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Abstract

This paper presents a precise connection between a non-commutative version of intuitionistic

linear logic (INLL) and concurrent constraint programming (cc). The contribution of this paper

is twofold:

� on the one hand, we re�ne existing logical characterizations of operational aspects of concurrent

constraint programming, by providing a logical interpretation of �ner observable properties of

cc programs, namely successes and suspensions.

� on the other hand, this work stems in the line of research aiming at establishing close cor-

respondences between linear logic and concurrent programming, by showing that, for formu-

las satisfying a certain simple condition, deductions correspond exactly to transitions between

agents, without any extra-logical operator nor any restriction on the form of proofs.

1 Introduction

This paper presents a precise connection between a non-commutative version of intuitionistic lin-

ear logic (INLL) and concurrent constraint programming (cc). The contribution of this paper is

twofold:

� on the one hand, we re�ne existing logical characterizations of operational aspects of concurrent

constraint programming, by providing a logical interpretation of �ner observable properties of

cc programs, namely successes and suspensions.

� on the other hand, this work stems in the line of research aiming at establishing close correspon-

dences between linear logic and concurrent programming, by showing that, for formulas satisfying

a certain simple condition, deductions correspond exactly to transitions between agents. Examples

of such correspondences have been proposed for LO [2] and the �-calculus [20] at the expense of

extra-logical operators, for concurrent logic programming [23, 14] at the expense of restrictions on

the form of proofs, and for Petri nets and a propositional fragment of linear logic [19, 3]. One aspect

of our correspondence between cc and �rst-order non-commutative linear logic is that it does not

assume such restrictions.

Concurrent constraint programming [29] is a model of concurrent computation, where concurrent

agents communicate through a shared store, represented by a constraint, which expresses some

partial information on the values of the variables involved in the computation. An agent may add

a constraint c to the store, or ask the store to entail a given constraint (c ! A). Communication

is asynchronous: agents can remain idle, and senders (constraints c) are not blocking.

Syntactically, concurrent constraint programming is an extension of constraint logic program-

ming [11, 18] with a suspension mechanism c ! A, and the operational semantics of cc is the

same as that of constraint logic programming, except for c! A which blocks until the amount of
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accumulated information (the store) is strong enough to entail c, in which case c! A evolves to A.

This gives rise to a natural form of data-driven computation, that generalizes the delay mechanism

of Prolog with freeze and of early CLP systems such as CHIP [34] [10], and is now central in the ap-

plications of constraint programming to complex system modelling and combinatorial optimization

problems [17].

Inherited from the process algebra tradition, cc languages can be presented very simply by

a set of operators for parallel composition k, non-deterministic choices + (angelic or demoniac,

blind or one-step), hiding 9, blocking ask!, and by a transition system expressing the operational

semantics of the agents. The operational semantics can be de�ned either in the SOS style [28] or

in the chemical abstract machine [4] style which we shall retain here (see table 1 and section 2 for

the de�nition of �!

cc

transitions). Computation is monotonic (the constraints in the store are

not consumed): this allows to provide cc with a denotational semantics, viewing agents as closure

operators on the semi-lattice of constraints [31, 12].

From the logic programming tradition however, the operational aspects of cc programming

should also be closely connected to proof theory, via the computation-as-proof-search paradigm.

This paradigm, �rst introduced for the Horn clause fragment of classical logic, has been smoothly

applied to constraint logic programming (with, or without negation by failure, or constructive

negation), where the logical nature of the constraint system extends to the goals and program

declarations, and states strong connections between operational semantics and entailment [11, 18,

32, 6]. For instance, success constraints (i.e. �nal states of computations) can be observed logically:

any success entails the initial state (modulo the logical translation of the program P

?

and the

constraint system C); conversely any constraint c entailing a goal G is covered (again modulo P

?

and C) by a �nite set of successes c

1

: : : c

n

, i.e. C ` 8(c

1

: : : c

n

) c). Such results make easier the

design and understanding of programs, and provide useful tools for reasoning about them.

