
Département de Mathématiques et Informatique

UPERIEURESORMALENECOLE

CNRS URA 1327

Hidden Collisions on DSS

Serge VAUDENAY

LIENS - 96 - 9

Hidden Collisions on DSS

Serge VAUDENAY

LIENS - 96 - 9

June 1996

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 44 32 00 00

Adresse �electronique : ... @dmi.ens.fr

Hidden Collisions on DSS

Serge Vaudenay

?

Ecole Normale Sup�erieure | DMI

45, rue d'Ulm

75230 Paris Cedex 5 France

Serge.Vaudenay@ens.fr

Abstract

We explain how to forge public parameters for the Digital Signa-

ture Standard with two known messages which always produce the

same set of valid signatures (what we call a collision). This attack is

thwarted by using the generation algorithm suggested in the speci�-

cations of the Standard, so it proves one always need to check proper

generation. We also present a similar attack when using this gen-

eration algorithm within a complexity 2

74

, which is better than the

birthday attack which seeks for collisions on the underlying hash func-

tion.

Imagine you want to join to a brand new association which o�ers to pro-

vide useful services on the net. To allow electronic payment, this association

provides a DSS implementation with public parameters

p = 1007386175274283816733054843443587432664299802160928

9724334546391745980774853739798193524368725087200030

875184211970398850090583601122813103828861440790761

and

q = 759902064211816970120975637406935605590678547999:

To check the connection, the server requests you to sign the message \This

is just a test". Then time goes, and your bank warns you that you need

to feed your account after your last check of $9; 302. Of course, the manager

of the association has just disappeared with the money obtained from all the

215 members! (This is a $2; 000; 000 swindle.)

?

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure, research group a�liated

with the CNRS

1

This attack comes from a special forgery of the public parameter. It is not

applicable to the accurate DSS suggested in [2] since it requires the produc-

tion of a certi�cate of good forgery. This attacks however proves that the

signer must check the certi�cate himself (which is not explicitly mentioned is

the Standard), which may be a very cumbersome task for low cost devices.

In this paper, we explain how to perform this attack. We also show a

similar attack against DSS with the suggested certi�cate of good forgery

with a complexity equivalent to 2

74

SHS computations. The complexities of

the attacks do not depend on the length of the prime p used in the signature

scheme.

1 Signatures based on discrete logarithm

The �rst digital signature algorithm based on the discrete logarithm problem

(namely, the discrete log problem in the group ZZ

p

�

, given a prime number p)

was the ElGamal signature [4]. This scheme produces quite long signatures

and is also subject to Bleichenbacher's attack which uses small factors of

p � 1 [3].

The Schnorr signature [6, 7] repars those two shortcomings by using an

element g whose order is a 160-bit prime factor q of p � 1. The underlying

group for the discrete log problem is thus a subgroup of ZZ

p

�

with order q.

The Digital Signature Standard (DSS) [2] also uses such a g.

In the following, we only consider the case of the DSS scheme. In the

signature scheme, the message is processed through the Secure Hash Stan-

dard (SHS) [1] which produces a 160-bit digest. This value then appears as

a power of g. Hence, the real hash value is not the output of SHS, but rather

the message digest reduced modulo q. Since q is less than the largest output

of SHS, this may produce collisions.

For completeness, we now recall the outlines of DSS.

p, q and g are the public parameters chosen by the authority. p is a

512-bit prime (or a 1024-bit prime in stronger versions), q is a 160-bit prime

factor of p� 1, and g is a primitive qth root of 1 modulo p. Each user has a

secret key x (which is a 160-bit integer) and publishes a corresponding 512-

bit public key y = g

x

mod p. The signature of an arbitrary message m using

a (secret) fresh random 160-bit integer k is a (r; s) pair of 160-bit integers

2

de�ned by

r = (g

k

mod p) mod q

s =

SHS(m) + xr

k

mod q:

The veri�cation of the signature is performed by checking

r =

�

g

SHS(m)

s

modq

y

r

s

modq

mod p

�

mod q:

2 Collision for DSS

We have noticed that the real hash function which is used in DSS is SHS mod

q. Hence, if we know a pair of messages (m;m

0

) such that

SHS(m) � SHS(m

0

) (mod q)

any signature from any user of message m is also a valid signature of message

m

0

. We call such a pair a collision for DSS.

Of course, since SHS is considered as a secure hash function, it is still

infeasible to get a collision. More precisely, the complexity of the best attack

(based on the birthday paradox) has a complexity of 2

80

. Similarly, it may

be infeasible, given a 160-bit prime q, to �nd a collision on SHS mod q. It is

however possible to construct q from an (un)willing collision (m;m

0

).

More concretely, from a random pair (m;m

0

), we can check whether or not

q = jSHS(m)�SHS(m

0

)j is a 160-bit prime. The integer jSHS(m)�SHS(m

0

)j

is obviously a 160-bit integer with probability 1=2. Then, a random 160-

bit integer is a prime with probability approximately 1=160 log 2 � 1=111,

thanks to the Prime Number Theorem. Hence, with an average of 222 trials,

we obtain a collision which de�nes a valid prime q. It is not di�cult, given

a prime q, to issue valid p and g, for instance by following the generation

algorithm provided in [2].

