Ecole Normale Superieure

The Skeleton of the 120-cell is not 5-gonal

Michel DEZA V. GRISHUKHIN

LIENS - 96 - 6

Département de Mathématiques et Informatique

CNRS URA 1327

The Skeleton of the 120-cell is not 5-gonal

Michel DEZA V. GRISHUKHIN*

LIENS - 96 - 6

April 1996

Laboratoire d'Informatique de l'Ecole Normale Supérieure 45 rue d'Ulm 75230 PARIS Cedex 05

*CEMI RAN, Moscow, Russia

The skeleton of the 120-cell is not 5-gonal

Michel Deza Ecole Normale Supérieure, Paris, France V.Grishukhin CEMI RAN, Moscow, Russia

April 10, 1996

Abstract. The edge-graphs of m-polygons and of 5 Platonic solids admit (unique) isometric embedding into a half cube (of dimension m and 6, resp.). The skeletons of α_n , β_n , γ_n are also ℓ_1 -graphs but it was proved in [1] that 24-cell and 600-cell are not (since not 5- and not 7-gonal, resp.). We show here that the last remaining regular polytope, 120-cell, is also not ℓ_1 -graph. The 120-cell P_{120} is the largest one among the four-dimensional regular polytopes. It has 120 three-dimensional facets (cells) and 600 vertices. The skeleton G_{120} of this polytope is a regular graph of degree 4 on 600 vertices. It is not distance-regular.

The graph G_{120} is constructed from 480 pentagons such that each vertex belongs to 4 pentagons and each edge belongs to three pentagons. One can say that G_{120} is a 4-dimensional fullerene.

We use the following description of vertices P_{120} by four- dimensional vectors given in [2] (Ch.22.3, Exerc.5). There are two groups of vertices. Vertices of the first group are all permutations of coordinates of the vectors of the shapes 1.-4. below. Vertices of the second group are all even permutations of coordinates of the vectors of shapes 5.-7.

1.	$(\pm 2, \pm 2, 0, 0)$	5.	$(\pm \tau^2, \pm \tau^{-2}, \pm 1, 0)$
2.	$(\pm(2\tau-1),\pm 1,\pm 1,\pm 1)$	6.	$(\pm (2\tau - 1), \pm \tau^{-1}, \pm \tau, 0)$
3.	$(\pm \tau, \pm \tau, \pm \tau, \pm \tau^{-2})$	7.	$(\pm 2, \pm 1, \pm \tau, \pm \tau^{-1})$
4.	$(\pm \tau^2, \pm \tau^{-1}, \pm \tau^{-1}, \pm \tau^{-1})$		

Here $\tau = \frac{\sqrt{5}+1}{2}$ such that 1.6 < τ < 1.62. Besides

$$\tau^{-2} = 2 - \tau, \ \tau^2 = \tau + 1, \ \tau^{-1} = \tau - 1, \ 2\tau - 1 = \sqrt{5}.$$

Two vertices given by vectors v and v' are adjacent in the skeleton G_{120} , i.e. are connected by an edge of P_{120} , if the inner product vv' is maximal, i.e. if $vv' = 6\tau - 2$. The norm (=squared length) of an edge of P_{120} is equal to $(v - v')^2 = 20 - 12\tau$, i.e. $0.56 < (v - v')^2 < 0.8$.

We shall identify vertices with the vectors describing them. We say that a vertex v belongs to the layer (x) if the first coordinates of v is x. All the 600 vertices of P_{120} are partitioned into 15 layers. The vertices of the k-th and the (15 - k)-th layers have the same, up to sign, first coordinate. The first layer (τ^2) and the last layer $(-\tau^2)$ are facets of P_{120} .

We give in Table below adjacencies of vertices of these layers.