Maher in [18] was the �rst to suggest that the synchronization mechanism in concurrent logic

programming could be given a logical interpretation. In [16] Lincoln and Saraswat give an interest-

ing connection between the observation of the stores of cc agents and entailment in intuitionistic

logic (IL). The basic idea is to express agents and observations by formulas and to read a sequent

� ` � as \the agent � satis�es the test �". Their main result establishes a logical interpretation

of the observation of the stores entailed in each branch of the derivation tree: for any constraint c

and any (formula associated to a cc) agent �, � `

IL

c i� � �!

cc

(c

1

^B

1

) _ :::_ (c

n

^B

n

) and for

all 1 � i � n C ` 8(c

i

! c).

However such a logical semantics does not accommodate other notions of observations. Actually

let a success of an agent A be a store c such that A evolves to c, and let a suspension be an agent

B = c k (d! A) such that A evolves to B and c does not entail d (the exact de�nition is slightly

longer). The three programs p(x) = x � 1, p(x) = x � 1 k p(x), and p(x) = x � 1 k (false ! A)

have the same stores and are therefore indistinguishable, although the �rst succeeds, the second

loops and the third suspends. As shown in [26] through examples the observation of successes or

suspensions is in fact not expressible in intuitionistic logic. Roughly speaking, the interpretation

of cc agents as intuitionistic formulas stumbles against the structural rule of (left) weakening:

� ` B

�; A ` B

Girard's linear logic [8] enables a control on the weakening and contraction structural rules

of classical and intuitionistic logics. It seems therefore natural to interpret concurrent constraint

programs in linear logic. While moving to linear logic, it is very natural to move to a non-monotonic

version of cc at the same time, where constraints are consumed, but where monotonic cc can be

easily encoded. Such variants have been introduced by Saraswat and Lincoln in a higher-order

setting [30], further studied in [5, 33], where the logic of constraints is linear logic: in this version,

constraints can be consumed, and the language is therefore closer to process calculi like Milner's

�-calculus [21].
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In [26], a �rst-order non-monotonic variant, lcc, is de�ned in which the successes are charac-

terized in ILL (intuitionistic multiplicative and additive linear logic). On the contrary, suspensions

cannot be characterized in ILL, because from

A
 (B ( C) ` B ( (A
 C)

one cannot conclude that A k (B ! C) �! B ! (A k C) suspends: A might add enough

information into the store to unblock the constraint c (for instance c 
 (c( 1) ` c( (c
 1) but

c
 (c( 1) ` 1 as well, and indeed the agent c k c! 1 succeeds with 1, and does not suspend).

There is a lack of a \sequential" connective, that is a non-commutative one. The actual non-

commutative versions of linear logic do not provide any immediate solution (for instance Retor�e's

before connective < [25] enjoys the same `porosity' property as linear implication: A
 (B < C) `

B < (A
 C)).

In this paper we show that the intuitionistic fragment of a new non-commutative version of

linear logic (INLL) copes with this di�culty (Section 3): we show that the successes and the

suspensions of an lcc computation can be characterized in INLL (Section 4). We then re�ne this

connection between INLL and cc, by showing that, when focusing on formulas satisfying a certain

condition (absence of existentially quanti�ed variables in the �nal agent), deductions correspond

exactly to transitions between agents.

Note that these results hold for (usual) monotonic cc as well, because, as we shall see, cc can

be faithfully translated into lcc.

2 Preliminaries on concurrent constraint programming

2.1 Non-monotonic lcc

A linear constraint system is a pair (C;


C

) where: C is a set of formulas (the linear constraints)

built from a set V of variables, a set � of function and relation symbols, and logical operators 1,

the multiplicative conjunction 
 and the existential quanti�er 9; and 


C

� C

?

� C. We assume 


has neutral 1. Instead of ((c

1

: : : c

n

); c) 2


C

, we write c

1

: : : c

n




C

c.