The example given in the introduction uses the message

m = This is just a test

3

which is encoded as

54686973 20697320 6a757374 20612074

65737480 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000098

in hexadecimal and its hash value is

SHS(m) = 653095248274681173784642234520335115855431883588:

The second message is

m

0

= Transfer $9,302 on account XYZ

and its hash value is

SHS(m

0

) = 1412997312486498143905617871927270721446110431587:

So let

q = SHS(m)� SHS(m

0

)

which is a 160-bit prime. Then one can issue a 512-bit prime p such that q

divides p � 1.

3 The public parameters generation of DSS

The description of DSS suggests that q is �rst generated from a random seed

by a speci�c algorithm, then p and g are issued from q by the same seed.

The seed should be used as a certi�cate of a honest forgery for p and q. The

previous attack suggests that this feature must be used.

Is the attack really thwarted by this generation algorithm? We recall that

q is set to

(SHS(seed) � SHS(seed+1)) _ 2

159

_ 1

until it is a prime where � and _ denote the bitwise exclusive and inclusive

or respectively. (We notice that we need in average about 55 trials to get

a prime q since this is a random 160-bit odd integer.) Let seed = m and

seed+1 = m

0

. The same attack holds whenever

jSHS(seed)� SHS(seed+1)j = (SHS(seed)� SHS(seed+1)) _ 2

159

_ 1

4

Since this occurs with probability

1

2

�

1

4

�

�

3

4

�

157

� 2

�68:16

, we obtain that

2

73:95

trials are required on average to mount this attack.

The Standard says that parameters p and q shall be generated as sug-

gested above, or using other FIPS approved security methods. This study

may thus be helpful for proposing other generation algorithms. For instance,

we can suggest to set

q = SHS(seed) _ 2

159

_ 1

until q is valid.

4 On the g parameter

Surprisingly, no particular care is required for parameter g. Thus, fake gs

like g = 0 or 1 are implicitly accepted! Actually, a dishonest authority can

provide g = 1 to a user and make him accept any signature forged by

r = (y

k

mod p) mod q

s =

r

k

mod q:

In a more dedicated attack, the authority provides g = y

�

mod p to Alice,

where y is the public key of Bob, and forges Bob's signatures by

r = (y

k

mod p) mod q

s =

�SHS(m) + r

k

mod q:

We thus suggest to add a certi�cate of valid forgery of g when issuing the

public parameters.

5 Conclusion

We performed an attack against DSS which allows the issuing autority to

forge valid public parameters with hidden collisions. It con�rms internal

problems in the signature schemewhich were already predicted by Pointcheval

and Stern in [5] because of not using a random pattern in the hash function

5

like in the Schnorr signature [6]. We have proved that when the issuing au-

thority is not trusted, all users must then check proper generation of the

public parameters. We also showed how to adapt this attack to the genera-

tion algorithm suggested in the Standard within a complexity 2

74

. Even if the

complexity were smaller, the attack would still not be so dramatic because

it is easy to detect. This should be registered as an existing (bad) property

of DSS though.

This attack can easily be avoided by using a 161-bit prime q, or by drop-

ping the most signi�cant bit of SHS (or by setting the least signi�cant bit to

a constant before using it in the signature scheme), or by padding a random

pattern before hashing. Its complexity can also be increased up to 2

80

by

using a stronger certi�cate-based generation algorithm for p and q.

We also presented attacks based on malicious forgery of the g parameter.

We thus recommand to use a suitable certi�cate of honest forgery for g as

well as for p and q.

References

[1] U. S. Department of Commerce, National Institute of Standards and

Technology. Secure Hash Standard. Federal Information Processing

Standard Publication 180-1, 1995.

[2] U.S. Department of Commerce, National Institute of Standards and

Technology. Digital Signature Standard. Federal Information Processing

Standard Publication 186, 1994.

[3] D. Bleichenbacher. Generating ElGamal signatures without knowing

the secret key. In Advances in Cryptology EUROCRYPT'96, Zaragoza,

Spain, Lectures Notes in Computer Science 1070, pp. 10{18, Springer-

Verlag, 1996.

[4] T. ElGamal. A public key cryptosystem and a signature scheme based

on discrete logarithms. In IEEE Transactions on Information Theory,

vol. IT-31, pp. 469{472, 1985.

[5] D. Pointcheval, J. Stern. Security proofs for signature schemes. In Ad-

vances in Cryptology EUROCRYPT'96, Zaragoza, Spain, Lectures Notes

in Computer Science 1070, pp. 387{398, Springer-Verlag, 1996.

6

[6] C. P. Schnorr. E�cient identi�cation and signature for smart cards.

In Advances in Cryptology CRYPTO'89, Santa Barbara, California,

U.S.A., Lectures Notes in Computer Science 435, pp. 239{252, Springer-

Verlag, 1990.

[7] C. P. Schnorr. E�cient signature generation by smart cards. Journal

of Cryptology, vol. 4, pp. 161{174, 1991.

7