(x)	(x)	adjacencies	G(x)
(au^2)	20	$3(\tau^2) + 1(2\tau - 1)$	Dod
$(2\tau - 1)$	20	$1(\tau^2) + 3(2)$	empty
(2)	30	$2(2\tau - 1) + 2(\tau)$	empty
(au)	60	$1(2) + 2(\tau) + 1(1)$	$12C_{5}$
(1)	60	$1(\tau) + 1(1) + 2(\tau^{-1})$	$30K_{2}$
(τ^{-1})	60	$2(1) + 1(\tau^{-2}) + 1(0)$	empty
(τ^{-2})	20	$3(\tau^{-1}) + 1(-\tau^{-2})$	empty
(0)	60	$1(\tau^{-1}) + 2(0) + 1(-\tau^{-1})$	$12C_{5}$
$(-\tau^{-2})$	20	$3(-\tau^{-1}) + 1(\tau^{-2})$	empty
$(-\tau^{-1})$	60	$2(-1) + 1(-\tau^{-2}) + 1(0)$	empty
(-1)	60	$1(-\tau) + 1(-1) + 2(-\tau^{-1})$	$30K_2$
(- au)	60	$1(-2) + 2(-\tau) + 1(-1)$	$12C_{5}$
(-2)	30	$2(-2\tau + 1) + 2(-\tau)$	empty
$(-2\tau - 1)$	20	$1(-\tau^2) + 3(-2)$	empty
$(-\tau^2)$	20	$3(-\tau^2) + 1(-2\tau - 1)$	Dod

Table. Adjacencies of the layers.

We use in Table the following notation. Dod, $12C_5$ and $30K_2$ are the skeleton of a dodecahedron, 12 disjoint 5-cycles (*pentagons*) C_5 and 30 disjoint edges K_2 , respectively. Dod is a strongly regular planar graph on 20 vertices of degree 3. It consists of 12 pentagons C_5 .

The first, the second and the fourth columns of Table give layers (x), their cardinality |(x)| and the graph G(x) induced in G_{120} by vertices of the layer (x).

The third column of Table shows layers in which the four edges incident to a vertex of the layer (x) go. The number n(x, y) in the row (x) before the layer (y) denotes the number of edges going from a vertex of the layer (x) to the layer (y). Note that $\sum_{y} n(x, y) = 4$ is the degree of G_{120} .

The number n(x, x) is the degree of the graph G(x). Since the graph $G_{120} = \bigcup_x G(x)$ is connected and its degree is 4, we have that $n(x, x) \leq 3$. Table shows that n(x, x) = 3 only for two layers $(\pm \tau^2)$, i.e. for the facets of P_{120} .

If n(x, x) = 2, then the graph G(x) consists of k disjoint pentagons C_5 , where 5k = |(x)|. This is the case for $x = \pm \tau, 0$, when |(x)| = 60, and hence k = 12.

If n(x, x) = 1, then the graph G(x) consists of m disjoint edges K_2 , where 2m = |(x)|. This is the case for $x = \pm 1$, when |(x)| = 60, and hence m = 30.

If n(x, x) = 0, then the graph G(x) has no edges, i.e. it is empty. This is so for $x = \pm (2\tau - 1), \pm \tau^{-1}, \pm \tau^{-2}$.

If n(x, y) = 1 and $x \neq y$, then a unique vertex of the layer (y) corresponds to each vertex $v \in (x)$. Denote this vertex as $q_y(v)$

Since $n(\tau^2, 2\tau - 1) = n(2\tau - 1, \tau^2) = 1$, we have a one- to-one correspondence between vertices of the layers (τ^2) and $(2\tau - 1)$.

Using Table we can describe the graph $G(2\tau - 1, 2)$ induced in G_{120} by the layers $(2\tau - 1)$ and (2). The vertices of this graph from the layer $(2\tau - 1)$ have degree 3, and the vertices from the layer (2) have degree 2. Hence the graph $G(2\tau - 1, \tau)$ is a dodecahedron with one vertex (of degree 2) on each edge of this dodecahedron. Each pentagon C_5 of the dodecahedron is transformed into a 10-gon C_{10} .