`

C

is the least re
exive and transitive relation � C

?

�C containing 


C

and closed by the following

rules (fv(A) denotes the set of free variables occurring in A):

�; c

1

; c

2

` c

�; c

1


 c

2

` c

� ` c

1

� ` c

2

�;� ` c

1


 c

2

�; c ` d � ` c

�;� ` d

� ` c

� ` 9xc

�; A ` c

x 62 fv(�; c)

�; 9xA ` c

They are the rules of intuitionistic linear logic (ILL) for 
 and 9, plus the cut rule. The syntax

of lcc agents is given by the following grammar:

A ::= p(~x) j c j (A k A) j A+A j 9xA j c! A

where k stands for parallel composition and ! for blocking ask. In an agent written A = c k A

1

k

� � � k A

n

, c is a constraint, the main constructor of each A

i

is not k, and no A

i

is a constraint. We

call c the store of A, it is the global available information.

Recursion is obtained with declarations: D ::= � j p(~x) = A j D;D

As usual, the precise operational semantics of cc programs depends on the choice of observables.

In this paper we shall �rst consider successes and suspensions. A success for an lcc agent A is a

3



linear constraint c such that A �! c. A suspension for A is an agent B = c k (d

1

! A

1

) k � � � k

(d

n

! A

n

) such that A �! B and for no i, c > d

i

, where the relation between constraints \c > d"

is the least relation containing 


C

and closed by the rule c > d ) (c
 e) > d.

We shall de�ne the operational semantics by a transition system which abstracts from speci�c

evaluation strategies. The transition system is given in table 1 in the style of the Chemical Abstract

Machine [4] (see also [24]). This presentation, though di�erent from a logic programming one, has

the advantage of keeping track of the variable bindings, and we �nd it therefore cleaner to manage

logically. We also chose to de�ne the transition relation as a congruence (thus c ! A �! c! B

whenever A �! B), although such transitions can obviously be discarded (as expected) without

a�ecting the observation of successes and suspensions.

� The structural congruence � is the least congruence relation such that (A= �; k; 1) is an abelian

monoid, (A=�;+) is an abelian semi-group, and such that, for all agents A and B:

A and B are �-convertible

A � B

A+ A � A 1! A � A

9x1 � 1 9x9yA � 9y9xA

x is not free in A

9x(A k B) � A k 9xB

x is not free in c

9x(c! A) � c! 9xA

� The transition relation between agents �! is the least re
exive transitive congruence such that:

(d
 c) k (c! A) �! (d k A)

c `

C

d

c �! d

c `

C

d

(d! A) �! (c! A)

(c! d) k (d! A) �! (c! A) c! (d! A) �! (c
 d)! A

(p(~x) = A) 2 P

p(~x) �! A

A

0

� A A �! B B � B

0

A

0

�! B

0

A +B �! A A+ B �! B

Table 1: Transition system of lcc with blind choice.

Remarks:

I In the communication rule (d
 c) k (c ! A) �! (d k A), the constraint c is consumed by the

agent c ! A. Therefore communication is intrinsically non-deterministic since several constraints

may satisfy the condition of the rule.

I The non-deterministic choice A + B, called blind choice, can behave either like A or like B,

it has both capabilities. This is in slight contrast with the one-step guarded choice, de�ned by

A �! A

0

A+ B �! A

0

and

B �! B

0

A+ B �! B

0

. As remarked in [12, 7] the di�erence between (angelic, back-

tracking) non-determinism and (demonic, committed-choice) in-determinism arises in the way ob-

servations are de�ned, however angelic non-determinism refers generally to the blind choice rule

and demonic non-determinism to the one-step committed choice rule. Only the blind choice rule

will be considered in this paper. Agents and declarations not involving + are said deterministic.

