
Département de Mathématiques et Informatique

UPERIEURESORMALENECOLE

CNRS URA 1327

Modularity of Strong Normalization in the

Algebraic-�-cube

Franco BARBANERA

Maribel FERN

�

ANDEZ

Herman GEUVERS

LIENS - 96 - 8

Modularity of Strong Normalization in

the Algebraic-�-cube

Franco BARBANERA

�

Maribel FERN

�

ANDEZ

Herman GEUVERS

��

LIENS - 96 - 8

May 1996

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 44 32 00 00

Adresse �electronique : maribel@dmi.ens.fr

�

Universit�a di Torino, Italy

Adresse �electronique : barba@di.unito.it

��

Catholic University of Nijmegen

The Netherlands

Adresse �electronique : herman@cs.kun.nl

Modularity of Strong Normalization in the algebraic-�-cube

Preliminary Version

Franco Barbanera Maribel Fern�andez

�

Dipartimento di Informatica DMI - LIENS (CNRS URA 1327)

Universit�a di Torino

�

Ecole Normale Sup�erieure

Corso Svizzera 185, 10149 Torino, Italy 45, rue d'Ulm, 75005 Paris, France

barba@di.unito.it maribel@dmi.ens.fr

Herman Geuvers

Faculty of Mathematics and Informatics

Catholic University of Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

herman@cs.kun.nl

Abstract

In this paper we present the algebraic-�-cube, an extension of Barendregt's �-cube with

�rst- and higher-order algebraic rewriting. We show that strong normalization is a modular

property of all systems in the algebraic-�-cube, provided that the �rst-order rewrite rules

are non-duplicating and the higher-order rules satisfy the general schema of Jouannaud and

Okada. This result is proven for the algebraic extension of the Calculus of Constructions,

which contains all the systems of the algebraic-�-cube.

We also prove that local con
uence is a modular property of all the systems in the

algebraic-�-cube, provided that the higher-order rules do not introduce critical pairs. This

property and the strong normalization result imply the modularity of con
uence.

1 Introduction

Many di�erent computational models have been studied by theoretical computer scientists. One

of the main motivations for the development of such models is no doubt that of isolating par-

ticular aspects of the practice of computing, in order to better investigate them, so allowing

either to tune existing programming languages or to devise new ones. However, the study of

computational models cannot exploit all its possibilities to help the development of actual com-

puting tools unless also their interactions and possible (in)compatibilities are investigated. In

this framework, many research e�orts have been devoted in the last years to the study of the in-

teractions between two closely related models of computation: the one based on �-reduction on

�-terms and the one formalized by means of rewrite rules on algebraic terms. These particular

models are relevant for the study of two aspects of programming languages: higher-order pro-

gramming and data types speci�cation. The combination of these two models has also provided

an alternative in the design of new programming languages: the algebraic functional languages

[JO91]. These languages allow algebraic de�nitions of data types and operators (as in equa-

tional languages like OBJ) and de�nition of higher-order functions (as in functional languages

like ML), in a uni�ed framework.

�

Part of this work was done while the author was at LRI, Universit�e de Paris Sud.

1

The study of systems based on �-calculus and algebraic rewriting has been carried out both

in untyped and typed contexts. If no type discipline is imposed on the languages, the interactions

between these computational models raise several problems [Klo87, Dou91]. For typed languages

things work out nicely. In [BTG90] and [Oka89] it is shown that the system obtained by

combining a terminating �rst-order many-sorted term rewrite system with the second order

typed �-calculus is again terminating with respect to �-reduction and the algebraic reductions

induced by the rewrite rules, i.e. strong normalization is a modular property in this case. The

same holds for con
uence [BTG92]. In [JO91] both results are extended to combinations of �rst-

and higher-order rewriting systems with second order �-calculus, under certain conditions on

the form of the rewrite rules.

The question that naturally arises is whether such a nice interaction between typed �-calculi

and algebraic rewriting is independent of the power of the type discipline. More precisely,

the question is whether the existing results extend to higher-order type disciplines such as the

Calculus of Constructions of Coquand and Huet [CH88]. Indeed, considering only �rst-order

algebraic rewriting, this problem has already been addressed in [Barb90]. A strong restriction

was however imposed on the de�nition of the combined system: in the type conversion rule

(conv) only �-conversion (=

�

) was considered as equality. So, even if there was a rewrite rule

x+0! x in the system, two types of the form P (x) and P (x+0) (where P is a type depending

on natural numbers) were not considered to be the same. Such a choice was motivated mainly

by the essential use of the property of con
uence in the proof of the modularity of strong

normalization: con
uence does not hold in general for R�-equality, where R is the given set of

�rst-order algebraic rules.

In this paper we extend the Calculus of Constructions, adding not only �rst- but also higher-

order algebraic rewriting, and considering in the type conversion rule the R�-equality generated

by the algebraic reductions together with �-reduction. Considering R�-equality, a proof of strong

normalization can no longer rely on the con
uence property. Actually, also other properties of

the metatheory of the system, like Subject Reduction, which in the case of the pure Calculus of

Constructions are proven using con
uence, will have to be proven independently of con
uence

in this extension.

In fact, using R�-equality in (conv) even the de�nition of the system is more involved. Indeed

the rule (conv) is part of the de�nition of the terms of the system and one cannot de�ne a notion

of R�-equality to be used in the rule unless one knows what the terms are. We have then to

cope with a circularity, which can be solved in two ways, either by de�ning the system by levels,

starting from the pure Calculus of Constructions, or by de�ning algebraic rewriting on terms

of the pure calculus enriched with algebraic constants, and using this relation on pseudoterms

in the rule (conv). The second solution, to be better discussed later, is the one we have chosen

in the present paper where, for the sake of uniformity, we provide a de�nition of the extension

with �rst- and higher-order (in the sense of [JO91]) algebraic rewriting of all the systems of the

so-called �-cube [Ber88], [Bar91]. This extension will be called algebraic-�-cube (�R-cube for

short).

The main result we prove for the systems of the �R-cube is the modularity of the strong

normalization property, i.e. we prove that the systems are strongly normalizing in case the �rst-

order algebraic rules are so on algebraic terms (the higher-order rules we will use are strongly

normalizing because of their structure).

As said before, we had to cope with the problem of not having at hand the property of

con
uence. We solved such a problem by extending some technical results devised in [Geu92]

(see also [Geu93]). We prove strong normalization in three steps. By means of a reduction

preserving translation we prove strong normalization of the extended Calculus of Constructions

to be implied by the same property of system �

R!

(the extended typed �-calculus of order !).

2

The strong normalization property of this last system was proven in [BF93b] by a reduction

preserving translation, showing it to be implied by the same property of system �

^R

(a type

assignment system for �-calculus with intersection types and algebraic rewriting), which in turn

was proven strongly normalizing in [BF93a].

Finally, we also prove that local con
uence is a modular property of the systems of the

algebraic-�-cube, provided that the higher-order rules do not introduce critical pairs. This, and

the previous strong normalization result, imply the modularity of con
uence.

This paper is an extended version of [BFG94]. It is organized as follows: In Section 2 we

recall the de�nition of the �-cube whose algebraic extension, the �R-cube, will be de�ned in

Section 3. Section 4 will be devoted to the metatheory of the �R-cube. Among others, the

Subject Reduction property will be proved. We will then outline the skeleton of the strong

normalization proof in Section 5. The main points of such proof will be the topic of Sections 6

and 7 (we recall system �

^R

in Appendix A). In Section 8 we prove the modularity of con
uence.

Section 9 contains the conclusions.

2 The Cube of �-calculi

The �-cube is a coherent collection of eight type systems. Each system (generically denoted

by �) is placed on a vertex of the cube in a way that geometrically exploits the possible de-

pendencies between types and terms. From another point of view the �-cube forms a natural

�ne-structure of the Calculus of Constructions of Coquand and Huet [CH88]. We will present

the cube in the style of the Pure Type Systems [Ber88, Geu93, Bar91].

The systems of the cube are based on a set T of pseudoterms de�ned by the following abstract

syntax:

T ::= x j ? j 2 j (TT) j �x:T:T j �x:T:T

where x ranges over the category of variables (divided into two groups: V ar

?

and V ar

2

) and ?

and 2 are special constants, the former informally denoting the set of types , the latter that of

kinds .

The notions of bound variable and free variable are de�ned as usual, as well as that of

substitution. The notation

M [N

1

=x

1

; : : : ; N

m

=x

m

]

will be used to denote the simultaneous substitution of the terms N

i

for the variables x

i

(i =

1; : : : ; m) in the term M . A generic substitution will be often denoted by '. In such a case M'

will denote its application to the term M .

If M is a pseudoterm then V ar(M), FV (M) will denote the set of variables and the set of

free variables of M , respectively.

~

M will stand for a sequence M

1

: : :M

n

; �~x:

~

A for �x

1

:A

1

: : : :�x

n

:A

n

. The length of a

sequence

~

M will be denoted by j

~

M j.

Expressions of the form �x:A:B will, as usual, be denoted by A! B if x 62 FV (B).

Just as in the untyped �-calculus, terms that only di�er from each other in their bound

variables will be identi�ed: we work modulo �-conversion.

On pseudoterms the relation of �-reduction (�

�

) is de�ned as the transitive, re
exive and

compatible closure of the reduction rule

(�x:A:B)C !

�

B[C=x]:

The relation of �-conversion (=

�

) is the least equivalence relation generated by �

�

.

3

Lemma 2.1 (Church-Rosser for pseudoterms [Bar86]) The relation �

�

on pseudoterms

satis�es the Church-Rosser property, i.e., for M and N pseudoterms:

M =

�

N) 9P [M �

�

P;N �

�

P]

An assignment is an expression of the form M : N , where M and N are pseudoterms. A

declaration is an expression of the form x : A, where x is a variable and A a pseudoterm. A

pseudocontext is a �nite sequence hx

1

: A

1

; : : : ; x

n

: A

n

; x : Bi of declarations.

The following notations will be used:

If � = hx

1

: A

1

; : : : ; x

n

: A

n

i then �; x : B will denote the pseudocontext hx

1

: A

1

; : : : ; x

n

:

A

n

; x : Bi.

�

0

� � (�

0

is subcontext of �) i� x : A in �

0

) x : A in �.

� �

�

�

0

(� =

�

�

0

) i� � = x

1

: A

1

; : : : ; x

n

: A

n

, �

0

= x

1

: A

0

1

; : : : ; x

n

: A

0

n

and A

i

�

�

A

0

i

(A

i

=

�

A

0

i

) for 1 � i � n.

A statement in a system � of the cube is an expression of the form

� `

�

M : A

where � is a pseudocontext and M and A pseudoterms.

We show now, for each system of the cube, how to generate its legal statements. Legal terms

and contexts will then be the pseudoterms and pseudocontexts contained in legal statements.

Instead of \ the statement � `

�

M : A is legal", from now on we shall just write � `

�

M : A.

The legal statements of a system � are those generated by the following general axioms and

rules, and by particular speci�c rules (instantiations, depending on the system, of the parametric

rule (�).)

General Axioms and Rules

(P) ` ? : 2

(var)

� ` A : p

�; x:A ` x : A

if p 2 f?;2g; x 2 V ar

p

and x 62 �

(weak)

� ` A : p � `M : C

�; x:A `M : C

if p 2 f?;2g; x 2 V ar

p

and x 62 �

(�)

�; x:A `M : B � ` �x:A:B : p

� ` �x:A:M : �x:A:B

if p 2 f?;2g

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x]

(conv)

� `M : A � ` B : p

� `M : B

if p 2 f?;2g and A =

�

B

Speci�c rules

(�)

� ` A : p

1

�; x:A ` B : p

2

� ` �x:A:B : p

2

4

The speci�c rules, which characterize the di�erent systems of the cube, are all introduction

rules, obtained by instantiating with ? and 2 the parametric rule (�).

In the following we will denote by P the set f?;2g

1

. Given particular p

1

; p

2

2 P , the

corresponding (�)-rule will be called (p

1

; p

2

).

It is not di�cult to check that the speci�c term-formation rules have the following informal

meaning:

� (?; ?) allows forming terms depending on terms

� (?;2) allows forming types depending on terms

� (2; ?) allows forming terms depending on types

� (2;2) allows forming types depending on types.

We can now de�ne the systems of the cube.

De�nition 2.2 (The �-cube) The cube of typed �-calculi (�-cube) is the set of the type sys-

tems �

!

, �

2

, �

P

, �

!

, �

P2

, �

!

, �

P!

and �

P!

de�ned by the General Axioms and Rules above

and, respectively, by the following speci�c rules:

�

!

= f (? ,?) g

�

2

= f (? ,?), (2,?) g

�

P

= f (? ,?), (? ,2)g

�

!

= f (? ,?), (2,2) g

�

P2

= f (? ,?), (2,?), (? ,2)g

�

!

= f (? ,?), (2,?), (2,2) g

�

P!

= f (? ,?), (? ,2), (2,2) g

�

P!

= f (? ,?), (2,?), (? ,2), (2,2) g

We can now draw a picture of the �-cube as follows.

�

!

6

-

�

�

�>

�

!

6

-

�

2

-

�

�

�>

�

!

-

�

P

�

�

�>

6

�

P!

6

�

P2

�

�

�>

�

P!

System �

!

is a variant of Church's simply typed �-calculus [Church40], while �

P

and �

P2

are variants of the Automath system Aut-qe, de�ned by de Bruijn [deB80]. �

P

is also known

under the name LF, studied by Harper, Honsell and Plotkin [HHP87]. �

2

and �

!

are the systems

F and F

!

, de�ned by Girard [Gir72], and �

P!

is the Calculus of Constructions of Coquand and

Huet [CH88]. From now on we will refer to �

P!

also as �

C

.

Besides their computational aspects, an important feature of the eight type systems of the

�-cube is the relation with (intuitionistic) logics (see[Bar91, Geu93] for discussions about such

1

In the literature ? and 2 are usually called sorts. This name is not used here since later we will add algebraic

rewriting to the �-cube and then the name \sort" will have a di�erent meaning.

5

a relationship.)

We introduce now some relevant sets, to be used later in the analysis of the �-cube and its

algebraic extension.

De�nition 2.3 Given a system � , we de�ne

(i) Context(�) = f� j � `

�

A : B for some pseudoterms A;Bg

(ii) Term(�) = fA j � `

�

A : B

for some pseudoterm B and � 2 Context(�)g

(iii) Kind(�) = fA j � `

�

A : 2 for some � 2 Context(�)g

(iv) Constr(�) = fA j � `

�

A : B : 2

for some � 2 Context(�); B 2 Term(�)g

(v) Type(�) = fA j � `

�

A : ? for some � 2 Context(�)g

(vi) Object(�) = fA j � `

�

A : B : ?

for some � 2 Context(�); B 2 Term(�)g

Then, according to this de�nition, kinds are those terms that can be typed with 2, construc-

tors the ones that can be typed with a kind, types the constructors that can be typed with ?,

and objects the terms that can be typed with a type.

Lemma 2.4 (Subject Reduction [GN91]) Let � 2 Context(�),

B;B

0

; C 2 Term(�) and � `

�

B : C.

B �

�

B

0

) � `

�

B

0

: C:

Notice that the reduction relation �

�

has not been de�ned on terms, but on pseudoterms.

This is motivated by the use of the reduction relation in the (conv) rule, which in turn is used

to de�ne what a (legal) term is. One could now argue that the side condition A =

�

B in

the conversion rule, can be proved by means of a chain of reductions-expansions where also

pseudoterms that are not legal terms are present. This fact however causes no trouble at all

since, by Lemmas 2.1 and 2.4, we can always get A =

�

B by means of a chain containing only

legal terms.

We will see that we will not be able to pro�t of such a nice feature of the calculus when

algebraic rewriting will be added to the cube. Much more e�ort will then be necessary to provide

sound de�nitions and proofs.

Lemma 2.5 (Stripping for the �-cube [GN91]) Let � be a context, M , N and R terms.

(i) � ` p : R; with p 2 P) p � ?; R � 2

(ii) � ` x : R; with x 2 Var) R =

�

A; and x : A 2 � for some term A

(iii) � ` �x:M:N : R) � `M : p

1

;�; x:M ` N : p

2

and R =

�

p

2

;

for some p

1

; p

2

2 P

(iv) � ` �x:M:N : R) �; x:M ` N : B;� ` �x:M:B : p

and R =

�

�x:M:B;

for some term B and p 2 P

(v) � `MN : R) � `M : �x:A:B;� ` N : A

and R =

�

B[N=x];

for some terms A and B:

6

3 Adding Algebraic Rewriting to the �-cube

The aim of the present section is to extend the �-cube in order to have in it also algebraic

features and rewriting. To do so, the �rst step is to consider a denumerable set S of sorts:

S = fs

1

; s

2

; : : :g

The elements of S denote algebraic base types . To look at these algebraic types as types of the

systems of the �-cube we add, for each s

i

2 S, the following axiom to the general rules of the

cube:

(alg1) ` s

i

: ?:

Out of the algebraic base types we de�ne, by induction, the set of algebraic types.