Each vertex $w \in (2\tau - 1)$ is adjacent in G_{120} to the unique vertex $q_{\tau^2}(w) \in (\tau^2)$, and each vertex $v \in (2)$ is adjacent in G_{120} to two vertices of the layer (τ) . Since $n(\tau, 2) = 1$, the vertex $q_2(v) \in (2)$ is uniquely determined for each vertex $v \in (\tau)$, and, since $n(2, \tau) = 2$, there are two vertices $v, v' \in (\tau)$ such that $q_2(v) = q_2(v')$.

The graph $G'_1 := G(2\tau - 1, 2, \tau)$ induced in G_{120} by the three layers $(2\tau - 1)$, (2) and (τ) contains 110 vertices and it is as follows. Recall that $G(2\tau - 1, 2)$ contains 12 10-gons C_{10} . The graph G'_1 contains a pentagon $C_5 \subset G(\tau)$ corresponding to a 10-gon C_{10} such that each vertex $v \in C_5 \subset G(\tau)$ is adjacent to the unique vertex $q_2(v) \in C_{10}$. Recall that the vertices of C_{10} distinct from $q_2(v)$ are adjacent to vertices of $Dod = G(\tau^2)$.

Denote by G_1 the graph induced in G_{120} be vertices of the 4 layers (τ^2) , $(2\tau - 1)$, (2) and (τ) . The vertices of G_1 have degrees 3 and 4. The degree 3 is the degree of vertices of the layer (τ) . The forth edges incident to these vertices in G_{120} go to the layer (1).

Table shows that there is a one-to-one correspondence between vertices of the layers (τ) and (1), since $n(\tau, 1) = n(1, \tau) = 1$. Hence, for $v \in (\tau)$, the vertex $q_1(v)$ belongs to the layer (1), and $q_{\tau}(u) \in (\tau)$ for each $u \in (1)$.

Recall that $q_2(v) \in (2)$ is the unique vertex of the layer (2) corresponding to $v \in (\tau)$, and there is once more vertex $v' \in (\tau)$ such that $q_2(v') = q_2(v)$. The vertices $q_1(v)$ and $q_1(v')$ of the layer (1) are adjacent in G(1). There are two edges going from the layer (1) into the layer (τ^{-1}) . Note that the 5 vertices $v, v' \in (\tau), q_2(v) = q_2(v') \in (2), q_1(v), q_1(v') \in (1)$ induce an (isometric) pentagon.

Now, using Table, we describe the graph G_2 induced in G_{120} by the 4 layers (1), (τ^{-1}) , (τ^{-2}) and (0). The subgraph $G(1, \tau^{-1})$ of G_2 induced by the layers (1) and (τ^{-1}) consists of 12 vertex disjoint 10-gons C_{10} . The vertices of (1) and (τ^{-1}) lie in each C_{10} in turn. The 5 vertices of C_{10} from the layer (1) have degree 3, and other 5 vertices of C_{10} from the layer (τ^{-1}) have degree 2. Since n(1,1) = 1, there is a pairing q_1 of vertices from the layer (1) in the graph $G(1, \tau^{-1})$. This pairing connects vertices of distinct C_{10} . Call two 10-gons *neighbouring* if they have a pair of adjacent vertices of G(1).

Since $n(\tau^{-1}, \tau^{-2}) = 1$, there corresponds a unique vertex $q_{\tau^{-2}}(u)$ to each vertex $u \in (\tau^{-1})$. Table shows that the vertex $q_{\tau^{-2}}(u) \in (\tau^{-2})$ has degree

3 in the graph G_2 . Let u_1, u_2, u_3 be vertices of (τ^{-1}) such that $q_{\tau^{-2}}(u_1) = q_{\tau^{-2}}(u_2) = q_{\tau^{-2}}(u_3) = w \in (\tau^{-2})$. The 3 vertices $u_i, 1 \leq i \leq 3$, belong to 3 distinct pairwise neighbouring 10-gons C_{10}^i . Let v_{i1} and v_{i2} be two vertices of the layer (1) adjacent to the vertex $u_i \in (\tau^{-1}), 1 \leq i \leq 3$. All the six vertices v_{ij} are distinct. Moreover, we can denote the vertices v_{ij} such that v_{ij} and $v_{i+1,j+1}$ are adjacent in G_2 , where i + 1 and j + 1 are considered by modulo 3 and 2, respectively. Hence the 5 vertices $w, u_i, u_{i+1}, v_{i,j}$ and $v_{i+1,j+1}$ for the corresponding j induce a pentagon.