2.2 Translation of monotonic cc into lcc

The monotonic (original) version of cc can be recovered very simply. The basic idea is to restitute

the consumed constraint after communication, in the translation of a suspension c! A. This leads

to the following translation:
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Let (C;


C

) be a constraint system. We de�ne the linear constraint system (C;


C

)

�

and the

translation of cc agents into lcc agents:

c

�

= c, if c is an atomic constraint other than > >

�

= 1

p(~x)

�

= p(~x) (A+ B)

�

= A

�

+ B

�

(A k B)

�

= A

�

k B

�

(9xA)

�

= 9xA

�

(c! A)

�

= c! (c k A

�

)

The deduction relation 


�

C

is de�ned by: c 


C

d) c

�




�

C

d

�

, and for any constraint c, c

�




�

C

c

�


c

�

and c

�




�

C

1.

The transition relation �!

�

is the transition relation of monotonic cc, i.e. the same as that

of lcc, except for the communication rule (d 
 c) k (c ! A) �!

lcc

(d k A) which is replaced by

c k (c! A) �!

cc

(c k A).

Remark:

I In order to translate the deduction of constraints, we could naturally use of the so-called expo-

nential connectives of linear logic (speci�cally !), and avoid this way the ad hoc axioms of 


�

C

, but

then we should take care to limitate the use of ! to constraints only

1

, and this would not be very

smooth. Our translation has the advantage to rely on the simple multiplicative-additive fragment.

The following proposition is then easily proved:

Proposition 1 Let c and d be constraints: c ` d i� c

�

`

�

d

�

. Let A and B be cc agents: A � B

i� A

�

�

�

B

�

, A �! B i� A

�

�!

�

B

�

.

3 Non-Commutative Linear Logic

The complete presentation of that non-commutative linear logic is the topic of another paper [27],

and is partially recalled in Appendix. We just present here the intuitionistic fragment of interest

for the present paper.

The formulas are built from atoms p; q; : : :, the constant 1, the existential quanti�er 9 and

connectives: a (multiplicative) commutative conjunction 
, a (multiplicative) non-commutative

implication ; and the additive conjunction &. Like Yetter [35], and contrary to Lambek [15] and

Abrusci [1], we simply consider one implication.

De�ning a sequent calculus for a linear logic mixing both commutative and non-commutative

multiplicatives raises the problem of representing the information on the way the formulas in the

sequent must be combined (either by 
 or by ;). Following Retor�e [25], we shall represent this

information by an ordering (on occurrences of formulas) associated to the sequent.

Sequents are of the form � ` A [i], where i is a simple oriented graph (at most one edge from a

vertex to another) indexed by the multiset of formulas �; A. A ` B is de�ned by ` A

?

; B [A

?

$ B].

We de�ne the following operations and relations on i:

� if x and y are two vertices of i, we note ifz=x; yg the graph obtained by identifying in i the

vertices x and y, renamed z (in case x$

i

y, the two edges from z to z should be identi�ed as well);

� we note i [ j the graph with edges and vertices those of i and j;

� if x is a vertex of i and y a vertex of j, we note i �

x;y

j the graph obtained from i[ j by adding

an edge from t to s, 8s 2 i such that xis and 8s 2 i such that tjy, adding an edge from s to t, 8s 2 i

such that six and 8t 2 j such that yjt, and then erasing the vertices x and y and all edges from or

to x or y; this will be used in the cut rule;

1

Usually the replication operator of process calculi (like the �-calculus [21], where it is written ! as well) does not

have the same operational behaviour as the exponential connective: it enables duplication (!A! (!A k!A)) but not

erasing (!A9 1).
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� if x is a vertex of i and y a vertex of j, we note ig

x;y

j the graph obtained from i[ jfx; y=x; yg

by adding an edge from t to s, 8s 2 i such that xis and 8s 2 i such that tjy, and then erasing the

vertices from x or to y; this will be used in the ; left introduction;

� if x is a vertex of i and y a vertex of j, we note i


x;y

j the graph obtained from i[ jfx
y=x; yg

by adding an edge from t to s, 8s 2 i such that xis and 8s 2 i such that tjy, adding an edge from

s to t, 8s 2 i such that six and 8t 2 j such that yjt, and then erasing all edges from or to x or y;

this will be used in the 
 right introduction;

� if x and y are two vertices of i, we shall say x �

i

y i� i contains an edge from x to y and no

other egde starting from x or arriving at y.