De�nition 3.1 (Algebraic types) Let S be a denumerable set of sorts. The set T

S

of alge-

braic types on S is inductively de�ned as follows:

� If s 2 S then s 2 T

S

� If �; � 2 T

S

then �x:�:� 2 T

S

It is straightforward to check that, for any � 2 T

S

, we can infer `

�

� : ?, and that all the

algebraic types have the form �

1

! : : :! �

n

! � (n � 0, � 2 S).

We will call �rst-order algebraic types the elements �

1

! : : : ! �

n

! � 2 T

S

such that

�; �

i

2 S (1 � i � n). A context � = hx

1

:A

1

; : : : ; x

n

:A

n

i is called algebraic if A

i

2 T

S

(1 � i � n).

Lemma 3.2 Let �

1

; �

2

2 T

S

. �

1

=

�

�

2

) �

1

� �

2

:

Proof By de�nition of T

S

and the Church-Rosser property of the �-cube. 2

The next step is now to consider functions on algebraic types, i.e. a set F of function symbols

(signature), where

F =

[

�2T

S

F

�

and F

�

denotes the set of function symbols whose functionality (type) is � . We assume F

�

\F

�

0

=

; if � 6� �

0

. Each function symbol f in F is assumed to have an arity which, when necessary,

will be denoted by superscripts (f

n

)

2

.

The introduction of the signature is naturally expressed in the framework of the cube by the

following axioms:

(alg2) ` f : �

for each f 2 F

�

.

A function symbol f

m

is called �rst-order if it has a �rst-order algebraic type s

1

! : : : !

s

n

! s and n � m. Function symbols which are not �rst-order will be called higher-order .

We denote by � the set of all �rst-order function symbols in F and by f; g; : : : its generic

elements. Capital letters F;G; : : : denote instead generic higher-order function symbols. When

2

The arity of a function symbol cannot be deduced from its type: it must be given when de�ning a signature

(obviously, if a function symbol has a type �

1

! : : : ! �

n

! s, with s 2 S, its arity can at most be n). Arities

will serve to distinguish �rst- and higher-order function symbols.

7

it is clear from the context, we use f to denote a generic (�rst- or higher-order) element of F .

Sorts and function symbols can now be used to build pseudoterms, i.e. pseudoterms are now

de�ned by

T ::= x j f j s j ? j 2 j (TT) j �x:T:T j �x:T:T

where f and s range over F and S, respectively.

A function symbol f

n

is said to be saturated in a pseudoterm M if any occurrence of its

appears in subterms of the form fP

1

: : :P

m

with m � n.

Next thing to do now is to de�ne in our setting the notion of algebraic term, i.e. the natural

translation of the notion of term of an algebraic term rewriting system.

De�nition 3.3 (Algebraic Terms) (i) An algebraic pseudoterm is a pseudoterm formed

only by variables and function symbols of the signature.

(ii) An algebraic term in � (in system �), for � 2 Context(�)

3

, is an algebraic pseudoterm t

such that there exists a term A such that

1. � `

�

t : A

2. any f 2 F is saturated in t

3. x : B 2 � with x 2 FV (t)) 9� 2 T

S

:B =

�

�.

(iii) A �rst-order algebraic term t (in �) is an algebraic term (in �) such that

1. any f 2 F occurring in t is �rst-order

2. there is no subterm of t of the form xP .

Notice that, by Lemma 3.2, the � of (ii):3 of the above de�nition is unique.

The following lemma provides evidence of the fact that algebraic terms (in a given context

�) are well de�ned.

Lemma 3.4 Let t be an algebraic term in � such that � `

�

t : A.

Then there exists a unique � 2 T

S

such that � =

�

A.

Proof We check existence �rst; by induction on the structure of t.

It is straightforward to check that the cases listed below are the only ones that can occur if t is

algebraic.

� t � x.

Immediate by de�nition and the Stripping lemma.

� t � f with f 2 F .

Immediate by the Stripping lemma (f can be seen as a variable in such case).

� t �MN .

By Stripping we get that � ` M : �x:C:B, � ` N : C and A =

�

B[N=x]. We can now

apply the induction hypothesis to get �

0

=

�

�x:C:B with �

0

2 T

S

. Therefore, by Church-

Rosser and de�nition of T

S

, it follows that �

0

� �

1

! �

2

, C =

�

�

1

and B =

�

�

2

, with

�

1

; �

2

2 T

S

. It is easy to see that �

2

=

�

A since �

2

=

�

B, A =

�

B[N=x] and �

2

[N=x] � �

2

.

3

Notice that we are still considering derivability in the �-cube, since its algebraic extension is being de�ned.

8

The uniqueness of � follows from Lemma 3.2. 2

Notice that it is not possible to speak of algebraic terms independently of contexts, since it

would have no meaning at all to consider the following as an algebraic term

X : ?! s

1

; � : ? `

�

f(X�)a : s

where f : s

1

! s

2

! s and a : s

2

. However, if we restrict to �rst-order algebraic terms, we can

avoid to take into account contexts, as the following lemma shows.

Lemma 3.5 In any system � , let t be a non-variable �rst-order algebraic term in �. Then, for

any �

0

such that �

0

` t : A, t is algebraic in �

0

.

Proof By de�nition of �rst-order algebraic term: in t all the variables appear as arguments of

a function symbol, and function symbols have types in T

S

. 2

We de�ne now the notion of rewrite rule and from that the notion of rewrite relation. A

rewrite rule will be a pair of algebraic terms (since algebraic terms depend on contexts, so do

rewrite rules). It is however easy to see that we cannot, given a rewrite rule, de�ne a rewrite

relation on the terms of the algebraic extension of the �-cube: the rewrite relation will be used

to de�ne legal terms (in the type conversion rule), so a circularity would arise

4

. As in the case

of the reduction relation �

�

for the �-cube, rewriting will be de�ned on pseudoterms and not

on terms. In this way we have no problem of circularity since the pseudoterms of the algebraic

extension have already been de�ned

5

. The rewriting relation on terms will then be the restriction

to terms of the rewriting relation on pseudoterms.

However, some extra care is needed, as the following example shows: Consider the rewrite

rule

r

�

: f(Xx)a! ha (1)

where � = hX :s

1

! s

2

; x:s

1

i, f 2 F

s

2

!s

3

!s

, a 2 F

s

3

and h 2 F

s

3

!s

. r

�

induces the following

reduction relation on pseudoterms:

P (f(Xx)a)!

r

P (ha): (2)

If we now restrict to terms the obtained relation it could happen that the following terms can be

obtained in the extended system: �

0

`

R

M :P (f(Xx)a) and �

0

`

R

P (ha) : ?, where `

R

denote

derivability in the algebraic extension of �-cube and X :?! s

2

; x:? 2 �

0

.

Now, since by the reduction (2) we have P (f(Xx)a) =

r

P (ha), we should be allowed to

infer also �

0

`

R

M : P (ha). This however would have no sense, since in the context �

0

the term

f(Xx)a has no meaning as algebraic term because the variable X is not algebraic in �

0

.

To overcome this problem we will modify the naive de�nition of rewrite rule presented before.

In the de�nition we are giving below, the term t of a rule r : t ! t

0

has to be \rewritable", a

condition that, as we shall see, implies that, for any context �, t is algebraic in � whenever it

is typable in it. Rewrite rules become then, in a sense, independent from contexts. This is not

a real restriction, since all �rst-order terms and many useful higher-order terms can be easily

shown to be rewritable.

4

This di�culty is caused by the presence of dependent types: algebraic reductions can occur inside types.

5

Another solution could be to stratify the de�nition of the system, de�ning it by levels starting from the �-cube

and using in the (conv) rule for the level i, the rewrite relation induced on the terms of the system de�ned at

level i� 1. The �nal system would then be the limit of such a chain of systems. Our choice is however motivated,

with respect to this one, by its simplicity.

9

De�nition 3.6 A term t is rewritable if

1. it is algebraic in some context �

2. for any x 2 FV (t) there exists a subterm fP

1

: : :P

k

of t such that f 2 F and P

j

� x for

some 1 � j � k.

It is straightforward to check that a variable cannot be a rewritable algebraic term.

Lemma 3.7 Any non-variable �rst-order algebraic term is rewritable.

Proof By de�nition of �rst-order algebraic term. 2

Lemma 3.8 Let t be a rewritable algebraic term. Then 9�

0

; �, unique and algebraic, such that

8�; A:

� ` t : A) (�

jFV (t)

=

�

�

0

) & (A =

�

�)

and such that �

0

`

�

!

t : �.

Proof To prove the �rst part, let x 2 FV (t). By de�nition of rewritable term there exists a

subterm fP

1

: : :P

k

of t with P

j

� x for some 1 � j � k. Then, by Stripping, x:B 2 �, and

B =

�

� 2 T

S

(� is unique since the type of f in the signature is unique). We take �

0

such that

x:� 2 �

0

. Now, by Lemma 3.4, there exists a unique � such that � ` t:� and � =

�

A. Now,

from � ` t:� we get �

0

`

�

!

t:�. 2

The lemma above shows that rewritable algebraic terms are \independent" from contexts

and systems (recall that �

!

is a subsystem of all the systems of the �-cube), so justifying point

1: of De�nition 3.6.

We can now use the notion of rewritable term to de�ne rewrite rules.

We introduce �rst the notion of �-rewrite rule and then that of (proper) rewrite rule. The

former notion, more general of the usual one of algebraic reduction, is given since our results

will hold also for a particular class of �-rewrite rules.

De�nition 3.9 A �-rewrite rule is a pair of terms ht; t

0

i, where t is algebraic (for some context),

while t

0

can also contain abstractions, and such that

1. t is rewritable

6

2. FV (t

0

) � FV (t)

3. For any context � and pseudoterm A:

� ` t : A) � ` t

0

: A:

A (proper) rewrite rule will now be a �-rewrite rule involving only algebraic terms.

De�nition 3.10 (Rewrite rules)

(i) A rewrite rule r is a �-rewrite rule ht; t

0

i such that also t

0

is algebraic.

(ii) A �rst-order rewrite rule is a rewrite rule ht; t

0

i such that both t and t

0

are �rst-order

algebraic terms.

6

As stated before, this condition subsumes the usual condition \t not a variable" for rewrite rules.

10

(iii) A higher-order rewrite rule is a rewrite rule which is not �rst-order.

A (�-)rewrite rule will be denoted in the following by

r : t! t

0

:

Given a set R of rewrite rules, we denote by FOR and HOR the subsets of �rst-order and

higher-order rules of R, respectively. In the following, when �-rewrite rules are present, we

assume them to be in the set HOR.

A rewrite rule induces a rewriting relation on pseudoterms as follows.

De�nition 3.11 Let M and N be pseudoterms.

M !

r

N i� there exists a rewrite rule r : t ! t

0

, a context C[] and a substitution ' such that

M � C[t'] and N � C[t

0

'].

If R is a set of rewrite rules we de�ne

M !

R

N , 9r 2 R :M !

r

N

and

M !

R�

N , M !

R

N _ M !

�

N:

�

r

, �

R

and �

R�

denote the re
exive and transitive closure of !

r

, !

R

and !

R�

, respectively.

Many de�nitions of higher-order rewriting appear in the literature, none of them has been

universally accepted, and ours is one among the many possible ones. Recently, a general

de�nition of higher-order rewriting has been proposed by van Oostrom and van Raamsdonk

[OR93, OR94], which subsumes systems like Klop's CRSs [KOR93] and Nipkow's HRSs [Nip91].

Even if our higher-order rewriting rules can be looked at from vanOostrom and vanRaamsdonk's

point of view, it is not clear whether it is so also for the whole systems of the �R-cube being

de�ned in the next subsection.

3.1 The �R-cube

Once one speci�es a set S of sorts, a signature F and a set R of rewrite rules, it would seem

that to complete the de�nition of the algebraic extension of the �-cube, it su�ces, besides the

additional axioms for sorts and function symbols given before, to replace the rule (conv) by the

following one:

� ` A : B � ` B

0

: p B =

R�

B

0

� ` A : B

0

where =

R�

is the least congruence containing !

R�

.

This however would not work. As pointed out before, when we have A =

�

B in the pure

cube, the Church-Rosser property of =

�

, together with the Subject Reduction property, ensure

that A and B are always equal via �-reductions and �-expansions that remain inside the set

of well-typed terms. Here instead we cannot rely, in general, on the Church-Rosser property

for =

R�

since we wish to prove the modularity of strong normalization for every set of strongly

normalizing reduction rules (even for those which are non con
uent

7

).

Therefore we cannot consider =

R�

in the (conv) rule, but instead we have to consider only

the R�-reduction relation.

7

Moreover, even if we restricted ourselves to strongly normalizing and con
uent rewrite rules, we could not

rely on the con
uence property, since there exists no proof, at the time being, of the modularity of con
uence for

the �R-cube.

11

The absence, in general, of the Church-Rosser property for the algebraic extension of the

�-cube makes also di�cult to prove some properties easily provable in the pure cube, like Subject

Reduction for �-reduction alone.

We can now present the complete de�nition of the algebraic extension of the �-cube.

De�nition 3.12 (The �R-cube) Let S = fs

1

; s

2

: : :g be a set of sorts, F = ff

1

; f

2

; : : :g a

signature on S and R a set of rewrite rules

8

.

The �hS;F ; Ri-cube (�R-cube for short) is de�ned by adding the following axioms to the axioms

of the �-cube

(alg1) ` s : ? for any s 2 S

(alg2) ` f : � for any f 2 F

�

and by replacing the following rule for the (conv) rule

(red

R�

)

� `M : A � ` B : p

� `M : B

A!

R�

B or B !

R�

A

The eight systems of the �R-cube will be called �

R!

, �

R2

, �

RP

, �

R!

, �

RP2

, �

R!

, �

RP!

and

�

RP!

. �

R

will denote a generic system of the �R-cube. �

RP!

will also be called �

RC

.

The �R-cube can be drawn as follows

�

R!

6

-

�

�

�>

�

R!

6

-

�

R2

-

�

�

�>

�

R!

-

�

RP

�

�

�>

6

�

RP!

6

�

RP2

�

�

�>

�

RC

Obviously, all the notions not a�ected by the introduction of the algebraic features, like that

of kind, object and so on, remain unchanged w.r.t. their de�nitions in the �-cube.

Note that when we write M !

r

N , for M;N terms of the �R-cube, the relation !

r

is the

one de�ned in 3.11 now restricted to terms.

Some systems of the �R-cube are already present in the literature. In particular, when R

is a �rst-order system, �

R!

is the system studied in [BT88, Oka89], while �

R2

is equivalent to

the system de�ned by Breazu-Tannen and Gallier [BTG90]. The systems of [JO91] correspond

to �

R!

and �

R2

. We have already mentioned in the introduction which results were proved for

these systems.

The style of presentation we have used for the algebraic component of the �R-cube is some-

what di�erent from the usual one for many-sorted Term Rewriting Systems (TRS's, see [DJ88]

for an overview) where, given a set S of sorts, a signature is formed by function symbols having

an arity , which is a string s

1

: : : s

n

(n � 0), and a codomain s. In a TRS terms in s are ex-

pressions of the form f(v

1

; : : : ; v

n

) where f has arity s

1

: : : s

n

, codomain s, and v

i

(1 � i � n)

8

Recall that, by Lemma 3.8, the notion of rewrite rule is independent from contexts and systems.

12

is a term in s

i

. As pointed out in [BTG90], \it is easy to see that currying establishes the

expected relation between many-sorted algebraic rewriting in a TRS and our de�nition of al-

gebraic rewriting." So extending the �-cube with the \�rst-order computation features" of a

given TRS corresponds to de�ne the �hS;F ; Ri-cube where S is the set of sorts of the TRS and

any f :s

1

! : : : ! s

n

! s corresponds to an f in the TRS with arity s

1

: : :s

n

and codomain

s. A rewrite rule r : q ! q

0

in a TRS becomes c(r) : curry(q) ! curry(q

0

) in R. It has to be

remarked, however, that currying has the side-e�ect of producing terms in the �R-cube which

have no meaning in the context of the TRS, like, for instance, fcurry(v

1

)curry(v

2

) if n > 2.

This fact, far from being a drawback, provides
exibility and expressive power to the �R-cube.

Moreover, it is easy to check that a terminating TRS induces a strongly normalizing rewrite

relation on the algebraic terms of the corresponding �R-cube.

Notation 3.13 We use A

c

=

�

B to denote that terms A and B are equal via �-reductions and

�-expansions that remain inside the set of well-typed terms. Similarly for A

c

=

R

B and A

c

=

R�

B.

To be precise, A

c

=

R�

B means that there are well-typed terms E

1

; : : : ; E

n

for which

A�

R�

E

1

�

R�

E

2

�

R�

E

3

� � �E

n

�

R�

B:

Note that, for example, the terms on the reduction path from A to E

1

need not be well-typed.

(But we want to prove that they are, of course.)