By Table, the subgraph $G(0) \subseteq G_2$ consists of 12 disjoint pentagons C_5 . Since $n(0, \tau^{-1}) = 1$, there corresponds a unique vertex $q_{\tau^{-1}}(v)$ to each $v \in (0)$. Since $n(\tau^{-1}, 0) = 1$, there is a one-to-one correspondence between vertices of the layers (τ^{-1}) and (0) such that the 5 vertices of a pentagon of the graph G(0) correspond to 5 vertices of (τ^{-1}) of the same 10- gon.

The graph G_2 is planar. It can be drawn as follows. There is a pentagon inside each of the 12 vertex disjoint 10-gons. The vertices of the layer (τ^{-2}) lie inside 9-gons formed by 3 pairs of adjacent edges of 3 pairwise neighbouring 10-gons and by 3 disjoint edges of G(1).

Let G_{-1} and G_{-2} be graphs similar to G_1 nad G_2 but induced by the corresponding layers with negative signs.

The graph G_{120} is the following union of the graphs G_1 , G_2 , G_{-2} and G_{-1} . The vertices of G_1 (G_{-1} , respectively) from the layer (τ) (($-\tau$), respectively) are adjacent the uniquely determined vertices of G_2 (G_{-2}) from the layer (1) (from the layer (-1), respectively), since $n(\tau, 1) = n(1, \tau) = 1$ (and $n(-\tau, -1) = n(-1, -\tau) = 1$). The graphs G_2 and G_{-2} are glued by pentagons of the common subgraph G(0). Besides, since $n(\tau^{-2}, -\tau^{-2}) = n(-\tau^{-2}, \tau^{-2}) = 1$, there is a one-to-one pairing the vertices of the layers (τ^{-2}) and ($-\tau^{-2}$) by edges.

Let $G_{1,2}$ $(G_{-1,-2})$ be a subgraph of G_{120} induced by vertices of G_1 and G_2 $(G_{-1} \text{ and } G_{-2}, \text{ respectively})$. Obviously $G_{1,2}$ and $G_{-1,-2}$ are isomorphic and $G_{1,2} \cap G_{-1,-2} = G(0)$. Since there is a one-to-one correspondence between paths in $G_{1,2}$ and $G_{-1,-2}$, we have the following obvious fact.

Proposition 1 The graphs $G_{1,2}$ and $G_{-1,-2}$ are isometric subgraphs of G_{120} .

Consider the vertices of the graphs G_1 and G_2 from the layers (τ) and (1), respectively. Recal that since $n(\tau, 1) = n(1, \tau) = 1$, there is a one-to-one correspondence q_1 between these sets of vertices. Moreover, this correspondence generates a one-to-one correspondence between the 12 disjoint pentagons of the graph $G(\tau) \subset G_1$ and the 12 disjoint 10-gons of the graph $G(1, \tau^{-1}) \subseteq G_2$.

By an inspection of the graphs G_1 and G_2 on can prove the following

Lemma 1 For $v_1, v_2 \in (\tau)$ let $q_1(v_1), q_1(v_2)$ be the corresponding vertices of the layer (1). Let $l_1(v_1, v_2), l_2(q_1(v_1), q_1(v_2))$ be the lengths of the shortest

paths connected v_1 and v_2 in G_1 and $q_1(v_1)$ and $q_1(v_2)$ in G_2 . Then

$$l_2(q_1(v_1), q_1(v_2)) \ge l_1(v_1, v_2)$$
 if $l_1(v_1, v_2) > 2$.

Note that $l_2(q_1(v_1), q_1(v_2)) = 1$ if $l_1(v_1, v_2) = 2$.