The rules of the sequent calculus are given in table 2.

Axiom / cut

A

x

` A

y

[A

x

$ A

y

]

� ` A

x

[i] �; A

y

` B [j]

�;� ` B [i �

A

x

;A

y

j]

Commutative

� ` A [i] � ` B [j]

�;� ` A
 B [i


A;B

j]

�; A;B ` C [i]

�; A
 B ` C [ifA
B=A;Bg]

Non-commutative

�; A ` B [i]

A �

i

B

� ` A; B [ifA; B=A;Bg]

� ` A [i] �; B ` C [j]

�;�; A; B ` C [ig

A;B

j]

Additive

� ` A [i] � ` B [ifB=Ag]

� ` A&B [ifA&B=Ag]

�; A ` C [i]

�; A&B ` C [ifA&B=Ag]

�; B ` C [i]

�; A&B ` C [ifA&B=Bg]

Existential quanti�er

� ` A [i]

� ` 9xA [if9xA=Ag]

�; A ` B [i]

x 62 fv(�; B)

�; 9xA ` B [if9xA=Ag]

Constant

` 1 [1$ 1]

� ` C [i]

(A$

i

B) 2 (�; C)

�; 1 ` C[if(A$ 1$ B $ A)=(A$ B)g]

Table 2: Sequent calculus for an intuitionistic fragment of INLL.

Theorem 1 The sequent calculus given in Table 2 enjoys cut-elimination.

This is a direct consequence of the cut-elimination theorem given in [27] for the sequent calculus
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of classical non-commutative linear logic, as the cut-elimination procedure preserves the intuition-

istic nature of sequents (i.e. at most one formula on the right of a sequent).

Comments:

I The graph associated to a sequent enables to express sequentiality constraints on formulas (for

instance A �

i

B). Some rules are subject to such constraints, most notably the right introduction

`; of the non-commutative implication ;, whereas other rules are not sensitive to these con-

straints, for instance 
 `. The interplay of sequentiality and parallelism in the sequent enables for

instance to prove c
 (c; A) ` A but, as expected, A
 (d; B) 6` d; (A
B).

In fact this is the most important, the rest of the sequent calculus just keeps the system coherent

(in particular w.r.t. cut-elimination).

I Most of the rules of this calculus will be read as transitions of processes: axiom expresses a

form of asynchrony (agents can idle inde�nitely), cut expresses the ability to compose executions,

and the rules for the additive conjunction expresses non-deterministic choice. The rules for 
 (in

particular the left introduction) tell just that two formulas A and B can always be read as the

single formula A
B. The left introduction of 9 expresses hiding. The interpretation of other rules

is not so easy, and is the subtelity of the next section.

We need the following lemma:

Lemma 1 In a provable sequent � ` A [i],

(i) for any formula B in �; A, i contains an edge from B and an edge to B;

(ii) the unoriented graph associated to i is connected.

4 The correspondence cc - INLL

Let (C;


C

) be a constraint system, and D be a set of declarations. The lcc agents are translated

into formulas as follows

2

:

c

y

= c, if c is a constraint p(~x)

y

= p(~x) (9xA)

y

= 9xA

y

(c! A)

y

= c; A

y

(A k B)

y

= A

y


B

y

(A+B)

y

= A

y

&B

y

Let INLL(C,D) be the deduction system obtained by extending INLL with:

� for each c 


C

d in 


C

, c ` d [c$ d] as a non-logical axiom,

� for each declaration p(~x) = A in D, the sequent p(~x) ` A

y

[p(~x)$ A

y

as a non-logical axiom.

