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R�esume

Le syst�eme �P

�

propos�e par Aspinall et Compagnani [AC96] est une extension

du syst�eme de types d�ependents �P [Bar92] avec sous-typage. Dans ce rapport, nous

�etudions une nouvelle approche pour ajouter sous-typage aux types d�ependents. On

obtient un syst�eme ��

�

qui poss�ede un syst�eme de sous-typage ind�ependent du syst�eme

de typage et dont la propri�et�e d'�elimination de la transitivit�e se situe aux au niveau des

types, qui distinge cette approche d'autres syst�emes de sous-typage, (e.g. �P

�

[AC96],

F

!

�

[SP94], F

!

^

[Com94]), o�u l'�elimination de la transitivit�e est limit�es aux types en forme

normale. Cette technique est tr�es adapt�ee pour les extensions et les implementations.
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Abstract

Dependent type systems have been the basis of many proof development enviroments. In

[AC96], a system �P

�

is proposed as a subtyping extension of the dependent type system

�P [Bar92] (also called ��[Dow95]). �P

�

has nice meta-theoretic properties including subject

reduction and decidability, but transitivity elimination is restricted to the �

2

normalized types.

In this report, we propose a system ��

�

, which is equivalent to �P

�

, but it has type level

transitivity eliminatioin property. This feature distinguishes our approach from the existing

subtyping systems with reduction relations in types. e.g. �P

�

[AC96], F

!

�

[SP94], F

!

^

[Com94],

where transitivity elimination only holds for normalized types. Meta-theoretic properties

including subject reduction and decidability are established. The system is shown to be

equivalent with �P

�

in typing, kinding and context formation. The type checking algorithm

is more clear and e�cient than �P

�

. The technique is suitable for future extensions and real

implementations.
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1 Introduction

Recently, there are growing interests on using subtyping in proof checkers [Pfe93, Coq92, Luo96,

AC96, Cou95, Bai96, Bar95, Sai96] with the aim of proof reuse and de�nition reuse. Dependent

types are the basis of these proof checkers. Subtyping extension of dependent type system is there-

fore highly desirable. The system �P

�

, developed by Aspinall and Compagnoni[AC96], combines

subtyping and �rst order dependent types (simply called "dependent types" in the sequel), for

which fundamental properties, like subject reduction and decidability, have been established.

We had tried to extend �P

�

by overloaded type[CGL95], but, at a time, we felt di�cult to

progress. The reason is that the subtyping system of �P

�

does not have the transitivity elimination

property, besides, typing and subtyping are closely related.

To overcome this problem, we have developed a system ��

�

, which has the transitivity elim-

ination property and the system is equivalent to �P

�

in typing, kinding and context formation.

Several distinguished features of this work are as follows:

1. Type-level transitivity elimination property.

2. A simple and general �� strong normalization proof.

3. A more e�cient subtyping algorithm than �P

�

.

Transitivity elimination is an important property for systems with subtypes [LMS95]. From

proof theoretical point of view, transitivity elimination is an indispensible step in the proof of

subject reduction and decidability of subtyping. When there are type conversion, the transitivity

elimination turns out to be di�cult. The existing approach is to construct algorithmic systems

based on normalized types, and prove the transitivity elimination in the algorithmic system, as can

be seen in the studies of F

!

�

[SP94],F

!

^

[Com94] and �P

�

[AC96]. We may say that these systems

have transitivity elimination at the level of normalized types. ��

�

is the �rst system having type

level transitivity elimination among subtyping systems with type conversions.

�� strong normalization is a desirable property to prove the termination of subtyping algorithm.

In [AC96], this property has not been proved, instead, a measure based on a new type constructor

"plus" has been used. [SP94] has proved a �� strong normalization for F

!

�

, which needs alternating

� and � reduction. Our proof is simple and general.

These two achievements have not only improved the work of [AC96], but also become important

progress towards subtyping systems with type conversions, especially subtyping extension of Cal-

culus of Construction (CC). In CC, there are four di�erent reductions mixed together, traditional

methods developed in [SP94], [Com94] and [AC96] become di�cult to work. With a modi�cation

of the method in this paper, we have succeded in subtyping CC[Che96b].

From practical point of view, our subtyping system is more e�cient than �P

�

and suitable for

implementation in proof checkers.

The following subsections informally discuss dependent types and subtyping, then we sketch

our approach.

1.1 Intuitive Introduction of Dependent Types

Dependent types are types depending on terms. They can be viewed as functionals mapping terms

to types, or as families of types indexed by terms. A typical example is the collection of product

types indexed by natural numbers:

fA;A�A;A�A �A; � � � ; A

n

; � � �g

which can be represented as:

�n:nat:P (n)
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where P (n) denotes the product A

n

. The � abstraction shows that it is a mapping from naturals

to product types:

n 7! A

n

Therefore, a product type of length m could be encoded as

(�n:nat:P (n))m

which reduces to P (m) = A

m

by �-reduction.

Expressions like �x:A:B are called type families, or simply families, and can be viewed as type

constructors. Applications of type families to terms give rise to types or to other type families.

Two problems need to be taken into account:

1. Kinding of type family

2. Type Reduction through type family application

Kinds are assigned to types, type families and applications of type families much the same way as

types are assigned to terms. General types have the kind ?, the kind of a type family �x:A:B is of

form �x:A:K, where K is the kind of B(under the hypothesis x : A). For the previous example,

the kinding is

�x:nat:P (n) : �x:nat:?

Types in a dependent type system are either atomic types, applications of type families (if they

have the kind ?), or �-types of form �x:A:B, the latter is the counterpart of arrow type A! B in

simply typed �-calculus. Therefore, a lambda abstraction �x:A:M may have a type �x:A:B.

�-types are not the only kind of types a lambda abstraction can have. Another possible type

for �x:A:M might be a type of form (�y:C:�x:A

0

:B

0

)N , which is equivalent to a �-type �x:A

0

[y :=

N ]:B

0

[y := N ] by �-reduction. Type reductions are taken at two levels: reductions of terms in

types or type families; reductions of type family applications, (they are respectively called �

1

and

�

2

reductions in [AC96]). Type reduction complicates the study of meta-theoretical properties

as the uniqueness of minimal typing is lost: a term has a class of minimal types which are �

equivalent.

There are several equivalent presentations of �rst order dependent type systems. The system

studied in this report and in the system �P

�

[AC96] are based on the Edinburgh LF type theory

[HHP93]. An introduction to dependent types can be found in [Dow95].

From the formula-as-type analogy, the introduction of dependent types brings signi�cant progress

with respect to simply typed lambda calculus. In the latter case, only propositional formula can be

represented by types, with dependent types, the quanti�cation is also representable. As a result,

many logical systems could be encoded in systems based on dependent types, as done in LF, the

Edinburgh Logical Framework [HHP93].

1.2 The system ��

The system �� (also called �P ) is the pure �rst order dependent type system. It is the core of

Edinburgh Logical Framework. Our presentation of �� is mainly based on [HHP93] and [Dow95].

There are four syntactic categoies:

1. Terms denoted by M,N, ...

2. Types and type families denoted by A,B,C, ...

3. Kinds denoted by K,L, ...

4. Contexts denoted by �

6



The abstract syntax of the entities is given by the following grammar:

M ::= x j �x:A:M j MM

A ::= � j �x:A:A j �x:A:A j AM

K ::= ? j �x:A:K

� ::= <> j �; x : A j � : K

Explanation:

1. A term can be a term variable (denoted by x,y,z,...), an abstraction or an application

2. A type can be a type variable (denoted by �), a � type of the form �x:A:B or an type

application AM which should be �-convertible to a �-type; A type family, or family, can be

a type variable, � abstraction of the form �x:A:M or a type application AM ;

3. A kind is either a kind constant ? representing the collection of all types or of the form

�x:A:K which classi�es type families of the form �x:A:B where B lives in the kind K.

Thus,the general form of a kind would be �x

1

:A

1

::x

n

:A

n

:? where n � 0.

4. a context is an ordered list of typing assignments of the form x : A where A is a type or

kinding assignments of the form � : K.

The above abstract syntax has actually de�ned preterms, pretypes, prefamilies, prekinds and

pre-contexts. Well-formed terms, types, families, kinds and contexts are determined by the follow-

ing judgements:

� ` ? � is a well-formed context

� ` K K is a kind in context �

� ` A : K type A has kind K in context �

� ` M : A term M has type A in context �

We write � ` J for an arbitrary judgement of one of the forms � ` K;� ` A : K or � ` M : A.

The rules for deriving the judgements in �� are given below:

Context Formation Rules

F-empty

<> ` ?

F-term

� ` A : ? x 62 Dom(�)

�; x : A ` ?

F-type

� ` K � 62 Dom(�)

�; � : K ` ?

F-�

�; x : A ` K

� ` �x:A:K
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Kinding Rules

K-var

� ` ? � 2 Dom(�)

� ` � : Kind

�

(�)

K-�

�; x : A ` B : ?

� ` �x:A:B : ?

K-�

�; x : A ` B : K

� ` �x:A:B : �x:A:K

K-app

� ` A : �x:B:K � ` M : B

� ` AM : K[x := M ]

K-conv

� ` A : K � ` K

0

K =

�

K

0

� ` A : K

0

Typing Rules

T-var

� ` ? x 2 Dom(�)

� ` x : �(x)

T-�

�; x : A ` M : B

� ` �x:A:M : �x:A:B

T-app

� ` M : �x:A:B � ` N : A

� ` MN : B[x := N ]

T-conv

� ` M : A � ` A =

�

B

� ` M : B

Note that the �-conversion concerns two kinds of �-reduction:

(�x:A:M )N !

�

1

M [x := N ]

(�x:A:B)N !

�

2

B[x := N ]

1.3 Meta-theoretic Properties of ��

�� has the following properties.

Con
uence of � reduction holds for pre-expressions. It can be proved in the usual way.

Proposition 1.1 (Church-Rosser property) Suppose U;U

0

; U

00

are pre-expressions. If U

�

!

�

U

0

and U

�

!

�

U

00

, then there exists a pre-expression V such that U

0

�

!

�

V and U

00

�

!

�

V .

Proposition 1.2 (Subject reduction)

� ` J ^ J

�

!

�

J

0

) � ` J

0

Proposition 1.3 (�-strong normalization) For � reduction, we have the following results:

1. If � ` K, then K is strongly normalizing;

2. If � ` A : K, then A is strongly normalizing;

3. If � ` M : A, then M is strongly normalizing.

Proposition 1.4 (Decidability) The judgement � ` J is decidable.
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1.4 Motivation on subtyping dependent types

There are several application areas where researchers have discovered the need to combine subtyp-

ing and dependent types. Here is an example taken from [Pfe93] concerning economic encoding of

logics.

Pfenning [Pfe93] has noticed that at the absence of subtyping, it is cumbersome to deal with

the representation of subsets of logical formulas in LF. Consider, for example, the set (or the type)

of well formed formula in propositional calculus de�ned by the syntax:

F ::= Atom j :F j F ^ F j F _ F j F ) F j

and a subset of these formulas de�ned as:

F

1

::= Atom j :F

1

j F

1

_ F

1

As pointed out by Pfenning, without subtyping, the representation of subsets of formulas like F

1

is awkward and will lead to ine�cient implementation of proof search. To overcome the problem,

Pfenning proposed the re�nement type, which could be considered as a restricted form of subtyping.

With re�nement type and bounded intersection type, the above formulas have the following nice

declaration

Atom <: F

1

� � Atom is a subsort of F

1

type formula

F

1

<: F � � F

1

typeformula is a subsort of F type formula

: : F ! F

^ : F ! F ! F

_ : F ! F ! F

) : F ! F ! F

: : F

1

! F

1

_ : F

1

! F

1

! F

1

where A <: B denotes that A is a subsort of B. There is an implicit use of intersection types

in the declaration. The declaration of : and ^ should be transformed to:

: : (F ! F ) \ (F

1

! F

1

)

_ : (F ! F ! F ) \ (F

1

! F

1

! F

1

)

Pfenning's study is within the proof enviroment Elf which is an implementation of Edinburgh

LF. Other groups of dependent type theory based proof systems also found the need of using

subtyping. The motivation examples are similar. An early work can be found in [Coq92] in the

ALT group. The LEGO group, Coq group and Nuprl group are studying implementations of

abstract algebra, all of them have proposed extensions of type theory by some sort of subtyping:

ZhaoHui Luo [Luo96] has studied the Coercive subtyping extension to LEGO; in the Nuprl group

Jason Hickey [HI92] has combined object-calculus and dependent types and proposed a form of

subtyping based on the inheritance mechanism of objects; in the Coq group, Courant [Cou95] had

attempted an extension of Calculus of Construction by subtyping: CC

�

, Saibi [Sai96] has given an

algorithm of inheritance on PTS. The strong interests in this area are mainly due to the fact that

proof development system are attacking the problem of scale. As said by ZhaoHui Luo[Luo96]:

"The lack of useful subtyping mechanisms in dependent type theories with inductive types and the

associated proof development systems is one of the obstacles in their applications to large-scale

formal development. "
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Whilst the researches mentioned above have handled theories richer than �� due to the need

of theorem proving practice, the proposed subtyping mechanisms appear more or less restricted

from the pure dependent type theory point of view. For example, in the Pfenning's work, the

"subsorting" relation may be reformulated as follows (rules concerninig subsorting intersection

types and kindings are omitted):

A � B 2 �

� ` A � B � ` A � A

� ` A � B

� ` AM � BM

� ` A

0

� A �; x : A

0

` B � B

0

� ` �x:A:B � �x:A

0

:B

0

� ` A � C � ` C � B

� ` A � B

The presented rules are desirable and the subsorting is decidable. But there are no subtyping rela-

tion between type families except from the identity. Furthermore, if types A and B are convertible,

they do not have subsorting relation although from the semantic point of view they denote the

same set of objects.

1.5 Subtyping in �P

�

The �P

�

[AC96] can be viewed as an enrichment to the Pfenning's subsorting rules. The subtyping

between type families have been added, the re
exivity rule is replaced by the conversion rule. The

subtyping system is formulated as follows:

S-CONV

� ` A;B : K A =

�

B

� ` A � B

S-TRANS

� ` A � B � ` B � C

� ` A � C

S-VAR

� ` ? � bounded in �

� ` � � �(�)

S-�

� ` A

0

� A; �; x : A

0

` B � B

0

� ` �x:A:B : ?

