1

and

F

n

= F

n�1

+ F

n

2

are the Fibonacci numbers. It is easy to see ([CD2]) that `

1

� I � T also and

H=2 � T � H � L � `

1

.

x3. Balls and cliques for right-invariant distances

The right-invariance of the metric d means that any sphere

S

d;n

(r; a

0

) = fa j a 2 S

n

; d(a; a

0

) = rg

with center a

0

and radius r has the same size jS

d;n

(r)j for any choice of the center

a

0

2 S

n

: Equivalently, all balls B

d;n

(r; a

0

) = [

i�r

S

d;n

(i; a

0

) have the same size jB

d;n

(r)j

for any choice of the center a

0

2 S

n

. It is easy to see that

jS

H;n

(r)j =

 

n

r

!

r!

r

X

i=0

(�1)

i

i

� `

�1

 

n

r

!

r!

and

jS

T;n

(r)j =

n

X

(t

1

;���;t

n

)2f1;2;���;ng

n

P

i�i�n

t

i

= n�r

n!

1

t

1

t

1

! � � � n

t

n

t

n

!

:

The size of Hamming sphere S

H;n

(r) in S

n

is just the number of derangements in

S

r

. We have jB

T;n

(1)j = jB

H;n

(2)j = 1+

�

n

2

�

. It will be interesting to �nd perfect

packings of S

n

, i.e., partitions of S

n

into union of disjoint balls B

d;n

(r) in a given

right-invariant metric d. But this is a di�cult problem even for unit balls in metrics

T and in H=2. Of course, we need divisibility of n! by 1+

�

n

2

�

for it, which is possible
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for example n = 11. But [RT] proved that such perfect packing is not possible if

1+n is divisible by a prime exceding

p

n+ 2, and hence n = 11 is ruled out. Now,

jS

I;n

(r)j =

n�1

X

i=0

jS

I;n�1

(r � i)j;

see [Ke], and an explicit formula for it can be fond in [Kn, p. 16].

In addition to H;T; I, the size of ball was studied only for L

1

. It is clear that

jB

L

1

;n

(1)j = jB

L

1

;n�1

(1)j+ jB

L

1

;n�2

j = F

n

;

the Fibonacci numbers, refer to x2. [La] gives

jB

L

1

;n

(2)j = 2jB

L

1

;n�1

(2)j + 2jB

L

1

;n�3

(2)j � jB

L

1

;n�5

(2)j:

In the remainder of this section, we consider bounds on maximal size of a

D-clique A(D) in the metric space (S

n

; d), i.e. max jA(D)j where A(D) � S

n

with

the property that all d(a; b) belong to D whenever a; b 2 A(D). Let jA

S

(D)j be the

size of the D-clique A

S

(D) contained in S � S

n

. Then, from the density bound,

jA

S

n

(D)j

jS

n

j

�

jA

S

(D)j

jSj

, it follows [CD1] that

jA(D)j � max

S�S

n

jA

S

(D)jn!=jSj

if either d is bi-invariant or A(D) is symmetric (i.e. it contains a

�1

whenever it

contains a 2 S

n

). Let q : S

2

n

! R be a right-invariant function such that the matrix

[q(a; b)] of order n! has only nonnegative eigenvalues and that g(a; b) � 0 whenever

d(a; b) 2 D. Then the averaging bound from [GS] gives

jA(D)j � (n!)