By a simple induction on � and �!, we can easily prove the following:

Theorem 2 (Soundness) Let A and B be lcc agents.

If A � B then Ay `a

INLL(C;D)

By. If A �! B then A

y

`

INLL(C;D)

B

y

.

This is the minimum, and holds in fact in any (suitable) logical interpretation (intuitionistic, or

commutative linear logic). The interesting point of our re�ned logic is that the logical reading of

agents captures �ner operational aspects of (l)cc computations: indeed a converse (completeness)

theorem holds for the observation of successes and suspensions.

We �rst need the following result, where �!

+

denotes the transition system obtained from �!

by adding the following rule:

A �!

+

9xA

2

It might be tempting to try to translate as well the operator for sequential composition ";" proposed for cc in

[29] by the non-commutative tensor � (see Appendix A). The operational rule

A �! A

0

A;B �! A

0

;B

raises however the

same kind of di�culty as the one-step guarded choice rule

A �! A

0

A+B �! A

0

which has not been translated logically, and

seems deeply non-logical. For similar reasons the sequential composition is thus not considered in this paper.

7



Lemma 2 If x is a variable not occurring free in A and B, and A �!

+

c ! B, then A �!

+

(9xc)! B,

The lemma is used in the proof of the following lemma (it is of minor interest in itself, can be

easily proved, and holds for �! as well).

Lemma 3 Let A and B be lcc agents. If A

y

`

INLL(C;D)

B

y

then A �!

+

B.

The proof is given in the Appendix.

Let us say an agent A suspends with store c and blocking constraints d

1

; :::; d

n

, if there exists a

suspension for A of the form B = c k (d

1

! A

1

) k � � � k (d

n

! A

n

).

Theorem 3 (Observation of successes and suspensions) Let A be any lcc agent.

(1) If c is a constraint such that A

y

`

INLL(C;D)

c, then c is a success for A, i.e. A �! c.

(2) If A

y

`

INLL(C;D)

(c k (d

1

! A

1

) k � � � k (d

n

! A

n

))

y

and for no i, c > d

i

, then A has a

suspension with store c and blocking constraints d

1

: : :d

n

.

The new transition relation �!

+

and Lemma 3 are not just tools in the proof of Theorem 3:

Lemma 3 tells that the only di�erence between transitions between cc agents and deductions

between the translations of agents is the logical rule of right introduction of the existential quanti�er

(otherwise said A ` 9xA). In terms of process calculi, the rule A �!

+

9xA would enable any

process to hang-up communication on any variable (channell), it would be a kind of uncontroled

\time-out" that is dictated by the logic here.

On the other side, if we restrict ourselves to transitions A �! B, where B does not contain the

existential quanti�er, we can re�ne the above result and prove that cc transitions then correspond

exactly to deductions in INLL; it is an easy corollary of Lemma 3:

Theorem 4 Let A and B be any lcc agents. If A

y

`

INLL(C;D)

B

y

and if B contains no hiding (no

existential quanti�er), then A �! B.

5 Conclusion and Perspectives

We believe that the correspondence between concurrent constraint programming and non-commutative

linear logic is a fundamental one. Besides the logical characterization of precious operational as-

pects of cc computations, the presented work o�ers new perspectives to the connection between

concurrency and proof theory.

The intuition behind cc computations has served to de�ne a new non-commutative linear logic

which combines both commutative and non-commutative connectives. That logic thus extends

the pure non-commutative (cyclic) linear logic of Girard and Yetter [9, 35], and di�ers from other

proposals made by Retor�e [25] to combine both kinds of connectives. A sequent calculus in the style

of Retor�e has been given. The existence of proof nets for this logic, and the proof of cut-elimination

shows that this non-commutative linear logic is an interesting logic to study in its own right [27].