� ` �x:A:B � �x:A

0

:B

0

S-�

�; x : A ` B � B

0

� ` �x:A:B : K

� ` �x:A:B � �x:A:B

0

S-APP

� ` A � B � ` BM : K

� ` AM � BM

In �P

�

, the subtyping declaration is introduced to context in the form � � A : K, meaning

that � is a new type variable, which is a subtype of type A with kind K.

The analysis of �P

�

is challenging, principally because it introduces the conversion rule S-

CONV guaranteering that �-convertible types occupy the same equivalent class in the subtype

relation, and the rule S-APP for subtyping family applications. These rules are responsible for

the failure of elimination of transitivity at type level, that is, the rule of transitivity can not be

harmlessly taken out from the subtyping system as can be seen from the following example of

10



transitivity application:

C =

�

�x:A:B

� ` C � �x:A:B

S-CONV

� ` A

0

� A �; x : A

0

` B � B

0

� ` �x:A:B � �x:A

0

:B

0

S-�

� ` C � �x:A

0

:B

0

S-TRANS

Subtyping rules have certain kinding requirements in order to make sure that the types and

type families involved in subtyping are well-formed. Without them, we may have undesirable

subtyping judgements, e.g. (�x:A:B)M � (�x:A

0

:B

0

)M , where the expressions at two sides of �

are not well-formed since �-types are not type families and can not be applied to terms. These

expressions are members of pretypes.

The kinding conditions are designed so as to ensure the well-formedness of subtyping judgements

� ` A � B ) 9K s:t: � ` A;B : K

The kinding premises in the subtyping rules complicates the study of the system because of the

dependencies between typing, kinding, context formation and subtyping.

1.6 Typing in �P

�

The context formation rules, kinding rules and typing rules of �P

�

are as in �� except the intro-

duction of subtyping assumption in the context formation and the subsumption rule in typing.

Context Formation Rules

F-empty

<> ` ?

F-term

� ` A : ? x 62 Dom(�)

�; x : A ` ?

F-type

� ` K � 62 Dom(�)

�; � : K ` ?

F-subtype

� ` A : K � 62 Dom(�)

�; � � A : K ` ?

F-�

�; x : A ` K

� ` �x:A:K
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Kinding Rules

K-var

� ` ? � 2 Dom(�)

� ` � : Kind

�

(�)

K-�

�; x : A ` B : ?

� ` �x:A:B : ?

K-�

�; x : A ` B : K

� ` �x:A:B : �x:A:K

K-app

� ` A : �x:B:K � ` M : B

� ` AM : K[x := M ]

K-conv

� ` A : K � ` K

0

K =

�

K

0

� ` A : K

0

Typing Rules

T-var

� ` ? x 2 Dom(�)

� ` x : �(x)

T-�

�; x : A ` M : B

� ` �x:A:M : �x:A:B

T-app

� ` M : �x:A:B � ` N : A

� ` MN : B[x := N ]

T-sub

� ` M : A � ` A � B

� ` M : B

2

Note that �P

�

has no subkinding rule like:

K-sub

� ` A : K � ` K

0

K � K

0

� ` A : K

0

From practical point of view, this simpli�cation seems harmless: the existing subtyping relation

is already rich enough. But it brings a great advantage to the development of meta-theoretical

properties in �P

�

. Because of the circle between typing and subtyping, the proof for subject

reduction in [AC96] is divided into two steps, �rst for �

2

reduction, then for �

1

reduction, via an

algorithmic subtyping system, which has transitivity elimination property. Subject reduction for

�

2

can be easily proved simply because there are no subkinding. The following subsection gives a

detailed analysis and introduces informally our approach to the problem.

1.7 Technical Analysis on Subtyping Dependent Types

The main di�culty in the study of subtyping dependent types is the proof of subject reduction in

the case

(�x:A:M )N !

�

M [x := N ]

12



Suppose � ` (�x:A:M )N : D, we need to prove � ` M [x := N ] : D. With subtyping, we need to

consider, for example, a derivation ended with

�; x : A ` M : B

0

� ` �x:A:M : �x:A:B

0

� ` �x:A:B

0

� �x:A

0

:B

� ` �x:A:M : �x:A

0

:B

subsumption

� ` N : A

0

� ` (�x:A:M )N : B[x := N ]

where D = B[x := N ]. From �; x : A ` M : B

0

we can apply substitution (see Section 3) to get

� ` M [x := N ] : B

0

[x := N ]

To prove � ` M [x := N ] : B[x := N ], we hope to show that � ` B

0

[x := N ] � B[x := N ] and apply

subsumption. This subtyping assertion should follow from �; x : A

0

` B

0

� B by substitution. It

is expected that the latter subtyping judgement can be obtained from

� ` �x:A:B

0

� �x:A

0

:B

Consider the subtyping system of �P

�

. There are altogether three possibilities to derive the

above judgement: by transitivity rule S-TRANS, by conversion rule S-CONV or by �-subtyping

rule S-�. In the last two cases, the judgement �; x : A

0

` B

0

� B should be derivable from the

assumptions of the rules. With transitivity, its derivability is not straightforward. For example,

with a derivation ended by

� ` �x:A:B

0

� (�y:C:D)M � ` (�y:C:D)M � �x:A

0

:B

� ` �x:A:B

0

� �x:A

0

:B

S-TRANS

it is not clear how the judgement �; x : A

0

` B

0

� B could be derived.

Many subtyping systems, e.g. F

�

[CG92],Co

`

[LMS95], have the transitivity elimination prop-

erty. If the subtyping derivation in our case can be transformed to a derivation without transitiv-

ity, as done in those systems, then the derivability of � ` �x:A:B

0

� �x:A

0

:B will imply that of

�; x : A

0

` B

0

� B. Unfortunately, as stated before, transitivity can not be eliminated in �P

�

.

To get around this problem, in �P

�

, an algorithmic subtyping system is de�ned on �

2

normal

forms (i.e. types without redexes of form (�x:A:B)N ). Therefore, �

2

-equal terms, e.g. (�x:A:B)M

and B[x := M ], are identi�ed. Transitivity is admissible in algorithmic subtyping system. By the

equivalence of the original subtyping system and the algorithmic one:

� ` A � B , � `

A

A;B : ? ^ � `

A

A

�

2

� B

�

2

(where `

A

denotes provable judgements in the algorithmic system and A

�

2

denotes the �

2

normal

form of A) the subject reduction can be proved. Other fundamental properties can also be derived

in �P

�

including con
uence, strong normalization and decidability.

1.8 Algorithmic system of �P

�

The algorithmic system of �P

�

is as follows. Note that �

2

strong normalization appear in the

rules. It means that this system depends on the �

2

strong normalization property .

13



Algorithmic Context Formation Rules:

AF-empty

<> `

A

?

AF-term

� `

A

? � `

A

A : ? x 62 Dom(�)

�; x : A `

A

?

AF-type

� `

A

K � 62 Dom(�)

�; � : K `

A

?

AF-subtype

� `

A

K � `

A

A : K

0

K =

�

K

0

� 62 Dom(�)

�; � � A : K `

A

?

AF-�

�; x : A `

A

K

� `

A

�x:A:K

Algorithmic Kinding Rules:

AK-var

� 2 Dom(�)

� `

A

� : Kind

�

(�)

AK-�

� `

A

A : ? �; x : A `

A

B : ?

� `

A

�x:A:B : ?

AK-�

� `

A

A : ? �; x : A `

A

B : K

� `

A

�x:A:B : �x:A:K

AK-app

� `

A

A : �x:B:K � `

A

M : B

0

� ` B

0�

2

� B

�

2

� `

A

AM : K[x := M ]

Algorithmic Typing Rules:

AT-var

x 2 Dom(�)

� `

A

x : �(x)

AT-�

� `

A

A : ? �; x : A `

A

M : B

� `

A

�x:A:M : �x:A:B

AT-app

� `

A

M : A FLUB

�

(A) � �x : B:C � `

A

N : B

0

� ` B

0�

2

� B

� `

A

MN : C[x := N ]
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Algorithmic Subtyping Rules:

S-�

� ` A

0

� A �; x : A

0

` B � B

0

� ` �x:A:B � �x:A

0

:B

0

S-�

A =

�

1

A

0

�; x : A ` B � B

0

� ` �x:A:B � �x:A

0

:B

0

S-ApR

M

1

=

�

1

M

0

1

� � � M

n

=

�

1

M

0

n

� ` �M

1

::M

n

� �M

0

1

::M

0

n

S-ApT

� ` (�(�)M

1

::M

n

)

�

2

� A

� ` �M

1

::M

n

� A

where FLUB

�

(A) repeatedly replaces type variables in A by their upper bounds in the context �

and then do the �

2

-normalizations , see [AC96] for details.

The development of meta-theoretical properties in �P

�

follows a carefully designed order as

follows:

1. structural properties including generation of typing, kinding; substitution

2. con
uence

3. �

2

subject reduction

4. strong normalization

5. equivalence of algorithmic system with the original system

6. admissiblilities of re
exivity rule, transitivity rule and subtyping application rule

7. generation of subtyping

8. subject reduction

9. decidability

Note that transitivity elimination is restricted to �

2

-normalized types and type families. The

algorithmic rules are also based on �

2

-normalized expressions. As being pointed out by Aspinall

and Compagnoni, the �

2

-normalizations in type checking are not always necessary and they suggest

that the real implementation may make use of only head �

2

-normalization.

Proofs of admissibility of transitivity and the decidability of subtyping in �P

�

are among the

hard part of that work and an induction measure based on the �

2

-normalization is used in the

proof.

1.9 Motivation for this work

The study of ��

�

begins with two motivations:

1. could subtyping system be de�ned on pretypes?

2. is there a subtyping system with transitivity elimination at type level?

Proofs in �P

�

are quite delicate due to the circularity of subtyping and typing system. The �P

�

is

a pure dependent type system with subtyping. In practical application, one will need to add other

type constructions such as inductive types, intersection types, overloaded types etc. If we can base

subtyping on pretypes, then subtyping rules can be more independent, allowing a relatively easy

study.

Transitivity elimination is an important property in the study of subtyping. Proofs of subject

reduction and decidability all depends on this property. The algorithmic system of �P

�

achieves

the transitivity elimination at �

2

normalized type level. The main contribution of this system is
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two rules S-ApR and S-ApT. The former recovers the conversion at the �

2

normal form level, the

later deals with the use of subtyping declaration.

It would be desirable to lift the transitivity elimination to the type level and not restricted to

normalized expressions. The technique would be useful in future development of the system.

Now, consider again an example of transitivity application,

� � �x:E:F 2 �

� ` �M � (�x:E:F )M

(�x:E:F )M =

�

F [x := M ]

� ` (�x:E:F )M � F [x := M ]

� ` �M � F [x := M ]

trans

In �P

�

, this derivation can not be transformed to a transitivity-free one. But, if we introduce a

new rule

S-ApSL

� ` B[x :=M

1

]M

2

::M

n

� C

� ` (�x:A:B)M

1

::M

n

� C

Then we can have a derivation:

� ` F [x := M ] � F [x :=M ]

� ` (�x:E:F )M � F [x := M ]

S-ApSL

� ` �M � F [x :=M ]

S-VAR

where the previous transitivity application has been eliminated.

The introduction of the rule S-ApSL is not enough to eliminate all transitivity elimination.

Since we do not want conversion rule, we need a rule to derive, for example, � ` F [x := M ] �

(�x:E:F )M . Therefore, we introduce a rule S-ApSR, which is symmetric to S-ApSL, to handle

the �

2

conversion at right side:

S-ApSR

� ` C � B[x :=M

1

]M

2

::M

n

� ` C � (�x:A:B)M

1

::M

n

This pair of rules S-ApSR and S-ApSL is the key contribution of our subtyping system to achieve

type level transitivity elimination. The remaining subtyping rules come from modi�cations of the

algorithmic system of �P

�

. Recall that the algorithmic system of �P

�

is de�ned on �

2

normal

forms, the aim of our modi�cation is to allow the system works at the type level. The rule S-�

is kept unchanged. The �

1

conversions in S-� and S-ApR are replaced by general �-conversion.

Note that, in the original rule of �P

�

, the S-� does not have the � conversion, but our version of

S-� can be derived in �P

�

by using transition(S-TRANS) and conversion (S-CONV). Finally, for

the rule S-ApT, we do not need the �

2

conversion. The whole set of subtyping rules are presetned

at next section and in the Appendix A.

This system can be turned to an ordered rewriting system to check subtyping, (see Section 8

for details). As subtyping is de�ned on types rather than on �

2

normalized types, there are no

�

2

normalizations in the subtyping rules as in �P

�

, instead, there are �

2

reductions which usually

take less steps than normalization. Therefore, the algorithm is more e�cient.

There are no kindings in the subtyping rules, so subtyping is de�ned on the pretypes and is thus

independent of the typing system. The generation of subtyping can be obtained straightforwardly:

� ` �x:A:B � �x:A

0

:B

0

) � ` A

0

� A ^ �; x : A

0

` B � B

0

while its proof had been the main di�culty in the proof of subject reduction in �P

�

.

The typing, kinding and context formation rules are same as in �P

�

except that kinding

premises are added to subsumption rule. Algorithmic rules for typing, kinding and context forma-

tion are same as those in �P

�

except that there are no �

2

normalization in application rules for

typing and kinding.

The development of the meta-theoretical properties follows the sequence:
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1. structural properties and Church-Rosser property

2. subject reduction and strong normalization for �

2

head reduction

3. admissibility of re
exivity, transitivity and subtyping application rule

4. generation of typing and subject reduction

5. equivalence between ��

�

and �P

�

6. algorithmic system and decidability of subtyping and typing

One may compare this development with that of �P

�

.

In next section, we introduce de�nitions and basic notations of ��

�

system. As preparation for

the proof of admissibility of transitivity, in Section 3, we study some structural properties as well

as Church-Rosser property, �

2h

subject reduction and normalization. �

2h

strong normalization

will be used in the induction measure in the proofs of admissibilities of re
exivity and transitivity,

both of which are presented in Section 4. The subject reduction is proved in Section 5. Then,

in Section 6, we prove the �� strong normalization, which implies � strong normalization and

the termination of subtyping algorithm. The equivalence between �P

�

and ��

�

is eatablished in

Section 7. The proof is somewhat convoluted. In Section 8, we present the algorithmic system and

prove the decidability of subtyping and typing.