The replacement of rule (red

R�

) for the rule (conv) of �-cube is only needed for systems with

dependent types: the following lemma (which will be proved at the end of Section 4), shows that

such a replacement is useless for systems without (?;2)-rules, i.e. without dependent types.

Lemma 3.14 For A;M 2 Term(�

R

), and �

R

any system of the �R-cube without (?;2)-rules:

A 2 Constr(�

R

) &M subexpression of A) M 2 Kind(�

R

) _M 2 Constr(�

R

)

Lemma 3.15 Let �

R

be a system of the �R-cube without (?;2)-rules. Then in �

R

the rule

(conv) is equivalent to the rule (red

R�

).

Proof Easy by Lemma 3.14 and the Church-Rosser property for the �-cube. 2

Now that we have de�ned the �R-cube, we can de�ne what is an algebraic term (in �) in

the �R-cube (the notion of algebraic term used to de�ne it was in the �-cube).

De�nition 3.16 An algebraic term (in �) in the �R-cube is an algebraic pseudoterm such that

� `

R�

t : A and

8x 2 FV (t):[x : B 2 �) B

c

=

R�

� 2 T

S

]:

Moreover any occurrence of a function symbol has to be saturated in t.

Being in the �R-cube does not modify essentially the properties of algebraic terms. It is

not di�cult to check that Lemma 3.8 can be proved in the context of the �R-cube, using

c

=

R�

instead of =

�

, essentially in the same way, once some metatheory for the �R-cube has been

developed (see Sect.4).

Lemma 3.17 Let t be a rewritable algebraic term. Then

� ` t : A) (�

jFV (t)

c

=

R�

�

0

) & (A

c

=

R�

�)

where �

0

and � are algebraic, unique and such that �

0

`

�

R!

t : �.

13

As said in the introduction, we are interested in the strong normalization property for the

systems of the �R-cube in case the rules of R are terminating on algebraic terms. However, if

unrestricted terminating higher-order rewrite rules are considered it can be easily shown that

this property fails. For example, let HOR be the set

fr : f(Xx)xX ! f(Xx)(Xx)Xg:

For such terminating set of rules, even the simplest system of the �R-cube, �

R!

, is not strongly

normalizing, as can be seen by the following derivation

f((�y:s:y)x)x(�y:s:y)!

r

f((�y:s:y)x)((�y:s:y)x)(�y:s:y)!

�

!

�

f((�y:s:y)x)x(�y:s:y)

Then one has necessarily to restrict the notion of higher-order rule in order to get strongly

normalizing systems. Following [JO91] we consider higher-order rules that always terminate on

algebraic terms thanks to their structure: a generalization of primitive recursion called general

schema.

Higher-order rewrite rules satisfying the general schema are of wide use in the practice of

higher-order rewriting and can be considered as de�nitions of new functionals of a language.

We will use the notation t[~v] to indicate that t is a term and v

1

; : : : ; v

n

are subterms of t. So

t[~v] is the same as t, the notation only makes appear explicitly some of the subterms of t.

De�nition 3.18 (The general schema [JO91]) (i) A �-higher-order

rewrite rule r : t! t

0

satis�es the general schema w.r.t. R if it is of the form

F

~

l[

~

X; ~x]

~

Y ! v[(F ~q

1

[

~

X; ~x]

~

Y); : : : ; (F ~q

m

[

~

X; ~x]

~

Y)]

where

~

X and

~

Y are sequences of higher-order variables and ~x is a sequence of �rst-order

variables, and

1.

~

X �

~

Y

9

2. F is a higher-order function symbol that can appear neither in the sequences of terms

~

l; ~q

1

; : : : ; ~q

m

, nor in the rules of R, and its occurrences in v are only the ones explicitly

indicated

3. v is a term in �

R!

10

4.

~

l; ~q

1

; : : : ; ~q

m

are sequences of terms of sort type

5. 8i 2 f1::mg, ~q

i

<

mul

~

l where < denotes strict subterm ordering and <

mul

its multiset

extension, de�ned as usual. (If < is a partial ordering on S, then the ordering <

mul

on multisets of elements of S is the transitive closure of the replacement of an element

with any �nite number, including zero, of elements that are smaller under <.)

(ii) A set HOR = fl

i

! r

i

g

i2I

of higher-order rewrite rules satis�es the general schema (w.r.t.

FOR) if each rule l

i

! r

i

2 HOR satis�es the general schema w.r.t. FOR[fl

j

! r

j

g

j<i

.

This implies that there is no mutual recursion in HOR.

9

Note that this condition ensures that F

~

l[

~

X; ~x]

~

Y is rewritable.

10

In fact we can consider v in �

R2

or �

R!

as well.

14

Notice that some of the conditions given in the de�nition of the general schema can be

loosened. Condition (i):1 could be removed by reasoning on a transformed version of F , while

condition 2 could be removed by introducing product types and packing mutually recursive

de�nitions in the same product.

As said above, although restricted, the general schema is interesting from a practical point

of view: it allows the introduction of functional constants of higher-order types by primitive

recursion on a �rst-order data structure.

Let us show some examples.

Example 3.19 Consider the signature of lists, with constructors cons and nil. The function

append (that concatenates two lists) can be de�ned by a set FOR of �rst-order rules [JO91]:

append nil l! l

append (cons x l) l

0

! cons x (append l l

0

)

append (append l l

0

) l

00

!append l (append l

0

l

00

)

The functional map, which applies a function to all the elements of a list, can be de�ned using

two higher-order rules:

mapX nil! nil

mapX (cons x l)! cons (X x) (mapX l)

Here, append is de�ned algebraically (the third rule establishes the associativity of append on

lists) while the higher-order function map is de�ned recursively on the structure of lists, its

de�nition satis�es the general schema.

We will show another example using lists:

Example 3.20 foldr is a very useful higher-order function, whose informal meaning is the fol-

lowing: Let hx

1

; : : : ; x

n

i denote the list containing the elements x

1

; : : : ; x

n

, then

foldr a [x

1

; : : : ; x

n

] f = fx

1

(fx

2

(: : :(fx

n

a) : : :))

where f is a function and a is a constant.

It is easy to de�ne foldr by a set of higher-order rules satisfying the general schema:

foldr a nilX ! a

foldr a (cons x l)X ! X x (foldrX a l)

Now, using foldr, and assuming that +, �, 0 and 1 are already de�ned, we can de�ne the

functions:

sum! foldr + 0

product! foldr � 1

The function sum adds the elements of a list of numbers, while product multiplies them. More-

over, assume that append is de�ned as in the previous example, then we can de�ne

concat! foldr append nil

The function concat concatenates a list of lists into one long list.

The higher-order rewrite rules de�ning foldr, sum, product and concat satisfy the general

scheme, then, as a consequence of the \main theorem" that we will prove later, the union of the

above de�ned rewrite systems is strongly normalizing.

15

We have seen that unrestricted higher-order rewrite rules could prevent the strong normal-

ization property to hold and have proposed a restriction. This, however, is not still su�cient to

get modularity of strong normalization, even in case we consider reductions on algebraic terms

only. It is in fact possible to code Toyama's example of non-termination [Toy87], as it can be

seen below.

Example 3.21 Let us consider the following sets of rewrite rules.

FOR = fr

1

: f01x! fxxxg

HOR = fr

2

: FX ! 1; r

3

: FX ! 0g

where F is a higher-order function symbol, f is a �rst-order function symbol, 0; 1 are �rst-

order constants and X; x are variables. R is terminating and HOR satis�es the general schema,

nonetheless there exists an in�nite reduction sequence:

f(FX)(FX)(FX)!

r

3

f0(FX)(FX)!

r

2

f01(FX)!

r

1

!

r

1

f(FX)(FX)(FX)!

r

3

: : :

Con
uence of HOR does not su�ce to restore the strong normalization property. This can be

seen by coding the example of Barendregt and Klop (see [Toy87]).

The cause of non-termination in the example is that rule r

1

is duplicating, i.e. there are more

occurrences of the variable x in its right-hand side than in its left-hand side.

We will show that the restriction of FOR to non-duplicating rules (also called conservative),

together with the general schema condition for HOR, imply the modularity of Strong Normal-

ization in the �R-cube.

De�nition 3.22 (i) A rewrite rule r : t! t

0

is conservative if for any variable x the number

of its occurrences in t is greater than or equal to the number of its occurrences in t

0

.

(ii) A set of rewrite rules is conservative if each of them is so.

Example 3.23 The �rst-order system de�ning the function append in Example 3.19 is conser-

vative.

We are not the �rst to impose conservativity on �rst-order rules in order to get strong

normalization. In [Rus87], for instance, it was shown that strong normalization is a modular

property of disjoint unions of �rst-order term rewriting systems that are conservative. In prac-

tice, however, conservativity is not a relevant restriction, since most implementations of rewrite

systems use sharing, and shared-reductions are always conservative.

We can now state our main result.

Theorem 3.24 (Main Theorem) Let R be a set of rewrite rules such that

1. FOR is conservative and strongly normalizing on �rst-order algebraic terms

11

2. HOR satis�es the general schema (w.r.t. FOR).

Then the systems of the �R-cube are strongly normalizing w.r.t. !

R�

.

The rest of the paper will be devoted to the proof of the main theorem. Since all the systems

of �R-cube are subsystems of �

RC

, the proof of the main theorem will be given for �

RC

, and

hence from now on every notion we shall refer to (if not otherwise stated) will be of �

RC

.

11

By Lemma 3.5 we can avoid referring to a context.

16

4 Metatheory of the �R-cube

In this section we present the syntactical properties of �

RC

that will be used in the proof of the

Main Theorem. The proofs of some of them are straightforward extensions of the corresponding

proofs for the �-cube, and will be omitted. Complete proofs will be given instead for those

properties, like subject reduction, that require the development of some technical machinery.

Proposition 4.1 (Substitution) For �

1

; x:A;�

2

a context, M , B and N terms,

�

1

; x:A;�

2

`M : B

�

1

` N : A

)

) �

1

;�

2

[N=x] `M [N=x] : B[N=x]:

Note that this also implies that, if �; x:A ` M;N : C with M

c

=

R�

N and � ` Q : A, then

M [Q=x]

c

=

R�

N [Q=x].

Lemma 4.2 (Stripping for the �R-cube) For � a context, M , N and R terms, we have the

following.

(i) � ` p : R; with p 2 P) p � ?; R

c

=

R�

2;

(ii) � ` s : R; with s 2 S) R

c

=

R�

?;

(iii) � ` x : R; with x 2 Var) R

c

=

R�

A with x : A 2 �

for some term A;

(iv) � ` f : R; with f 2 F) R

c

=

R�

� where f 2 F

�

;

(v) � ` �x:M:N : R) � `M : p

1

;�; x:M ` N : p

2

and R

c

=

R�

p

2

for some p

1

; p

2

2 P ; and rule (p

1

; p

2

)

(vi) � ` �x:M:N : R) �; x:M ` N : B;� ` �x:M:B : p

and R

c

=

R�

�x:M:B

for some term B and p 2 P ;

(vii) � `MN : R) � `M : �x:A:B;� ` N : A

with R

c

=

R�

B[N=x]

for some terms A and B:

Proof The proof is easy: We can go up in the derivation tree until we reach the point where

the term has been formed. In doing this we only pass through applications of the conversion or

weakening rule. At the point where the term has been formed we distinguish the seven di�erent

cases above, according to the form of the term, and we easily check that the conclusions are

satis�ed. 2

Lemma 4.3 (Correctness of Types) For � a context, M and A terms,

� `M : A) 9p 2 P [A � p _ � ` A : p]:

Proof The proof can be given by analysing the derivation tree of � `M : A, like in the proof of

4.2, but also by induction on the derivation of � ` M : A. We follow the second option, which

gives the shortest proof. The only case that has some interest is when the last rule is (app).

(app)

� ` P : �x:A:B � ` N : A

� ` PN : B[N=x]

17

Then � ` �x:A:B : p by induction, and hence by Stripping (Lemma 4.2), �; x:A ` B : p

0

for

some p

0

2 P . Now by Substitution (Proposition 4.1), we conclude that � ` B[N=x] : p

0

.2

Lemma 4.4 (i) � ` �u:C:2 : D is not possible,

(ii) N 2 Term with N

c

=

R�

p 2 f?;2g, then N � p.

(iii) M � �~x:

~

A: ? and M typable in � , � `M : 2.

Proof (i) First note that 2 does not have a type. This immediately proves the thesis.

(ii) If N

c

=

R�

p with N 6� p then necessarily N

0

!

r

p 2 f?;2g or N

0

!

�

p 2 f?;2g for some

N

0

. The �rst case is not possible for typing reasons. In the second one N

0

� (�x:A:M)Q, with

p occurring as subterm of M or Q in applied or abstracted form. Now, by stripping this term

we �nd that 2 has a type, which is not the case. Then N � p.

(iii) (() is the most interesting implication; the proof uses the second item. First one proves

that � ` PQ : 2 is impossible and then one proves � ` �x:C:D : 2) �; x:C ` D : 2 and we

are done. Suppose � ` PQ : 2. Then � ` P : �x:A:B with B[Q=x]

c

= 2, hence B[Q=x] � 2.

But then B � 2 or B � x and Q � 2, which are both easily falsi�ed. Suppose now that

� ` �x:C:D : 2. Then �; x:C ` D : p with p

c

= 2, hence p � 2. For ()) one uses the Stripping

lemma: part (i) if ~x is an empty sequence, and part (v) otherwise.2

Lemma 4.5

� ` �x:A:B : C) C 2 P :

Proof C

c

=

R�

? or C

c

=

R�

2 by Stripping (v). But then, by Lemma 4.4 (ii), C � ? or C � 2.

Lemma 4.6

� `M : 2

N 2 Term

N

c

=

R�

M

9

>

=

>

;

) � ` N : 2:

Proof We do the proof for M �

R�

N and N �

R�

M , the general case follows by induction

on the de�nition of N

c

=

R�

M . Recall that N

c

=

R�

M means that M and N are equal via

expansions and reductions that remain inside the set of well-typed terms.

� M � �~x:

~

A:? and M �

�

N . Then N � �~x:

~

A

0

:? with

~

A �

�

~

A

0

, so � ` N : 2. (Use

Lemma 4.4.(iii) ()).) If M �

R

N , then we are done similarly.

� M � �~x:

~

A:? and N �

�

M . We prove that N must be of the form �~x:

~

D:? and we are

done. Suppose N � (�~y:

~

B:P)

~

Q. Then either P or Q contains a subterm of the form

�~z:

~

C:?. We even know that this subterm occurs as �q:R:�~z:

~

C:? or as R(�~z:

~

C:?). Both

are impossible for typing reasons. If N �

R

M the thesis is a consequence of the de�nition

of rewrite rule. 2

Corollary 4.7 (�R-preservation of ? and 2) Let p; p

0

2 f?;2g.

� `M : p

�

0

` N : p

0

N

c

=

R�

M

9

>

=

>

;

) p � p

0

:

Proof If p � p

0

� ? we are done, otherwise, in case p � 2 or p

0

� 2, one has � ` M : 2,

�

0

` N : 2 by Lemma 4.6, i.e. p � p

0

. 2

18

The following lemma is similar to Lemma 3.2. Its proof however is much harder since now

we cannot rely on the Church-Rosser property.

Lemma 4.8 Let �

1

; �

2

2 T

S

.

�

1

c

=

R�

�

2

) �

1

� �

2

:

Proof In Sect. 6 a translation � : f2g [Kind(�

RC

) [Constr(�

RC

) ! Term(�

R!

) will be de-

�ned, such that �(�) � � for � 2 T

S

. Moreover, for such a translation Lemma 6.6 will ensure

that �(A) =

�

�(B) in case A

c

=

R�

B. Hence, from �

1

c

=

R�

�

2

we get �

1

� �(�

1

) =

�

�(�

2

) � �

2

.

By Church-Rosser for =

�

it follows �

1

� �

2

, since no reduction is applicable to �

1

and �

2

.

It is not di�cult to check that referring to Lemma 6.6 as we have done above creates no circu-

larity. We refer to it only in order not to duplicate its proof here. 2

Lemma 4.9 (Classi�cation)

Type \ Kind = ;;

Obj \ Constr = ;:

Proof For the �rst it su�ces to prove the following.

� `M : p; �

0

`M : p

0

) p � p

0

: (3)

This is an immediate consequence of Corollary 4.7. For the second it su�ces to prove the

following property.

� `M : B : p; �

0

`M : B

0

: p

0

) p � p

0

: (4)

We prove this statement by induction on the structure of M, using �R-preservation of ? and 2.

The proof is not really di�cult but still a bit tricky and we therefore give it in quite some detail.

var It su�ces to show that, if � ` x : B : p with x 2 Var

p

0

, then p � p

0

. Now, if � ` x : B,

then x : A 2 � with � ` A : p

0

and A

c

=

R�

B. Hence by �R-preservation of ? and 2

(Corollary 4.7), p � p

0

.

s 2 S If � ` s : B and �

0

` s : B

0

then, by Stripping, we get B

0

c

=

R�

?

c

=

R�

B. Hence, by

�R-preservation of ? and 2, p � p

0

.

f 2 F If � ` f : B and �

0

` f : B

0

, then, by Stripping(iv), we get B

c

=

R�

�

c

=

R�

B

0

. Hence,

by �R�preservation of ? and 2, p � p

0

.