2

max

a2S

n

q(a; a)

P

a;b2S

n

q(a; b)

:

Let D denote the set of all nonzero values of d on S

n

which are not in the

set D, then jA(D)jjA(D)j � jS

n

j = n! from the duality bound [DF], it follows

that jA(D)j � n!=maxjA(D)j if either d is bi-invariant or A(D) is symmetric. For

example, letD = fr+1; � � � ; ng; A

1

the ballB

d;n

(b

r

2

c), A

2

the stablizer of the smallest

subsetM of f1; 2; � � � ; ng such that its stablizer is A(D). Both A

1

; A

2

are symmetric

cliques A(D). Speci�ying further d = H, we have A(D) � n!=jB

H;n

br=2cj with

equality corresponding to perfect packing of S

n

for even r and A(D) � n!=jA

2

j =

n!=(n� r)! with equality if and only if A(D) is a sharply (n� r)�transitive subset

of S

n

.
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x4 Graphic and Hamiltonian distances

x4.1 Graphic distance

A distance d on S

n

is called graphic if d(a; b) is the length of a shortest path joining

a and b in the simple graph with vertex set S

n

, and edge set f(c; d) j d(c; d) = 1g.

For example, the commutation distance (de�ned in x6) on S

n

�Z(S

n

) is not graphic,

since d

com

(a; b) is the length of the shortest path avoiding the center Z(S

n

) in the

above graph. It is known [KC] that an integer-valued metric on any set X is graphic

if and only if d(a; b) > 1 implies d(a; c) + d(c; b) = d(a; b) for some c. For any �nite

graphic metric d, the set fa j a 2 S

n

; d(a; e) = 1g generates S

n

.

On the other hand, for any symmetric generating subset E of S

n

(i.e. a 2 E

implies a

�1

2 E), de�ne d

E

to be the graphic distance on S

n

such that the edge-set

is exactly f(c; d) j ac = d for some a 2 Eg. Then d

E

is a right-invariant distance.

Any �nite d

E

(a; b) is the smallest k such that a

�1

b is the product of at most k

elements of E. d

E

is �nite if and only if E generates S

n

. d

E

is bi-invariant if and

only if E is a union of conjugacy classes; so, bi-invariant d

E

is, moreover, �nite

if and only if E 6� A

n

, the alternating group. For example, d

E

with E being

the set of all transpositions is exactly (extremal bi-invariant) Cayley metric T (a)

considered above in x2. Another example of d

E

with E being the set of all adjacent

transpositions (i; i+ 1) in the right-invariant metric I(a) from x2 corresponding to

Kendall's � in statistics [Ke, Cr]; it is the shortest path metric of the Cayley graph of

S

n

generated by E (i.e. of the skeleton of the permutahedron - the Voronai polytope

of the lattice A

�

n�1

).

A refreshing example of other graphic metric on S

5

is the shortest path met-

ric of the skeleton of truncated icosadodecahedron - 120-vertices simple zonotope,

the largest Archimedean solid. This graph is the Cayley graph of S

5

genrated by

(12)(34), (23)(45) and (34). In campanology, it corresponds to the Plain Bob method

for 5 cells. Do not confuse it with the permutahedron on S

5

- another (4-dimensional)

120-vertrices simple zonotope. An example of right-invariant graphic metric in S

n

which is not of form d

E

is the Ulam-Levenstein metric UL(a) in x2 considered in

genetic [BSU] and coding [Le].

Some examples of bi-invariant d

E

which are extremal (in the cone of all bi-

invariant semi-metirc on S

n

) are given below:

[CD1 ]: If C is a conjugacy class of S

n

, C 6� A

n

, then d

c

is extremal

[BC ]: If C is a conjugacy class of S

n

, C 6� A

n

and C

2

= A

n

, then d

c

0

is extremal

7



where C

0

is a union of conjugacy classes containing C but not containing more

than two classes from A

n

.

The above bound is good since d

A

5

is not extremal for S

5

, but A

5

consists of exactly

three conjugacy classes. We remark also that 5 is the smallest n such that there is

nongraphic extremal bi-invariant semi-metric on S

n

.

x4.2 Hamiltonian graphs on S

n

A distance d on S

n

is called hamiltonian if S

n

can be cyclically ordered in such

a way that any two consecutive permutations have distance 1. So, graphic d is

hamiltonian if and only if the corresponding graph has a hamiltonian circuit. Let

H(a)=i denote the graphic metric on S

n

with b; c 2 S

n

adjacent if and only if their

Hamming distance is i.