2 De�nition of ��

�

As in �P

�

, the system ��

�

has four syntactic categories: contexts, kinds, types (including families

of types), terms. There are four judgement forms on these notions:

� ` K K is a kind in context �

� ` A : K type A has kind K in context �

� ` M : A term M has type A in context �

� ` A � B A is a subtype of B in context �

The syntax of preterms (denoted by M;N; ::), pretypes (denoted by A;B; ::), prekinds (denoted

by K;L; ::) and pre-contexts (denoted by � ..) is:

M ::= x j �x:A:M j MM

A ::= � j �x:A:A j �x:A:A j AM

K ::= ? j �x:A:K

� ::= <> j �; x : A j �; � : K j �; � � A : K

A pre-expression (denoted by U or V ) is either a preterm, or a pretype, or a prekind. Two

distinguished classes of �-reductions are de�ned over pre-expressions as in �P

�

.

C[(�x:A:M )N ]!

�

1

C[M [x := N ]]

C[(�x:A:B)N ]!

�

2

C[B[x := N ]]

(C[-] indicates a pre-expression with a hole in it).

De�ne !

�

as !

�

1

[ !

�

2

. We denote by,

�

!

R

(resp:

�

=

R

) the re
exive and transitive closures

of the reduction !

R

(resp: !

R

[  

R

) where  

R

is the converse relation of !

R

). U

R

denotes

the R normal form of U .

Context formation, kinding and typing are as in �P

�

except for the subsumption rule in which

the kinding checks are added :

� `M : A � ` A � B � ` A;B : ?

� ` M : B

subsumption

17



where the notation � ` A;B : ? is the abbreviation for the two judgements � ` A : ? � ` B : ?.

Similar conventions will be used in the sequel for other judgement forms.

The complete set of context formation rules, kinding rules and typing rules can be found in the

Appendix A. The following notations and abbreviations are used:

Notation 2.1 (Notations and abbreviations)

� Dom(�) denotes the set of variables declared in context �:

1. x 2 Dom(�) if x : A 2 �

2. � 2 Dom(�) if � : K 2 � or � � A : K 2 �

� Kind

�

(�) refers to the kind in the declaration of � inside �

{ Kind

�

(�) = K if � : K 2 � or � � A : K 2 �

� � is said to be bound in � by type A if � � A : K 2 �; a variable � can be declared in � but

unbound if � : K 2 �

� �(x) � A if x : A 2 �

� �(�) � A if � � A : K 2 �

� Fv(U ) denotes the set of free variables in U

� � ` A;B : K i� � ` A : K and � ` B : K

� IH � Induction Hypothesis

No kinding check appears in the subtyping rules so that subtyping is separated from the other

judgements. This makes easy to prove many syntactic properties.

In contrast to �P

�

, the subtyping rules are not de�ned on types but on pretypes.

The subtyping rules are:

S-�

� ` A

0

� A �; x : A

0

` B � B

0

� ` �x:A:B � �x:A

0

:B

0

S-�

A

0

=

�

A �; x : A

0

` B � B

0

� ` �x:A:B � �x:A

0

:B

0

S-ApR

M

1

=

�

M

0

1

� � � M

n

=

�

M

0

n

� ` �M

1

::M

n

� �M

0

1

::M

0

n

S-ApT

� ` �(�)M

1

::M

n

� A

� ` �M

1

::M

n

� A

S-ApSL

� ` B[x := M

1

]M

2

::M

n

� C

� ` (�x:A:B)M

1

::M

n

� C

S-ApSR

� ` C � B[x :=M

1

]M

2

::M

n

� ` C � (�x:A:B)M

1

::M

n

The �rst two rules S-� and S-� capture the subtyping relation between function types. The others

concerns function applications. Subtyping relation between atomic types can be viewed as special

cases of applications. In the previous section, we have discussed the motivation of this system.

The subtyping relation is de�ned on pretypes, in contrast to subtyping in �P

�

which is de�ned

on types, as well as to algorithmic subtyping in �P

�

which is de�ned on �

2

normal form pretypes.
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3 Some meta-theoretical properties

The structural properties in ��

�

are similar to those in �P

�

. Sometimes, results are presented in

simpli�ed forms.

We write � ` J denote an arbitrary judgement in which J is either K, or A : K or M : A.

In this report, the notation Judgement1 ) Judgement2 means that the derivability of the �rst

judgement implies that of the second.

Proofs for most structural properties are usually by induction on the depths of derivations

of the concerned judgements: �rst for the subtyping, then simultaneously for context formation,

kinding and typing.

Proofs of many important results require the generation principle which is used to reason about

the way that judgements are derived. The generation of typing says that, if the form of a term M

is given in a typing judgement � ` M : A, then we can tell the form of type A; the generation of

kinding allows one to infer from the form of type A, in the judgement � ` A : K, the form of K;

the generation of subtyping allows one to infer from the form of type A in � ` A � B the form

of B and vice versa. The proof of the generation for typing is postponed to the Section 5 since it

uses the admissibility of transitivity, which will be established in Section 4, the other generation

principles are proved in this section.

Since the subtyping system is separated from the systems for the other judgements, it is im-

mediate to obtain a simple form of generation of subtyping.

Proposition 3.1 (Generation for subtyping)

� ` �x:A:B � �x:A

0

:B

0

) � ` A

0

� A ^ �; x : A

0

` B � B

0

� ` �x:A:B � �x:A

0

:B

0

) A

0

=

�

A ^ �; x : A

0

` B � B

0

The generation for kinding tells us what information we can infer from a kinding judgement

about a kind.

Proposition 3.2 (Generation for kinding)

� ` � : K ) K =

�

Kind

�

(�)

� ` �x:A:B : K ) K = ? ^ �; x : A ` B : ?

� ` �x:A:B : K ) 9K

0

s:t: K =

�

�x:A:K

0

^ �; x : A ` B : K

0

� ` AM : K ) 9B;K

0

s:t: � ` A : �x:B:K

0

^ � ` M : B ^ K

0

[x :=M ] =

�

K

Proof. By an analyse of the kinding derivation. 2

The �rst context property says that the type in a typing assumption of a context is well formed.

The second asserts that if a judgement is derivable then the context of the judgement is well-formed.

Proposition 3.3 (Context properties)

1. �

1

; x : A;�

2

` J ) �

1

` A : ?, where �

1

` A : ? has a smaller proof than �

1

; x : A;�

2

` J .

2. Suppose � ` J . Then for every pre�x �

0

of �, �

0

` ?

Uniqueness of kinding can be obtained by observing the fact that any kind is of the form

�x

1

:A

1

:: �x

n

:A

n

:? and �x

1

:A

1

::�x

n

:A

n

:? =

�

�x

1

:A

0

1

::�x

m

:A

0

m

:? i� n = m;A

i

=

�

A

0

i

; i = 1::n.

Proposition 3.4 (Unicity of kinds)

� ` A : K ^ � ` A : K

0

) K =

�

K

0

The following three results concerning bound changes will be used in the proof of admissibility

of transitivity.
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Proposition 3.5 (Bound change for subtyping)

�

1

; x : A;�

2

` B � C ) �

1

; x : A

0

;�

2

` B � C

and there exists a derivation of the consequent which is not longer than �

1

; x : A;�

2

` B � C.

Proof. By induction on the derivation of �

1

; x : A;�

2

` B � C. 2

At this moment, we can not prove the bound narrowing for subtyping with bounded type variable:

�

1

; � � A : K;�

2

` B � C ) �

1

; � � A

0

: K;�

2

` B � C

since the case of S-ApT requiring transitivity which we have not proved yet.

Bound �-equivalence can be viewed as the simpli�ed form of bound narrowing in �P

�

. Since

we have not proved the re
exivity for subtyping: A =

�

B ) � ` A � B, we need both bound

�-equivalence and bound narrowing.

Proposition 3.6 (Bound �-equivalence) Suppose A =

�

A

0

and �

1

` A;A

0

: K

�

1

; x : A;�

2

` J ) �

1

; x : A

0

;�

2

` J

�

1

; � � A : K;�

2

` J ) �

1

; � � A

0

: K;�

2

` J

Proof. By induction on the derivation of the judgement. 2

Proposition 3.7 (Bound narrowing) Suppose �

1

` A

0

� A and �

1

` A;A

0

: K

�

1

; x : A;�

2

` J ) �

1

; x : A

0

;�

2

` J

Proof. By induction on the derivation of the judgement. In the case of subsumption, use bound

change for subtyping (Proposition 3.5). 2

Substitution property is essential in the proof of subject reduction. First, we prove substitution

for subtyping.

Proposition 3.8 (Substitution for subtyping)

�

1

; x : A;�

2

` B � C ^ �

1

; x : A;�

2

` ? ) �

1

;�

2

[x :=M ] ` B[x := M ] � C[x :=M ]

Proof. By induction on the derivation of �

1

; x : A;�

2

` B � C.

Case. (S-ApT). Suppose that the derivation ends by

�

1

; x : A;�

2

` (�

1

; x : A;�

2

)(�)M

1

::M

n

� C

�

1

; x : A;�

2

` �M

1

::M

n

� C

S-ApT

It follows from �

1

; x : A;�

2

` ? that x 62 Fv(�

1

), so ((�

1

; x : A;�

2

)(�))[x := M ] = (�

1

;�

2

[x :=

M ])(�). We infer as follows

�

1

; x : A;�

2

` (�

1

; x : A;�

2

)(�)M

1

::M

n

� C

) �

1

;�

2

[x :=M ] ` ((�

1

; x : A;�

2

)(�)M

1

::M

n

)[x :=M ] � C[x :=M ] IH

) �

1

;�

2

[x :=M ] ` (�

1

;�

2

[x := M ])(�)M

1

[x :=M ]::M

n

[x := M ] � C[x :=M ]

) �

1

;�

2

[x :=M ] ` �M

1

[x := M ]::M

n

[x :=M ] � C[x :=M ] S � ApT

� �

1

;�

2

[x :=M ] ` (�M

1

::M

n

)[x := M ] � C[x :=M ]
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Case. (S-ApSL). Suppose that the derivation ends by

�

1

; x : A;�

2

` F [y :=M

1

]M

2

::M

n

� C

�

1

; x : A;�

2

` (�y:E:F )M

1

::M

n

� C

S-ApSL

Without loss of generality, we can assume that y 62 Fv(M ). By induction assumption, we have

�

1

;�

2

[x :=M ] ` (F [y := M

1

]M

2

::M

n

)[x :=M ] � C[x := M ]

, �

1

;�

2

[x :=M ] ` (F [x := M ])[y :=M

1

[x :=M ]]M

2

[x :=M ]::M

n

[x := M ] � C[x :=M ] y 62 Fv(M )

) �

1

;�

2

[x :=M ] ` (�y:E[x :=M ]:F [x := M ])M

1

[x :=M ]::M

n

[x := M ]) � C[x :=M ] S-ApSL

, �

1

;�

2

[x :=M ] ` ((�y:E:F )M

1

::M

n

)[x := M ] � C[x :=M ]

Other cases are similar. 2

The substitution property for typing, kinding and context formation follows.

Proposition 3.9 (Substitution)

�

1

; x : A;�

2

` J ^ �

1

` M : A ) �

1

;�

2

[x := M ] ` J [x := M ]

Proof. By induction on the derivation of �

1

; x : A;�

2

` J . 2

Agreement of judgements is also frequently used in the proofs.

Proposition 3.10 (Agreement of judgements)

� ` A : K ) � ` K

� ` M : A ) � ` A : ?

Proof. By induction on the derivation. Using substitution in the case of (T-app) for the second

judgement. 2

Proof of con
uence can be adapted from [HHP93]. Con
uence of � reduction holds for pre-

expressions.

Proposition 3.11 (Church-Rosser property) Suppose U;U

0

; U

00

are pre-expressions. If U

�

!

�

U

0

and U

�

!

�

U

00

, then there exists a pre-expression V such that U

0

�

!

�

V and U

00

�

!

�

V .

Corollary 3.12 (Church-Rosser for �-equivalence) Suppose U;U

0

are pre-expressions and U =

�

U

0

, then there exists a pre-expression V such that U

�

!

�

V and U

0

�

!

�

V .

In order to prove the admissibilities of re
exivity and transitivity, we need an induction measure

based on the �

2

head reduction �

2h

:

(�x : A:B)N

1

::N

n

!

�

2h

B[x := N

1

]N

2

::N

n

It is evident that �

2h

-reduction is con
uent since there are no more than one redex in one type. It

also has subject reduction property and strong normalization property.

Lemma 3.13 (�

2

head subject reduction)

� ` (�x : A:B)M

1

::M

n

: K ) � ` B[x :=M

1

]M

2

::M

n

: K

Proposition 3.14 (�

2h

strongly normalizing) If � ` A : K, then A is strongly �

2h

-normalizing.

The proof is from the observation that any �

2h

reducible type or type family (like A in the

proposition) must be of the form (�x

1

:A

1

::�x

n

:A

n

:�M

1

::M

k

)N

1

::N

h

for n � 1; k � 0; h � 0,

whose reduction should be in less than n steps. Note that, one can not have something like

(�x:A:xM )N because of the kinding.
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4 Admissible Rules in Subtyping System

In this section, we study the admissibilities of re
exivity, transitivity and the rule for subtyping

type family application, namely

� ` A;B : K A =

�

B

� ` A � B

� ` A;B;C : K � ` A � B � ` B � C

� ` A � C

� ` AM;BM : K � ` A � B

� ` AM � BM

The kinding premises are necessary for these rules. To prove the admissibility of re
exivity rule,

one need to analyse according to the forms of A;B. Without well-kindness requirement, it is

possible to have an instance of re
exivity as

(�x : C:D)M =

�

(�x : C

0

:D

0

)M

0

(�x : C:D)M � (�x : C

0

:D

0

)M

0

which is neither desirable nor provable by the subtyping rules.

The proof of transitivity will use the admissiblility of re
exivity. Therefore, kinding premises

are also required. For the rule of subtyping family, we do not want cases like (�x : C:D)M � (�x :

C

0

:D

0

)M , thus we need the well-kindness for types in the subtyping judgement.