In particular the development of a phase semantics for NLL should provide in turn new denota-

tional semantics of cc programs that capture �ner observable properties of cc computations than

the ones currently available [31, 12, 29]. Perrier [23] has considered a concurrent language based

on linear logic and he proposed a denotational semantics based on the phase semantics, to model

the interaction capability of a process. From both viewpoints of proof theory and concurrency, it

would be thus worth developping the phase semantics of non-commutative linear logic (extending

[1]) in connection with the present work on concurrent constraint programming. It should also be

very interested to study the relationship between the execution of cc agents and the proof nets'

syntax (which is intrisically parallel, thus naturally more suited for the representation of concurrent

conputations than are sequent calculi).

8



The equivalence result between lcc transitions and INLL deductions suggests also a study of

the usual semantics of concurrency, and speci�cally that of bisimulations, in the light of proof

theory. The paper of Kobayashi and Yonezawa [13] is one of the most interesting works done so

far to compare bisimulations to a logical semantics. We believe the strong correspondence between

logic and concurrent agents established in the paper should encourage further investigation in this

cross-fertilizating direction. The comparison of the true concurrency semantics developped in [22]

with our approach provides another subject in this direction.
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Appendix: classical NLL

We recall here the de�nition of the formulas and the sequent calculus of the classical version of

NLL (in [27], the logic was presented with two negations, a \right" negation and a \left" negation,

like Abrusci's pure non-commutative linear logic [1]; here we �nd it simpler to present it with only

one negation: this is a minor di�erence, which is merely the choice of cyclic linear logic [9, 35]).

Formulas are built from litterals p; q; : : :p

?

; q

?

; : : :, connectives:

� (multiplicative) commutatives: conjunction (
) and disjunction (}),

� (multiplicative) non-commutatives: conjunction (�) and disjunction (+),

� addittives: conjunction (&) and disjunction (�),

� constants: commutatives (1, ?) and additives (>, 0),

and quanti�ers: universal (8) and existential (9).

As usual negation is de�ned by: (p)

?

= p

?

et (p

?

)

?

= p, and De Morgan rules:

(A
 B)

?

= B

?

}A

?

(A}B)

?

= B

?


A

?

(A�B)

?

= B

?

+ A

?

(A+ B)

?

= B

?

�A

?

(A&B)

?

= B

?

� A

?

(A� B)

?

= B

?

&A

?

(8xA)

?

= 9x(A

?

) (9xA)

?

= 8x(A

?

)

i

?

= e e

?

= i 1

?

= ? ?

?

= 1 >

?

= 0 0

?

= >

Negation is then an involution.

Sequents are of the form ` � [i], where i is a simple oriented graph (at most one edge from

a vertex to another) indexed by the multiset of formulas �. The de�nition of the operations and

relations over i is the same as in the intuitionistic case.

The rules of the sequent calculus are:

Axiom / Cut

` A

?

; A [A

?

$ A]

` �; A [i] ` �; A

?

[j]

` �;� [i �

A;A

? j]

Commutatives

` �; A [i] ` B;� [j]

` �; A
 B;� [i


A;B

j]

` �; A;B [i]

` �; A}B [ifA}B=A;Bg]

Non-commutatives

` �; A [i] ` B;� [j]

` �; A�B;� [ig

A;B

j]

` �; A;B [i]

A �

i

B

` �; A+ B [ifA+B=A;Bg]
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Additives

` �; A [i] ` �; B [ifB=Ag]

` �; A&B [ifA&B=Ag]

` �; A [i]

` �; A�B [ifA�B=Ag]

` �; B [i]

` �; A� B [ifA�B=Bg]

Constants

` 1 [1$ 1]

` �; A;B [i]

A$

i

B

` �; A;B;? [if(A$?$ B $ A)=(A$ B)g]

` �;> [>$

i

�]

(no rule for 0)

Quanti�ers

` �; A [i]

x 62 vl(�)

` �8xA [if8xA=Ag]

` �; A [i]

` �9xA [if9xA=Ag]

A ` B is de�ned by ` A

?

; B [A

?

$ B]. For instance A ` A.