� If � ` �x:A:B : C : p and �

0

` �x:A:B : C

0

: p

0

, then, by Stripping (v), we get C

c

=

R�

p

0

and C

0

c

=

R�

p

0

0

with p

0

; p

0

0

2 P . It follows that � ` �x:A:B : p

0

and �

0

` �x:A:B : p

0

0

.

Hence, by property (3), p

0

� p

0

0

, from which C

c

=

R�

C

0

. �R�preservation of ? and 2

allows now to infer p � p

0

.

� Suppose that � ` �x:A:M : B : p and �

0

` �x:A:M : B

0

: p

0

. Then, by Stripping

(vi), B

c

= �x:A:Cand � ` �x:A:C : p with p � p by �R�preservation of ? and 2. By

Stripping again, case (vi), we have also � ` A : p

1

and �; x:A ` M : C : p (we have

the same p in �; x:A ` M : C : p and � ` �x:A:C : p by Lemma 4.4(ii)) Similarly

B

0

c

= �x:A:C

0

with �

0

` A : p

0

1

, �

0

; x:A ` M : C

0

: p

0

and �

0

` �x:A:C

0

: p

0

, for a rule

(p

0

1

; p

0

). Now, by induction p � p

0

.

19

app Let � `MN : D : p and �

0

`MN : D

0

: p

0

. Then, by Stripping, � `M : �x:A:B : p

2

,

� ` N : A : p

1

, � ` B[N=x] : p

2

and B[N=x]

c

= D, for a rule (p

1

; p

2

). At the same time

�

0

`M : �x:A

0

:B

0

: p

0

2

, �

0

` N : A

0

: p

0

1

, �

0

` B

0

[N=x] : p

0

2

and B

0

[N=x]

c

= D

0

for a rule

(p

0

1

; p

0

2

). Now, by induction p

2

� p

0

2

. Also, by �R-preservation of ? and 2, p � p

2

and

p

0

� p

0

2

and so p � p

0

. 2

Lemma 4.10 (Uniqueness of formation) Let � and �

0

be contexts and B a term.

B formed by (p

1

; p

2

) in � & B formed by (p

0

1

; p

0

2

) in �

0

) p

1

� p

0

1

; p

2

� p

0

2

:

Proof Direct consequence of Corollary 4.7. 2

The lemma above allows us to use the terminology \formed by" without mentioning the

context �.

It still remains to prove Lemma 3.14, for which we need the following technical lemma.

Lemma 4.11 Let K be the set inductively de�ned by

1. ? 2 K

2. k

1

; k

2

2 K) k

1

! k

2

2 K

Then � `

�

R

k : 2) k 2 K, where �

R

is any system of the �R-cube without (?;2)-rules.

Proof By induction on the structure of k using Lemma 4.4.(iii). 2

Lemma 3.14 For A;M 2 Term(�

R

) and � any system of �R-cube without (?;2)-rules:

A 2 Constr(�

R

) &M subexpression of A) M 2 Kind(�

R

) _M 2 Constr(�

R

)

Proof By induction on the structure of A. For A variable the thesis follows immediately. In

case A is of the form �x:P:Q, �x:P:Q or PQ, since we do not have (?;2)-rules, P and Q have

necessarily to be constructors or kinds, then, by the induction hypothesis or Lemma 4.11, so are

all their subexpressions. 2

4.1 The Subject Reduction Property

That of subject reduction is a property that, as stated before, requires more e�ort to be proved

in �

RC

than in �

C

, because we cannot rely on the Church-Rosser property for pseudoterms.

In the following we will prove separatedly subject reduction for �

R

and for �

�

.

Lemma 4.12 Let r : t! t

0

be a rewriting rule in R.

� ` t[

~

N=~x] : A) � ` t

0

[

~

N=~x] : A:

Proof Let

~

B be the types of

~

N in the �rst statements

~

�

1

`

~

N :

~

B that we meet going up in the

derivation of � ` t[

~

N=~x] : A (since t is algebraic, these statements will be in applications of rule

(app)). It is easy to check that it is possible to modify the derivation in order to get a derivation

for:

~

�

1

; ~x:

~

B;

~

�

2

` t : A. By de�nition of reduction rule we can infer

~

�

1

; ~x:

~

B;

~

�

2

` t

0

: A. Hence,

since we have also that

~

�

1

`

~

N :

~

B, by Substitution (Proposition 4.1), it follows � ` t

0

[

~

N=~x] : A.

2

Proposition 4.13 (Subject Reduction Lemma for rewriting, SR

R

) For � a context,

P; P

0

and D terms and r 2 R,

� ` P :D & P !

r

P

0

) � ` P

0

:D:

20

Proof By induction on the derivation of � ` P :D. The only case which is not trivial or does

not follow from the induction hypothesis is when, by the application of rule (app) one gets an

r-redex. The thesis in such a case is a consequence of Lemma 4.12. 2

It turns out that Subject Reduction for � is a much harder nut to crack. The standard proof

is by induction on the derivation. Here we run into a problem with the case:

� ` �x:C:M : �x:A:B � ` N : A

� ` (�x:C:M)N : B[N=x]

where (�x:C:M)N !

�

M [N=x] and we want to show that � `M [N=x] : B[N=x]. By Stripping

we conclude that

� ` �x:C:M : �x:C:D

with

�x:C:D

c

=

R�

�x:A:B;

but we can not conclude from this that C =

�R

A and D =

�R

B, because we don't have Church-

Rosser. Notice that the problem is even more di�cult: we have to show that C

c

=

R�

A and

D

c

=

R�

B.

De�nition 4.14 The �-abstractions in a well-typed term of our system (but the de�nition im-

mediately extends to pseudoterms) are split into four classes, the 0-, 2-, P - and !-abstractions,

as follows.

1. �x:A:M is a 0-abstraction if M is an object, A a type,

2. ��:A:M is a 2-abstraction if M is an object, A a kind,

3. �x:A:M is a P -abstraction if M is a constructor, A a type,

4. ��:A:M is a !-abstraction if M is a constructor, A a kind.

We can decorate the �s correspondingly, so we can speak of the �

0

s of a term, etc. We now

also de�ne the notions of �

0

-reduction, �

2

-reduction, �

P

-reduction and �

!

-reduction by just

restricting reduction to the redexes with the appropriate subscript attached to the symbol �. We

use an arrow with a superscript above it to denote these restricted reductions, so

P!

!

�

etcetera.

We also have the usual notion of weak-head-reduction, a term M weak-head-reducing to

M

0

, notation M !

wh

M

0

, if M is itself a redex, say M � (�x:A:P)Q and M

0

is obtained by

contracting (�x:A:P)Q (the head-redex). Similarly we have �

wh

as transitive re
exive closure

of !

wh

. Note that a term of the form �x:A:B is in weak head normal form (whnf).

Lemma 4.15 (SR

�

P!

) For � and �

0

contexts, P; P

0

and D terms,

� ` P : D & P

P!

!

�

P

0

) � ` P

0

: D

� ` P : D & �

P!

!

�

�

0

) �

0

` P : D:

Proof The proof is by simultaneous induction on the derivation. Just as in the usual proof for �

the only interesting case is when the last rule is (app) with P � (�x:A:M)N and P

0

�M [N=x].

We then have

� ` �x:A:M : �x:B:C � ` N : B

� ` (�x:A:M)N : C[N=x]

21

where the � is a �

P

or a �

!

. Then by applying Stripping (4.2) to the �rst premise, we �nd

�; x:A `M : C

0

(1)

� ` �x:A:C

0

: p(2 P)

�x:A:C

0

c

= �x:B:C:

So, again by Stripping

� ` A : p

1

(2)

�; x:A ` C

0

: p

for some p

1

; p 2 P :

By the fact that we have a P - or !-redex, we know that �x:A:M is a constructor and hence

that �x:A:C

0

and �x:B:C are kinds. So by Lemma 4.4(iii) we know that �x:A:C

0

� �~x:

~

A:?

and �x:B:C � �~x:

~

B:?. Now, �~x:

~

A:?

c

= �~x:

~

B:?, so all the well-typed terms on the reduction-

expansion path from �~x:

~

A:? to �~x:

~

B:? are of the form �~x:

~

C:?, because of Lemmas 4.6 and 4.4.

Hence

A

c

= B (3)

C

0

c

= C: (4)

So, applying the conversion rules to (2) and � ` N : B, using (3), we get

� ` N : A: (5)

Applying Substitution (Proposition 4.1) to (5) and (1) we get

� `M [N=x] : C

0

[N=x]: (6)

By applying Correctness of Types (Lemma 4.3) to the �rst premise, we �nd � ` �x:B:C : p

0

for

some p

0

2 P and hence by Stripping

�; x:B ` C : p

0

(2 P): (7)

Now apply Substitution to � ` N : B and (7) to get

� ` C[N=x] : p

0

: (8)

Apply the conversion rules to (6) and (8) (using (4)) to conclude

� `M [N=x] : C[N=x]

and we are done. 2

Corollary 4.16 (Stability of �

P!

-redexes under

P!

�

�

) For M a term, if

M � C[(�x:A:N)Q]

P!

�

�

C

0

[(�x:A

0

:N

0

)Q

0

] �M

0

and (�x:A:N)Q is a P - or !-redex in M , then (�x:A

0

:N

0

)Q

0

is a P - or !-redex in M

0

.

Proof If N is a constructor in M , then N

0

is a constructor in M

0

by subject reduction for �

P!

.

2

22

Lemma 4.17 (Con
uence of �

P!

) For M;P;N 2 Term,

M

P!

�

�

P &M

P!

�

�

N) 9Q[P

P!

�

�

Q & N

P!

�

�

Q]:

In a diagram

M

P!

�

� P

�

�

�

�

�

�

P!

#

#

� P! �

�

�

�

�

�

_

_

�

N � � � � �

P!

�

�

������ Q

Proof By completeness of developments and the fact that �

P!

-redexes are stable under

P!

�

�

.

(Corollary 4.16)

Lemma 4.18 If � ` (�x:C:P)Q : p 2 P, then this is a P - or !-redex.

Proof First we know by Lemma 4.4 that p must be ?. By Stripping we �nd A;B and D such

that

�; x:C ` P : B;

� ` Q : A;

� ` �x:C:P : �x:C:B;

�x:C:B

c

= �x:A:D;

D[Q=x]

c

= ?

Hence D[Q=x] � ? and so D � ?, because Q can't be ?. (This follows from Stripping and

Lemma 4.4.) Hence �x:A:D : 2 and so �x:C:B : 2 by �R-preservation of elements of P . Hence

B � �~y: : : : :? and so B : 2 and P is a constructor. We conclude that the � is decorated with

P or ! and we are done. 2

As a consequence of this we �nd that Subject Reduction holds for weak-head-reduction on

types. That is

� `M : ? ;M �

wh

N) � ` N : ?:

Lemma 4.19 (Commutativity of weak-head-reduction and �-reduction) For

M;P;N 2 Term,

M �

wh

P &M �

�

N) 9Q[P �

�

Q & N �

wh

Q]:

In a diagram

M

wh

� P

�

�

�

�

�

�

#

#

� �

�

�

�

�

�

_

_

�

N � � � � � �

wh

������ Q

23

Proof We prove it for the case of a one step weak-head-reduction, so say M !

wh

P , say

M � (�x:A:B)C. If N � (�x:A

0

:B

0

)C

0

with A �

�

A

0

, B �

�

B

0

and C �

�

C

0

we are done by

taking Q � B

0

[C

0

=x]. If in the reduction from M to N the head-redex is contracted we are also

done, by taking Q � N . 2

Lemma 4.20 (Commutativity of weak-head-reduction and R-reduction) For

M;P;N 2 Term,

M �

wh

P &M �

R

N) 9Q[P �

R

Q & N �

wh

Q]:

In a diagram

M

wh

� P

�

�

�

�

�

�

#

#

R �

�

�

�

�

�

_

_

R

N � � �� � �

wh

������ Q

Proof The proof is exactly the same as the previous one. 2

We also have postponement of R-reduction with respect to weak-head-reduction on types

and kinds. That is, if M is a type or kind, then

M �

R

N �

wh

Q) 9P [M �

wh

P �

R

Q]:

Or in a diagram

M ��� �� �

wh

������ P

�

�

�

�

�

�

#

#

R �

�

�

�

�

�

_

_

R

N

wh

� Q

Lemma 4.21 If �x:A:C

c

= �x:B:D and all the terms on the reduction-expansion-path from

�x:A:C to �x:B:D are types or kinds, then �x:A:C

c

= �x:B:D via a path that only uses �-

terms.

Proof We take a look at the well-typed terms that are on the path from �x:A:C to �x:B:D.

We can depict the situation as follows.

�x:A:C #

#

�

1

E

1

#

#

�

2

E

2

#

#

�

3

: : :E

n�1

#

#

�

n

�x:B:D

where #

#

�

i

means the sharing of a common well-typed reduct via �

i

-reduction. (So �

i

ranges over

f�;Rg.) We are going to prove the Lemma by showing that there are �-terms F

1

; : : : ; F

n�1

such

that

�x:A:C #

#

�

1

F

1

#

#

�

2

F

2

#

#

�

3

: : :F

n�1

#

#

�

n

�x:B:D

This is done by taking F

i

� whnf(E

i

), the weak-head-normal-form of E

i

. That this works is

shown by going through the sequence

�x:A:C;E

1

; E

2

; : : :E

n�1

;�x:B:D

24

from right to left (or from left to right if one prefers).

First note that if E

n�1

#

#

R

�x:B:D, then E

n�1

R-reduces to a �-term and hence (because

E

n�1

is of type an element of P), it must be a �-term itself. So in that case E

n�1

is already in

whnf and we are done.

Now, if �

n

is � then E

n�1

�

�

�x:B

0

:D

0

for some B

0

and D

0

. Hence

E

n�1

�

wh

�x:B

n�1

:D

n�1

�

�

�x:B

0

:D

0

where �x:B

n�1

:D

n�1

is the whnf of E

n�1

. Taking whnf of a type is done by �

P!

-reduction, so

�x:B

n�1

:D

n�1

is still well-typed. We can now apply the commutativity of weak-head-reduction

with the reductions � and R, and the postponement of � and R with respect to weak-head-

reduction to obtain the following diagram.

E

n�2

E

n�1

�x:B:D

�

�

�

�

�

�

�

�

�

�

	

	

�

�

�

�

n�2

�

�

�

�

�

�

�

�

�

_

_

wh

@

@

@

�

n�1

@

@

@

R

R 	

	

�

�

�

�

n�1

�

�

�

�

�

�

�

�

�

_

_

wh

@

@

@

�

@

@

@

R

R 	

	

�

�

�

�

�

�

�

� whnf(E

n�2

) � �x:B

n�1

:D

n�1

� � �

�

�� �x:B

0

:D

0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

_

_

wh

	

	

�

�

�

�

n�2

�

�

� @

@

@

�

n�1

@

@

@

R

R

�

�

�

�

�

�

�

_

_

wh

	

	

�

�

�

�

n�1

�

�

�

� �

Proceeding in this way until �x:A:C, we �nd well-typed �-terms F

1

; : : : ; F

n�1

such that

�x:A:C #

#

�

1

F

1

#

#

�

2

F

2

#

#

�

3

: : :F

n�1

#

#

�

n

�x:B:D 2

Corollary 4.22 If �x:A:C

c

= �x:B:D, then A

c

= B and C

c

= D.

Proposition 4.23 (Subject Reduction for �) For � and �

0

contexts, P; P

0

and D terms,

� ` P : D & P �

�

P

0

) � ` P

0

: D

� ` P : D & ��

�

�

0

) �

0

` P : D:

Proof By induction on the derivation one proves the statement for a one step reduction. The

only interesting case is when the last rule is (app) and P � (�x:A:B)C, P

0

� B[C=x]. We

then use the fact that �x:A:C

c

= �x:B:D implies A

c

= B and C

c

= D, which was proved in the

previous Corollary. 2

Lemma 4.24 (Subject Reduction) For � a context, P; P

0

and D terms,

� ` P :D & P !

R�

P

0

) � ` P

0

:D:

Proof Immediate from Propositions 4.13 and 4.23.

5 The proof of the Main Theorem

In this section we present the skeleton of the proof of the Main Theorem (3.24). From now on,

when dealing with a set R of rewrite rules, we shall implicitly assume that conditions 1. and

2. of the Main Theorem are satis�ed. � j= SN will denote the fact that system � is strongly

normalizing.

The proof consists in three main steps

25

� �

^R

j= SN

� �

^R

j= SN) �

R!

j= SN

� �

R!

j= SN) �

RC

j= SN

where system �

^R

is a type assignment system consisting in the extension of the intersection

system of Coppo and Dezani [CD80] (see also [BCD83]) with the algebraic rewriting de�ned by

a set R of rewrite rules.