Lemma 4.1 (Well-kindness of subtyping) Suppose that � ` A � B and � ` A;B : K. Then

for any subtyping judgement � ` C � D in the derivation of � ` A � B, there exists a kind K

0

such that � ` C;D : K

0

.

Proof. By inspecting the kinding rules. 2

4.1 Re
exivity

In many subtyping systems, e.g., F

�

[CG92], Co

`

[LMS95], the re
exivity is trivial

A = A

� ` A � A

refl

But for systems with a reduction relation de�ned on types, the re
exivity becomes complicated.

It says that types equivalent in reduction have the subtyping relation.

The proof of admissibility of a rule R is essentially a transformation procedure from a derivation

using R to a derivation without R. To show such process terminates, one needs an induction

measure. We borrow an idea from [AC96] by using a measure based on lexicographic combination

of maximal steps of some reduction and size of type. Here, the reduction is �

2h

, which has strong

normalization property (Prop. 3.14), so such measure is well-de�ned.

1

Proposition 4.2 (Admissibility of re
exivity )

A =

�

B ^ � ` A;B : K ) � ` A � B

Proof. Since A;B are well kinded, they can only take the following forms

�M

1

::M

n

n � 0

�x:C:D

�x:C:D

(�x : C:D)M

1

::M

n

n � 1

1

In [AC96], the measure is based on �

2

-reduction and an extension of types by a type operator plus. Ours is

simpler.
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De�ne an induction measure weight(A;B) on the pair of A;B:

weight(A;B) =< MaxRed2h(A) +MaxRed2h(B); Size(A) + Size(B) >

where MaxRed2h(A) is the maximum number of �

2h

reduction steps from A:

MaxRed2h(A) = maxfn j A

n

!

�

2h

A

�

2h

g

and Size(A) is the number of symbols in A. Note that weight(A;B) is well de�ned for kindable

types.

We proceed by induction on weight(A;B).

Case1 (�M

1

::M

n

=

�

�M

0

1

::M

0

n

). By S-ApR.

Case2 (�M

1

::M

n

=

�

�x:C:D). By the Church-Rosser property (Proposition 3.12), if such con-

version exists, then there is a term N such that �M

�

!

R

N and �x:C:D

�

!

R

N . That's impossible.

Case3 (�M

1

::M

n

=

�

�x:C:D). Impossible by the same reason.

Case4 (�M

1

::M

n

=

�

(�x : C:D)N

1

::N

k

) for k � 1. By the assumption,

� ` (�x : C:D)N

1

::N

k

: K ) � ` D[x := N

1

]N

2

::N

k

: K prop: 3:13

So

� ` �M

1

::M

n

; D[x := N

1

]N

2

::N

k

: K ^

�M

1

::M

n

=

�

(�x : C:D)N

1

::N

k

=

�

D[x := N

1

]N

2

::N

k

^

weight(�M

1

::M

n

; D[x := N

1

]N

2

::N

k

) � weight(�M

1

::M

n

; (�x : C:D)N

1

::N

k

)

) � ` �M

1

::M

n

� D[x := N

1

]N

2

::N

k

IH

) � ` �M

1

::M

n

� (�x : C:D)N

1

::N

k

S-ApSR

Case5 (�x:C:D =

�

�x:C

0

:D

0

). By the Church-Rosser property (Proposition 3.12), C =

�

C

0

; D =

�

D

0

. Thus, if we can prove that � ` C;C

0

: ? and �; x : C ` D;D

0

: K

1

for some kind

K

1

, then the result follows from the induction assumption and the rule (S-�). Now we prove these

kinding judgements.

� ` �x:C:D;�x:C

0

:D

0

: K

) K =

�

�x:C:K

1

=

�

�x:C

0

:K

2

^ �; x : C ` D : K

1

^ �; x : C

0

` D

0

: K

2

prop: 3:2

) K

1

=

�

K

2

^ � ` C;C

0

: ? prop: 3:12; 3:3

�; x : C

0

` D

0

: K

2

^ C =

�

C

0

^ � ` C;C

0

: ? ) �; x : C ` D

0

: K

2

prop: 3:6

�; x : C ` D

0

: K

2

^ K

1

=

�

K

2

) �; x : C ` D

0

: K

1

K-conv

Thus, we have obtained the desired result �; x : C ` D

0

; D : K

1

.

Other cases are similar.

2

4.2 Transitivity

In this subsection, we show that the subtyping relation in ��

�

is transitive for kindable types.

That is, the rule:

� ` A;B;C : K � ` A � C � ` C � B

� ` A � B

trans
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is admissible.

Observe that the proof of admissibility of transitivity can be obtained from a transitivity-

elimination process for the subtyping system extended with the above transitivity rule ( we denote

the system by ��

t

�

). The judgement in the extended system will be denoted by `

t

.

As refered in the beginning of this section, kinding premises are required for the transitivity

rule. Here we make a more detailed analyseon this problem.

Consider a transitivity application

M

1

=

�

M

0

1

� � � M

n

=

�

M

0

n

� ` �M

1

::M

n

� �M

0

1

::M

0

n

S-ApR

.

.

.

.

� ` �(�)M

0

1

::M

0

n

� C

� ` �M

0

1

::M

0

n

� C

S-ApT

� `

t

�M

1

::M

n

� C

trans

we would like to transform it to

.

.

.

.

� ` �(�)M

1

::M

n

� �(�)M

0

1

::M

0

n

.

.

.

.

� ` �(�)M

0

1

::M

0

n

� C

� `

t

�(�)M

1

::M

n

� C

trans

� `

t

�M

1

::M

n

� C

S-AppT

where we need the re
exivity to show that the the judgement � ` �(�)M

1

::M

n

� �(�)M

0

1

::M

0

n

could be proved in ��

�

. Hence, the pair of types �(�)M

1

::M

n

;�(�)M

0

1

::M

0

n

should be well-kinded

to permit the application of re
exivity.

This example also raises second problem, that is, the measure for induction in the transtivity

elimination proof. The usual approach to prove the transitivity elimination is to transform deriva-

tion ended by a transitivity application to a new one in which depths of transitivity subderivations

are shorter. But in our previous example, this can not be ensured because the derivation of

� ` �(�)M

1

::M

n

� �(�)M

0

1

::M

0

n

may be longer than that of � ` �M

1

::M

n

� �M

0

1

::M

0

n

.

Notice that from �M

1

::M

n

to �(�)M

1

::M

n

is one step �-reduction, that is, a reduction by

replacing the type variable by its upper bound. So we can consider using �

2h

� reduction (com-

bination of �

2h

and � reduction) to construct an induction measure. First, we have the property

that �

2h

� reduction is strongly normalizing.

Lemma 4.3 (�

2h

� strongly normalizing) If � ` A : K, then A is strongly �

2h

�-normalizing.

The proof can be adapted from the one presented in section 6.

Now, we can compute the maximal steps of �

2h

� normalization and de�ne an appropriate

measure,

weight(A;B) =< MaxRed2hg(A) +MaxRed2hg(B); Size(A) + Size(B) >

where MaxRed2hg(A) is the maximum number of �

2h

� reduction steps from A:

MaxRed2hg(A) = maxfn j A

n

!

�

2h

�

A

�

2h

g

Now we can show the transitivity elimination for ��

t

�

: a derivation for a `

t

judgement can be

replaced by a derivation in ��

�

.

Proposition 4.4 (Transitivity elimination in ��

t

�

)

� `

t

A � B ) � ` A � B
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Proof. Let us consider derivations in the extended system with one application of the rule

of transitivity in the end. If we can prove that it is equal to a transitivity-free derivation, we

may then eliminate transitivities from arbitrary derivations one by one, beginning with uppermost

application of transitivity.

Consider then the �rst application of transitivity in a derivation

� ` U; V;W : K � ` U � V � ` V � W

� `

t

U � W

trans

The derivations of � ` U � V and � ` V � W are transitivity-free, i.e. they are derivations in

��

�

, whereas � `

t

U � W is a ��

t

�

judgement.

Induction on weight(U;W ). We proceed by case analysis of the last pair of rules used to derive

� `

t

U � W . We show that the derivation can be transformed to one in which each transivity

application is smaller than the original one by the measure weight. Thus, by induction, those

subderivations can be transformed to transitivity-free derivations.

Case. (S-�, S-�). The derivation must end by

KJ

� ` A

2

� A

1

�; x : A

2

` B

1

� B

2

� ` �x:A

1

:B

1

� �x:A

2

:B

2

� ` A

3

� A

2

�; x : A

3

` B

2

� B

3

� ` �x:A

2

:B

2

� �x:A

3

:B

3

� `

t

�x:A

1

:B

1

� �x:A

3

:B

3

trans

where KJ is the kinding judgement � ` �x:A

1

:B

1

; �x:A

2

:B

2

; �x:A

3

:B

3

: ?.

We infer a few deducible kindabilities and subtyping relation.

� ` �x:A

1

:B

1

; �x:A

2

:B

2

; �x:A

3

:B

3

: ? )

� ` A

1

; A

2

; A

3

: ? ^ �; x : A

1

` B

1

: ? ^ �; x : A

2

` B

2

: ? ^ �; x : A

3

` B

3

: ? prop: 3:2

� ` A

3

; A

2

: ? ^ � ` A

3

� A

2

^ �; x : A

2

` B

1

� B

2

) �; x : A

3

` B

1

� B

2

prop: 3:5

� ` A

1

; A

2

; A

3

: ? ^ � ` A

3

� A

2

^ � ` A

2

� A

1

) � ` A

3

� A

1

IH

� ` A

3

; A

2

: ? ^ � ` A

3

� A

2

^ �; x : A

2

` B

2

: ? ) �; x : A

3

` B

2

: ? prop: 3:7

� ` A

3

; A

2

: ? ^ � ` A

3

� A

1

^ �; x : A

1

` B

1

: ? ) �; x : A

3

` B

1

: ? prop: 3:7

In conclusion, we have obtained �; x : A

3

` B

1

; B

2

; B

3

: ? and �; x : A

3

` B

1

� B

2

.

Therefore the above derivation with transitivity could be transformed to

JK1 � ` A

3

� A

2

� ` A

2

� A

1

� `

t

A

3

� A

1

trans

JK2 �; x : A

3

` B

1

� B

2

�; x : A

3

` B

2

� B

3

�; x : A

3

`

t

B

1

� B

3

trans

� `

t

�x:A

1

:B

1

� �x : A

3

:B

3

where JK1 � � ` A

1

; A

2

; A

3

: ? and JK2 = �; x : A

3

` B

1

; B

2

; B

3

: ?. The induction measure

reduces because of the decrease of sizes of types.

Case. (S-�, S-�) Similar.

Case. (S-ApR, S-ApR) by transitivity of �-conversion.

Case. (S-ApSL, ) The derivation must end by

� ` (B[x :=M

1

])M

2

::M

n

� C

� ` (�x:A:B)M

1

::M

n

� C � ` C � D JK

� `

t

(�x:A:B)M

1

::M

n

� D

trans
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where JK � � ` (�x:A:B)M

1

::M

n

; D;C : K. By the �

2h

subject reduction lemma (lemma 3.13),

(B[x :=M

1

])M

2

::M

n

is well-kinded in the context �. So the above derivation could be transformed

to

JK � ` (B[x :=M

1

])M

2

::M

n

� C � ` C � D

� `

t

(B[x :=M

1

])M

2

::M

n

� D

trans

� `

t

(�x:A:B)M

1

::M

n

� D

where JK

0

� � ` (B[x := M

1

])M

2

::M

n

; D;C : K. The induction measure reduces because of the

�

2h

-reduction.

Case. ( , S-ApSR), (S-ApT, ). Similar.

Case. (S-ApR, S-ApT) The derivation must end by

JK

M

1

=

�

M

0

1

� � � M

n

=

�

M

0

n

� ` �M

1

::M

n

� �M

0

1

::M

0

n

S-ApR

� ` �(�)M

0

1

::M

0

n

� C

� ` �M

0

1

::M

0

n

� C

S-ApT

� `

t

�M

1

::M

n

� C

trans

where JK � � ` �M

1

::M

n

; �M

0

1

::M

0

n

; C : K. From the kinding assumption in the transitivity, it

follows that

� ` �(�)M

1

::M

n

;�(�)M

0

1

::M

0

n

; C : K

By the re
exivity of subtyping (Proposition 4.2), the judgement � `

t

�(�)M

1

::M

n

� �(�)M

0

1

::M

0

n

is derivable. Therefore, we can have a derivation ending by

JK � ` �(�)M

1

::M

n

� �(�)M

0

1

::M

0

n

� ` �(�)M

0

1

::M

0

n

� C

� `

t

�(�)M

1

::M

n

� C

trans

� `

t

�M

1

::M

n

� C

S-ApT

where JK � � ` �(�)M

1

::M

n

;�(�)M

0

1

::M

0

n

; C : K. The induction measure reduces because of the

�-reduction.

Case. (S-ApSR, S-ApSL). The derivation must end by

JK

� ` C � B[x :=M

1

]M

2

::M

n

� ` C � (�x:A:B)M

1

::M

n

S-ApSR

� ` B[x := M

1

]M

2

::M

n

� C

0

� ` (�x : A:B)M

1

::M

n

� C

0

S-ApSL

� `

t

C � C

0

trans

where JK � � ` C; (�x:A:B)M

1

::M

n

; B[x := M

1

]M

2

::M

n

: K. The derivation could be trans-

formed to

JK � ` C � B[x := M

1

]M

2

::M

n

� ` B[x :=M

1

]M

2

::M

n

� C

0

� `

t

C � C

0

trans

where JK � � ` C;B[x := M

1

]M

2

::M

n

; C

0

: K

Other combinations of rules are impossible. 2

Corollary 4.5 (Admissibility of transitivity in subtyping)

� ` A;B;C : K ^ � ` A � B ^ � ` B � C ) � ` A � C
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4.3 Subtyping family application

Now we want to show the admissibility of the subtyping family application rule

� ` A;B;C : K � ` AM;BM : K � ` A � B

� ` AM � BM

This property and the re
exivity are speci�c to subtyping in dependent types. As for re
exivity

property, the well kindness for types in subtyping judgement is required. First, we prove a lemma.