Pure non-commutative cyclic LL [9, 35] (�,+) and commutative LL (
,}) are subsystems of

ours. This logic enjoys cut-elimination and has also a presentation in terms of proof nets (and a

correctness criterion for sequentialization).

Appendix: Proof of Lemma 3

By abuse of notation, we shall simply identify the agent A with its translation A

y

.

The only if part is a simple induction on � and =).

For the if part, we �rst associate to a sequent S = (� ` A [i]) the set

b

S of all the sequents

B ` A

0

[B $ A

0

] which can be obtained from S by the rules 
 ` and `;; more speci�cally, we de�ne

a relation S ) S

0

in the following way: if c is a constraint, c �

i

A and Gamma 6= ;, then (�; c `

A [i])) (� ` c; A [ifc; A=c; Ag]); moreover (�; A; B ` C [i])) (�; A
B ` C [ifA
B=A;Bg])

without any condition; now (B ` A

0

[B $ A

0

]) 2

b

S i� S = (� ` A [i]))

�

(B ` A

0

[B $ A

0

]).

We then prove, by induction on a (sequent calculus) proof of S = (� `

INLL(C;D)

A [i]), that

(B ` A

0

[B $ A

0

]) 2

b

S implies B �! A

0

.

First note that this induction makes sense because:

(1) if A and the formulas in � are translations of agents and S = (� ` A [i]))

�

(B ` A

0

[B $

A

0

]), then B and A

0

are translations of agents as well;

(2) as a consequence of the cut-elimination theorem for INLL, the formulas eliminated by cut

rules in an INLL(C;D) proof are either constraints (cuts with some c

1

: : : c

n

`

C

c in C) or agent

names (cuts with some p(~x) ` A); so they are translations of agents as well, and therefore all

formulas in the proof are translations of agents.

As we have already noticed (section 3), some deduction rules are read as transitions between

lcc agents: the induction step is trivial for cuts, the rules for &, the left introduction of 
, and

the right introductions of 9 and ;.

For axioms (logical A ` A and ` 1, or non-logical: the axioms coming from C and D), the point

to quote is that (1 ` c; c) 62

d

c ` c, and this is justi�ed because indeed 1 6` c; c.

The only non-trivial cases are:

1. the 
 right introduction:
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� ` A [i] � ` B [j]

�;� ` A
 B [i


A;B

j]

When constructing

d

(�;� ` A
 B), the formulas in �;� have to be \pasted" together according to

the graph i


A;B

j; by the de�nition of 


A;B

and Lemma 1, the only way to get a formula � A
B

is to paste the whole multiset �;� with 
's. So

d

(�;� ` A
 B) = (�;� ` A
B), and we conclude

with the induction hypothesis and the monoidality of 
.

2. the 1 left introduction:

� ` C [i]

(A$

i

B) 2 (�; C)

�; 1 ` C[if(A$ 1$ B $ A)=(A$ B)g]

In the construction of

d

(�; 1 ` C), any formula, in particular A and B, has to be linked to the context

via a 
 or an ;. But the condition A$ 1$ B $ A imples that the only possibility is 
, and we

get the result by A � A
 1.

3. the ; left introduction:

� ` A [i] �; B ` C [j]

�;�; A; B ` C [ig

A;B

j]

By examinating the possible cases in the construction of

d

(�;�; A; B ` C), one can easily check

the result, using the rules (d
 c) k (c! A) �! (d k A) and c `

C

d) c �! d

4. the 9 left introduction:

�; A ` B [i]

x 62 fv(�; B)

�; 9xA ` B [if9xA=Ag]

For an S 2

d

(�; 9xA ` B) such that A occurs on the left (S = A

0


 9xA ` B

0

) let us note that

x 62 fv(A

0

; B

0

) implies A

0


 9xA � 9x(A

0


 A) �! 9xB

0

by induction hypothesis, � B

0

, cqfd.

If A is a constraint and occurs on the right in some S 2

d

(�; 9xA ` B), then we conclude by

Lemma 2. �
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