The de�nition of �

^R

is recalled in Appendix A, while for the proof of �

^R

j= SN we refer

to [BF93a]. The proof in [BF93a] is based on the Tait-Girard computability predicate method

and the particular computability predicate results from a generalization to system �

^R

of the

one de�ned in [JO91].

The proofs of the other two steps are based instead on a method that, together with that

of Tait-Girard, is among the most used in proofs of strong normalization, i.e. the method of

reduction-preserving translations. It consists in proving that SN of a system is implied by the

same property of another system. Such an implication is proved by a translation from the terms

of the former to the terms of the latter, which preserves reductions, i.e. reducible terms are

mapped to reducible terms.

This method has been used by Harper, Honsell and Plotkin [HHP87] to obtain SN of their

system LF (roughly corresponding to �

P

) using SN of simply typed lambda calculus (corre-

sponding to �

!

).

The translation for proving �

^R

j= SN) �

R!

j= SN is nothing but a type-erasing function.

Its de�nition and the proof of reduction-preservation will be the argument of Sect. 7.

The translation and the reduction preservation proof for �

R!

j= SN) �

RC

j= SN will be

instead the argument of Sect. 6.

6 �

!R

j= SN) �

CR

j= SN

As announced in Sect.5 we will de�ne a translation from terms of �

RC

to terms of �

R!

and

prove this translation to be reduction-preserving.

The de�nition of the translation and the argument given to prove its \reduction-preservation"

are similar to those provided by Geuvers and Nederhof in [GN91] to prove the strong normal-

ization for the pure �

C

. Geuvers and Nederhof's translation can be seen as a generalization to

higher order of the map de�ned by Harper, Honsell and Plotkin, to prove the strong normaliza-

tion property of the LF system [HHP87].

As in [HHP87] and [GN91], it is not possible to de�ne a reduction-preserving map [�] such

that

� `

�

RC

M :A) [�] `

�

R!

[M]:[A]

i.e. [�] cannot work uniformly on all the terms of �

RC

. One is then forced to de�ne another

map �(�) from kinds and constructors to types and to prove that

� `

�

RC

M :A) �(�) `

�

R!

[M]:�(A):

The de�nitions of [�] and �(�) do not speak for themselves. We refer to [GN91] for some

intuitions about their de�nition as generalizations of the maps de�ned in [HHP87].

Since also � cannot work uniformly on constructors and kinds, in its de�nition we shall use

another map, � : f2g [Kind(�

RC

)! Kind(�

R!

) such that if M is a constructor of kind k in

�

RC

then �(M) is a constructor of kind �(k) in �

R!

. �(k) is just the �

R!

-kind obtained by

erasing from k all type dependencies.

26

De�nition 6.1 The map � : f2g [Kind(�

RC

)! Kind(�

R!

) is inductively de�ned by:

1. �(?) = �(2) = ?

2. �(��:M:N) = �(M)! �(N) if ��:M:N is formed by (2;2)

3. �(�x:M:N) = �(N) if �x:M:N is formed by (?;2).

The case distinction in the de�nition is correct by Lemma 4.10, and by Lemma 4.4(iii) there

are no more cases.

The following properties of � will be used.

Property 6.2 (i) If k

1

; k

2

2 Kind(�

RC

) and k

1

c

=

R�

k

2

then �(k

1

) � �(k

2

).

(ii) If k 2 Kind(�

RC

), u 2 V ar

?

[V ar

2

and A 2 Term(�

RC

) then �(k) � �(k[A=u]).

Proof (i) By Lemma 4.4(iii)(() we have that k

1

� �~x:

~

A:?

c

=

R�

�~x:

~

B:? � k

2

. From this fact

it immediately follows from Corollary 4.22 that, if j

~

Aj = n and j

~

Bj = m, n = m and

A

i

c

=

R�

B

i

for 1 � i � n: (5)

We now can prove the thesis by induction on the structure of k

1

. The base case is immediate.

To prove the inductive case let us �rst notice that if we apply the map � to k

1

and k

2

it follows

that, by Corollary 4.7 and (5) above, only one of the two following cases can occur.

1. �(�~x:

~

A:?) � �(A

1

)! �(�x

2

:A

2

: : : :�x

n

:A

n

:?) & �(�~x:

~

B:?) �

� �(B

1

)! �(�x

2

:B

2

: : : :�x

n

:B

n

:?)

2. �(�~x:

~

A:?) � �(�x

2

:A

2

: : : :�x

n

:A

n

:?) & �(�~x:

~

B:?) �

� �(�x

2

:B

2

: : : :�x

n

:B

n

:?):

In both the above cases the thesis follows from the induction hypothesis.

(ii) By Lemma 4.4.(iii) we have that k � �~x:

~

C:?.

Then k[A=u] � �~x:

~

C[A=u]:?. We can now prove the thesis by induction on the structure of

k. The base case is immediate. The inductive case follows easily once one realizes that, by the

Substitution Lemma, C 2 Kind(�

RC

)) C[A=u] 2 Kind(�

RC

): 2

Now, we choose one of the variables of V ar

2

to act as a �xed constant, i.e. it will not be

used as a bound variable in an abstraction. This variable will be denoted by 0.

De�nition 6.3 The map � : f2g [Kind(�

RC

) [Constr(�

RC

) ! Term(�

R!

) is inductively

de�ned by:

1. �(?) = �(2) = 0 : ?

2. �(�) = � if � is a variable.

�(s) = s if s 2 S.

3. �(��:M:N) = ��: �(M):�(M)! �(N) : ? if ��:M:N is formed by (2;2) or (2; ?).

�(�x:M:N) = �x: �(M):�(N) if �x:M:N is formed by (?;2) or (?; ?).

4. �(��:M:N) = ��: �(M):�(N) if ��:M:N is formed by (2;2).

�(�x:M:N) = �(N) if �x:M:N is formed by (?;2).

27

5. �(MN) = �(M)�(N) if MN is formed by (2;2).

�(MN) = �(M) if MN is formed by (?;2).

The de�nition by cases is correct by Lemma 4.10. Lemma 6.4 below guarantees that the

range of � is really the set of Term(�

R!

).

In order to map Context(�

RC

) into Context(�

R!

) we choose, for each variable � 2 V ar

2

, a

connected variable x

�

2 V ar

?

, such that no two variables of V ar

2

are connected to the same

variable of V ar

?

. We extend now the map � in such a way that it acts also on Context(�

RC

)

yielding elements of Context(�

R!

):

1. Let A 2 Kind(�

RC

) [Type(�

RC

).

�(x : A) = x : �(A) if x 2 V ar

?

.

�(� : A) = � : �(A); x

�

: �(A) if � 2 V ar

2

.

2. Let � = hu

1

: A

1

; u

2

: A

2

; : : : ; u

n

: A

n

i 2 Context(�

RC

).

�(�) = h0 : ?; d :?; �(u

1

: A

1

); �(u

2

: A

2

); : : : ; �(u

n

: A

n

)i.

The reason for putting 0 : ? and d :?� ��: ?:� in the context is that in the following

de�nition of the map [�] on terms of �

RC

it will be necessary to have a canonical inhabitant for

each type and kind. If �(�) `

�

R!

B : ? or �(�) `

�

R!

B : 2, we want �(�) `

�

R!

c

B

: B for a c

B

which does not depend on the structure of �.

Now, if �(�) `

�

R!

B : ? we shall put c

B

� dB and if �(�) `

�

R!

B : 2, a canonical inhabitant

of B is inductively de�ned by

1. If B � ? then c

?

= 0

2. If B � k

1

! k

2

then c

k

1

!k

2

= �� : k

1

:c

k

2

.

Note that c

B

[N=u] � c

B[N=u]

for all B 2 Kind(�

R!

) [Type(�

R!

), N 2 Term(�

R!

) and

variables u.

The following lemma states that � and � are well-de�ned.

Lemma 6.4 Let � 2 Context(�

RC

), M;N 2 Term(�

RC

).

� `

�

RC

M : N : 2 or � `

�

RC

M : N � 2) �(�) `

�

R!

�(M) : �(N)

Proof By induction on the length of the derivation of � `

�

RC

M : N , distinguishing cases

according to the last applied rule.

1. If � `

�

RC

M : N is an axiom, there are two possibilities: either M � ? and N � 2 and

we are done, or M � s and N � ? where s is a sort, and in this case it is easy to check

that the lemma holds by de�nition of � and �.

2. If the last rule is (var) then the conclusion is �

0

; a : N `

�

RC

a : N and so, by induction

and de�nition of � and �, �(�

0

; a : N) `

�

R!

�(a) : �(N).

3. If the last rule is (weak) the thesis follows from the induction hypothesis, the de�nition of

�(�) and �(�) and Weakening.

4. If the last rule is (red

R

�) then the thesis follows from the induction hypothesis and Prop-

erty 6.2.

28

5. IfM � �u:B

1

:B

2

, N � p 2 P and the last applied rule is (�) then by induction �(�) `

�

R!

�(B

1

) : ? and �(�; u : B

1

) `

�

R!

�(B

2

) : ?.

If B

1

2 Type(�

RC

) then �(�; u : B

1

) = �(�); u : �(B

1

) and so �(�) `

�

R!

�(B

1

)! �(B

2

) :

? by rule (?; ?).

If B

1

2 Kind(�

RC

) then �(�; u : B

1

) = �(�); u : �(B

1

); x

u

: �(B

1

) and so, by rules (?; ?)

and (2; ?), we have �(�) `

�

R!

�u: �(B

1

):�(B

1

)! �(B

2

) : ?.

6. If M � �u:B

1

:B

2

, N � �u:B

1

:C

2

2 Kind(�

RC

) and the last rule is (�) then by induction

�(�) `

�

R!

�(B

1

) : ? and �(�; u : B

1

) `

�

R!

�(B

2

) : �(C

2

).

If B

1

2 Type(�

RC

) then �(�u:B

1

:B

2

) � �(B

2

), �(�u:B

1

:C

2

) � �(C

2

) and �(u : B

1

) =

u : �(B

1

). By de�nition of � and � and by Property 6.2, u is not a free variable in

�(B

2

) : �(C

2

), and so by substituting c

�(B

1

)

for u we �nd �(�) `

�

R!

�(B

2

) : �(C

2

).

If B

1

2 Kind(�

RC

) then �(�u:B

1

:B

2

) � �u: �(B

1

):�(B

2

), �(�u:B

1

:C

2

) � �(B

1

)! �(C

2

)

and �(�; u : B

1

) = �(�); u : �(B

1

); x

u

: �(B

1

). By de�nition of � and � and by Property 6.2,

x

u

is not a free variable in �(B

2

) : �(C

2

), so by substituting c

�(B

1

)

for x

u

we obtain

�(�); u : �(B

1

) `

�

R!

�(B

2

) : �(C

2

) and by one application of (�) (rule (2;2)), �(�) `

�

R!

�u: �(B

1

):�(B

2

) : �(B

1

)! �(C

2

).

7. If M � B

1

B

2

, N � C

2

[B

2

=x] 2 Kind(�

RC

) and the last rule is the Application rule, let

� `

�

RC

B

1

: �x:C

1

:C

2

and then by the Stripping Lemma and induction we obtain:

If B

2

2 Object(�

RC

) then

�(B

1

B

2

) � �(B

1

), �(�) `

�

R!

�(B

1

) : �(�x:C

1

:C

2

)

and �(�x:C

1

:C

2

) � �(C

2

) � �(C

2

[B

2

=x]).

If B

2

2 Constr(�

RC

) then �(B

1

B

2

) � �(B

1

)�(B

2

), �(�) `

�

R!

�(B

1

) : �(�x:C

1

:C

2

)

and �(�) `

�

R!

�(B

2

) : �(C

1

). Besides, �(�x:C

1

:C

2

) � �(C1) ! �(C

2

), so �(�) `

�

R!

�(B

1

B

2

) : �(C

2

) � �(C

2

[B

2

=x]). 2

Lemma 6.5 A 2 T

S

) �(A) � A.

Proof Immediate by de�nition of � . 2

Lemma 6.6 Let B;B

0

2 Kind(�

RC

) [Constr(�

RC

).

(i) If x 2 V ar

?

and A 2 Object(�

RC

) then �(B[A=x]) � �(B) � �(B)[A=x].

(ii) If � 2 V ar

2

and A 2 Constr(�

RC

) then �(B[A=�]) � �(B)[�(A)=�].

(iii) If B !

R�

B

0

then �(B)!

�

�(B

0

) or �(B) � �(B

0

).

(iv) B

c

=

R�

B

0

) �(B) =

�

�(B

0

):

Proof By induction on the structure of B.

(i) (ii) Immediate by de�nition of �(�), Property 6.2 and the induction hypothesis.

(iii) We consider !

�

and !

R

separately.

Assume B !

�

B

0

. If B � �u:M:N , B � �u:M:N or B � MN with B

0

� �u:M

0

:N

0

,

B

0

� �u:M

0

:N

0

or B

0

� M

0

N

0

, then �(B) !

�

�(B

0

) or �(B) � �(B

0

) by induction. The

interesting situation occurs when B � (�u:M:N)P and B

0

� N [P=u]. If M 2 Type(�

RC

) then

�((�u:M:N)P) � �(N) � �(N [P=u]) by de�nition of � and by (i). If M 2 Kind(�

RC

) then

�((��:M:N)P)� (��: �(M):�(N))�(P)!

�

�(N)[�(P)=�] � �(N [P=�]) by de�nition of � and

by (ii).

29

Assume B !

R

B

0

. Since B;B

0

2 Kind(�

RC

) [Constr(�

RC

) it has to be necessarily that

B � C[A] and B

0

� C[A

0

] for a suitable context for objects C[], where A;A

0

2 Object(�

RC

) and

A!

R

A

0

. Then, �(B) � �(B

0

) follows by (i). Notice that in (i) the usual notion of substitution

is considered, not that of replacements in contexts. However, it is quite straightforward to check

that (i) is valid even for the replacement in contexts.

(iv) Immediate from (iii). 2

De�nition 6.7 The map [�] : Kind(�

RC

) [Constr(�

RC

) [Object(�

RC

) ! Object(�

R!

) is

inductively de�ned by

1. [?] = c

0

2. [x] = x if x 2 V ar

?

3. [�] = x

�

if � 2 V ar

2

4. [s] = c

0

if s 2 S

5. [f] = f if f 2 F

6. [�x:M:N] = c

0!0!0

[M][N][c

�(M)

=x] if �x:M:N is formed by (?; ?) or (?;2)

[��:M:N] = c

0!0!0

[M][N][c

�(M)

=x

�

][c

�(M)

=�] if ��:M:N is formed by (2; ?) or (2;2)

7. [�x:M:N] = (�z: 0:�x: �(M):[N])[M] where z is a fresh variable, if �x:M:N is formed by

(?; ?) or (?;2)

[��:M:N] = (�z: 0:��: �(M):�x

�

: �(M):[N])[M] where z is a fresh variable, if ��:M:N

is formed by (2; ?) or (2;2)

8. [MN] = [M][N] if MN is formed by (?; ?) or (?;2)

[MN] = [M]�(N)[N] if MN is formed by (2; ?) or (2;2).

This de�nition by cases is correct by the Unicity of formation lemma. The following theorems

state that [�] satis�es the required conditions: Theorem 6.8 shows that the range of [�] is

really Object(�

R!

), and Theorem 6.12 shows that the mapping preserves all possible reduction

sequences.

Theorem 6.8 Let � 2 Context(�

RC

), M;N 2 Term(�

RC

).

If � `

�

RC

M : N then �(�) `

�

R!

[M] : �(N).

Proof By induction on the structure ofM . By Lemma 6.4 we know that �(�) is a legal context

in �

R!

.

1. M � ?, then N � 2 by Stripping (Lemma 4.2(i) and Lemma 4.4(ii)). It follows that

[?] � c

0

: 0 � �(2) in �(�).

2. M � s 2 S, then N � ? by Stripping (ii) and Lemma 4.4(ii). It follows that [s] � c

0

: 0 �

�(?) in �(�).

3. M � u 2 V ar

?

[V ar

2

, then u : A 2 �, with A

c

=

R�

N . If u � � 2 V ar

2

then

�(� : A) � � : �(A); x

�

: �(A) 2 �(�). If u � x 2 V ar

?

then �(x : A) � x : �(A) 2 �(�).

In both cases �(�) `

�

R!

[u] : �(A), and by Lemma 6.6, using some applications of (red

�

),

�(�) `

�

R!

[u] : �(N).

30

4. M � f 2 F , then, by Stripping (iv), N

c

=

R�

� where � is the type of f in the signature

F . We have that [f] � f : � in �(�). By Lemma 6.5, �(�) � � and then, by Lemma 6.6

and some applications of (red

�

), we �nd [f] : �(N) in �(�).