Lemma 4.6 � ` �M

1

::M

n

: K ^ � bound in � ) � ` �(�)M

1

::M

n

: K

Proof. By the observation that there are A

1

; ::; A

n

andK

0

such that � � �(�) : �x

1

:A

1

::�x

n

:A

n

:K

0

2

� where K

0

[x :=M ] = K. 2

The main result of this subsection can be established.

Proposition 4.7 (Subtyping family application)

� ` AM;BM : K ^ � ` A � B ) � ` AM � BM

Proof. By induction on the derivation of � ` A � B.

Case (S-�). Impossible since AM;BM can not be well-kinded.

Case (S-�). Suppose that the derivation ends with

A

0

=

�

A �; x : A ` B � B

0

� ` �x:A:B � �x:A

0

:B

0

S-�

By the substitution for subtyping property (Proposition 3.8), �; x : A ` B � B

0

) � ` B[x :=

M ] � B

0

[x :=M ]. So we have a derivation ending by

� ` B[x :=M ] � B

0

[x :=M ]

� ` B[x :=M ] � (�x:A

0

:B

0

)M

S-ApSR

� ` (�x:A:B)M � (�x:A

0

:B

0

)M

S-ApSL

Case (S-ApR). Immediate.

Case (S-ApT). By Lemma 4.6

� ` �M

1

::M

n

M : K ) � ` �(�)M

1

::M

n

M : K

The result follows from induction assumption.

Case (S-ApSL). Suppose that the derivation ends with

� ` B[x :=M

1

]M

2

::M

n

� C

� ` (�x:A:B)M

1

::M

n

� C

S-ApSL

Starting from the assumption, we infer as follows

� ` ((�x:A:B)M

1

::M

n

)M : K

) 9D;K

0

s:t: � ` (�x:A:B)M

1

::M

n

: �y:D:K

0

^ K = K

0

[x :=M ] ^ � ` M : D prop: 3:2

) � ` B[x :=M

1

]M

2

::M

n

: �y:D:K

0

subject reduction

) � ` B[x :=M

1

]M

2

::M

n

M : K

0

[x := M ] K-app
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By the �

2h

subject reduction (lemma 3.13), (B[x := M

1

])M

2

::M

n

M is well-kinded in the context

�. Therefore,

� ` B[x :=M

1

]M

2

::M

n

M;CM : K ^ � ` B[x :=M

1

]M

2

::M

n

� C

) � ` B[x :=M

1

]M

2

::M

n

M � CM IH

) � ` (�x:A:B)M

1

::M

n

M � CM S-ApSL

Case (S-ApSR). Similar. 2

5 Subject Reduction

In this section, we prove the generation for typing property and the subject reduction. Proofs of

both results need the transitivity of subtyping, which is used to show the following fact: any typing

proof can be transformed to a proof in which there is no consecutive application of subsumption.

The generation for typing tells us what information we can infer from a typing judgement about

a type.

Proposition 5.1 (Generation for typing)

� ` x : C ) � ` �(x) � C

� ` �x:A:M : C ) 9B s:t: �; x : A ` M : B ^ � ` �x:A:B � C

� ` MN : C ) 9A;B s:t: � ` M : �x:A:B ^ � ` N : A ^ � ` B[x := N ] � C

Proof. Without loss of generality, it is assumed that there are no consecutive applications of

assumption. The result follows from induction on typing derivation. 2

Subject reduction is one of the main concerns in the study of subtyping dependent types. Since

subtyping is separated from other judgements, we give here an alternative proof than that in

[AC96].

Proposition 5.2 (Subject reduction)

� ` J ^ J

�

!

�

J

0

) � ` J

0

Proof. It is enough to prove the one step case, which follows by induction on the derivation

of the judgement � ` J . Without loss of generality, we assume that there are no two consecutive

applications of assumption.

The main case is � ` (�x:A:M )N : C and (�x:A:M )N !

�

M [x := N ], we need to prove that

� ` M [x := N ] : C.

If � ` (�x:A:M )N : C is derived by T-app, then there are A

0

and B such that � ` N : A

0

,

� ` �x:A:M : �x:A

0

:B and C = B[x := N ]. Otherwise the derivation must end by

� ` �x:A:M : �x:A

0

:B � ` N : A

0

� ` (�x:A:M )N : B[x := N ]

T-app

� ` B[x := N ] � C � ` B[x := N ]; C : ?

� ` (�x:A:M )N : C

T-sub

In any of these two cases, if � ` �x:A:M : �x:A

0

:B is derived by (T-�), then A

0

= A and

�; x : A

0

` M : B, otherwise it must be derived by

�; x : A ` M : B

0

� ` �x:A:M : �x:A:B

0

� ` A

0

� A �; x : A

0

` B

0

� B

� ` �x:A:B

0

� �x:A

0

:B � ` �x:A:B

0

; �x:A

0

:B : ?

� ` �x:A:M : �x:A

0

:B

T-sub
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By generation for kinding (Proposition 3.2), �; x : A

0

` B;B

0

: ?, so we can apply subsumption

�; x : A

0

` M : B

0

�; x : A

0

` B

0

� B �; x : A

0

` B;B

0

: ?

�; x : A

0

` M : B

T-sub

In all cases it follows from the substitution (Proposition 3.9) that � ` M [x := N ] : B[x := N ].

Apply subsumption (when necessary), we get � ` M [x := N ] : C.

Another delicate case is � ` �x:A:K and A !

�

A

0

. In this case, we have a context formation

derivation ended with

�; x : A ` K

� ` �x:A:K

F-�

It follows from the context property (Proposition 3.3) that � ` A : ? and that its proof is less

than that of �; x : A ` K. Therefore, we can apply the induction assumption and get � ` A

0

: ?.

By bound �-equivalence (Proposition 3.6) and the fact that �; x : A ` K and A =

�

A

0

, we get

�; x : A

0

` K, the result � ` �x:A

0

:K follows.

The other cases are easy. 2

The Church-Rosser properties in Section 3 are established on pre-expressions, that is, given

U;U

0

; U

00

such that U

�

!

�

U

0

and U

�

!

�

U

00

, there exists a pre-expression V such that U

0

�

!

�

V

and U

00

�

!

�

V . By the subject redution, if we know U;U

0

; U

00

are well-formed, then so does V .

Proposition 5.3 (Church-Rosser property for well-formed expressions)

� ` M;M

0

;M

00

: A ^ M

�

!

�

M

0

^ M

�

!

�

M

00

) 9N � ` N : A ^ M

0

�

!

�

N ^ M

00

�

!

�

N

� ` A;A

0

; A

00

: K ^ A

�

!

�

A

0

^ A

�

!

�

A

00

) 9B � ` B : K ^ A

0

�

!

�

B ^ A

00

�

!

�

B

� ` K;K

0

;K

00

^ K

�

!

�

K

0

^ K

�

!

�

K

00

) 9H � ` H ^ K

0

�

!

�

H ^ K

00

�

!

�

H

6 Strong normalization

Well-formed terms, types and kinds have strong normalization property. The basic idea of the

proof is to transform terms, types and kinds to those in �� and show that a reduction in ��

�

corresponds to one or more steps in ��. Note that �� can be obtained from ��

�

by removing the

subtyping rules, the F-subtype rule of bound type variable introduction, and changing the subtyp-

ing judgement in the subsumption rule to �-equivalence. We de�ne a transformation function FE

�

which fully expands bounded type variables in the augument (a preterm, a pretype or a prekind)

by their greatest upper bounds in the context:

FE

�

(x) = x

FE

�

(MN ) = FE

�

(M )FE

�

(N )

FE

�

(�x:A:M ) = �x:FE

�

(A):FE

�

(M )

FE

�

(�) = FE

�

(�(�)) if � � �(�) : K 2 �

FE

�

(�) = � if � : K 2 �

FE

�

(�x:A:B) = �x:FE

�

(A):FE

�

(B)

FE

�

(�x:A:B) = �x:FE

�

(A):FE

�

(B)

FE

�

(AN ) = FE

�

(A)FE

�

(N )

FE

�

(?) = ?

FE

�

(�x:A:K) = �x:FE

�

(A):FE

�

(K)

For well-formed context �, the function FE

�

is well de�ned on preterms, pretypes and prekinds.
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This function can be extended to context as

FE(<>) = <>

FE(�; x : A) = FE(�); x : FE

�

(A)

FE(�; � : K) = FE(�); � : FE

�

(K)

FE(�; � � A : K) = FE(�)

For well-formed context �, the function FE is well-de�ned.

FE has the following properties:

Lemma 6.1 (Preservation of substitution of FE)

�; x : A ` N : B ^ � ` M : A ) FE

�

(N [x :=M ]) = FE

�;x:A

(N )[x := FE

�

(M )]

�; x : A ` B : K ^ � ` M : A ) FE

�

(B[x := M ]) = FE

�;x:A

(B)[x := FE

�

(M )]

�; x : A ` K ^ � ` M : A ) FE

�

(K[x :=M ]) = FE

�;x:A

(K)[x := FE

�

(M )]

Proof. By induction on the derivations of �; x : A ` N : B;�; x : A ` B : K and �; x : A ` K

respectively. 2

Since FE only replaces bounded type variables by their upper bounds, so � equality should be

preserved.

Lemma 6.2 (Preservation of �-equality by FE) Suppose that U; V are both well-formed kinds,

types or terms, then

U =

�

V ) FE(U ) =

�

FE(V )

Lemma 6.3 (Subtyping transforms to �-equality)

� ` A � B ^ � ` A;B : K ) FE(A) =

�

FE(B)

Proof. Induction on the derivation of � ` A � B.

Case S-�. Suppose that A � �x:C:D , B � �x:C

0

:D

0

and the judgement � ` A � B is derived

by the rule S-�. Then

� ` �x:C:D; �x:C

0

:D

0

: K ) � ` C;C

0

: ? ^ �; x : C ` D : ? ^ �; x : C

0

` D

0

: ? prop: 3:2

� ` �x:C:D � �x:C

0

:D

0

) � ` C

0

� C ^ �; x : C

0

` D � D

0

rule S-�

� ` C

0

� C ^ �; x : C ` D : ? ) �; x : C

0

` D : ? prop: 3:7

�; x : C

0

` D;D

0

: ? ^ �; x : C

0

` D � D

0

) FE(D) =

�

FE(D

0

) IH

� ` C

0

� C ^ � ` C;C

0

: ? ) FE(C) =

�

FE(C

0

) IH

FE(D) =

�

FE(D

0

) ^ FE(C) =

�

FE(C

0

) ) FE(�x:C:D) =

�

FE(�x:C

0

:D

0

)

Case S-�. Similar.

Case S-ApR. By Lemma 6.2.

Case S-ApT. Since � ` �M

1

::M

n

: K ) � ` �(�)M

1

::M

n

: K, the result follows from the

induction assumption and the fact that FE(�(�)M

1

::M

n

) = FE(�M

1

::M

n

).

Case S-ApSL. The result follows from the �

2

-subject reduction and induction assumption. 2

Lemma 6.4 (Preservation of kinding of FE)

� ` N : B ) FE(�) `

��

FE

�

(N ) : FE

�

(B)

� ` B : K ) FE(�) `

��

FE

�

(B) : FE

�

(K)

� ` K ) FE(�) `

��

FE

�

(K)

where `

��

denotes judgements in ��.
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Proof. By induction on the derivations of � ` N : B;� ` B : K and � ` K respectively. We

analyse the case where the judgement is derived by the subsumption rule, other cases are easy.

Suppose that a derivation is ended by:

� ` M : A � ` A � B � ` A;B : ?

� ` M : B

��

�

-conversion

By induction assumption, FE(�) ` FE

�

(M ) : FE

�

(A); FE(�) ` FE

�

(A); FE

�

(B) : ?. It follows

from Lemma 6.3 that FE(A) =

�

FE(B). Therefore, the judgement FE(�) `

��

FE(M ) : FE(B)

can be derived by the subsumption rule in �� as follows:

FE(�) `

��

FE(M ) : FE(A) FE(A) =

�

FE(B)

FE(�) `

��

FE(M ) : FE(B)

��-subsumption

2

Lemma 6.5 (Correspondence of reductions between ��

�

and ��)

� ` M : B ^ M !

�

M

0

) FE

�

(M )!

�

FE

�

(M

0

)

� ` A : K ^ A!

�

A

0

) FE

�

(A)!

�

FE

�

(A

0

)

� ` K ^ K !

�

K

0

) FE

�

(K)!

�

FE

�

(K

0

)

Proof. Let M = C[(�x : A:P )N ];M

0

= C[P [x := N ]], then

FE

�

(M ) = FE

�

(C)[(�x : FE

�

(A):FE

�

(P ))FE

�

(N )]

!

�

FE

�

(C)[FE

�;x:A

(P )[x := FE

�

(N )]]

= FE

�

(C)[FE

�

(P [x := N ])] Lemma 6:1

= FE

�

(M

0

)

The proofs for other two assertions are similar. 2

Now the strong normalization follows.

Proposition 6.6 (�-strong normalization) For � reduction, we have the following results:

1. If � ` K, then K is strongly normalizing;

2. If � ` A : K, then A is strongly normalizing;

3. If � ` M : A, then M is strongly normalizing.

Proof. By Lemma 6.4, Lemma 6.5, subject reduction and the strong normalization of ��.

2

7 Justi�cation of Subtyping System

Since our subtyping system is de�ned over pretypes rather than types, we need to demonstrate

that this is a good de�nition. First, a derivation in a "good" subtyping system should not contain

any type which is not well kinded. Second, intuitively valid subtyping rule, including transitivity

and re
exivity and some rules speci�c to the type system, should be admissible.

A possible approach for the justi�cation is to show the equivalence between ��

�

with �P

�

.

We expect the equivalence of subtyping will take the form that, if A;B have the same kind K,

then � ` A � B hold in our system i� it holds in �P

�

. But should A;B be kinded in �P

�

or

in ��

�

? If the latter choice is assumed, then there the di�culty is to show that the rule in ��

�

is admissible in �P

�

since kindings may be di�erent. If kindings are assumed in �P

�

, then the
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subject reduction in ��

�

can not apply and we do not know if kinding can be preserved in the

proof where � reduction is involved.

So we take an alternative approach, �rst we show that our system is equivalent to the system

�P

f

�

in which context formation, kinding and typing rules are as in ��

�

but subtyping rules are

as in �P

�

except that kindings are fully checked for all subtyping rules. Judgements in �P

f

�

are

denoted by `

f

.