[EW ]: H(a)=i is hamiltonian for n � 2, and any integer i 2 [2; n]�f3g. H(a)=3 is

not hamiltonian since all 3-cycles in S

n

generate A

n

but not S

n

.

[Sl ]: d

E

, with E being a set of transpositions, is hamiltonian if the graph G

E

with

veretx set f1; 2; � � � ; ng and edge-set f(i; j) j �(i) = j; �(j) = i for some � 2

Eg is connected. Cayley distance T (a) corresponds to G

E

= K

n

, the distance

I(a) corresponds to G

E

being a path of length n, so both T (a) and I(a) are

hamiltonian. L

1

(a) is also Hamiltonian following from L

1

� I(a).

[CD1 ]: if d

E

; d

E

0

are hamiltonian, then d

EE

0

is hamiltonian on A

n

.

Some special hamiltonian circuits in (S

n

; L

1

) correspond to good ringring of n bells

in [Ja]; see also, for example, [CSW] and references [32, 49, 53, 57-60] there.

x5 Metric basic, permutation approximation and symmetries

Call a subset B � S

n

a d-metric basis if the validity of d(a; c) = d(b; c) for any

c 2 S

n

implies a = b, i.e. an element of S

n

is uniquely determined by its distance

from elements of B.

The utility of this concept can be seen by considering works on permutation

approximation [GSM, Mi], and on the symmetries of (S

n

;H) [Far]. They proved

independently for di�erent purposes and in di�erent terms (see, for example, lemma

3.1 [Far] and Theorem 1[GSM]) that e, all transpositions and all cycles of length 3

8



form a metric basis for Hamming metric. We now describe those works brie
y in

the following:

A) Approximatin of almost commuting permutations using Hamming distance:

The following problem was considered in [GSM, Mi] - let a; b 2 S

n

, if H(ab; ba)

is small, i.e. if a; b 2 S

n

almost commute, is

H

a

(b) = min

C2C(a)

H(b; c)

necessarily small? i.e., can b be approximated by an element of C(a)? where

C(a) is the centralizer of a. Gorenstein et.al. [GSM] gave negative answer if

jC(a)j is small, and positive answer if a is a product of m disjoiont cycles of

length t = n=m for large m. More precisely, let H

a

= max

b2C(a)

H

a

(b)=H(ab; ba)

in the later case for any a 2 S

n

� feg. Then for m > 1, we have

a) H

a

= t=4 if t = n=m is even [GSM],

b) (t� 1)=4 � H

a

� t=4 if t > 1 is odd [GSM],

c) H

a

= (t� 1)

2

=(4t � 6) if t > 1 is odd and m � t� 2 [Mi].

The main idea of [Mi] is that the determination of H

a

(b) is equivalent to the

optional assignment problem in linear programming.

B) the symmetries of the metric spaces (S

n

;H); (S

n

; `

1

):

Farahat [Far] proved that the symmetry group I

S

(S

n

;H) has, for n � 3, order

2(n!)

2

. For distance `

1

, [Dj] gave jI

S

(S

n

; `

1

)j = 2n! for n � 3 and also that all

values of `

1

on S

n

are all even integers from 0 to 2bn

2

=4c.

x6 Commutation distance on S

n

The following distance on any �nite group G was considered [BF, Na, ES, Ne, Ti,

Bi] and by others in various context and terms. Consider the commutation graph

of G, with vertex set G, and distinct elements a; b 2 G are connected by an edge

whenever they commute, i.e. ab = ba. Any two distinct elements a; b 2 G which are

not commute, are connected by the path (a; c; b) where c is any element of the center

Z(G) of G. Call N -path any path (a; c

1

; � � � ; c

t

; b) where all c

1

; � � � ; c

t

do not belong

to Z(G); call a; b 2 GnZ(G) N -connected if they are connected by some N -path

9



and de�ne their commutation distance d

com

(a; b) as the minimum length of N -path

connecting a and b. De�ne

d

com

(a; b) =

(

0 if a = b;