5. M � �u:B

1

:B

2

, then � `

�

RC

B

1

: p

1

and �; u : B

1

`

�

RC

B

2

: p

2

for suitable p

1

; p

2

2 P .

By induction �(�) `

�

R!

[B

1

] : 0 and �(�; u : B

1

) `

�

R!

[B

2

] : 0. By Lemma 6.4, �(�) `

�

R!

,

�(B

1

) : ? and so �(�) `

�

R!

c

�(B

1

)

: �(B

1

).

If p

1

� ? and u � x 2 V ar

?

then �(�; x : B

1

) � �(�); x : �(B

1

), so by induction and the

Substitution Lemma, �(�) `

�

R!

[B

2

][c

�(B

1

)

=x] : 0. By using the Application rule twice we

get �(�) `

�

R!

c

0!0!0

[B

1

][B

2

][c

�(B

1

)

=x] : 0.

If p

1

� 2 and u � � 2 V ar

2

then �(�; � : B

1

) � �(�); � : �(B

1

); x

�

: �(B

1

), so by

induction and the Substitution Lemma �(�) `

�

R!

[B

2

][c

�(B

1

)

=x

�

; c

�(B

1

)

=�] : 0. By using

the Application rule twice we get �(�) `

�

R!

c

0!0!0

[B

1

][B

2

][c

�(B

1

)

=x

�

; c

�(B

1

)

=�] : 0.

In both cases �(�) `

�

R!

[�u:B

1

:B

2

] : 0.

6. M � �u:B

1

:B

2

, then � `

�

RC

B

1

: p

1

and �; u : B

1

`

�

RC

B

2

: C

2

: p

2

for suitable

C

2

2 Term(�

RC

), p

1

; p

2

2 P , with N

c

=

R�

�u:B

1

:C

2

.

By induction �(�) `

�

R!

[B

1

] : 0 and �(�; u : B

1

) `

�

R!

[B

2

] : �(C

2

). By Lemma 6.4,

�(�) `

�

R!

�(B

1

) : ? and �(�; u : B

1

) `

�

R!

�(C

2

) : ?.

If p

1

� ? and u � x 2 V ar

?

then �(�; x : B

1

) � �(�); x : �(B

1

). With two applica-

tions of (�) and one of the Application rule we get �(�) `

�

R!

(�z: 0:�x: �(B

1

)[B

2

])[B

1

] :

�x: �(B

1

):�(C

2

).

If p

1

� 2 and u � � 2 V ar

2

then �(�; x : B

1

) = �(�); � : �(B

1

); x

�

: �(B

1

). With three

applications of (�) and one of the Application rule we get

�(�) `

�

R!

(�z: 0:��: �(B

1

):�x

�

: �(B

1

):[B

2

])[B

1

] : ��: �(B

1

):�(B

1

)! �(C

2

).

In both cases �(�) `

�

R!

[�u:B

1

:B

2

] : �(�u:B

1

:C

2

) and so, by Lemma 6.6(iv), some

applications of rule (red

�

) enable us to get �(�) `

�

R!

[�u:B

1

:B

2

] : �(N).

7. M � B

1

B

2

then � `

�

RC

B

1

: �u:C

1

:C

2

and � `

�

RC

B

2

: C

1

for some C

1

; C

2

2 Term(�

RC

)

with N

c

=

R�

C

2

[B

2

=u].

By induction �(�) `

�

R!

[B

1

] : �(�u:C

1

:C

2

) and �(�) `

�

R!

[B

2

] : �(C

1

). By Lemma 6.4,

�(�) `

�

R!

�(C

1

) : ?.

If C

1

2 Type(�

RC

), u � x 2 V ar

?

, then �(�x:C

1

:C

2

) � �x: �(C

1

):�(C

2

), so �(�) `

�

R!

[B

1

][B

2

] : �(C

2

)[[B

2

]=x] � �(C

2

[[B

2

]=x]) � �(C

2

) � �(C

2

[B

2

=x]) (by Lemma 6.6).

If C

1

2 Kind(�

RC

), u � � 2 V ar

2

, then

�(��:C

1

:C

2

) � ��: �(C

1

):�(C

1

)! �(C

2

),

so �(�) `

�

R!

[B

1

]�(B

2

)[B

2

] : �(C

2

)[[B

2

]=x

�

; �(B

2

)=�] � �(C

2

[B

2

=�]) (by Lemma 6.6).

In both cases �(�) `

�

R!

[B

1

B

2

] : �(C

2

[B

2

=u]) and then, by Lemma 6.6.(iv) and some

applications of rule red

�

, �(�) `

�

R!

[B

1

B

2

] : �(N). 2

In what follows we will prove that if M !

R�

N in �

RC

then [M] !

R�

[N] in �

R!

, i.e.,

[�] preserves all reduction sequences. For the proof we need some lemmas.

Lemma 6.9 Let M;N 2 Term(�

RC

) such that M [N=x];M [N=�] 2 Term(�

RC

).

If x 2 V ar

?

and N 2 Object(�

RC

) then [M [N=x]]� [M][[N]=x].

If � 2 V ar

2

, N 2 Constr(�

RC

) then [M [N=�]] � [M][�(N)=�; [N]=x

�

].

31

Proof By induction on the structure of M .

If M 2 (V ar

?

[V ar

2

[F [S [f?g) the result is trivial. Otherwise the �rst part of the

lemma follows from the induction hypothesis and the fact that

1. �(Q[N=u]) � �(Q)[[N]=u], by Lemma 6.6

2. �(Q[N=u])� �(Q)[[N]=u], by Property 6.2

3. c

�(Q[N=u])

� c

�(Q)

[[N]=u], by 1 and the de�nition of c

B

4. c

�(Q[N=u])

� c

�(Q)

[[N]=u], by 2 and the de�nition of c

B

.

The second part of the lemma follows from the induction hypothesis and the fact that

1. �(Q[N=�]) � �(Q)[�(N)=�] � �(Q)[�(N)=�; [N]=x

�

], by Lemma 6.6 and because x

�

is

not a free variable in �(Q).

2. �(Q[N=�]) � �(Q) � �(Q)[�(N)=�; [N]=x

�

], by Property 6.2 and because x

�

is not a free

variable in �(Q).

3. c

�(Q[N=�])

� c

�(Q)

[�(N)=�; [N]=x

�

] , by 1 and the de�nition of c

B

.

4. c

�(Q[N=�])

� c

�(Q)

[�(N)=�; [N]=x

�

], by 2 and the de�nition of c

B

. 2

Now, we extend the de�nition of [�] to substitutions, in the usual way: Let ' be a substitu-

tion in �

RC

, ['] is the substitution such that Dom([']) = Dom(') and for each x 2 Dom([']),

['](x) = ['(x)].

This de�nition is correct by Theorem 6.8.

Now we can prove:

Lemma 6.10 (i) LetM 2 Term(�

RC

) and let ' be a substitution in �

RC

such that Dom(') �

V ar

?

and M' 2 Term(�

RC

). Then [M'] � [M]['].

(ii) Let C[M] 2 Term(�

RC

) with C[] context and M 2 Object(�

RC

). Then [C[M]] � [C][[M]].

Proof (i) By Lemma 6.9.

(ii) It is not di�cult to check that the proof of the �rst part of Lemma 6.9 can be modi�ed in

order to consider replacement instead of substitution. 2

Lemma 6.11 Let t be an algebraic term. Then [t] � t.

Proof By de�nition of algebraic term and map [�]. 2

Now we can show that all the reduction sequences are preserved.

Theorem 6.12 Let M;M

0

2 Term(�

RC

). If M !

R�

M

0

then [M]!

+

R�

[M

0

].

Proof By induction on the structure of M .

For M 2 (V ar

?

[V ar

2

[F [S [f?g) the theorem is trivial.

If M � �u:B

1

:B

2

, M � �u:B

1

:B

2

or M � B

1

B

2

with M

0

� B

1

B

0

2

or B

0

1

B

2

, then [M]!

R�

[M

0

] follows immediately from the induction hypothesis. Let us consider now the cases where

M is a �-redex or a R-redex.

� If M � (�u:B

1

:B

2

)C and M

0

� B

2

[C=u], we distinguish again two cases:

32

{ If (�u:B

1

:B

2

)C is formed by (?; ?) or (?;2) then

[M] � [(�u:B

1

:B

2

)][C] � (�z: 0:�u : �(B

1

):[B

2

])[B

1

][C]!

�

[B

2

] [[C]=u],

because z is a fresh variable. Moreover, [B

2

][[C]=u]� [B

2

[C=u]], by Lemma 6.9.

{ If (�u:B

1

:B

2

)C is formed by (2; ?) or (2;2) then

[M] � [(�u:B

1

:B

2

)]�(C)[C]� (�z: 0:�u: �(B

1

):�x

u

: �(B

1

):[B

2

])[B

1

]�(C)[C] !

�

!

�

[B

2

][�(C)=u; [C]=x

u

] � [B

2

[C=u]] by Lemma 6.9.

� If M is a R-redex then it has to be M � t', M

0

� t

0

', where r : t! t

0

is a rule in R and

Dom(') � V ar

?

because in R there is no free variable belonging to V ar

2

. By Lemma

6.10, [M] � [t]['] and [M

0

] � [t

0

][']. Moreover, by Lemma 6.11, [t] � t and [t

0

] � t

0

. Hence

M � [t][']!

r

[t

0

]['] � [M

0

]. 2

Using the previous theorem we can now easily prove the main result of this section.

Theorem 6.13 !

R�

-strong normalization of �

R!

implies !

R�

-strong normalization of �

RC

.

Proof By contradiction. Assume !

R�

is strongly normalizing in �

R!

and there is an in�nite

sequence of !

R�

-reductions in �

RC

starting from a term M

1

2 Term(�

RC

):

M

1

!

R�

M

2

!

R�

M

3

!

R�

: : :

By Theorem 6.12,

[M

1

]!

R�

[M

2

]!

R�

[M

3

]!

R�

: : :

which contradicts the hypothesis. Then all sequences of !

R�

-reductions are �nite in �

RC

. 2

As an application of this result, we obtain the strong normalization of the generalization to

�

C

of the language described in [JO91].

7 �

^R

j= SN) �

!R

j= SN

In this section we prove that SN for �

^R

implies SN for �

R!

. �

R!

belongs to the �hS;F ; Ri-cube,

while the type assignment system �

^R

(see Appendix) is speci�ed by the quadruple hS; F;Ax; Ri

(where F and Ax are naturally induced by the signature F , or equivalently F is induced by F

and Ax).

As done for the proof of

�

R!

j= SN) �

RC

j= SN

we shall use a translation from terms of �

R!

to terms of �

^R

and prove this translation to be

reduction preserving. Such a translation will be a \type erasing" function.

The following lemma was proved in [Gir72] for �

!

(i.e., without algebraic features), but

it holds for �

R!

because the function symbols in F can be looked at as free variables in �-

reductions.

Lemma 7.1 ([Gir72]) !

�

is strongly normalizing on terms of �

R!

.

Let us de�ne, by induction on the structure of terms, a \type erasing" function from

Object(�

R!

) to �

F

(see De�nition A.2).

De�nition 7.2 (The type erasing function j � j) .

The map j � j : Object(�

R!

)! �

F

is inductively de�ned by

33

1. jxj = x if x 2 V ar

?

.

2. jf j = f if f 2 F .

3. j�x:A:qj= �x:jqj if �x:A:q is formed by (?; ?).

4. j�x:A:qj= jqj if �x:A:q is formed by (2; ?).

5. jpqj = jpjjqj if pq is formed by (?; ?)

6. jpQj = jpj if pQ is formed by (2; ?).

We shall frequently use, without explicit mention, the following property, stating that it can

never happen that an object be a subterm of a constructor. This property can be easily proved

using Lemma 3.14.

Property 7.3 The erasing function never makes completely disappear subterms that are objects,

i.e., given an object C[q] where C[�] is a context and q is an object itself, jC[q]j � C

0

[q

0

] where

q

0

� jqj and C

0

[�] � jC[�]j.

We shall prove that j � j is well-de�ned, i.e. jM j 2 �

^R

in case M 2 Object(�

R!

) (Theorem

7.9 below). To do this we need some lemmas. In the following a type A will be called arrow-

ground if its �-normal form A#

�

belongs to T

S

.

Recall that, since in �

R!

we do not have rules (?;2) it is not possible to have algebraic

reductions inside types (see Lemma 3.14); so

c

=

R�

between types is indeed =

�

.

Lemma 7.4 Let M 2 Object(�

R!

). Then there exists a context C[] and a term N such that:

M � C[N], N is a variable or an object formed by a (?; ?)-rule and j C[z] j� z (for z fresh

variable). Besides:

1. if jN j � cN

1

: : :N

m

(c variable or function symbol) and c has arrow-ground type � with

�#

�

� �

1

! : : : �

m

! � then there exist N

0

i

(1 � i � m) subterms of N such that jN

0

i

j � N

i

and the type of N

0

i

is A

i

with A

i

=

�

�

i

.

2. if jN j � �y:P then N is an abstraction.

Furthermore, there exists n � 0 such that A#

�

=

�

�u

1

: D

1

: : :�u

n

: D

n

:A

0

[N

1

=v

1

; : : : ; N

m

=v

m

]

for some terms N

1

; : : : ; N

m

, where each �u

i

: D

i

: : : is formed by (2; ?), A

0

is the type of N and

A is the type of M .

Proof The part about C[] and its properties easily follows by de�nition of the map j � j. For

the rest we use the Stripping Lemma. 2

Lemma 7.5 Let M 2 Object(�

R!

) such that � ` M : A and jM j is in �-normal form. Then

there exist B and � such that B ` jM j : �. Besides,

1. if A is an arrow-ground type then � � A#

�

2. if x : � 2 � with � arrow-ground type, then x : �#

�

2 B.

Proof By induction on the structure of jM j.

1. If jM j is a constant we get that jM j is typable and the second condition is trivially satis�ed.

The �rst condition is a consequence of Lemma 7.4.

34

2. If jM j � x is a variable we distinguish the four possible cases:

if A is not arrow-ground and � is so, x : �#

�

` x : �#

�

satis�es the conditions;

if � is not arrow-ground and A is so, x : A#

�

` x : A#

�

satis�es the conditions;

if both A and � are arrow-ground, by Stripping (iii) and the fact we are in �

R!

, we have

that A#

�

� �#

�

. Hence x : A#

�

` x : A#

�

satis�es the conditions;

if neither A nor � is arrow-ground, any application of (var), say x : s ` x : s with s 2 S,

works.

3. Otherwise, since jM j is in normal form it has necessarily to be of the form

�y

1

: : : y

n

:gN

1

: : :N

m

where g is either a variable or g 2 F and the N

i

's have the same

form as jM j. We distinguish three cases:

(a) n = 0, m > 0 and g is a variable.

By the form of the term there exist �

0

and N

0

i

, A

i

(1 � i � m), such that � � �

0

,

jN

0

i

j = N

i

and �

0

` N

0

i

: A

i

. Since the N

i

's are objects themselves (they have not been

erased by the type erasing function), by induction we get that, for 1 � i � m, there

exist B

i

; �

i

such that B

i

` N

i

: �

i

, and besides, if A

i

is arrow-ground then �

i

� A

i

#

�

,

and if x : � 2 �

0

with � arrow ground then x : �#

�

2 B

i

. It is now straightforward to

get a derivation for B

1

[

^

: : : [

^

B

m

[

^

fg : �

1

! : : :! �

m

! �g ` jM j : �, where

the symbol [

^

denotes the following operation between bases:

B [

^

B

0

= fx : � ^ � j x : � 2 B and x : � 2 B

0

g [fx : � j x : � 2 B and x 62

B

0

g[fx : � j x 62 B and x : � 2 B

0

g (it is straightforward to check that if B `M : �

then we have also B [

^

B

0

`M : � for all B

0

). Notice that if x : � 2 �

0

with � arrow

ground then the type of x in B

1

[

^

: : :[

^

B

m

[

^

it is not an intersection.

Moreover:

- the �rst condition is satis�ed since, in case A is arrow-ground we can choose � � A#

�

;

otherwise we can take a fresh type variable;

- by the conditions satis�ed (by induction) by the B

i

` N

i

: �

i

's, and by the fact

noticed above, we get that, for all x 6= g, x : � 2 � with � arrow ground implies

x : �#

�

2 B. For what concerns g we know that if g : � 2 � with � arrow ground then

�#

�

� �

1

! : : :! �

m

! � by Lemma 7.4. So the second condition is satis�ed as well.

(b) n = 0, m > 0 and g 2 F

�

1

!:::!�

p

!�

.

By the form of the term and Lemma 7.4, there exist �

0

and N

0

i

; A

0

i

(1 � i � m) such

that jN

0

i

j = N

i

and �

0

` N

0

i

: A

0

i

, and �

1

! : : :! �

p

! � =

�

A

0

1

! : : :! A

0

m

! �

(that is, A

0

i

=

�

�

i

for 1 � i � m, and � =

�

�

m+1

! �

p

! �). By induction, for

1 � i � m there exists B

i

such that B

i

` N

i

: �

i

and if x : � 2 � then x : �#

�

2 B

i

.