After proving the equivalence between ��

�

and �P

f

�

, we can obtain the equivalence between

��

�

and �P

�

.

Only subtyping rules of �P

f

�

are listed here.

S

f

-conv

� `

f

A;B : K A =

�

B

� `

f

A � B

S

f

-trans

� `

f

A;B;C : K � `

f

A � B � `

f

B � C

� `

f

A � C

S

f

-var

� bounded in �

� `

f

� � �(�)

S

f

-�

� `

f

�x:A:B; �x:A

0

:B

0

: ? � `

f

A

0

� A; �; x : A

0

`

f

B � B

0

� `

f

�x:A:B � �x:A

0

:B

0

S

f

-�

� `

f

�x:A:B;�x:A

0

:B

0

: K �; x : A ` B � B

0

� `

f

�x:A:B � �x:A:B

0

S

f

-app

� `

f

AM;BM : K � `

f

A � B

� `

f

AM � BM

Note that �P

f

�

di�ers from �P

�

also in the subsumption rule where types in subtyping judgement

are well kinded.

T

f

-sub

� `

f

M : A � `

f

A � B � `

f

A;B : ?

� `

f

M : B

Some kinding checks may be inferred from others in �P

f

�

rules, they are kept here for the purpose

of establishing the equivalence with ��

�

.

It is easy to verify that the following structural properties (see Section 3) still hold for �P

f

�

:

generation for kinding, context properties, unicity of kinds, bound �-equivalence, and agreement of

judgements. To form such properties in �P

f

�

, it su�ces to change ` to `

f

in the original statement.

For example, the �P

f

�

version of agreement of judgements becomes:

Proposition 7.1 (Agreement of judgements for �P

f

�

)

� `

f

M : A ) � `

f

A : ?

� `

f

A � B ) 9K � `

f

A;B : K

Proofs for these structural properties in �P

f

�

use straightforward induction on derivations of

the concerned judgements. Note that induction are done simultaneously for judgements of forma-

tion, kinding, typing and subtyping. While for ��

�

, there are two separated inductions, one is

simultaneously for the �rst three judgements, another is for subtyping.

To achieve our goal, the central di�culty is the circularity between kinding, typing and sub-

typing in the system �P

f

�

. We get around the problem by proving the results in the order below.

1. � `

f

A;B : K ^ A =

�

B ) � ` A � B
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2. � `

f

AM;BM : K ^ A � B ) � ` AM � BM

3. � `

f

A � B ) � ` A � B

4. � ` A � B ^ � ` A;B : K ) � `

f

A � B

5. � ` J ) � `

f

J

6. � `

f

J ) � ` J

7. � `

f

A � B ) � `

f

A;B : K ) � ` A;B : K

8. � `

f

A � B , � ` A � B ^ � ` A;B : K

9. Equivalence between �P

f

�

and �P

�

10. Equivalence between �P

�

and ��

�

where J denotes either a kind K, or a kinding A : K, or a typing M : A, not including subtyping.

We start by proving that subtyping in the full kinded system �P

f

�

implies subtyping in ��

�

.

Although � `

f

A � B implies � `

f

A;B : K, we still do not have the desired property � ` A;B : K

at this moment, we need to prove it later by induction on derivation in the context, kinding, typing

system.

In order to show that �P

f

�

subtyping implies ��

�

subtyping we need to prove that each

subtyping rule of �P

f

�

is admissible in ��

�

. It would be desirable to use the results in Section 4.

But two of the admissible rules there require the well kindness in ��

�

for types in the subtyping.

So these results can not be directly applied to the present situation. However, if these kindings

are replaced by kindings in �P

f

�

, these rules are still admissible.

The following two propositions are proved with similar methods as proposition 4.2 and propo-

sition 4.7 , using structural properties of �P

f

�

.

Proposition 7.2 (Re
exivity with �P

f

�

kinding)

� `

f

A;B : K ^A =

�

B ) � ` A � B

Proposition 7.3 (Subtyping family application with �P

f

�

kinding)

� `

f

AM;BM : K ^ � ` A � B ) � ` AM � BM

It follows that the derivability of subtyping in �P

f

�

implies that of ��

�

.

Proposition 7.4 (�P

f

�

subtyping implies ��

�

subtyping )

� `

f

A � B ) � ` A � B

Proof. By the agreement of judgements for �P

f

�

(Proposition 7.1), � `

f

A � B ) � `

f

A;B :

K. The result follows from proposition 7.2,proposition 7.3) and the transitivity (Proposition 4.5).

2

The proof in the opposite direction is the key step towards our goal. Note that we can not

directly use induction on the subtyping derivation because we do not know if kinding , � ` A : K,

in ��

�

implies kinding, � `

f

A : K, in �P

f

�

yet. Instead, we transform a proof in ��

�

to the one

in �P

f

�

.

Proposition 7.5 (��

�

subtyping implies �P

f

�

subtyping)

� ` A � B ^ � ` A;B : K ) � `

f

A � B
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Proof. Consider the subtyping system �P

+

�

obtained from adding all kinding premises to

subtyping rules of ��

�

.

S

+

-�

� ` �x:A:B; �x:A

0

:B

0

: ? � `

+

A

0

� A �; x : A

0

`

+

B � B

0

� `

+

�x:A:B � �x:A

0

:B

0

S

+

-�

� ` �x:A:B;�x:A

0

:B

0

: K A

0

=

�

A �; x : A

0

`

+

B � B

0

� `

+

�x:A:B � �x:A

0

:B

0

S

+

-ApR

� ` �M

1

::M

n

; �M

0

1

::M

0

n

: K M

1

=

�

M

0

1

� � � M

n

=

�

M

0

n

� `

+

�M

1

::M

n

� �M

0

1

::M

0

n

S

+

-ApT

� ` �M

1

::M

n

; A : K � `

+

�(�)M

1

::M

n

� A

� `

+

�M

1

::M

n

� A

S

+

-ApSL

� ` (�x:A:B)M

1

::M

n

; C : K � `

+

B[x :=M

1

]M

2

::M

n

� C

� `

+

(�x:A:B)M

1

::M

n

� C

S

+

-ApSR

� ` C; (�x:A:B)M

1

::M

n

: K � `

+

C � B[x :=M

1

]M

2

::M

n

� `

+

C � (�x:A:B)M

1

::M

n

It follows from the subject reduction (Proposition 5.2), generation for kinding (Proposition 3.2)

and bound �-equivalence (Proposition 3.6) that

� `

+

A � B , � ` A;B : K ^ � ` A � B

Each subtyping rule in ��

+

�

can be replaced by a derivation in the following subtyping system.

S

f

0

-conv

� ` A;B : K A =

�

B

� `

f

0

A � B

S

f

0

-trans

� ` A;B;C : K � `

f

0

A � B � `

f

0

B � C

� `

f

0

A � C

S

f

0

-var

� bounded in �

� `

f

0

� � �(�)

S

f

0

-�

� ` �x:A:B; �x:A

0

:B

0

: ? � `

f

0

A

0

� A; �; x : A

0

`

f

0

B � B

0

� `

f

0

�x:A:B � �x:A

0

:B

0

S

f

0

-�

� ` �x:A:B;�x:A

0

:B

0

: K �; x : A `

f

0

B � B

0

� ` �x:A:B � �x:A:B

0

S

f

0

-app

� ` AM;BM : K � `

f

0

A � B

� `

f

0

AM � BM

For example, the rule (S

+

-ApSR) could be replaced by

� ` KJ1 � `

f

0

C � B[x := M

1

]M

2

::M

n

� ` KJ2 B[x :=M

1

]M

2

::M

n

=

�

(�x:A:B)M

1

::M

n

� `

f

0

B[x :=M

1

]M

2

::M

n

� (�x:A:B)M

1

::M

n

S

f

0

-conv

� `

f

0

C � (�x:A:B)M

1

::M

n

trans

where KJ1 � C;B[x :=M

1

]M

2

::M

n

; (�x:A:B)M

1

::M

n

: K;KJ2 � B[x := M

1

]M

2

::M

n

; (�x:A:B)M

1

::M

n

:

K. The kinding for B[x :=M

1

]M

2

::M

n

in the proof is obtained from subject reduction. Therefore,

by induction on derivation of � `

+

A � B, we have

� `

+

A � B ) � `

f

0

A � B

Replace all `;`

f

0

by `

f

in the proof of � `

f

0

A � B in this system, we get a proof of � `

f

A � B

in the system �P

f

�

.
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In conclusion, we have

� ` A � B ^ � ` A;B : K , � `

+

A � B ) � `

f

0

A � B ) � `

f

A � B

2

Now we can prove the equivalence between �P

f

�

and ��

�

.

Theorem 7.6 (Equivalence between �P

f

�

and ��

�

)

� `

f

K , � ` K

� `

f

A : K , � ` A : K

� `

f

M : A , � ` M : A

� `

f

A � B , � ` A � B ^ � ` A : K ^ � ` B : K

Proof. The �rst three judgements are proved for each direction by induction on the derivation.

Observe that the two systems have exactly same set of rules for context formation, kinding and

typing. The di�erence is the existence of kinding premises in the subsumption rule. The result

follows from proposition 7.5 and proposition 7.4.

For the equivalence of subtyping, it remains to verify that � `

f

A � B : K ) � ` A;B : K,

which follows from the agreement of judgement for �P

f

�

(Proposition 7.1) and the �rst part of the

theorem. 2

Each rule in �P

f

�

is a rule in �P

�

with zero or more additional kinding conditions. Therefore, a

�P

f

�

derivable judgement is also �P

�

-derivable. To show the implication on the reverse direction,

we verify that, for each rule of �P

�

, its assumptions imply kinding conditions in the corresponding

�P

f

�

rule, using the agreement of judgements for �P

f

�

(Proposition 7.1).

We write `

AC

denote the judgement in Aspinall and Compagnoni's system �P

�

.

Proposition 7.7 (Equivalence between �P

f

�

and �P

�

)

� `

f

K , � `

AC

K

� `

f

A : K , � `

AC

A : K

� `

f

M : A , � `

AC

M : A

� `

f

A � B , � `

AC

A � B

Proof.

()). Simultaneously by induction on derivation.

((). Simultaneously by induction on derivation.

Case. (T-sub). Suppose that the derivation ends with

� `

AC

M : A � `

AC

A � B

� `

AC

M : B

T-sub

We infer as follows:

� `

AC

M : A ) � `

f

M : A IH

) � `

f

A : ? prop: 7:1

� `

AC

A � B ) � `

f

A � B IH

) � `

f

A;B : ? prop: 7:1

The result follows by application of T

f

-sub.

Other cases are similar. 2
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The equivalence between ��

�

and �P

�

follows from that of �P

f

�

and �P

�

and that of �P

f

�

and ��

�

.

Proposition 7.8 (Equivalence between �P

�

and ��

�

)

� `

AC

K , � ` K

� `

AC

A : K , � ` A : K

� `

AC

M : A , � ` M : A

� `

AC

A � B , � ` A � B ^ � ` A : K ^ � ` B : K

Proof. By theorem 7.6 and proposition 7.7. 2

8 Decidability and Minimal Typing

The decidability of subtyping can follow from the equivalence between ��

�

and �P

�

, but it can

also be directly obtained from the subtyping rules of ��

�

.

A subtyping rule

A

1

A

2

� � � A

n

A

can be turned to a rewriting rule as A ! A

1

; � � � ; A

n

.

Thus we can obtain an ordered set of rewriting rules (corresponding the order by which the

subtyping rules are written) on sets of subtyping judgements. The resulting subtyping algorithm

(i.e., the recursive procedure formed from the ordered rewritting rules) is:

check(� ` S � T ) =

if S � �x : A:B and T � �x : A

0

:B

0

then check(� ` A

0

� A)

and check(�; x : A

0

` B � B

0

)

else if S � �x : A:B and T � �x : A

0

:B

0

and A =

�

A

0

then check(�; x : A

0

` B � B

0

)

else if S � �M

1

::M

n

and T � �M

0

1

::M

0

n

and M

1

=

�

M

0

1

� � �M

n

=

�

M

0

n

then True

else if S � (�x:A:B)M

1

::M

n

then check(� ` B[x :=M

1

]M

2

::M

n

� T )

else if T � (�x:A:B)M

1

::M

n

then check(� ` S � B[x := M

1

]M

2

::M

n

)

else false.

To show the correctness and the termination of the algorithm, we need a measure which is based

on the reduction !

�

2

�

de�ned as!

�

2

[ !

�

, where �-reduction is the expansion of bounded type

variable by their bound:

C[�]!

�

C[�(�)]

We write!

n

R

to indicate that a reduction is n steps long (or !

>n

R

for more than n steps). The

�

2

�-reduction has subject reduction and strong normalization properties:

Lemma 8.1 (Subject reduction for !

�

2

�

) � ` A : K ^ A!

�

2

�

A

0

) � ` A

0

: K.

Lemma 8.2 (Strong normalization for !

�

2

�

) If � ` A : K, then there is no in�nite �

2

�-

reduction from A.
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Proof. Using the function FE de�ned in Section 3. Observe that

� ` A : K ^ A!

�

A

0

) � ` A

0

: K ^ FE(A) = FE(A

0

)

� ` A : K ^ A!

�

2

A

0

) � ` A

0

: K ^ FE(A)!

�

2

FE(A

0

)

We show that a reduction from a well-kinded type A can not have in�nitely many �

2

-reduction

steps. With well-formed context �, it is impossible to have an in�nite long �-reduction either. So

any �

2

�-reduction must be terminate.

Suppose that there were an in�nite reduction �

2

� started from A:

A

0

!

�

2

�

A

1

!

�

2

�

� � � !

�

2

�

A

n

� � �

where A

0

= A. Then, by subject reduction property, we have � ` A;A

1

; A

2

; ::; A

n

; : K. Therefore,

FE(A

0

); FE(A

1

); FE(A

2

); ::; FE(A

n

); ::

are well-de�ned. It follows from Lemma 6.4 that

FE(�) `

��

FE(A); FE(A

1

); FE(A

2

); ::; FE(A

n

); :: : FE(K)

. By the correspondence of reductions between ��

�

and �� (Lemma 6.5), we have

A

i

!

�

2

�

A

i+1

) FE(A

i

)!