1 if a 6= b; ab = ba;

and, d

com

(a; b) = 1 if a; b 2 GnZ(G) are not connected by any N -path. A repre-

sentation G =

k

[

i=1

M

i

is called an N � partition of the group G if M

i

\M

j

= Z(G)

whenever i 6= j, and GnZ(G) splits into maximalN -connected disjoint subsetM

i

nZ,

1 � i � k. M

i

; 1 � i � k , are called a N � components. The case Z = < e > and

all M

i

being subgroups corresponds to the partitions of G considered by R. Baer,

M. Suzuki and others.

Problem A: to �nd diameter d(G) of a group G (i.e. max d

com

(a; b) for all N-

connected pairs a; b 2 G) and to �nd all N-components M

i

, 1 � i � k, of G.

N � partition of G were studied for S

n

, A

n

and Weyl groups W (B

n

);W (D

n

)

in [Na] and, independently, for S

n

, A

n

, GL(2; q); PGL(2; q); PSL(2; q) and in�-

nite groups PGL(3;K) in [Bi]. Among other things, Bianchi [Bi] proved also that

d(S

n

) � 8, d(A

n

) � 8 for any n � 2; both Sym(M) and Alt(M) are N -connected

with d(G) � 2 for in�niteM . Furthermore, those N -components for S

n

; n � 5, are:

a) S

n

itself is N -connected if and only if n; n� 1 are composite numbers;

b) in the case of prime n:

(n�2)! N -components are subgroups of order n and one N -component consists

of all permutations which are not cycles of length n;

c) in the case of prime n� 1 :

n(n� 3)! N -components are subgroups of order n� 1 and one N -component

consists of all permutations which are not cycles of length n� 1.

Now, S

2

is abelian, S

3

has one N -component, which is subgroup of order 3, three

N -components which are subgroups of order 2 and d(S

3

) = 1. S

4

has four N -

components which are subgroups of order 3, one N -components (not a group) con-

sisting of all permutations which are not cycles of length 3 and d(S

n

) = 3.

N -partitions of A

n

are also known [Na, Bi], but more messy to describe. In

particular, A

n

(n � 3) is N -connected if and only if either n = 3 or n; n � 1; n � 2

are composite numbers. In fact, A

3

is abelian, i.e. it is N -connected and d(A

3

) = 1;

10



A

4

has �ve N -components which are all Sylow subgroups and d(A

4

) = 1: A

5

has 21

N -components which are all subgroups and d(A

5

) = 1. A

6

has 42 N -componetns

(not all are groups) and d(A

6

) � 4.

Other way to study commutation graph of a group G was started by Erd�os

[ES, Er]. If Z(G) 6= < e >, then a coset decompoition G = [ < x;Z > is a covering

of G by abelian subgroups.

Problem B

1

: to estimate the minimal cardinality �(G) of coverings of G by abelian

subgroups;

Problem B

2

: to estimate the maximum cardinality �(G) of a set of pairwise non-

commuting elements of G, i.e. the independence numbers of the communication

graph.

The bounds on �(G); �(G) were given in [Es, Ma, Ne, Be, Ry]. Brown [Br] concen-

trated on the case G = S

n

in which we are interested here; the following asymptotic

bounds for �(S

n

) = �

n

, �(S

n

) = �

n

were given in [Br] too:

1) (n� 2)! log log n� �

n

� �

n

� (n � 2)!;

2) for in�nitely many n, one has (n� 2)!� �

n

� �

n

;

3) for in�nitely many n, one has �

n

� �

n

� (n� 2)! log log n.

He also showed that �

n

= �

n

for all n � 1 if the (bounded, as he proved) sequence

f�

n

=�

n

g has a limit. The exact values of �

n

= �

n

for all n � 9 and the equality

�

11

= �

11

= 4212330 were also given.
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