Moreover, if A is arrow-ground then � ` M : �

m+1

! : : : ! �

p

! � � A#

�

(by

Lemma 7.4). Then, B

1

[

^

: : : [

^

B

m

` gN

1

: : :N

m

: �

m+1

! : : :! �

p

! � satis�es

the conditions.

(c) n 6= 0, jM j � �y:N .

By the form of the term, Lemma 7.4 and Stripping, there exist �

0

; N

0

; A

0

such that � � �

0

, �

0

` N

0

: A

0

and jN

0

j = N , and A =

�

��

1

: �

1

: : :��

k

: �

k

:�y: �:A

0

[N

1

=v

1

; : : : ; N

n

=v

n

], where �

1

: �

1

; : : : ; �

k

: �

k

; y : � � �

0

,

the ��

i

: �

i

:::: are formed by (2; ?) and �y: �:::: is formed by (?; ?). Now, if A is arrow

ground then k = 0 and A

0

, � are arrow-ground, thenA#

�

= �y: �#

�

:A

0

#

�

. By induction,

B ` N : � with � � A

0

#

�

and y : �#

�

2 B. Hence B�fy : �#

�

g ` �y:N : �#

�

! � � A#

�

satis�es both conditions. 2

35

Lemma 7.6 LetM 2 Object(�

R!

) and jM j � Q[P=x] where P is a term such that if x 62 FV (Q)

then P is in �-normal form, and 9P

0

2 Object(�

R!

) s.t. jP

0

j � P . Then

9B; � s:t: B ` Q[P=x] : �) 9B

0

s:t: B

0

` (�x:Q)P : �

Proof We consider two cases according to whether x does occur free in Q or not. We can

assume that x does not occur in B.

1. x occurs in Q.

Let B ` Q[P=x] : � be a deduction in �

^R

. We shall consider only the occurrences of P in

Q[P=x] which replace occurrences of x in Q. Let fB

i

` P : �

i

j i 2 Ig be the set of all the

conclusions (in the previous deduction) whose subjects are such occurrences of P . Then

it is not di�cult to obtain a deduction of B

1

[

^

: : : [

^

B

n

` P :

V

i2I

�

i

. (Note that [is

not su�cient because the same variable could be bound more than once in a term).

Moreover we can obtain a deduction of B; x :

V

i2I

�

i

` Q : � by extending the basis B and

replacing in the proof of B ` Q[P=x] : � the deductions of B; x :

V

i2I

�

i

` x : �

j

(obtained

using rules (Ax) and (^E) in �

^R

) for the subdeductions of B

j

` P : �

j

. So by rule (! I) in

�

^R

we have that B ` �x:Q : (

V

i2I

�

i

)! � and since we have B

1

[

^

: : :[

^

B

n

` P :

V

i2I

�

i

we can obtain B

0

` (�x:Q)P : � where B

0

= B

1

[

^

: : :[

^

B

n

[

^

B.

2. x does not occur in Q.

By the hypothesis and by Lemma 7.5 we have that 9B

1

; � such that B

1

` P : �. Besides,

we know that 9B; � such that B ` Q[P=x] : �, i.e., B ` Q : � since x is not free in Q.

Then B; x : � ` Q : � and from this B ` �x:Q : � ! �. Now it is easy to construct a proof

of B

0

` (�x:Q)P : � where B

0

= B [

^

B

1

. 2

Lemma 7.7 Let M [M

0

=x] 2 Object(�

R!

) where x 2 V ar

?

.

jM [M

0

=x]j � jM j[jM

0

j=x].

Proof By induction on the structure of M .

1. If M � f 2 F or M 2 V ar

?

it is trivial.

2. If M � �y:N:N

0

with y � x it is also trivial. Let us consider the case y 6� x. jM [M

0

=x]j �

j�y:N [M

0

=x]:N

0

[M

0

=x]j. Now there are two subcases:

(a) IfM is formed by (?; ?) then jM [M

0

=x]j � �y:jN

0

[M

0

=x]j, which by induction is equal

to �y:jN

0

j[jM

0

j=x] � jM j[jM

0

j=x].

(b) If M is formed by (2; ?) then jM [M

0

=x]j � jN

0

[M

0

=x]j, which by induction is equal

to jN

0

j[jM

0

j=x] � jM j[jM

0

j=x].

3. IfM �M

1

M

2

then jM [M

0

=x]j � jM

1

[M

0

=x]M

2

[M

0

=x]j. Now there are again two subcases:

(a) IfM is formed by (?; ?) then jM [M

0

=x]j � jM

1

[M

0

=x]jjM

2

[M

0

=x]j, which by induction

is equal to jM

1

j[jM

0

j=x]jM

2

j[jM

0

j=x] � jM j[jM

0

j=x].

(b) If M is formed by (2; ?) then jM [M

0

=x]j � jM

1

[M

0

=x]j which by induction is equal

to jM

1

j[jM

0

j=x] � jM j[jM

0

j=x]. 2

Lemma 7.8 Let M 2 Object(�

R!

). If jM j !

�

N then there exists M

0

2 Object(�

R!

) such that

N � jM

0

j and M !

�

M

0

.

36

Proof In order to have jM j !

�

N it has to be M � C

0

[(�x:A:q)q

0

] where C

0

[] is a context and

(�x:A:q)q

0

is formed by (?; ?). Then jM j = C[(�x:jqj)jq

0

j] !

�

C[jqj[jq

0

j=x]] = N where C[] is

the context obtained by applying the function j j to C

0

in the obvious way. Then we can take

M

0

= C

0

[q[q

0

=x]] and we have M !

�

M

0

and jM

0

j = N by Lemma 7.7. 2

Theorem 7.9 If M 2 Object(�

R!

) then there exist B; � such that B ` jM j : �.

Proof jM j is !

�

-strongly normalizable by Lemma 7.1 and Lemma 7.8. Then all the reduction

strategies allow us to get the �-normal form of jM j, in particular the reduction strategy according

to which a contraction (�x:Q)P !

�

Q[P=x] is performed only if P is in �-normal form (i.e. the

rightmost-innermost evaluation). Hence we can �nd B and � by applying Lemma 7.5 to the

�-normal form of jM j and iterating Lemma 7.6 backwards along the chain of reduction steps

which leads from jM j to its �-normal form. 2

So, we have proved that if M 2 Object(�

R!

) then jM j 2 �

^R

. In fact we can also prove that

for algebraic terms we can obtain the same type.

Lemma 7.10 If � ` M : � is an algebraic term in �

R!

then jM j 2 �

^RH

and jM j is typable

with �#

�

from a basis B such that if x : �

0

2 � then x : �

0

#

�

2 B.

Proof By induction on the structure of M .

If M is a variable the result is trivial.

IfM � fM

1

: : :M

n

where f 2 F

�

1

:::�

n

!�

thenM

1

: : :M

n

are algebraic terms of type �

1

: : : �

n

(in �-normal form) in �, and � ` M : � implies �#

�

� �. By induction there exist B

1

; : : : ; B

n

such that if x : �

0

2 � then x : �

0

#

�

2 B

i

and B

i

` jM

i

j : �

i

. Then B

1

[: : :[B

n

` jM j : �.

If M � XM

1

: : :M

n

where X : �

1

! : : : �

n

! � 2 � and M

1

: : :M

n

are algebraic terms

of type �

1

: : : �

n

in � then by induction there exist B

1

; : : : ; B

n

such that if x : �

0

2 � then

x : �

0

#

�

2 B

i

and B

i

` jM

i

j : �

i

#

�

. Then B

1

[: : :[B

n

[X : �

1

#

�

! : : : �

n

#

�

! �#

�

` jM j : �#

�

. 2

The following theorem will be fundamental for proving that �

R!

terms are !

R�

-strongly

normalizing.

Theorem 7.11 [BF93a] !

R�

is strongly normalizing in �

^R

if !

FOR

is conservative and

strongly normalizing on �rst-order algebraic terms and if HOR satis�es the general schema.

In fact, in the following we shall prove that if M !

R�

M

0

then jM j !

�

R�

jM

0

j.

A �-reduction on a �

R!

term such that the �-redex is formed by (p

1

; p

2

) will be called in

the following a �(p

1

; p

2

)-reduction.

Let ' be a substitution for �

R!

, with Dom(') � V ar

?

. We de�ne the substitution j'j for

terms in �

^R

in the following way: Dom(j'j) = Dom(') and for each x 2 Dom(j'j), xj'j = jx'j.

Lemma 7.12 Let t be an algebraic term of �

R!

. Then jtj � t.

Proof By induction on the structure of t. 2

Lemma 7.13 Let M;N 2 Object(�

R!

). If M !

R�

N then jM j !

R�

jN j or jM j � jN j if the

reduction is actually a �(2;2)- or a �(2; ?)-reduction.

37

Proof Let M = C[P] where P is a �-redex or an R-redex and C[] is a suitable context. Let

us check the statement of the lemma for each notion of reduction, distinguishing in the case of

a �-reduction which rule the redex has been formed by.

Let P = (�a:A:Q)Q

0

where �a:A:Q is formed by (2;2). It is easy to check that, by de�nition

of j j, if P : S : 2 then jC[P]j = jC[U]j for each U : S. We have therefore jM j � jN j.

Let P = (�a:A:Q)Q

0

where �a:A:Q is formed by (2; ?). We have that j(�a:A:Q)Q

0

j = jQj =

jQ[Q

0

=a]j by de�nition of j j, and then jM j � jN j.

Let P = (�x:A:Q)Q

0

where �x:A:Q is formed by (?; ?). We have that j(�x:A:Q)Q

0

j =

(�x:jQj)jQ

0

j !

�

jQj[jQ

0

j=x] and jQj[jQ

0

j=x] = jQ[Q

0

=x]j by Lemma 7.7. It follows then jM j !

�

jN j.

Let P = A' and A'!

R

A

0

' using a rule r : s! t such that A � �(s) and A

0

� �(t) where

� is a renaming of variables. By Lemma 7.7, jA'j = jAjj'j. By Theorem 7.9, jAjj'j 2 �

^R

.

Moreover, since A is algebraic, A � jAj (by Lemma 7.12), then jAjj'j !

R

jA

0

jj'j = jA

0

'j. It

follows then jM j !

R

jN j. 2

We can prove now the main theorem of this section.

Theorem 7.14 Assume R is conservative and strongly normalizing on �rst-order algebraic

terms and HOR satis�es the general schema. If M 2 Term(�

R!

) then M is !

R�

-strongly

normalizable.

Proof By Lemma 4.11 only the cases M 2 Constr(�

R!

) and M 2 Object(�

R!

) have to be

considered.

If M 2 Constr(�

R!

) then, since �

R!

objects cannot occur in constructors (Lemma 3.14), it

follows that each reduction in M is actually a �-reduction. Hence, strong normalization of M

follows from Lemma 7.1.

If M 2 Object(�

R!

) then we assign to M the pair I(M) = hjM j;Mi. By Theorem 7.9,

jM j 2 �

^R

and then by Theorem 7.11 jM j is !

R�

-strongly normalizing. By Lemma 7.1, M is

!

�

-strongly normalizable. Then the ordering >� (!

R�

; !

�(2;2)

[!

�(?;2)

)

lex

is well founded

on these pairs. Moreover, M !

R�

M

0

implies I(M) > I(M

0

), so there is no in�nite reduction

sequence. 2

8 Modularity of Con
uence

We recall �rst the de�nition of con
uence. A reduction relation ! is con
uent if for any t, v

1

and v

2

such that t!

�

v

1

and t!

�

v

2

, there exists v

3

such that v

1

!

�

v

3

and v

2

!

�

v

3

.

Local con
uence is a closely related (weaker) property. ! is locally con
uent if for any t, v

1

and v

2

such that t! v

1

and t! v

2

, there exists v

3

such that v

1

!

�

v

3

and v

2

!

�

v

3

.

For strongly normalizing relations, local con
uence is equivalent to con
uence (Newman's

Lemma [New42]). So we shall prove that!

�R

is locally con
uent on �

RC

. The notion of critical

pair is crucial in this proof. Let us recall the de�nition. Assume terms are represented as trees

where the application operator appears explicitly.

De�nition 8.1 If l! r and s! t are two rewrite rules (we assume that the variables of s! t

were renamed so that there is no common variable with l! r), p is the position of a non-variable

subterm of s and � is a most general uni�er of sj

p

and l, then (t�; s�[r�]

p

) is a critical pair

formed from those rules. Note that s ! t may be a renamed version of l ! r. In this case a

superposition in the root position is not considered a critical pair.

38

Thus, a critical pair arises from a most general non-variable overlap between two left-hand

sides. Overlaps of higher order variables applied to some arguments do generate critical pairs

(these are non-variable overlaps due to the application operator):

Example 8.2 Consider the �-rule: (�x:M)N ! Mfx 7! Ng

12

. If a rule r in HOR contains

the term Xt (where X is a higher order variable and t is an arbitrary term) as a subterm of the

left-hand side - for instance, consider r : F (X0)! X - then there is a critical pair between r

and �: (�x:M; F (Mfx 7! 0g)).

The following lemmas show that the con
uence of FOR for algebraic terms transfers to �

RC

-

terms, and that for the class of higher order rewrite systems which we consider, the absence of

critical pairs implies con
uence (note that this is not true for arbitrary higher-order rewrite

systems, as shown in [Nip91]).

Lemma 8.3 If FOR is con
uent on the set of algebraic terms of �

RC

then !

FOR

is locally

con
uent on �

RC

.

Proof Let us �rst prove local con
uence, by structural induction. Let M be a term in �

RC

. If

M is algebraic the thesis follows trivially from the hypothesis. If M is not algebraic we consider

two cases:

1. M � ?, M � 2, M � xP

1

: : :P

n

(n � 0), M � (�x : A:P

0

)P

1

: : :P

n

(n � 0), M � (�x :

A:P

0

)P

1

: : :P

n

(n � 0), or M � FP

1

: : :P

n

where F is a higher-order function symbol and

n � 0. In this case the thesis follows from the induction hypothesis since all the redexes

are strictly inside the terms.

2. Otherwise the root of M is a �rst-order function symbol. In this case we are going to use

the notions of cap and aliens: let M � ft

1

: : : t

n

where f is a �rst-order function symbol,

an alien subterm of M is a maximal subterm of M which is not of the same form (that is,

a maximal subterm of M which is not rooted by a �rst-order function symbol). We will

denote by aliens(M) the multiset of alien subterms of M . The cap of M is the �rst-order

algebraic term obtained fromM by replacing its aliens by variables (all the occurrences of

the same alien subterm are replaced by the same variable).

Since by assumption the root of M is a �rst-order function symbol, the cap of M is not

a variable, and then !

FOR

is con
uent on aliens(M) by the induction hypothesis. Then,

we only have to consider the case where M !

FOR

N

1

and M !

FOR

N

2

in (non-variable)

cap positions. In this case cap(M) !

FOR

cap(N

1

) and cap(M) !

FOR

cap(N

2

) and by

hypothesis there exists N

0

such that cap(N

1

) !

�

FOR

N

0

and cap(N

2

) !

�

FOR

N

0

. Each

variable z

i

of N

0

appears also in cap(M). Let A

i

be the subterm of M replaced by z

i

to

obtain cap(M). Then, N

1

!

�

FOR

N

0

fz

i

7! A

i

g and N

2

!

�

FOR

N

0

fz

i

7! A

i

g.

Having proved local con
uence, con
uence now follows from the strong normalization property,

by Newman's Lemma. 2

Lemma 8.4 Let HOR be a higher-order rewrite system satisfying the general schema. If HOR

does not have critical pairs, then !

HOR

is locally con
uent on �

RC

.

12

This is actually a \meta-rule", or a rule schema. Although one cannot write this rule in HOR, it is possible

to compute the critical pairs generated by the superpositions of this rule scheme on the left-hand sides of HOR.

39

Proof In order to prove local con
uence it is su�cient to show the commutation of !

HOR

reductions on overlapped redexes. Let t be a term in �

RC

such that t !

HOR

v

1

at position p

and t !

HOR

v

2

at position p:q. Since there are no critical pairs, the subterm tj

p:q

of t must be

covered by a variable z of the rule applied at position p. Let t

0

be the term obtained out of t

by replacing the subterm at position p:q and all other occurrences of tj

p:q

corresponding to z

by a new variable x. Then, t

0

is still reducible at position p: t

0

!

HOR

v

0

. If x appears in v

0

at

positions m

1

; : : : ; m

n

then t j

p:q

appears in v

1

at the same positions. Let t

00

be the term obtained

after reducing v

1

at positions m

1

; : : : ; m

n

. Then v

2

!

HOR

t

00

at position p. Hence HOR is

locally con
uent, therefore con
uent as a consequence of Newman's Lemma. 2

Now, using a similar argument (and the previous lemmas), we can prove that !

�R

is con-

uent.

Theorem 8.5 (Local Con
uence of !