�

2

FE(A

i+1

) _ FE(A

i

) = FE(A

i+1

)

Let !

�

2

id

denote the relation �

2

[ id where id is the identity relation. Then we have a reduction:

FE(A

0

)!

�

2

id

FE(A

1

)!

�

2

id

FE(A

2

)!

�

2

id

� � �FE(A

n

)!

�

2

id

� � �

Thus, we can extract from it a subsequence of �

2

reduction:

FE(A

i

0

)!

�

2

FE(A

i

1

)!

�

2

FE(A

i

2

)!

�

2

� � �FE(A

i

n

)!

�

2

� � �

such that A

0

= A

i

0

and FE(A

j

) = FE(A

i

k

) for i

k

� j < i

k+1

. Since �� is strongly normalizaing,

this reduction sequence can not be in�nitely long. Hence, there is a m such that there are no �

2

reduction from FE(A

m

). It follows that there are no �

2

reduction from A

m

in ��

�

.

If the original reduction from A is in�nite, then from A

m

there is an in�nite � reduction. Since

A

m

is well-kinded, this is impossible.

2

Remark 8.3 The �

2

�-reduction is a complicated process as �

2

-reduction may introduce new �

redex and �-reduction may introduce new �

2

redex. To illustrate such di�culty and help under-

standing the above proof, we give an example as follows:

Assume a context � = A : ?; � � �

0

; �

0

� �x:A:A; y : A; a : �y; u : �y ! �y;D : � ! ? .

Consider a well-kinded term

(�u:�y:D(u(u(a)))(�z:�y:z)

and a �

2

�-reduction from this term:

�u:�y:D(u(u(a)))(�z:�y:z)

!

�

2

D((�z:�y:z)((�z:�y:z)(a))) � redex are increased

!

�

D((�z:�

0

y:z)((�z:�y:z)(a)))

!

�

D((�z:(�x:A:A)y:z)((�z:�y:z)(a))) a �

2

redex is created

!

�

2

D((�z:A:z)((�z:�y:z)(a)))

� � �
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By the function FE, the above reduction is transformed to a reduction in �� as follows:

FE(�u:�y:D(u(u(a)))(�z:�y:z)) = (�u:(�x:A:A)y:D(u(u(a)))(�z:(�x:A:A)y:z)

!

�

2

FE(D((�z:�y:z)((�z:�y:z)(a)))) = D((�z:(�x:A:A)y:z)((�z:(�x:A:A)y:z)(a)))

� FE(D((�z:�

0

y:z)((�z:�y:z)(a)))) = D((�z:(�x:A:A)y:z)((�z:(�x:A:A)y:z)(a)))

� FE(D((�z:(�x:A:A)y:z)((�z:�y:z)(a)))) = D((�z:(�x:A:A)y:z)((�z:(�x:A:A)y:z)(a)))

!

�

2

FE(D((�z:A:z)((�z:�y:z)(a)))) = D((�z:A:z)((�z:(�x:A:A)y:z)(a)))

� � �

This shows that the �

2

�-reduction in ��

�

has been transformed to a �

2

-reduction in ��. Hence

the termination of the former can be derived from that of the later.

Now we show the correctness of this algorithm.

Proposition 8.4 (Correctness of the subtyping algorithm)

� ` S � T , check(� ` S � T ) = True

Proof.

(<=). Immediate.

(=>). Induction on the derivation of � ` S � T . Analyse according to the last rule in the

derivation.

Case S-�. Let the subtyping judgement be � ` �x:A:B � �x:A

0

:B

0

. Then the algorithm can

only use S-� as the rewritting rule. That is, check(� ` �x:A:B � �x:A

0

:B

0

) succeeds i� both

check(� ` A

0

� A) and check(�; x : A

0

` B � B

0

) succeed. The rewritting will succeed by

induction assumption.

Case S-�. Similar.

Case S-ApR. Similar.

Case S-ApT. If the subtyping judgement is of the form � ` �M

1

::M

n

� �M

0

1

::M

0

n

and M

1

=

�

M

0

1

� � �M

n

=

�

M

0

n

, then the algorithm will succeed by using the rule S-ApR. Otherwise, the rule

S-ApT will be used for rewritting. By induction assumption, the algorithm will succeed.

Case S-ApSL. The algorithm will only select the rule S-ApSL for rewritting, so it will succeed

by induction assumption.

Case S-ApSR. This is the most complicated case. The subtyping judgement may be rewritted

by S-ApT, S-ApSL and S-ApSR. De�ne a relation !

R

on subtyping judgments:

� ` �M

1

::M

n

� A !

R

� ` �(�)M

1

::M

n

� A

� ` (�x:A:B)M

1

::M

n

� C !

R

� ` B[x :=M

1

]M

2

::M

n

� C

� ` C � (�x:A:B)M

1

::M

n

!

R

� ` C � B[x :=M

1

]M

2

::M

n

satis�es the diamond property:

� ` A

1

� B

1

!

R

� ` A

2

� B

2

^ � ` A

1

� B

1

!

R

� ` A

3

� B

3

) 9A

4

; B

4

s:t: � ` A

2

� B

2

!

R

� ` A

4

� B

4

^ � ` A

3

� B

3

!

R

� ` A

4

� B

4

Therefore, !

R

is con
uent. By the strong normalization of �

2

�-reduction,!

R

is also a terminate

relation. The result follows. 2

By the subject reduction and strong normalization of �

2

�-reduction, it makes sense to de�ne

a function MaxRed(A) which is the maximal number of !

�

2

�

reductions from A:

MaxRed(A) =

def

maxf n jA

n

!

�

2

�

A

�

2

�

g

Recall that A

R

indicates the R normal form of A and

n

!

R

is n step R-reductions.

The function MaxRed has desired properties:
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Lemma 8.5

1. MaxRed(�(�)M

1

::M

n

) < MaxRed(�M

1

::M

n

);

2. MaxRed((�x : A:B)M

1

::M

n

) < MaxRed(B[x :=M

1

]M

2

::M

n

):

Then de�ne a measure weight(A;B) of two types A;B as the pair: weight(A;B) =

def

<

MaxRed(A) +MaxRed(B); Size(A) + Size(B) >. The termination of the algorithm follows.

Proposition 8.6 (Decidability of subtyping) If � ` A : K

1

;� ` B : K

2

, then the subtyping

judgement � ` A � B is decidable.

Proof. By inspecting the rules. check(� ` A � B) will terminate by the measure weight(A;B).

2

The next step towards proving decidability is to design algorithmic versions of the remaining

judgements (typing, kinding and context formation). Appendix B shows the algorithmic rules,

below we just give highlights. Judgements in algorithmic rules are denoted by � `

A

J , with the

convention that premises are evaluated in order, the rules form an algorithm.

The main idea of forming the algorithmic rules is to remove the subsumption rule and to modify

the application rule so that it takes the subtyping into account. Thus if we know the terms M;N

are typed as � ` M : A;� ` N : B, we need to infer a type C such that � ` MN : C. When MN

is well typed, the type A of M should be equivalent to a type of the form �x:D:E, but the actual

form of A may be �M

1

::M

n

or (�y:D:E)M

1

::M

n

. Therefore, we need to infer from the type of M

a type of the form �x:D:E. In �P

�

, this is achieved by using a function FLUB which returns the

�-type from the input type. We take a di�erent approach by introducing a new judgement

� ` A �

�lub

B

to express the fact that B is the least �-type of type A. The rules for this new judgement is simply

a subset of subtyping rules plus a re
exive rule

Lub-Re


� ` �x:A:B �

�lub

�x:A:B

Lub-ApT

� ` �(�)M

1

::M

n

�

�lub

A

� ` �M

1

::M

n

�

�lub

A

Lub-ApSL

� ` B[x :=M

1

]M

2

::M

n

�

�lub

C

� ` (�x:A:B)M

1

::M

n

�

�lub

C

For a type A convertible to a �-type, the unique minimal �-type upper bound of A can be

derived by above rules.

Proposition 8.7 (Properties of �lub judgement)

1. � ` A �

�lub

B ) � ` A � B

2. � ` A � �x:B:C ) 9B

0

; C

0

s:t: � ` A �

�lub

�x:B

0

:C

0

^ � ` �x:B

0

:C

0

� �x:B:C

3. Given a type A, it is decidable if there is a type �x:B:C such that � ` A �

�lub

�x:B:C is

derivable.

4. � ` A �

�lub

B ^ � ` A : K ) � ` B : K

5. � ` A � �x:B:C ^ � ` A � �x:B

0

:C

0

) B = B

0

^ C = C

0
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Proof. The last claim is proved by induction on the derivation of � ` A �

�lub

B using subject

reduction. The others are straightforward. 2

Another modi�cation from original rule to the algorithmic one, as did in �P

�

, is the removal

of formation from (T-var) and (K-var) so that typing and kinding become independent of context

formation. As a consequence, � `

A

J may not imply � ` ?. So additional kinding checks � `

A

A : ?

should be added to abstraction rules.

The di�erence between our approach and �P

�

is in the typing and kinding application rules.

We use subtyping directly without �

2

normalization. The FLUB function in �P

�

has been replaced

by the �lub judgement.

Unlike in the original system, there are no kinding premises in K-app, T-app for types partici-

pating subtyping because their well kindness can be inferred.

The algorithmic rules for kinding and typing applications are:

AK-app

� `

A

A : �x:B:K � `

A

M : B

0

� ` B

0

� B

� `

A

AM : K[x := M ]

AT-app

� `

A

M : A � ` A �

�lub

�x : B:C � `

A

N : B

0

� ` B

0

� B

� `

A

MN : C[x := N ]

Proofs for soundness and completeness of algorithmic system are little longer than those in

�P

�

. But there are no speci�c tricks involved.

For the proof of the soundness of algorithmic rules, we need to ensure that the well kindness of

types in premises of subsumption can be satis�ed. This is achieved by using the property of �lub

judgement and generation for kinding.

Proposition 8.8 (Soundness of algorithmic system) For all �; A;K;M ,

1: � `

A

K ) � ` K

2: � ` ? ^ � `

A

A : K ) � ` A : K

3: � ` ? ^ � `

A

M : A ) � ` M : A

Proof. Simultaneously by induction on the derivation in the algorithmic system.

Case (AT-app). Suppose we have a derivation ended by an application of the rule AT-app

� `

A

M : A � ` A �

�lub

�x : B:C � `

A

N : B

0

� ` B

0

� B

� `

A

MN : C[x := N ]

AT-app

We infer as follows

� ` ? ^ � `

A

M : A ) � ` M : A induction assumption

) � ` A : ? prop: 3:10

� ` A �

�lub

�x:B:C ) � ` A � �x:B:C prop: 8:7(1)

� ` ? ^ � `

A

N : B

0

) � ` N : B

0

IH

) � ` B

0

: ? prop: 3:10

� ` A �

�lub

�x:B:C ^ � ` A : ? ) � ` �x:B:C : ? prop: 8:7(4)

) � ` B : ? prop: 3:2; 3:3

So we have a derivation ending by

� ` M : A � ` A � �x:B:C � ` A; �x:B:C : ?

� ` M : �x:B:C

T-sub

� ` N : B

0

� ` B

0

� B � ` B

0

; B : ?

� ` N : B

T-sub

� ` MN : C[x := N ]

T-app

The case for (AK-app) is similar. Others are easy. 2
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Corollary 8.9

� `

A

? ^ � `

A

A : K ) � ` A : K

� `

A

? ^ � `

A

M : A ) � ` M : A

Due to the lack of kinding conversion and typing subsumption in the algorithmic rules, generally

we do not have

� ` A : K ) � `

A

A : K

� ` M : A ) � `

A

M : A

Instead we have the completeness result in the following sense.

Proposition 8.10 (Completeness of algorithmic system)

1: � ` K ) � `

A

K

2: � ` A : K ) 9K

a

s:t: � `

A

A : K

a

^ K

a

=

�

K ^ � ` K

a

3: � ` M : A ) 9A

a

s:t: � `

A

M : A

a

^ � ` A

a

� A

Proof. Simultaneously by induction on derivations in the original system.

Case (K-app). Suppose the last step of derivation is

� ` A : �x:B:K � ` M : B

� ` AM : K[x := M ]

K � app

We infer as follows

� ` A : �x:B:K ) 9K

a

s:t: � `

A

A : K

a

^ K

a

=

�

�x:B:K IH

) 9B

0

;K

0

s:t: K

a

= �x:B

0

:K

0

^

B

0

=

�

B ^ K

0

=

�

K confluence

� ` M : B ) � `

A

M : B

00

^ � ` B

00

� B IH

� ` M : B ) � ` ? ^ � ` B : ? prop 3:3; prop: 3:10

� ` ? ^ � `

A

A : K

a

) � ` A : K

a

prop 8:8

) � ` K

a

prop: 3:10

) � ` B

0

: ? F-�; prop: 3:10

� ` B;B

0

: ? ^ B

0

=

�

B ) � ` B � B

0

prop: 4:2

) � ` B

00

� B

0

prop: 4:5

So we can have a derivation ending by

� `

A

A : �x:B

0

:K

0

� `

A

M : B

00

� ` B

00

� B

0

� `

A

AM : K

0

[x :=M ]

AK-app

and K

0

[x :=M ] =

�

K[x :=M ].

Case. (T-app). Suppose the derivation is ended with

� ` M : �x:A:B � ` N : A

� ` MN : B[x := N ]

T-app

Then there C;A

0

; B

0

; A

00

such that

� ` M : �x:A:B ) � `

A

M : C ^ � ` C � �x:A:B IH

� ` C � �x:A:B ) � ` C �

�lub

�x:A

0

:B

0

^ � ` �x:A

0

:B

0

� �x:A:B prop 8:7

) � ` A � A

0

prop 3:2

� ` N : A ) � `

A

N : A

00

^ � ` A

00

� A IH

) � ` A

00

� A

0

prop 4:5
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Therefore, we can have a derivation ending by

� `

A

M : C � ` C �

�lub

�x:A

0

:B

0

� `

A

N : A

00

� ` A

00

� A

0

� `

A

MN : B

0

[x := N ]

AT-app

and � ` B

0

[x := N ] � B[x := N ] follows from the substitution (Proposition 3.9).