Let p(v, v') be a path connecting in G_{120} vertices $v, v' \in G_1$. If p(v, v') contains vertices of the graph G_2 , then there exist at least two vertices $u, u' \in (\tau) \subset G_1$ such that the subpath $p(u, u') \subset p(v, v')$ contains besides u, u' no other vertex of G_1 . The vertices $q_1(u)$ and $q_1(u')$ are adjacent to u and u' in the path p(u, u'). Now the above Lemma 1 implies

Proposition 2 The graph G_1 is an isometric subgraph of G_{120} .

Consider a subgraph G' of G_1 induced by a pentagon of $G(\tau)$ and the corresponding 10-gon C_{10} of $G(2\tau - 1, 2)$. It is easy to verify that C_{10} is an isometric subgraph of G'. This implies

Proposition 3 The graph G_0 induced by the 3 layers (τ^2) , $(2\tau - 1)$ and (2) is an isometric subgraph of G_1 .

Theorem 1 The graph G_0 is not 5-gonal.

Proof: We give 5 vertices a, B, a, b, c of G_0 that violate the following pentagonal inequality

$$\sum_{u,v \in S} d(u,v) + \sum_{u',v' \in S'} d(u',v') \le \sum_{v \in S,v' \in S'} d(v,v'),$$

where $S = \{A, B\}, S' = \{a, b, c\}.$

Two 10-gons of G_0 either disjoint or have 3 common vertices (and two common adjacent edges). Call two 10-gons *adjacent* if they are not disjoint. Consider four 10-gons C_{10}^i , $1 \le i \le 4$, such that C_{10}^1 is adjacent to C_{10}^i for $2 \le i \le 4$, C_{10}^3 is adjacent to C_{10}^2 and C_{10}^4 , but C_{10}^2 and C_{10}^4 are disjoint.

The intersections $(C_{10}^1 \cap C_{10}^3) \cap C_{10}^2$ and $(C_{10}^1 \cap C_{10}^3) \cap C_{10}^4$ are nonempty, and each contains one vertex, say v^2 and v^4 , respectively. The intersection $C_{10}^1 \cap C_{10}^3$ consists of 3 vertices v^2 , v^4 and a third vertex that we call c.

Let $a \in C_{10}^2$ and $b \in C_{10}^4$ be vertices at distance 5 in the corresponding 10-gons from the vertices $v^2 \in C_{10}^2$ and $v^4 \in C_{10}^4$, respectively. Let $A \in C_{10}^2$ be a vertex adjacent to a. We have two vertices in C_{10}^4 adjacent to the vertex $b \in C_{10}^4$. Let $B \in C_{10}^4$ be those of these vertices that is farther in G_0 from the vertex A.

It is easy to veryfy that the distances in G_0 between the 5 vertices A, B, a, b, c are as follows:

$$d(a,c)=d(b,c)=6;\ d(a,b)=8;\ d(A,B)=7;$$

$$d(a, B) = d(b, A) = 7; \ d(c, A) = d(c, B) = 5; \ d(a, A) = d(b, B) = 1.$$

Hence $\sum_{u,v\in S} d(u,v) + \sum_{u'v'\in S'} d(u',v') = 2 \times 6 + 8 + 7 = 27 > 26 = 2 \times (7 + 5 + 1) = \sum_{v\in S,v'\in S'} d(v,v')$. \Box Since G_0 is an isometric subgraph of G_{120} , we have

Corollary 1 The skeleton G_{120} of the 120 cell is not 5-gonal and so not ell₁-graph (see [3] for the context of it).

References

- P.Assouad, Embeddability of regular polytopes and honeycombes in hypercubes, in: The Geometric Vein, the Coxeter Festschrift, Springer-Verlag, 1981, pp.141-147.
- [2] H.S.M.Coxeter, Regular polytopes, 3rd ed. Dover, New York, 1973.
- [3] M.Deza, V.P.Grishukhin, A zoo of l₁-embeddable polytopal graphs, Report LIENS 96-1, Ecole Normale Supérieure Paris (1996).