R�

in �

RC

) If FOR is con
uent on the set of alge-

braic terms, and HOR does not introduce critical pairs (i.e. there is no critical pair between

rules of HOR, between FOR and HOR, between � and HOR

13

) then !

R�

is locally con
uent

in �

RC

.

Proof It su�ces to show the commutation of �-, !

FOR

- and !

HOR

-reductions on overlapped

redexes. But since !

�

is con
uent, !

HOR

is con
uent (by Lemma 8.4) and !

FOR

is con
uent

(by Lemma 8.3), it is su�cient to prove that for all t such that t !

R�

v

1

at position p using

one of the reduction relations, and t!

R�

v

2

at position p:q using a di�erent reduction relation,

there exists v

3

such that v

1

!

�

R�

v

3

and v

2

!

�

R�

v

3

.

Since there are no critical pairs, the subterm tj

p:q

of t must be covered by a variable z of

the rule applied at position p. Let t

0

be the term obtained out of t by replacing the subterm at

position p:q and all other occurrences of tj

p:q

corresponding to z by a new variable x. Then, t

0

is still reducible at position p: t

0

!

R�

v

0

. If x appears in v

0

at positions m

1

; : : : ; m

n

then t j

p:q

appears in v

1

at the same positions. Let t

00

be the term obtained after reducing v

1

at positions

m

1

; : : : ; m

n

. Then v

2

!

R�

t

00

at position p.

Hence !

R�

is locally con
uent, therefore con
uent. 2

For example, the class of higher-order rewrite systems de�ning higher-order functions by

primitive recursion (structured recursion) on �rst-order data structures, verify the required

hypothesis and then !

R�

is con
uent in this case.

9 Conclusions

We have extended the Calculus of Constructions with algebraic types and rewrite rules. Our

system is closely related to the Calculus of Constructions with inductive types (CCI) de�ned

by Th. Coquand and C. Paulin-Mohring [Coq90], since CCI can be seen as an extension of

the Calculus of Constructions with a particular class of higher-order rewrite rules. The strong

normalization of CCI was recently proved by B. Werner [Wer94]. The problem of extending the

CCI with pattern-matching de�nitions was studied by Th. Coquand [Coq92]. In particular, in

[Coq92] there is a notion of recursive schema ensuring strong normalization, and rewrite rules

are assumed critical-pair free. In our framework these restrictions apply only to higher-order

rules (�rst-order rules are simply required to be non-duplicating).

Con
uence and strong normalization are essential properties of logical systems, since they

ensure the consistence of the system. Proving these properties is in general a di�cult task, so, it

13

See example 8.2.

40

is important to study under which conditions these proofs are modular. Our results show that in

order to prove strong normalization of any of the systems in the �R-cube it is su�cient to prove

termination of the �rst order rewrite rules in R on algebraic terms, provided that R satis�es

certain syntactical conditions, namely non-duplication for FOR and the general schema for

HOR. As a consequence, we get the strong normalization of a restriction of CCI (with pattern-

matching) where the inductive types are de�ned by structural induction. The restriction on �rst

order rules is not important in practice, since most implementations of rewriting use sharing,

and shared reductions are always conservative. The general schema, however, limits the power

of the higher-order rules. The generalization of the proof of strong normalization to wider classes

of higher-order rules will be the subject of future work.

References

[vB93] S. van Bakel. Intersection type disciplines in lambda calculus and applicative term

rewriting systems. PhD thesis, University of Nijmegen, 1993.

[Barb90] F. Barbanera. Adding algebraic rewriting to the calculus of constructions: Strong

normalization preserved. In Proc. of the 2nd Int. Workshop on Conditional and Typed

Rewriting, 1990.

[BF93a] F. Barbanera and M. Fern�andez. Combining �rst and higher order rewrite systems

with type assignment systems. Proc. of the Int. Conference on Typed Lambda Calculi

and Applications, Utrecht, LNCS 664, Springer Verlag, 1993.

[BF93b] F. Barbanera and M. Fern�andez. Modularity of termination and con
uence in combi-

nations of rewrite systems with �

!

. Proc. of the 20th Int. Colloquium on Automata,

Languages, and Programming, Lund, LNCS 700, Springer Verlag, 1993.

[BFG94] F. Barbanera, M. Fern�andez, and H. Geuvers. Modularity of Strong Normalization

in the algebraic-�-cube. Proc. of the 9th IEEE Symposium on Logic In Computer

Science, Paris, 1994.

[Bar86] H. Barendregt. Lambda Calculus : its syntax and demantics, second edition. North

Holland, 1986.

[Bar91] H. Barendregt. Introduction to generalised type systems. Journal of Functional Pro-

gramming, 1991.

[BCD83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A �lter �-model and the com-

pleteness of type assignment. Journal of Symbolic Logic, 48(4):931{940, 1983.

[Ber88] S. Berardi. Type dependence and constructive mathematics. PhD thesis, Mathematical

Institute, University of Torino, 1990.

[BT88] V. Breazu-Tannen. Combining algebra and higher-order types. In Proc. 3rd IEEE

Symposium on Logic In Computer Science, Edinburgh, 1988.

[BTG90] V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic strong

normalization. Theoretical Computer Science, 83(1), 1991.

[BTG92] V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic con
u-

ence. Information and Computation, 82:3{28, 1992.

41

[deB80] N.G. deBruijn. A survey of the project Automath. In To H.B. Curry: Essays on

combinatory logic, lambda calculus and formalism., eds. J.P. Seldin, J.R. Hindley,

Academic Press, New York, 1980.

[CC90] F. Cardone and M. Coppo. Two extensions of Curry's type inference system. In

P. Odifreddi, editor, Logic and Computer Science. Academic Press, 1990.

[Coq90] Th. Coquand and C. Paulin-Mohring. Inductively de�ned types. In Proc. of Colog'88,

LNCS 417, Springer-Verlag, 1990.

[Coq92] Th. Coquand. Pattern matching with dependent types. In Proc. of the Workshop on

Logical Frameworks, 1992.

[CD80] M. Coppo, and M. Dezani-Ciancaglini. An extension of the basic functionality theory

for the �-calculus. Notre Dame Journal of Formal Logic, 21(4), 1980.

[CDHL84] M. Coppo, M. Dezani, F. Honsell, and G. Longo. Extended type structures and �lter

lambda models. In Logic Colloquium 82, Amsterdam, 1984.

[CDV80] M. Coppo, M. Dezani-Ciancaglini and B. Venneri. Principal type schemes and �

calculus semantics. In To H.B. Curry: Essays on combinatory logic, lambda calculus

and formalism., eds. J.P. Seldin, J.R. Hindley, Academic Press, New York, 1980.

[CH88] Th. Coquand and G. Huet. The calculus of constructions. Information and Compu-

tation, 76:95{120, 1988.

[Church40] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,

5, 1940.

[DJ88] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, volume B, pages 243{309. North-Holland,

1990.

[Dou91] D. J. Dougherty. Adding algebraic rewriting to the untyped lambda calculus. In Proc.

4th Rewriting Techniques and Applications, Como, LNCS 488, Springer-Verlag, 1991.

[Geu92] H. Geuvers. The Church-Rosser property for ��-reduction in typed �-calculi. Proc.

7th IEEE Symposium on Logic In Computer Science, Santa Cruz, 1992.

[Geu93] H. Geuvers. Logics and type systems. PhD thesis, Dept. of Computer Science, Univer-

sity of Nijmegen, 1993.

[GN91] H. Geuvers and M.J. Nederhof. A simple modular proof of the strong normalization

for the calculus of constructions. Journal of Functional Programming, vol.1, 1991.

[Gir72] J.-Y. Girard. Interpr�etation fonctionelle et �elimination des coupures dans

l'arithm�etique d'ordre sup�erieur. Th�ese d'Etat, Univ. Paris VII, France, 1972.

[HHP87] R. Harper, F. Honsell and G. Plotkin. A framework for de�ning logics. Proc. of the

2nd IEEE Symposium on Logic In Computer Science., Washington DC, 1987.

[Hin86] R. Hindley and J. Seldin. Introduction to Combinators and �-calculus. Cambridge

University Press, 1986.

[Hin90] R. Hindley. Types with intersection, an introduction. Formal aspects of Computing,

1990.

42

[JO91] J.-P. Jouannaud and M. Okada. Executable higher-order algebraic speci�cation lan-

guages. In Proc. of the 6th IEEE Symposium Logic In Computer Science, Amsterdam,

1991.

[Klo87] J. W. Klop. Term rewriting systems: a tutorial. EATCS Bulletin, 32:143{182, 1987.

[KOR93] J. W. Klop, V. van Oostrom and F. van Raamsdonk. Combinatory Reduction Systems,

introduction and survey. Theoretical Computer Science 121(1-2), 1993.

[New42] M. H. A. Newman. On theories with a combinatorial de�nition of `equivalence'. Ann.

Math., 43(2):223{243, 1942.

[Nip91] T. Nipkow. Higher-order critical pairs. In Proc. of the 6th IEEE Symposium Logic In

Computer Science, Amsterdam, 1991.

[Oka89] M. Okada. Strong normalizability for the combined system of the types lambda cal-

culus and an arbitrary convergent term rewrite system. In Proc. ISSAC 89, Portland,

1989.

[OR93] V. van Oostrom and F. van Raamsdonk. Comparing combinatory reduction systems

and higher-order rewrite systems. IR 333, Vrije Universiteit, Amsterdam, August 1993.

[OR94] V. van Oostrom and F. van Raamsdonk. Weak ortogonality implies con
uence: the

higher order case. To appear in Logical Foundation of Computer Science.

[Pott80] G. Pottinger. A type assignment for the strongly normalizable �-terms. In To H.B.

Curry: Essays on combinatory logic, lambda calculus and formalism., eds. J.P. Seldin,

J.R. Hindley, Academic Press, New York, 1980.

[Rus87] M. Rusinowitch. On termination of the direct sum of term rewriting systems. Infor-

mation Processing Letters, 26:65{70, 1987.

[Toy87] Y. Toyama. Counterexamples to termination for the direct sum of term rewriting

systems. Information Processing Letters, 25:141{143, April 1987.

[Wer94] B. Werner. M�eta-th�eorie du Calcul des Constructions Inductives. Th�ese Univ. Paris

VII, France.

43

A System �

^R

System �

^R

is a type assignment system with intersection types and algebraic features which

was introduced in [BF93a], where a slightly di�erent but equivalent presentation is provided.

Type assignment systems (also called type inference systems) are formal systems for assigning

types to untyped terms. These systems are de�ned by specifying a set of terms, a set of types

one assigns to terms and a set of type inference rules. The rules are usually given in a natural

deduction style. Here, we use a slight variation of the standard presentation, in order to keep

track of the premises statements depend on. We shall refer to [Hin86] for all the notions about

type assignment systems that we do not de�ne explicitly.

The particular type assignment system we are going to de�ne contains algebraic features

in the style we have used so far, and intersection types. Type assignment systems containing

intersection types were originally devised in [CD80, CDV80] and deeply investigated afterwards

in several papers, among which we recall [BCD83, Pott80, CDHL84, vB93]. We refer to the

above mentioned papers and to the surveys [CC90] and [Hin90] for motivations and applications

of intersection types. System �

^R

can be considered an extension of a fundamental system with

intersection types (called `

�!

in [vB93]).

We begin the description of system �

^R

by considering a set S of sorts and a set of (untyped)

function symbols F = ff

1

; f

2

; : : : ; f

n

g. Each function symbol is equipped with an arity , denoted

by superscripts when not clear from the context.

As said before, to de�ne a type assignment system we have to specify a set of types, a set of

(untyped) terms and a set of inference rules to assign types to terms.

De�nition A.1 (Types) The set T

S^

of types of �

^R

is de�ned as follows:

� If s 2 S then s 2 T

S^

� If ' 2 V then ' 2 T

S^

, where V is the set of untyped type variables.

� If �; � 2 T

S^

then � ! � 2 T

S^

� If �; � 2 T

S^

then � ^ � 2 T

S^

.

We will consider types modulo associativity, commutativity and idempotency of the type

operator ^.

A type is algebraic if it does not contain ^ and type variables. As in Sect. 3, we denote by

T

S

the set of algebraic types.

De�nition A.2 (Terms) The terms of �

^R

are de�ned by the following grammar:

�

F

::= x j f j (�

F

�

F

) j �x:�

F

where x ranges over a set X of (untyped) variables and f over F . Terms are then untyped

�-terms with constants and on them the usual notion of �-reduction is de�ned.

De�nition A.3 (i) A statement is an expression of the form M : � where � 2 T

S^

and

M 2 �

F

. M is the subject of the statement.

(ii) A basis (the set of assumptions a statement depends on) is a set of statements with only

variables as subjects. Moreover there are no two statements with the same subject. If x

does not occur in the basis B then B; x : � denotes the basis B [fx : �g.

44

(iii) A set of axiom statements (for a set of constants F = ff

1

; f

2

; : : : ; f

n

g) is a set of statements

of the form ff

1

:�

1

; f

2

:�

2

; : : : ; f

n

:�

n

g where �

i

2 T

S

(1 � i � n) and is of the form �

1

!

: : :! �

m

! � for m arity of f

i

.

De�nition A.4 (Inference rules) Let Ax be a set of axiom statements.

(var) B; x : � `

^

x : �

(Ax) B `

^

f : � for any f : � 2Ax

(!I)

B; x:� `

^

M : �

B `

^

�x:M : � ! �

(!E)

B `

^

M : � ! � B `

^

N : �

B `

^

(MN) : �

(^I)

B `

^

M : � B `

^

M : �

B `

^

M : � ^ �

(^E)

B `

^

M : � ^ �

B `

^

M : �

Then the set of statements Ax is a parameter system �

^R

depends on.

A termM will be called typable if there exists a basis B and a type � such that B `

^

M : �.

We shall denote by �

^R

the set of typable terms.

To completely specify system �

^R

we have to give a set of algebraic rewrite rules. To de�ne

what algebraic rewriting is in our type assignment system we could de�ne in the present context

the notions of �rst and higher-order constant, algebraic term (�rst and higher-order), rewrite

rule and so on. The de�nitions of all these notions would be however quite similar to those

given in Sect. 3 in a typed context, so, instead of doing that we can equivalently de�ne algebraic

rewriting for system �

^R

as induced by a set R = FOR[HOR of typed rewrite rules as presented

in De�nition 3.10. Before doing that, in order to be precise, we have to give a small technical

de�nition.

De�nition A.5 Given a set S of sorts, a set F of constants, and a set Ax of axiom statements,

let t be an algebraic term for S and F as de�ned in 3.3, where F is the signature naturally

induced by F and Ax.

t is the untyped term obtained by replacing any occurrence of a function symbol of F in t by its

untyped counter-part in F .

In the rest of this section we will implicitly assume a signature to be induced by a set of

constants and a set of axiom statements.

De�nition A.6 (Algebraic rewriting) Let r 2 R where R is a set of rewrite rules for a

signature F as in 3.10. Let M;M

0

2 �

^R

, r : t! t

0

2 R. The reduction relation !

r

on �

^R

is

de�ned as follows.

M !

r

M

0

if M � C[t[N

1

=x

1

; : : : ; N

n

=x

n

]](where N

1

; : : : ; N

n

2 �

^R

and C[�] is a context) and

M

0

� C[t

0

[N

1

=x

1

; : : : ; N

n

=x

n

]]. (Note that since N

1

; : : : ; N

n

2 �

^R

they can contain �-terms.)

M !

R

M

0

if M !

r

M

0

for some r : t! t

0

2 R.

As usual, !

R�

denotes the union of the reduction relations !

R

and !

�

, and �

R�

its

re
exive and transitive closure.

45

Note that because of the following lemma, which follows easily by de�nition of rewrite rule,

the de�nition above is sound, i.e. it is not possible to have a term which is possible to rewrite,

say C[t'] 2 �

^R

, such that the type of t and of its variables are not \equivalent" to the algebraic

types present in the rewritable typed term t.

Lemma A.7 Let t be a typed rewritable term in a rule r : t! t

0

2 R. Moreover, let � and �

00

be the algebraic type and context of Lemma 3.17 relative to t.

If B `

^

t : � then � � � and for all statements x:
 2 B such that x occurs in t:
 �

1

^ : : :^

n

where

1

is the type of the variable x in t.

System �

^R

is then completely speci�ed by a quadruple hS; F;Ax; Ri, where S is a set of

sorts, F a set of constants, Ax a set of axiom statements and R a set of rewrite rules (in the

sense of Sect. 3 and for the signature F induced by F and Ax).

The main property of �

^R

, and the most useful for us, is strong normalization.

Theorem A.8 (�

^R

j= SN [BF93a]) Let �

^R

be the system de�ned by

hS; F;Ax; Ri;

where R is such that

1. FOR is conservative and �rst-order algebraic terms are strongly normalizable w.r.t. !

FOR

2. HOR satis�es the general schema (w.r.t. FOR).

Then terms in �

^R

are strongly normalizable w.r.t. !

R�

.

46