Other cases are easy. 2

In the proof of completeness, we have used re
exivity and transitivity of subtyping. To apply

re
exivity, we need kinding condition, which is proved by context properties, agreement of judg-

ments and soundness of the algorithmic rules. Generation for kinding has been used to break the

subtyping between �-types so that the transitivity can apply.

A minimal type of a term M under context � is a type A such that � ` M : A and for any

type B, the judgement � ` M : B implies � ` B � A. Note that, by this de�nition, the minimal

type of a term M may not be unique: B is a minimal type of M i� any well-formed type which

is �-equivalent to B is also a minimal type of M . But our algorithmic system will always return

the same minimal type. This type may not be in normal form, for example, if x : A 2 � and A,

then the algorithm will return A for x, but A may not be in normal form. To obtain the minimal

normalized type of a term, one can simply normalize the type returned by the algorithm.

In order to show the minimal typing property, it remains to show that the A

a

in the proposition

of completeness is independent of the speci�c type A. To this aim, it su�ces to prove the uniqueness

of algorithmic typing.

Proposition 8.11 (Uniqueness and minimality of algorithmic typing)

� `

A

M : A ^ � `

A

M : B ) A = B

� `

A

M : A ^ � ` M : B ) � ` A � B

Proof. Part 1 is proved by induction on the size ofM , using uniqueness of �lub (Proposition 8.7).

Part 2 follows from part 1. 2

The minimal typing property follows.

Corollary 8.12 (Minimal typing property for ��

�

)

� ` M : A ) (9B s:t: � ` M : B ^ 8C � ` M : C ) � ` B � C)

Decidability is summarized as follows.

Proposition 8.13 (Decidability of algorithmic ��

�

) The following problems are decidable:

for all �;K;M;A and B,

1. � ` A : K ^ � ` B : K

0

) � ` A � B ?

2. � ` ? ) 9K

a

s:t: � `

A

A : K

a

?

3. � ` ? ) 9A

a

s:t: � `

A

M : A

a

?

4. � `

A

K ?

Proof. The assertions can be proved in the order shown. Part 1 has been proved in Proposi-

tion 8.6. 2

By the equivalence between algorithmic rules and the original one, we obtain the decidability

of judgements in ��

�

.
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Proposition 8.14 (Decidability of ��

�

) The following problems are decidable: for all �;K;M;A

and B,

1. � ` A : K ^ � ` B : K

0

) � ` A � B ?

2. � ` ? ) 9K

a

s:t: � ` A : K

a

?

3. � ` ? ) 9A

a

s:t: � ` M : A

a

?

4. � ` K ?

The algorithm for checking subtyping, typing, kinding and context formation can be obtained

by orienting the algorithmic rules and subtypings rules into ordered rewriting rules. But the

obtained algorithm still have some ine�ciency. For example, in order to check the subtyping of

two equal types, say (�x:A:B)M � (�x:A:B)M , the algorithm will actually �

2

-normalize these

two types in the checking process. But we can add an equality re
exivity rule, which is assumed

of highest priority among all subtyping rules:

� ` A � A

EqRefl

Thus unecessary �

2

-normalizations can be eliminated in the type checking.

9 Concluding Remarks and Related Works

The study of subtyping extension of dependent types dates back to the early work of Cardelli

[Car87], who gave basic de�nitions and ideas about semi-decision procedures. Since then, adding

restricted subtyping to dependent types with various features have been investigated by several

authors, e.g. [Coq92, Luo96, Pfe89]. But the extension of subtyping in its general form to �rst

order dependent types has been achieved only recently by Aspinall and Compagnoni[AC96]. From

methodological point of view, the major technical invention of [AC96] is the algorithmic subtyping

system, which has transitivity elimination property and thus can be considered as the key step

towards the proofs of subject reduction and decidability of subtyping. Transitivity elimination

is achieved mainly by the introduction of two rules S-ApR and S-ApT. The former is adopted

to recover the conversion at �

2

normalized type level. The later resolves the con
it between

transitivity elimination and application of subtyping declaration.

Our work goes a step further in building a system with transitivity elimination at type level by

introducing a pair of rules S-ApSR and S-ApSL.

Transitivity elimination has been one of the main research subjects in the history of subtyping.

Among subtyping systems in �-cube[Bar92], apart from the simply typed �-calculus, the work on

F

�

by Curien and Ghelli[CG92] is the �rst one having this property. In that work, they have

shown how to overcome the con
it between transitivity elimination and the rule

� � A 2 �

� ` � � A

Mitchell [Mit88] has proposed a subtyping system for second order �-calculus, where the transitivity

elimination can not be obtained because there are some rules like

8X:A � B[A=X]

In [LMS95], Longo, Milsted and Soloviev have proposed a system Co

`

, which is equivalent to that

of Mitchell, but it has transitivity elimination property.

In the studies of subtyping extensions of F

!

and �P , there is a new obstacle to transitivity

elimination, that is, the type conversion. The existing works F

!

�

[SP94],F

!

^

[Com94] and �P

�

have
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developed techniques to achieve transitivity elimination at the level of normalized types. Our

system is the �rst one having type level transitivity elimination among subtyping systems with

type conversions. This technique is applicable to other systems with type conversions.

One feature of this work is the independent pretype based subtyping relation, the subtyping sys-

tem is separated from typing, kinding and formation. As a consequent, meta-theoretic properties,

like subject reduction, could be proved with less di�culty than in �P

�

.

It should be pointed out that the pretype based subtyping can not be formed simply by dropping

kinding premises from subtyping rules in �P

�

, since transitivity can not be eliminated. If �P

�

did not have kinding checks in subtyping rules, then we could not guarantee the kindability of the

type B in the following transitivity application

� ` A � B � ` B � C

� ` A � C

trans

even if types A;C in the last judgment were well-kinded. That is, a subtyping derivation with a

well-formed judgement at the end would have an ill-kinded type in the middle. Such derivation

would not be considered as justi�ed.

Subtyping in system F

!

�

developed by Martin Ste�en and Benjamin Pierce [SP94] is also based

on pretypes, but there are still kinding premises in the the subtyping rule. For example, the

transitivity rule in F

!

�

is:

� ` B : K � ` A � B � ` B � C

� ` A � C

trans

This ensures that whenever the conclusion of a subtyping judgement is well-kinded, the types on

the right- and left-hand sides of the � will have the same kind and all subderivations will well

behave. But the subtyping system is not independent from typing and kinding.

Our work started from an analysis of the algorithmic subtyping system in �P

�

in which sub-

typing rules are free of kinding premises and there are no transitivity rule (which is admissible),

but subtyping are de�ned only on �

2

-normalized pretypes. Our subtyping rules can be viewed as a

modi�cation of the algorithmic subtyping rules in �P

�

by de�ning the subtyping on pretypes and

we have shown that the system is still well-behaved:

1. The intended subtyping rules, including re
exivity and transitivity are admissible for well-

formed types.

2. The derivation tree of a well-formed subtyping judgement does not contain judgements with

ill-formed types. Furthermore, typing, kinding and context formation in ��

�

are equivalent

to those in �P

�

.

As in �P

�

, the type checking is decidable. But our algorithmic rules are di�erent from those in

�P

�

. First, subtyping rules in ��

�

can be directly transformed into a checking procedure, algorith-

mic subtyping rules are not required. Second, we do not have to do unecessary �

2

-normalizations.

In �P

�

, �

2

-normalizations are required for each application of the algorithmic subtyping rule:

� `

A

M : A � `

A

N : B

0

LUB

�

(A) � �x : B:C � `

A

B

0�

2

� B

� `

A

MN : B[x := N ]

where LUB repeatedly �

2

-normalizes a type A, replacing head variables by their bounds, see [AC96]

for details. Besides, checking subtyping still needs �

2

-normalization, as can be observed from the

algorithmic subtyping rules in �P

�

. To compare, algorithmic application rule in ��

�

does no

�

2

-normalization. In subtyping algorithm, �

2

-normalization is done only when needed (see rules S-

ApSL, S-ApSR). Therefore, our algorithm is more e�cient than that of �P

�

since we can eliminate

redundant �

2

-normalizations. But �P

�

algorithm has the advantage of low memory cost.
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In [AC96], it has been conjectured that "practical implementations could make use of weak

head normal forms instead of full �

2

-normal forms". Our work, motivated by an attempt of basing

subtyping on pretypes, has not only demonstrated the feasibility of their idea but also provided an

elegant reformulation of subtyping system, which is independent from typing, free of normalizing

notation, easy to extend and more e�cient.

10 Future Directions

There are roughly two classes of type systems: those in which types may contain redex and those in

which they do not. Accordingly, there are two classes of subtyping systems. The �rst class includes:

subtyping dependent types, e.g. �P

�

[AC96]; subtyping F

!

, e.g. F

!

�

[SP94], F

!

^

[Com94]. The

second class includes subtyping simply typed �-calculus, subtyping system F, e.g., F

�

[CG92],F

<:

[CMMS91], Co

`

[LMS95],[Mit88].

For the latter systems, usually, there is the property of transitivity elimination , and the

subtyping is studied independently from typing system. For the former, due to the reduction

relation on types, the previous approaches, e.g. �P

�

[AC96],F

!

�

[SP94], have con�ned transitivity

elimination on the set of (partially) normalized types, subtyping relations in these systems are

strongly related to typing and kinding.

The system we have studied belongs to the �rst class, but we have taken a di�erent approach

than the existing ones. The subtyping has properly combined with the reduction relation so that

the resulting system possesses the transitivity elimination property and we can directly work in a

subtyping system separated from the typing system as one did in the second class. This makes

the proofs of fundamental properties, like subject reduction, much easier and the algorithmic rules

free of �

2

-normalization notation.

We believe that these advantages make the system ��

�

more suitable for extensions. We

want to continue the work begun here in several ways. The �rst is to extend dependent types

with overloading and subtyping. Actually, it is the di�culty of extending �P

�

by overloaded

types that lead us to discover ��

�

. In such extension, the economic logic encoding proposed by

Pfenning[Pfe93] could be realized[CC96]. Second, we would like to apply the technique to other

type systems in the �rst class. Or, since we have demonstrated that the transitivity elimination

is possible for both classes of types systems, we may consider to take this approach for adding

subtyping to Pure Type Systems, which covers the eight type systems in �-cube. Third, as many

authors, e.g.[Pfe93, Coq92, Luo96, AC96, Cou95, Bai96, Bar95, Sai96] , have recognised the need for

integrating subtyping into type theory based proof development enviroments, like CoQ[DFH

+

93],

LEGO[LP92], Elf[Pfe89], ALF[CNSvS94],Nuprl[C

+

86] etc, we expect that the technique developed

in this report could facilitate the addition of subtyping to these systems.
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Appendix.

A ��

�

System

A.1 Context Formation Rules

F-empty

<> ` ?

F-term

� ` A : ? x 62 Dom(�)

�; x : A ` ?

F-type

� ` K � 62 Dom(�)

�; � : K ` ?

F-subtype

� ` A : K � 62 Dom(�)

�; � � A : K ` ?

F-�

�; x : A ` K

� ` �x:A:K

A.2 Kinding Rules

K-var

� ` ? � 2 Dom(�)

� ` � : Kind

�

(�)

K-�

�; x : A ` B : ?

� ` �x:A:B : ?

K-�

�; x : A ` B : K

� ` �x:A:B : �x:A:K

K-app

� ` A : �x:B:K � ` M : B

� ` AM : K[x := M ]

K-conv

� ` A : K � ` K

0

K =

�

K

0

� ` A : K

0
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A.3 Typing Rules

T-var

� ` ? x 2 Dom(�)

� ` x : �(x)

T-�

�; x : A ` M : B

� ` �x:A:M : �x:A:B

T-app

� ` M : �x:A:B � ` N : A

� ` MN : B[x := N ]

T-sub

� ` M : A � ` A � B � ` A;B : ?

� ` M : B

A.4 Subtyping Rules

S-�

� ` A

0

� A �; x : A

0

` B � B

0

� ` �x:A:B � �x:A

0

:B

0

S-�

A

0

=

�

A �; x : A

0

` B � B

0

� ` �x:A:B � �x:A

0

:B

0

S-ApR

M

1

=

�

M

0

1

� � � M

n

=

�

M

0

n

� ` �M

1

� � �M

n

� �M

0

1

� � �M

0

n

S-ApT

� ` �(�)M

1

::M

n

� A

� ` �M

1

::M

n

� A

S-ApSL

� ` B[x := M

1

]M

2

::M

n

� C

� ` (�x:A:B)M

1

::M

n

� C

S-ApSR

� ` C � B[x :=M

1

]M

2

::M

n

� ` C � (�x:A:B)M

1

::M

n

B Algorithmic Rules in ��

�

System

B.1 �lub Rules:

Lub-re


� ` �x:A:B �

�lub

�x:A:B

Lub-ApT

� ` �(�)M

1

::M

n

�

�lub

A

� ` �M

1

::M

n

�

�lub

A

Lub-ApSL

� ` B[x :=M

1

]M

2

::M

n

�

�lub

C

� ` (�x:A:B)M

1

::M

n

�

�lub

C
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B.2 Algorithmic Context Formation Rules:

AF-empty

<> `

A

?

AF-term

� `

A

? � `

A

A : ? x 62 Dom(�)

�; x : A `

A

?

AF-type

� `

A

K � 62 Dom(�)

�; � : K `

A

?

AF-subtype

� `

A

K � `

A

A : K

0

K =

�

K

0

� 62 Dom(�)

�; � � A : K `

A

?

AF-�

�; x : A `

A

K

� `

A

�x:A:K

B.3 Algorithmic Kinding Rules:

AK-var

� 2 Dom(�)

� `

A

� : Kind

�

(�)

AK-�

� `

A

A : ? �; x : A `

A

B : ?

� `

A

�x:A:B : ?

AK-�

� `

A

A : ? �; x : A `

A

B : K

� `

A

�x:A:B : �x:A:K

AK-app

� `

A

A : �x:B:K � `

A

M : B

0

� ` B

0

� B

� `

A

AM : K[x := M ]

B.4 Algorithmic Typing Rules:

AT-var

x 2 Dom(�)

� `

A

x : �(x)

AT-�

� `

A

A : ? �; x : A `

A

M : B

� `

A

�x:A:M : �x:A:B

AT-app

� `

A

M : A � ` A �

�lub

�x : B:C � `

A

N : B

0

� ` B

0

� B

� `

A

MN : C[x := N ]
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